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PREFACE

With this book, we hope to make data analysis for the social
sciences accessible to everyone. Drawing conclusions from data
and being able to evaluate the strengths and weaknesses of social
scientific studies are critical skills that should be available to all.
Not only can these skills lead to a job as a data scientist, but
they also help us better understand and address important issues
and problems facing society.

This book project was born when Elena suggested to Kosuke
several ways to make more accessible the materials covered in
Quantitative Social Science: An Introduction (Princeton Univer-
sity Press, 2017; aka QSS). Like QSS, this book teaches the
fundamentals of data analysis for social science while analyz-
ing real-world data from published research. This book, however,
focuses on a smaller set of essential concepts with an emphasis
on reaching students with no prior knowledge of statistics and
coding and with minimal background in math. Our goals are to
lower the barriers to becoming a data scientist and to share more
broadly the excitement of quantitative social science research.

Many people have contributed their knowledge and talents to the
production of this book. First and foremost, we would like to thank
Kathryn Sargent for the countless hours she spent improving our
writing and helping us bring our vision to reality. She has been
an integral part of the project from the very beginning, and this
book has greatly benefited from her attention to detail, editorial
expertise, and good cheer. We are also grateful to all those who
have given us feedback, especially our students, early adopters,
and reviewers. In particular, we want to thank Alicia Cooper-
man, Michael Denly, Max Goplerud, Florian Hollenbach, Justin
Leinaweaver, Emilee Martichenko, Davi Cordeiro Moreira, Leonid
Peisakhin, Sheila Scheuerman, Tyler Simko, Robert Smith, Omar
Wasow, and Hye Young You. Our thanks also go to Eric Crahan at
Princeton University, who encouraged us to take on this project,
and to Bridget Flannery-McCoy and Alena Chekanov, who made
sure that the review and production process was as smooth as
possible. In addition, Elena would like to offer special thanks
to Harvard professor Stephen Ansolabehere for being a constant
source of advice, support, and friendship.
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Finally, we would like to thank our families and friends for their
love and patience throughout this project. Elena thanks her mom,
Didi, and brother, Jorge, for always being there for her, despite
being on the other side of the Atlantic. She also thanks her
friends, especially Bulbul, Baptiste, and Emile, for keeping her
fed, sane, and high-spirited during all these years. Kosuke thanks
Christina for a lifelong partnership that has made everything, both
personal and professional, possible. He also thanks Keiji and
Misaki for making sure that their family had many fun moments
together, even during the pandemic.

Elena Llaudet and Kosuke Imai
Cambridge, Massachusetts
January 2022
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1. INTRODUCTION

This book provides a friendly introduction to data analysis for the
social sciences. It covers the fundamental methods of quantita-
tive social science research, using plain language and assuming
absolutely no prior knowledge of the subject matter.

Proceeding step by step, we show how to analyze real-world
data using the statistical program R for the purpose of answering
a wide range of substantive questions. Along the way, we teach
the statistical concepts and programming skills needed to conduct
and evaluate social scientific studies. We explain not only how
to perform the analyses but also how to interpret the results and
identify the analyses’ strengths and potential limitations.

Through this book, you will learn how to measure, predict, and
explain quantities of interest based on data. These are the three
fundamental goals of quantitative social science research. (See
outline 1.1.)

WHY DO WE ANALYZE DATA
IN THE SOCIAL SCIENCES?

In the social sciences we analyze data to:

- measure a quantity of interest, such as the proportion
of eligible voters in favor of a particular policy

- predict a quantity of interest, such as the likely winner
of an upcoming election

- explain a quantity of interest, such as the causal effect
of attending a private school on student test scores.

Figuring out whether you aim to measure, predict, and/or explain
a quantity of interest should always precede the analysis and
often also precede the data collection. As you will learn, the
goals of your research will determine (i) what data you need to
collect and how, (ii) the statistical methods you use, and (iii)
what you pay attention to in the analysis. As you read this book
and learn about each goal in detail, the distinctions will become
clearer. Here we provide a brief preview.

R symbols, operators, and functions intro-

duced in this chapter: +, —, % /, <-
", (), sqrt(), #, setwd(), read.csv(), View(),
head(), dim(), $, and mean().

OUTLINE 1.1. The three goals of quanti-
tative social science research.



2

CHAPTER 1

To measure a quantity of interest such as a population charac-
teristic, we often use survey data, that is, information collected
on a sample of individuals from the target population. To analyze
the data, we may compute various descriptive statistics, such as
mean and median, and create visualizations like histograms and
scatter plots. The validity of our conclusions depends on whether
the sample is representative of the target population. To measure
the proportion of eligible voters in favor of a particular policy,
for example, our conclusions will be valid if the sample of voters
surveyed is representative of all eligible voters.

To predict a quantity of interest, we typically use a statisti-
cal model such as a linear regression model to summarize the
relationship between the predictors and the outcome variable of
interest. The stronger the association between the predictors and
the outcome variable, the better the predictive model will usu-
ally be. To predict the likely winner of an upcoming election,
for example, if economic conditions are strongly associated with
the electoral outcomes of candidates from the incumbent party,
we may be able to use the current unemployment rate as our
predictor.

To explain a quantity of interest such as the causal effect of a
treatment on an outcome, we need to find or create a situation
in which the group of individuals who received the treatment is
comparable, in the aggregate, to the group of individuals who
did not. In other words, we need to eliminate or control for all
confounding variables, which are variables that affect both (i) the
likelihood of receiving the treatment and (ii) the outcome vari-
able. For example, when estimating the causal effect of attending
a private school on student test scores, family wealth is a poten-
tial confounding variable. Students from wealthier families are
more likely to attend a private school and also more likely to
receive after-school tutoring, which might have a positive impact
on their test scores. To produce valid estimates of causal effects,
we may conduct a randomized experiment, which eliminates all
confounding variables by assigning the treatment at random. In
the current example, we would achieve this by using a lottery to
determine which students attend private schools and which do not.
Alternatively, if we cannot conduct a randomized experiment and
need to rely on observational data instead, we would need to use
statistical methods to control for all confounding variables such
as family wealth. Otherwise, we would not know what portion of
the difference in average test scores between private and public
school students was the result of the type of school attended and
what portion was the result of family background.



1.1 BOOK OVERVIEW

The book consists of seven chapters.

Chapter 1 is the introductory chapter, which lays the groundwork
for the forthcoming data analyses.

Chapters 2 through 5 each introduce one or two published social
scientific studies. In these chapters, we show how to analyze real-
world datasets to answer different kinds of substantive questions.
Specifically, we teach how to use several quantitative methods to
measure, predict, and explain quantities of interest. (See outline
1.2, which indicates how each chapter relates to the three goals
of quantitative social science research.)

BOOK OUTLINE

Chapter Goal

1. Introduction

2. Estimating Causal Effects with Explain
Randomized Experiments

3. Inferring Population Characteristics =~ Measure
via Survey Research

4. Predicting Outcomes Using Linear Predict
Regression

5. Estimating Causal Effects with Explain
Observational Data

6. Probability

7. Quantifying Uncertainty All Three

As you can see, chapters 2 and 5 are both about explanation, also
known as causal inference. They teach how to estimate causal
effects using different types of data. Since the methods differ,
they are presented in separate chapters.

The book progresses from simple to more complex methods. Chap-
ter 2 shows how to estimate causal effects using data from a
randomized experiment. Chapter 3 is about measurement and
teaches how to infer the characteristics of an entire population
from a sample of survey respondents. Chapter 4 is about pre-
diction and demonstrates how to use simple linear regression.
Chapter 5 shows how to estimate causal effects with observational
data and teaches multiple linear regression, the most complicated
method we see in the book.

In chapter 6, we cover basic probability, and in chapter 7 we
complete some of the analyses from chapters 2 through 5 by quan-
tifying the uncertainty of our empirical findings. A more detailed
description of each chapter is below.

INTRODUCTION 3

OUTLINE 1.2. Book outline showing how
each chapter relates to the three goals of
quantitative social science research.
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1.2 CHAPTER SUMMARIES

In the current introductory chapter, we discuss why data analysis
is a required skill among social scientists. We also explain how to
get our computers ready, and we familiarize ourselves with RStu-
dio and R, the two programs we will use. Then, we learn to load
and make sense of data and practice computing and interpreting
means.

In chapter 2, we define and learn how to estimate causal effects
using data from a randomized experiment. As the working exam-
ple, we analyze data from one of the largest experiments in U.S.
education policy research, Project STAR, to determine whether
attending a small class improves student performance.

In chapter 3, we use survey research to measure population char-
acteristics. In addition, we learn how to visualize and summarize
the distribution of single variables as well as the relationship
between two variables. To illustrate these concepts, we analyze
data related to the 2016 British referendum on withdrawing from
the European Union, a decision popularly known as Brexit.

In chapter 4, we learn how to predict outcomes using simple linear
regression models. For practice, we analyze data from 170 coun-
tries in order to predict growth in gross domestic product (GDP)
using night-time light emissions as measured from space.

In chapter 5, we return to estimating causal effects, but this
time using observational data. We define confounding variables,
examine how their presence complicates the estimation of causal
effects, and learn how to use multiple linear regression models
to help mitigate the potential bias these variables introduce. To
illustrate how this works step by step, we estimate the effects of
Russian TV reception on the 2014 Ukrainian parliamentary elec-
tions. In this context, we introduce the concepts of internal and
external validity. We then discuss the pros and cons of random-
ized experiments and of observational studies.

In chapter 6, we shift our focus away from data analysis to cover
basic probability. We learn about random variables and their
distributions as well as the distinction between population param-
eters and sample statistics. We then discuss the two large sample
theorems that enable us to measure statistical uncertainty.

In chapter 7, we use everything we have learned in the preceding
chapters and show how to quantify the uncertainty in our empir-
ical findings in order to draw conclusions at the population level.
In particular, we show how to quantify the uncertainty in (i) popu-
lation inferences, (ii) predictions, and (iii) causal effect estimates.
As illustrations, we complete some of the analyses we started in
chapters 2 through 5.



1.3 HOW TO USE THIS BOOK

This is no ordinary textbook on data analysis. It is intention-
ally designed to accommodate readers with a variety of math and
programming backgrounds.

The book uses a two-column layout: a main column and a side
column or margin.

The main column contains the essential material and code, which
are intended for all readers, except for the sections labeled
FORMULA IN DETAIL. These contain more advanced material
and are clearly identified so that you can easily skip them if you
so choose.

In the margin are various types of notes and figures, each with a
different purpose:

- At the beginning of each chapter, we list the R functions, sym-
bols, and operators that will be introduced. You can look
through the list to get a sense of what will be covered. (See,
for example, the list for this chapter shown on the first page,
and note that we always display code in cyan.)

- TIPs include supplemental material, such as additional expla-
nations, answers to common questions, notes on best practices,
and recommendations.

- RECALLs remind you of relevant information mentioned earlier
in the book. These reminders are particularly helpful when the
book is read only a few pages at a time, such as over the course
of a semester.

- To help you review the core concepts, which are shown in bold
red in the main text, we repeat their definitions in the margin.
These notes are displayed in red.

- To help you with R functions, symbols, and operators, the
first time these are introduced, we include in the margin an
explanation of how they work and provide an example. These
explanations are displayed in a cyan-colored frame.

At the end of each chapter, in place of the usual list of supplemen-
tary exercises, we include CHEATSHEETS to help you review the
core concepts as well as the R functions, symbols, and operators
covered.

Supplementary chapter-specific exercises, categorized by degree
of difficulty, are available at http://press.princeton.edu/dss.

Finally, at the end of the book, we include three separate indexes
for concepts, mathematical notation, and R-related topics.

INTRODUCTION

5
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1.4 WHY LEARN TO ANALYZE DATA?

As a social scientist, sooner or later you will need to rely on
data to (i) measure the characteristics of a certain population of
interest, (il) make predictions, and/or (iii) make or evaluate deci-
sions involving cause-and-effect relationships. What proportion
of a population is in favor of a particular policy? Who is the
candidate most likely to win an upcoming election? Shall we
implement a particular policy to boost economic growth? You will
want to be able to answer these types of questions either by ana-
lyzing data yourself or by understanding and assessing someone
else’s data analysis.

Even if you are not planning to become a social scientist, it is use-
ful for you to know how to analyze data and/or how to distinguish
a good quantitative study from a poorly conducted one. These
are highly marketable skills. Recent advancements in computing
power and the proliferation of data have increased the demand
for data analysts who can inform decision makers in the public
and private sectors alike.

The analytical skills you will learn by making your way through
this book can also be used to improve everyday decisions, from
choosing a candidate to vote for to determining the best way to
increase your productivity. Perhaps most importantly, by learning
the strengths and limitations of different quantitative methods,
you will become less vulnerable to arguments based on faulty
inferences from data. In the era of big data, we all stand to
benefit from becoming savvy consumers of quantitative research,
even if we do not all become skilled researchers ourselves.

1.4.1 LEARNING TO CODE

For the purpose of analyzing data, we write and run code. Code
contains instructions that a computer can implement. These
instructions consist of sequences of clearly defined steps written
in a particular programming language. In this book, we code in R,
which is a programming language used by many data analysts.

Don’t worry if you have never done any coding before. Learning
to code is not as difficult as one might think. You may even find
it fun. Back in 1944, when the first programmable computer in
the United States was built, only highly trained mathematicians
were able to code. At that time, coding required punching paper
tape in specific sequences that the machine could read. (See a
rendition of what this tape looked like in the margin.) Today,
anyone with access to a computer, some spare time, and a little
patience can learn how to code.



1.5 GETTING READY

To perform the analyses in this book, we first need to download
and install the necessary files and programs. We should also
familiarize ourselves with RStudio, which is the interface we use
throughout.

© DOWNLOAD AND SAVE FILES

All the files we will use are in a folder named DSS, which is
available at http://press.princeton.edu/dss. For easy access, we
recommend saving the folder on your Desktop. This is where the
code used throughout the book assumes the DSS folder is located.
In case you choose to save the folder elsewhere, we also provide
instructions for making the necessary changes to the code.

® DOWNLOAD AND INSTALL R AND RSTUDIO

We will use two programs: R and RStudio. R is the statistical
program, the engine if you will, that will perform the calculations
and create the graphics for us. RStudio is the user-friendly inter-
face we will use to communicate with R. While we could use R
directly, going through RStudio makes writing and running code
much easier.

Why do we use R as our statistical program? Because it is free,
open-source (anyone can see the underlying code and improve it),
powerful, and flexible. It is also widely used. Indeed, many jobs
these days require knowledge of R.

To download and
http://cran.r-project.org,  select the link

INTRODUCTION 7

TIP: By default, your computer will likely
save the DSS folder to your Downloads.
To move it, you can copy and paste it or
drag it to the new location.

Unfortunately, these programs are com-
patible only with Linux, Mac, and Win-
dows operating systems. They cannot be
used on tablets or phones. We provide
instructions for using these two programs
on a Mac or a Windows computer.

install R, go to To download and install RStudio, go to
http://rstudio.com, select the link that matches

that matches your operating system, and
follow the instructions. tions.

® BECOME FAMILIAR WITH RSTUDIO

To analyze data, we always operate R through RStudio. Let’s
take a moment to become acquainted with RStudio’s layout.

After installing both programs, go ahead and start RStudio. Then,
from within RStudio, open a new R script, which is the type of file
we use to store the code we write to analyze data. Instructions
are shown in the margin.

your operating system, and follow the instruc-

TIP: How do we open a new R script? In
the RStudio dropdown menu, click on File
> New File > R Script. A new “Untitled”
file will open. The extension of this type
of file is “R", which is why R scripts are
also called R files.
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FIGURE 1.1. Layout of RStudio after
opening a new R script. The upper-left
window is the R script. The lower-left win-
dow is the R console. The upper-right
window is the environment of the R ses-
sion. The plots and help tabs appear in
the lower-right window.

After opening a new R script, RStudio’s interface should look like
figure 1.1.

- The upper-left window is the R script, which is where we write
and run code, giving R commands to execute.

- The lower-left window is the R console, where R provides either
the results of successfully executed code (known as outputs) or
any error messages.

- The upper-right window is the environment, which is the stor-
age room of the current R session. It lists all the objects we
have created. (We will soon explain what objects are and pro-
vide examples showing how the environment works.)

- The lower-right window is where we find the help and plots
tabs, which we will learn how to use later on.

RStudio File Edit Code View Plots Session Build Debug Profile Tools Window Help

@) untitled x| Environment | History |

Console | Terminal x | Files | Plots | Packages | Help | Viewer |

1.6 INTRODUCTION TO R

To use R, we need to learn the R programming language. (R is
the name of both the statistical program and the programming
language.) Learning a programming language is like learning a
foreign language. It is not easy, and it takes a lot of practice and
patience. The exercises in this book will help you learn to code
in R, so be sure to follow along. Practice is everything!

Let’s begin. R can be used to do many things. In our case, we
will use R (i) as a calculator; (ii) to create objects, which is how
R stores data; and (iii) to interact with data using functions.

WE WILL USE THE STATISTICAL PROGRAM R TO:
(i) do calculations
(i)  create objects
(iit)  use functions.




1.6.1 DOING CALCULATIONS IN R

We can use R as a calculator. R can do summation (-+), subtraction
( ), multiplication ("), and division (), as well as other more
complicated mathematical operations. For example, the code to
ask R to calculate 1 plus 3 is:

=S

To run this or any other code, we first type it in the R script (the
upper-left window of RStudio). Then, we highlight as much of it
as we want to run and either (a) manually hit the run icon (shown
in the margin) or (b) use the shortcut command+enter in Mac or
ctrl+enter in Windows. The result, or output, of the executed code
will show up in the R console (the lower-left window of RStudio).
(Instead, we could type the code directly in the R console and
hit enter, but we should avoid doing it that way. It is best to run
code through an R script so that you can save it, re-run it, tweak
it, expand it, and share it.)

After running the code above, we should see the following in the
R console: first, the executed code shown in blue, indicating that
R was able to run it without problems, and then the output shown
in black. In this case, the output is:

4

Indeed, one plus three equals four.

Congratulations! You just wrote and ran your first line of code
in R. Notice that now that you have written some code in the
R script, RStudio shows the name of the file in red. This is to
remind you that you have some unsaved changes. Once you save
the file, the file name will return to black.

Throughout the book, we show the output that you should see in
the R console right after the code that produces it. To distinguish
the output from the code, we display the output with the symbol
## at the beginning of the line. For example, we display the
code and output above as follows:

1+3
## 1] 4

The first line, shown in cyan, is the code to be typed and run in
the R script. The second line, which begins with ## and is shown
in gray, is what should appear in the R console after running the
code.

What does the number in brackets before the 4 mean? It indicates
the position of the output immediately to its right. In this instance,
[1] indicates that 4 is the first output of the code we ran. Later in
the chapter, we will see examples of code that produce multiple
outputs, which will clarify how this works.
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+, — 7, and / are some of the
arithmetic operators recognized by
R. Example: (4 — 1+ 3) " (2/3)

== RUN

TIP: To save any changes you make to the
R script, either (a) use the shortcut com-
mand+S in Mac or ctrl+S in Windows or
(b) click on File > Save or Save As. ..

TIP: Adding spaces around operators
makes the code easier to read. R ignores
these spaces. Example: 143 produces the
same output as 1 + 3.
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CONTENTS

l

NAME

<- is the assignment operator. It
creates new objects in R (unless one
with the same name already exists,
in which case R overwrites its con-
tents). To its left, we specify the
name of the object (without quotes).
To its right, we specify the contents

of the object. Example: four <- 4.

TIP: We would accomplish the same thing
by running: four <- 4.

TIP: RStudio continues to work in the
same R session until you quit the program.
At that time, R will ask whether you want
to save the workspace image, which con-
tains all the objects you created during
the R session. We recommend that you
do not save it. If you need to continue to
work with those objects, you can always
re-create them by re-running your code.

1.6.2 CREATING OBJECTS IN R

In order to manipulate and analyze data, we need to load and
store datasets. R stores information in what are known as objects,
and so we need to learn how to create objects in R.

Think of an object as a box that can contain anything. All we
need to do is give it a name, so that we know how to refer to it,
and specify its contents.

To create an object in R, we use the assignment operator <-:

- To its left, we specify the name we want to give the object.
This name can be anything as long as it does not begin with a
number or contain spaces or special symbols like $ or % that
are reserved for other purposes. Underscores are permitted
and are good substitutes for spaces.

- To its right, we specify the contents of the object, that is, the
data we want to store.

CREATING OBJECTS: To store data as an object in R, we
run code using this format:

object_name <- object_contents
where:

- object_name is the name we want to give the object

- <-is the assignment operator, which creates an object by
assigning contents to a name

- object_contents is the data we want to store in the object.

For example, if we want to create an object called four containing
the output of the calculation 143, we run:

four <-1+ 3

Notice that after running the code above, the object will show
up in the environment (the upper-right window in RStudio). As
mentioned earlier, the environment is the storage room of the
current R session. It shows the objects that we have created and
that are available for us to use.

If we want to know the contents of the object four, we can type
and run the name of the object in the R script. Its contents will
appear in the R console. This is equivalent to asking R, what is
inside the object named four?

four
## 1] 4



Not surprisingly, the object four contains the number 4.

Objects can contain text as well as numbers. For example, to
create an object called hello containing the text “hi” we run:

hello <- "hi"

After running the code above, the environment should contain two
objects: four and hello.

Let’s stop here to learn something important about R. Look at the
code above. Why did we use quotation marks around the content
of the object "hi" but not around the name of the object hello? In
other words, when do we use quotes when coding in R? Here
is the rule: When writing code, the names of objects, names of
functions, and names of arguments as well as special values such
as TRUE, FALSE, NA, and NULL should not be in quotes; all
other text should be in quotes. (In the next subsection, we will
see what we mean by functions and arguments. We will learn the
meaning and usage of TRUE and FALSE in chapter 2 and of NA
and NULL in chapter 3.)

What would have happened had we tried to run the code above
without quotes around hi? Go ahead and try it:

hello <- hi
## Error: object "hi’ not found

In the R console, you will see an error message (in red) that reads,
“Error: object 'hi’ not found”. Indeed, by typing hi without quotes,
you are telling R that hi is the name of an object. Because there
is no object named hi in the environment, R gives you an error
message. Encountering programming errors is part of the coding
process. Try not to be discouraged by them.

A word of caution: R overwrites (replaces) old objects if we use
the same name when creating a new object. For example, go
ahead and run the following:

hello <- "hi, nice to meet you"

You should see that you still have only two objects in the envi-
ronment: four and hello, but now hello contains the text “hi, nice
to meet you” instead of simply “hi”. To confirm this, we run:

hello
## [1] "hi, nice to meet you'

Note also that R is case-sensitive. It will treat Hello as a com-
pletely different object name than hello. If we run the name Hello
by mistake, R will not be able to find the object because there is
no object in the environment called Hello with an uppercase H
at the beginning. To avoid this problem, we recommend using all
lowercase letters when naming objects.
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" when writing code, the names
of objects, names of functions, and
names of arguments as well as spe-
cial values such as TRUE, FALSE,
NA, and NULL should not be in
quotes; all other text should be in
quotes. Examples: "this is just text',
object_name.  Never use quotes
around a number unless you want R
to treat it as text, in which case you
will not be able to use it to perform
arithmetic operations.

TIP: If you have problems figuring out what
a particular error means, Google it. Lots
of data analysts participate in Q&A sites,
such as Stack Overflow, which can be very
helpful for this sort of thing.
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R functions in this book: sqrt(), setwd(),
read.csv(), View(), head(), dim(), mean
ifelse(), table(), prop.table(), na.omit
hist(), median(), sd(), var(), plot(), abline
cor(), lm(), log(), c(), sample(), rnorm
pnorm(), print(), nrow(), predict(), abs
and summary().

)
),
),
),
),
)

(
(
(
(
(
(

’

() the names of functions are
always followed by parentheses.
Inside the parentheses, we write
the argument(s) of the function,
separated by commas if there is
more than one argument. Example:
function_name(arg1, arg2).

TIP: There are two types of arguments:
required and optional. Required argu-
ments are the inputs that we must spec-
ify in order to use a particular function.
Optional arguments are the inputs that we
could specify if we wanted to modify the
function’s default settings.

1.6.3 USING FUNCTIONS IN R

Finally, we use R to interact with data, which requires using
functions.

Think of a function as an action that you request R to perform
with a particular piece of data, such as calculating the square
root of four. A function takes one or more inputs, such as the
number four; performs one or more actions with the inputs, such
as calculating the square root of the inputs; and produces one
or more outputs, such as the number two, which is the result of
taking the square root of four.

AN R FUNCTION

performs
takes . action(s) produces
input(s) o with the - output(s)
input(s)

Throughout the book, we will learn how to use the functions listed
in the margin, which come automatically loaded with R. In time,
we will learn their names, the actions they perform, the inputs
they require, and the outputs they produce. Meanwhile, here are
some important things to know about functions:

- The name of a function (without quotes) is always followed by
parentheses: function_name()

- Inside the parentheses, we specify the inputs to be
used by the function, which we refer to as arguments:
function_name(arguments)

- Most functions require that we specify at least one argument
but can take many optional arguments. When multiple arqu-
ments are specified inside the parentheses, they are separated
by commas: function_name(argumentl, argument2)

- To identify the type of argument that we are specifying,
we either enter the arguments in a particular order or
include their names (without quotes) in our specification:
function_name(argument1, argument2) or
function_name(argument1_name = argument,

argumentZ2_name = arqument2)

- In this book, we follow the most common practices. We always
specify required arguments first. If there is more than one
required argument, we enter them in the order expected by
R. We specify any optional arguments we want next and
include their names so that R knows how to interpret them:
function_name(required_argument,

optional_argument_name = optional_argument)



USING R FUNCTIONS: To use a function in R, we typically
write code in one of these two formats:

(a) function_name(required_argument)

(b) function_name(required_argument,
optional_argument_name = optional_argument)

where:

- function_name is the name of the function; for example,
“mean” is the name of the function that computes the mean
of a set of values

- required_argument is the argument the function requires,
such as the values we want to calculate the mean of; we
typically do not include the names of required arguments;
we enter the required arguments first, and if there is more
than one, we enter them in the order expected by R

- , is a comma, which we use to separate different arguments
- optional_argument_name is the name of the optional
argument we want to use, such as the argument that

enables us to eliminate missing values before calculating
a mean

- optional_argument is what we set the optional argument
to be.

We will see some complex R functions in the next section. For now,
let's look at a simple one. The function sqrt(), which stands for
“square root,” calculates the square root of the argument specified
inside the parentheses. For example, to calculate the square root
of 4, we run:

sqrt (4)
## 1] 2

The output here is the number 2. Alternatively, given that the
object four currently contains the number 4, we can run:

sqrt (four)
## (1] 2

Note that R will be able to execute the code above only after
we have created the object four. If we start a new R session and
attempt to run this code without having first created the object
four, R will not be able to find the object in the environment and
will give us an error message. This is just to say that one must
run code in order. When returning to work on an R script, it is a
good idea to run all the code from the beginning of the file up to
the line that we are working on.
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sqrt() calculates the square root of
the argument specified inside the
parentheses. Example: sqrt(4).

TIP: Here, the name of the function is
sqrt, which, as with all function names,
is followed by parentheses (). Inside
the parentheses, we need to specify the
required argument, which is 4, in this
case. The output of the executed code is
2. Indeed, the square root of four is two.
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# is the character used to comment
code. R ignores everything that fol-
lows this character until the end of
the line. Example: # this is a com-
ment.

TIP: We recommend that when you start
a new study, you either (a) start a new R
session (Session > New Session) or (b)
remove all objects from the environment
(Session > Clear Workspace > Yes) to
avoid operating with objects from previous
studies by mistake.

One of the major advantages of writing code using an R script
(instead of writing it directly into the R console) is that we can
always replicate our results by re-running the code we have writ-
ten previously. Using an R script, we are able to work on complex
problems that might require running hundreds or thousands of
lines of code. As long as we save the code in an R script, we
can keep tweaking and expanding it. Writing code in R scripts
also means we can share our work and collaborate with others.
Anyone with access to our R script will be able to replicate our
analyses, which leads us to our next topic: the importance of
annotating, or commenting, code.

It is good practice to comment code, that is, to include short
notes to ourselves or to our collaborators explaining what the
code does. This will make reading and understanding our code
easier. To write comments in the R script, we use #. R ignores
everything that follows this character until the end of the line
and will not execute it. For example, running the following code
produces exactly the same output as the code above:

sqrt (four) # calculates square root of four
## (1] 2

After seeing the # character, R stopped reading until the end
of the line. Had we inserted the comment at the beginning of
the line, before the code, R would not have executed the function
sqrt() at all. Go ahead, run:

# calculates square root of four sqrt(four)

R will not produce an output. R thinks the whole line is a comment
because it starts with #.

RStudio helps us write and read code by color coding it in the
R script. For example, comments are shown in light green, while
executable code is shown in black, gray, blue, and dark green.
Becoming familiar with this color scheme will help you detect
errors in your code. (In this book, we use only two colors when
displaying code: cyan for executable code and gray for comments.)

1.7 LOADING AND MAKING SENSE OF DATA

Before starting any analysis, we must load the dataset. Then, we
must understand what the observations represent and what each
of the variables means. In this section, we show how to do all of
this for the data from the Project Student-Teacher Achievement
Ratio (Project STAR) in preparation for the analysis in chapter
2. The goal of Project STAR was to examine the causal effects
of small classes on student performance. While exploring the



data from Project STAR, we learn what variables are and how
to distinguish between different types of variables based on their
contents.

To follow along, you can create a new R script (as shown in the
previous section) and practice typing the code yourself. Alterna-
tively, you can open the “Introduction.R” file, which contains the
code used in the remainder of this chapter.

Here are the steps we recommend you follow before starting a
data analysis:

© SET THE WORKING DIRECTORY

Before we can load a dataset, we need to direct R to the working
directory, that is, the name and location of the folder containing
the data. If you followed the advice from the earlier section, all
the files necessary for the exercises in this book will be in the
DSS folder on your Desktop.

The easiest way to set the working directory is to first save the
R script to the folder that contains the dataset, the DSS folder,
in this case. Then, you can use the dropdown menu to set the
working directory manually: Session > Set Working Directory >
To Source File Location. After your last click, you will see a line
of code appear in the R console. Every time you start a new R
session and want to work with a dataset saved in the DSS folder,
you will need to run this line of code. You may, therefore, want
to copy and paste it in the R script as your first line of code.

The code to set the working directory uses the function setwd(),
which stands for “set working directory.” The only required argu-
ment is the path to the folder, which should be in quotes because
it is text and not the name of an object, the name of a function, the
name of an argument, or a special value such as TRUE, FALSE,
NA, and NULL. The path differs depending on whether you have a
Mac or a Windows computer. The code to set the working direc-
tory to the DSS folder on your Desktop should resemble one of
these (where user is your own username):

setwd ("~ /Desktop/DSS") # example of setwd() for Mac
setwd("C: /user/Desktop/DSS") # example for Windows

® LOAD THE DATASET

Now we are ready to load the dataset. R can read a variety
of data formats. In this book, datasets are always provided in
comma-separated values files, known as CSV files. As the name
indicates, CSV files contain data separated by commas. (See
figure 1.2 for a rendition of a CSV file.)

INTRODUCTION 15

TIP: How do we open an existing R script?
In the RStudio dropdown menu, click on
File > Open File. .. and then click on the
“R" file you want to open.

TIP: To save an R script to the DSS folder,
either (a) click on File > Save As ... and
select the DSS folder, or (b) manually drag
the corresponding “R” file from its current
location to the DSS folder.

setwd() sets the working direc-
tory, that is, directs R to the
folder on your computer where
the dataset is saved. The only
required argument is the path to
the folder in quotes. Examples:
setwd("~/Desktop/folder") for Mac,
setwd("'C:/user/Desktop/folder") for
Windows (where user is your own
username).

TIP: Resist the temptation to double-click
on a CSV file. If you open a CSV file
directly, you risk inadvertently changing
or losing data.
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FIGURE 1.2. CSV files contain data sep-
arated by commas.

read.csv() reads CSV files. The only
required argument is the name of
the CSV file in quotes. Example:
read.csv('file.csv").

KO OO D STAR.csv

"classtype","reading","math", "graduated"
"small",578,610,1

"regular",612,612,1

“"regular",583,606,1

"small", 661,648,1

“small",614,636,1

“"regular",610,603,0

To read the contents of a CSV file in R, we use the read.csv()
function, which requires that we specify inside the parentheses
the name of the CSV file in quotes. (We need to use quotes around
the name of the CSV file because it is text and not the name of
an object, the name of a function, the name of an argument, or a
special value such as TRUE, FALSE, NA, and NULL.)

To store the dataset so that we can analyze it later, we need to
not only read the CSV file but also save its contents as an object.
We can do so by using the assignment operator <-. As we saw
earlier, to the left of the assignment operator, we specify the name
of the object. To its right, we specify the contents, which in this
case are produced by reading the CSV file using the function
read.csv().

Here, the dataset is in a file called “STAR.csv”, and we choose to
name the object where we store the dataset star. Putting it all
together, the code to read and store the dataset is:

star <- read.csv("STAR.csv") # reads and stores data

After running the line of code above, the name of the object,
star, should appear in the environment (the upper-right window
in RStudio). If R gives you an error message instead, make sure
that (i) you have set the working directory to the folder where the
CSV file is saved, (ii) the name of the CSV file you are using in
the code is exactly the same as the name of the CSV file saved
in the working directory, and (iii) the extension of the CSV file in
the working directory is indeed “.csv".

® UNDERSTAND THE DATA

To make sense of the dataset, we should start by looking at its
contents.

To look at the data, we could type the name of the object, star,
in the R script and run it. R will show the entire contents of the
dataset in the R console, which might be hard to read unless the
dataset is small.



A better option is to use the function View(), which requires that
we specify inside the parentheses the name of the object where
the dataset is stored (without quotes). Alternatively, you can
manually click on the object name in the environment. Both of
these actions open a new tab in the upper-left window of RStudio
with the dataset in spreadsheet form. We can then easily scroll up,
down, left, and right to look at the data in an organized manner.
Figure 1.3 shows how the data will be displayed if we run:

View(star) # opens a new tab with contents of dataset

®9 Introduction.R x @star x

“|classtype ° reading ° math ° graduated ¥
1 | small 578 610 1
2 | regular 612 612 1
3 | regular 583 606 1
4 | small 661 648 1
S | small 614 636 1
6 | regular 610 603 0

Sometimes it might be enough for us to see only the first few
rows of data. For this purpose, we use the function head(), which
requires that we specify inside the parentheses the name of the
object where the dataset is stored (without quotes):

head(star) # shows the first six rows
## classtype reading math graduated

## 1 small
## 2 reqular
## 3 reqular
## 4 small
##5  small
## 6 reqular

578 610
612 612
583 606
661 648
614 636
610 603

1

[ JTE N N N

By default, the function head() displays the first six lines of data.
If we want R to display a different number of lines, we specify
an optional argument inside the parentheses. In particular, we
specify the argument named n and set it to equal the number of
lines we want R to show. For example, to ask R to display the
first three lines of star, we run:

head(star, n=3) # shows the first three rows
## classtype reading math graduated

## 1 small
## 2 reqular
## 3 reqular

578 610
612 612
583 606

1
1
1

INTRODUCTION 17

View() opens a new tab in the
upper-left window of RStudio with
the contents of a dataset. The
only required argument is the name
of the object where the dataset
is stored (without quotes). Exam-
ple: View(data). Note that R is
case-sensitive and the name of this
function starts with uppercase V.
The good news is this is the only
function we will see in this book
that uses any uppercase letters; all
others are written in all lowercase
letters.

FIGURE 1.3. Tab that opens in the
upper-left window of RStudio with entire
contents of the star dataset as a result
of either (a) running View(star) in the R
script or (b) clicking on the object star in
the environment. (To return to the R script,
we can either close this tab by clicking on
the gray X next to the name or by clicking
on the R script tab.)

head() shows the first six rows or
observations in a dataset. The
only required argument is the name
of the object where the dataset is
stored (without quotes). To change
the number of observations dis-
played, we use the optional argu-
ment n.  Examples: head(data)
shows the first six rows and
head(data, n=3) shows the first
three. In the output, the first column
identifies the position of the obser-
vations, and the first row identifies
the names of the variables.

RECALL: In R functions, multiple argu-
ments are separated by commas, and the
names of arguments should not be in
quotes. Failing to follow these instructions
will prevent R from executing the code and
result in an error message.
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In a dataframe, each row is an observa-
tion, and each column is a variable. An
observation is the information collected
from a particular individual or entity in the
study. The unit of observation of a dataset
defines what each observation represents.
The notation i identifies the position of
the observation; the observation for which
i=1 is the first observation. A variable
captures the values of a changing charac-
teristic for multiple individuals or entities

TIP: In this book, we are also going to
teach you mathematical notation, a system
of symbols and expressions that represent
mathematical concepts. To help you keep
track of the meaning of these symbols and
expressions, at the end of the book we have
included an index of all the mathematical
notation we use.

How do we make sense of the data inside the dataset? Knowing
the following common features of datasets should help:

- Datasets capture the characteristics of a particular set of indi-
viduals or entities: citizens, organizations, countries, and so on.
As we will soon learn, this dataset contains information about
students who participated in Project STAR.

- Datasets are typically organized as dataframes, where rows
are observations and columns are variables.

- What is an observation?
- An observation is the information collected from a partic-

ular individual or entity in the study.

The unit of observation of the dataset defines the individ-
uals or the entities that each observation in the dataframe
represents. The unit of observation in the STAR dataset is
students. Hence, every row of data in the star dataframe
represents a different student in the study.

We usually refer to an observation by the row number in
the dataframe, which we denote as . See, for example,
that in the output of head(), the rows are labeled by their
position, i. When R displays the first six observations of
a dataframe, the values of i range from 1 to 6.

- What is a variable?

- Avariable captures the values of a changing characteristic

for the multiple individuals or entities in the study.

Every column of data in the star dataframe is a variable;
each variable captures a specific feature of the students,
for all the students in the study.

We usually refer to a variable by its name. See, for exam-
ple, that in the output of head(), the columns are labeled
with the variable names: classtype, reading, math, and
graduated. (Note that, for easy recognition, we italicize
the names of variables in the text.)

From time to time, in this book we define new variables
for the purpose of illustrating concepts. We represent a
variable and its contents using the following mathematical
notation:

X = {10,5,8}

- On the left-hand side of the equal sign, we identify the
name of the variable: X, in this case.

- On the right-hand side of the equal sign and inside curly
brackets, we have the contents of the variable: multiple
observations, separated by commas. In the simple exam-
ple above, the variable contains three observations: 10,
5, and 8.



- To represent each individual observation of the variable
X, we use X; (pronounced X sub i) where i stands for
the observation number. The subscript i means that we
have a different value of X for each value of i. Here,
because there are only three observations, i can equal
only 1, 2, or 3. For example, we represent the second
observation (the observation for which i=2) as X;, which
in this case equals 5.

Now that we have looked at the data, we should read the descrip-
tion of the variables provided in table 1.1.

variable description

classtype  class size the student attended: “small” or
“reqular”

reading student’s third-grade reading test scores (in
points)

math student’s third-grade math test scores (in points)

graduated  identifies whether the student graduated from
high school: 1=graduated or 0=did not graduate

Reading table 1.1, we learn that:

- classtype captures the size of the class the student attended,
which was either “small” or “reqular”

- reading records the scores, measured in points, the student
earned on the third-grade reading test

- math records the scores, measured in points, the student earned
on the third-grade math test

- graduated indicates whether the student graduated from high
school (it equals 1 if the student graduated and O if the student
did not graduate).

Now we can look at the first few lines of data again and substan-
tively interpret them. For example, the first observation represents
a student who attended a small class, earned 578 points on the
third-grade reading test and 610 points on the third-grade math
test, and graduated from high school.

O IDENTIFY THE TYPES OF VARIABLES INCLUDED

At this point, we should learn the typology of the variables
included in the dataset. This information will be especially
helpful when we need to interpret the results of the analysis.

Based on the contents of the variables, we can distinguish
between the types listed in outline 1.3.
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TABLE 1.1. Description of the variables in
the STAR dataset, where the unit of obser-
vation is students.
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OUTLINE 1.3. Types of variables based
on their contents.

A character variable contains text, such
as names={Elena, Kosuke, Kathryn}. A
numeric variable contains numbers, such
as rank={2, 1, 3}. A binary variable
can take only two values; in this book, we
define binary variables as taking only 1s
and Os, such as voted={1, 0, 1}. A non-
binary variable can take more than two
values, such as distance={1.452, 2.345,
0.298} and dice_roll={2, 4, 6}.

1 if student i

graduated
graduated; =
0 if student i

didn't graduate

dim() provides the dimensions of a
dataframe. The only required argu-
ment is the name of the object where
the dataframe is stored (without
quotes). The output is two values:
the first indicates the number of
observations in the dataframe; the
second indicates the number of vari-
ables. Example: dim(data).

variables

character numeric

(if text)  (if numbers)
|

b'mlarg non-bllnarg
(if only 2 values) (if more than 2 values)

- The first distinction we make is between character and numeric
variables. While character variables contain text, numeric
variables contain numbers. For example, in the STAR dataset,
classtype is a character variable, and reading, math, and grad-
uated are numeric variables.

- Among numeric variables, we differentiate between binary and
non-binary. A binary variable can take only two values (“bi"
means two). In this book, all binary variables take only 1s and
Os to represent the presence or absence of a particular trait. In
this type of binary variable, also known as a dummy variable,
you may think of the 1s as capturing the positive responses to
simple yes or no questions and of the Os as capturing the neg-
ative responses. For example, in the STAR dataset, graduated
is a binary variable that captures responses to the question,
did the student graduate? The variable takes the value of 1
when the answer is yes (the student graduated) and 0 when
the answer is no (the student did not graduate). (See mathe-
matical definition in the margin.)

- In contrast, we categorize as non-binary all other numeric
variables, that is, those that can take more than two values.
For example, in the STAR dataset, both reading and math are
non-binary variables because they each contain more than two
different numbers.

® IDENTIFY THE NUMBER OF OBSERVATIONS

Finally, we should find out how many observations the dataset
contains. For this purpose, we use the function dim(), which stands
for “dimensions” and requires that we specify inside the parenthe-
ses the name of the object where the dataframe is stored (without
quotes). This function returns two values because dataframes
have two dimensions: rows and columns. The first corresponds to
the number of rows, which is equivalent to the number of obser-
vations. The second corresponds to the number of columns, which
is equivalent to the number of variables.

dim(star) # provides dimensions of dataframe: rows, columns
##(1]1274 4
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The notation n stands for the total num-
ber of observations in a dataframe or in a

Given the output above, we learn that the STAR dataset contains
1,274 observations. And, as we already knew by looking at the
data directly, it contains four variables. Given that each observa-
tion represents a student, we now know that we have information
for 1,274 students in Project STAR. In mathematical notation, we
represent the number of observations in a dataframe as n. In this
case, we can state that n=1,274.

variable.

1.8 COMPUTING AND INTERPRETING MEANS

The mean, or average, of a variable is one of the foundational
concepts of data analysis. In this section, we first show how to
access a variable inside a dataframe in R so that we can operate

TIP: In chapter 3, we will see how to calcu-
late and interpret other statistics, such as
the median, standard deviation, and vari-
ance of a variable.

with its values. Then, we explain in detail how to calculate and
interpret the mean of a variable.

1.8.1 ACCESSING VARIABLES INSIDE DATAFRAMES

Suppose we want to operate with the variable reading inside the
dataframe star. How do we access the values within this variable?

If we run the name of the variable, reading, R will give us an error
message informing us that the object reading cannot be found.
Indeed, there is no object called reading in the environment. If
instead we run the name of the object that contains the dataframe,
star, R will show all the values in the dataframe, not just those of
the variable reading.

To access the values of a single variable, we use the $ character.
To its left, we specify the name of the object where the dataframe
is stored (without quotes). To its right, we specify the name of the
variable (without quotes). In this case, star$reading is the code
that instructs R to select the variable reading from within the
object named star. It is equivalent to saying to R: look inside of
star and find the variable called reading. (Note that when writing
code, we do not use quotes around the names of elements within
an object, such as the names of variables within a dataframe.) Go
ahead and run:

star $reading

## [1] 578 612 583 661 614 610 595 665 616 624
## [11] 593 599 693 545 565 654 686 570 529 582
##

In your R console (the lower-left window), you should see all
the observations of reading. Here, we show you only the first 20.
We use an ellipsis—three dots—to signify that more observations
should appear after those displayed here.

$ is the character used to access
an element inside an object, such
as a variable inside a dataframe.
To its left, we specify the name
of the object where the dataframe
is stored (without quotes). To
its right, we specify the name
of the variable (without quotes).
Example: data$variable accesses
the variable named variable inside
the dataframe stored in the object
named data.
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TIP: The number in brackets shown on the
second line in your R console might not
be 11 because the size of your lower-left
window might be different than ours. The
larger the window, the more observations
R will be able to display per line, and the
higher the number in brackets shown on
the second line will be.

The mean, or average, of a variable equals
the sum of the values across all observa-
tions divided by the number of observa-
tions.

TIP: The mean of a variable is a single
number, which does not vary by observa-
tion. As a result, the mean of X (X) is not
subscripted by i.

mean() computes the mean of a vari-
able. The only required argument
is the code identifying the variable.
Example: mean(data$variable).

What are the numbers in brackets at the beginning of each line?
They indicate the position of the observation immediately to the
right. The [1] on the first line indicates that the number 578 is
the first observation of the variable reading (reading=578). The
[11] on the second line indicates that the number 593 is the 11th
observation of reading (reading11=593), and so on.

Now that we know how to access the contents of a variable, we
can learn how to compute and interpret the mean of a variable.

1.8.2 MEANS

The mean, or average, of a variable characterizes its central ten-
dency. It equals the sum of the values across all observations
divided by the number of observations. In mathematical notation,
the mean of a variable is often represented by the name of the
variable with a bar on top, like so:

name of the variable

The formula to compute the mean of X is:

Y Xi  Xi+ X4+ X,
n n

X =

where:

X (pronounced X-bar) stands for the mean of X

X; (pronounced X sub i) stands for a particular observation of
X, where i denotes the position of the observation

n is the number of observations in the variable

the symbol > (the Greek letter Sigma) is the mathematical
notation for summation; >_7_; X; stands for the sum of all X;
(observations of X) from i=1 to i=n, meaning from the first
observation of the variable X to the last one.

For example, if X={10, 4, 6, 8, 22}, then n=5 because the vari-
able has five observations, and the mean of X is:

X — E?=1Xi _ X1+ X%+ X3+ X+ X5
n 5
10+4+6+8+22 50

= =1
5 5 0

To calculate the mean of a variable in R, we can use the function
mean(). The only required argument is the code identifying the
variable. For example, to calculate the mean of the reading test
scores of the students in the STAR dataset, we run:



mean(star$reading) # calculates the mean of reading
#+# [1] 628.803

How shall we interpret this output? First, we need to figure out
the quantity in which the value is measured. This is called the
unit of measurement. When interpreting numeric results, you
should make it clear whether the number is measured in points,
percentages, miles, or kilometers, for example.

The unit of measurement of the mean of a variable depends on
whether the variable is non-binary or binary. Outline 1.4 sum-
marizes how to interpret the mean of a variable (including units
of measurement) based on this distinction. (We exclude from this
discussion categorical variables, whose means generally have no
straightforward substantive interpretation.)

interpretation of the mean of a variable
|

if variable is non-binary: if variable is binary:
as an average, in the same as a proportion, in %
unit of measurement after multiplying
as the variable the result by 100

When the variable is non-binary, the mean should be interpreted
in the same unit of measurement as the values in the variable.
For example, in the output above, because reading is a non-
binary variable measured in points, the mean of reading is also
in points. We can, therefore, interpret the output as meaning that
the students in Project STAR scored 629 points, on average, on
the third-grade reading test.

When the variable is binary, the mean should be interpreted as
a percentage, after multiplying the result by 100. Why? Because
the mean of a binary variable is equivalent to the proportion of
the observations that are 1s (that have the characteristic identified
by the variable). Let's go over a simple example to see how this
works. Suppose we want to calculate the mean of the first six
observations of the binary variable graduated. As we saw earlier
in the output of head(), these are {1, 1, 1, 1, 1, 0}. The average
of these six observations would be:

sum of observations T+1+1+14+140 5
- = = - =0.8333...
number of observations 6 6

Notice that the fraction 5/6 is equivalent to the proportion of the
observations that are 1s. (See TIP in the margin.) Now, to convert
the result from decimal form (0.83) into a percentage, we multiply
it by 100 (0.83x100=383%).
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The unit of measurement is the quantity in
which a value is measured. For example,
depending on where you live, you might
measure temperature in °F or °C and dis-
tance in miles or kilometers

TIP: Categorical, or factor, variables take
a fixed number of values, where each
value represents a qualitative outcome.
For example, we can capture adult edu-
cation levels in a categorical variable
where 1=no qualifications, 2=high school
diploma, and 3=undergraduate degree.

OUTLINE 1.4. Interpretation of the mean
of a variable based on the type of variable.

TIP: It is good practice to round numeric
results to meaningful decimal places. This
usually means no more than two decimals,
but often one or none.

TIP: The proportion of observations that
meet a criterion is calculated as:

number of observations
that meet criterion

total number of observations

To interpret the resulting decimal as a per-
centage, we multiply it by 100. For exam-
ple, if X={1,1,1, 1, 1, 0}, the proportion
of observations in X that are 1s is 83%
(5/6 = 0.8333... and 0.83x100=83%).

When the variable is binary, the numer-
ator of the mean, the sum of the 1s and
Os, is equivalent to the number of obser-
vations that meet the criterion. As a result,
the mean is equivalent to the proportion of
observations in the variable that are 1s.



24

CHAPTER 1

Putting it all together, we interpret the average of the first six
observations of graduated as indicating that about 83% of the
first six students in the STAR dataset graduated.

Now, let's compute the mean of all the observations within the
binary variable graduated (rather than just the first six). We do
so by running:

mean(star$graduated) # calculates the mean of graduated
#+# (1] 0.8697017

How shall we interpret this output? Since the variable is binary,
the output means that about 87% of all the students in Project
STAR received a high school diploma (0.87 x100=87%).

1.9 SUMMARY

We began this chapter by providing an overview of the book and
its main features. We then argued that knowing how to perform
and evaluate data analyses is particularly useful for studying
society and human behavior but can be helpful to anyone. These
skills are also highly marketable in the current era of big data.
We then got our computers ready and became acquainted with R
and RStudio, the two programs we use. Finally, in preparation
for the next chapter’s data analysis, we learned how to load and
make sense of data and how to compute and interpret means.
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1.10 CHEATSHEETS

1.10.1 CONCEPTS AND NOTATION

concept/notation

dataframe

observation

unit of observation

i

variable
X

character variable
numeric variable

binary variable

non-binary variable

unit of
measurement

mean or average
of a variable
(X)

description

structure of data in which each row is an
observation and each column is a variable

variables
1

12

—
—

1
observations 2

information collected from a particular
individual or entity in the study; each row
in a dataframe is an observation

defines what each observation represents

identifies the position of the observation

captures the values of a changing
characteristic for multiple individuals or
entities; each column in a dataframe is a
variable

variable that contains text
variable that contains numbers

variable that can take only two values, in
this book 1s and 0Os

variable that can take more than two
values

stands for the total number of observations
in a dataframe or in a variable

Greek letter Sigma; mathematical notation
for summation; >_7_; means “sum what
follows for all the observations, from i=1
to i=n" (the first to the last)

quantity in which a value is measured

characterizes the central tendency of the
variable; equals the sum of the values
across all observations divided by the
number of observations:

n
mean of X = X = Li X
n
unit of measurement of X:
- if X is non-binary: in the same unit of
measurement as
- if X is binary: in percentages, after
multiplying the result by 100

example(s)

variables classtype and reading in
dataframe form:

i classtype  reading
1 small 725

2 regular 692

3

small 725

the first observation in the dataframe
above represents a student who attended
a small class and scored 725 points on the
reading test

students, schools, states, countries, ...

the observation for which i=3 is the third
observation in a dataframe or in a variable

X={10, 8, 12}

names = {Elena, Kosuke, Kathryn}
rank = {2,1, 3, 5, 4}

voted = {0,1,1,0, 1}

distance = {2.568, 5.367, 7.235}
dice_roll = {2, 5, 4, 3, 1}

in the variable dice_roll above, n=5

if X={10, 8, 12}, then:
S Xi=Xi+ X+ X3
=10+8+4+12=30

°F, °C, miles, kilometers, points,
percentages, percentage points, ...

if X={10, 8, 12}, then:

_ "X
X = 2=T1 = (X +X2+X3)/3
=(10+8+12)/3=30/3=10
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1.10.2 R SYMBOLS AND OPERATORS

code description

+ -7/

some of the arithmetic operators recognized by R

<- assignment operator; creates new objects or overwrites exlstlng
ones (if an object with the same name already exists); to its left,
we specify the name of the object (without quotes); to its right,
we specify the contents of the object; the name of an object
cannot begin with a number or contain spaces, $, or %

when writing code, the names of objects, names of functions,
and names of arguments as well as special values such as
TRUE, FALSE, NA, and NULL should not be in quotes; all
other text should be in quotes; numbers should not be in quotes

() the names of functions are always followed by parentheses;
inside the parentheses, we write the argument(s) of the
function, separated by commas if there is more than one
argument; we enter required arguments first and in the order
expected by R; we specify optional arguments by including
their names in the specification (without quotes)

#* character used to comment code; R ignores everything that
follows this character until the end ot the line

$ character used to access an element inside an object, such as a
variable inside a dataframe; to its left, we specify the name of
the object where the dataframe is stored (without quotes); to its
right, we specify the name of the variable (without quotes)

1.10.3 R FUNCTIONS

function description

sqrt() calculates the square root

setwd() sets the working directory,
that is, directs R to the
folder on your computer
where the dataset is saved

reads CSV files

read.csv()

View() opens a tab with the entire

contents of a dataframe

head() shows the first six
observations in a dataframe;
in the output, observations
are identified by their
position, i, and variables by

their names

dim() provides the dimensions of a
dataframe; output is:
[1] number of rows or
observations
[2] number of columns or

variables

calculates the mean of a
variable

mean()

required argument(s)

what we want to compute the
square root of

path to folder in quotes

name of CSV file containing
the dataset in quotes

name of object where the
dataframe is stored

name of object where the
dataframe is stored

optional argument n: changes
the number of observations
displayed

name of object where the
dataframe is stored

code identifying the variable
(see $)

example(s)
@4-14+3)*@21/13)

object_name <- object_contents

"this is text"

object_name

function_name(required_argument)

function_name(required_argument,
op tional_argument_name =
optional_argument)

executable_code # comment

data$variable

# accesses the variable named
variable inside the dataframe
stored in the object named data

example(s)
sqrt(4)
setwd('~/Desktop/folder")

# for Mac
setwd('C:/user/Desktop/folder")

# tor Windows, where user is
your own username

read.csv('file.csv")
View(data)

head(data)
# shows first six observations

head(data, n=2)
# shows first two observations

dim(data)

mean(data$variable)




2. ESTIMATING
CAUSAL EFFECTS
WITH RANDOMIZED
EXPERIMENTS

One of the main purposes of data analysis in the social sciences
is the estimation of causal effects, also known as causal inference.
What are causal effects? And how can we best estimate them?
These are the main questions we answer in this chapter. To illus-
trate the concepts covered, we analyze data from a real-world
experiment. Specifically, we estimate the causal effect of small
classes on student performance using data from Project STAR.

2.1 PROJECT STAR

In the 1980s, Tennessee legislators began to consider reducing
class size in the state’s schools in an effort to improve student
performance. Some studies had suggested that smaller classes
are more conducive to learning than reqular-size classes, espe-
cially in the early schooling years. Reducing class size, however,
would require additional funds to pay for the extra teachers and
classroom space. Before moving forward with the new policy, the
legislature decided to commission a thorough investigation of the
causal effects of small classes on student performance. The result
was a multimillion-dollar study called Project Student-Teacher
Achievement Ratio (Project STAR).

In this chapter, we analyze a portion of the data from Project
STAR. The aim of the project was to examine the effects of class
size on student performance in both the short and long term. The
project consisted of an experiment in which kindergartners were
randomly assigned to attend either small classes, with 13 to 17
students, or regular-size classes, with 22 to 25 students, until the
end of third grade. Researchers followed student progress over
time. As the outcome variables of interest, we have student scores
on third-grade standardized tests in reading and math as well as
high school graduation rates.

R symbols, operators, and functions intro-
duced in this chapter: ==, ifelse(), and

[

Based on Frederick Mosteller, “The Ten-
nessee Study of Class Size in the Early
School Grades,” Future of Children 5, no.
2 (1995): 113-27. We study the effects
of small classes as compared to regular-
size classes (without aides), disregarding
data from students who were assigned
to reqular-size classes with aides. We
focus on the initial group of participants
who were randomly assigned to different
class types before entering kindergarten
and exclude observations with any missing
data in the variables used in the analysis.
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A causal relationship refers to the cause-
and-effect connection between:

- the treatment variable (X): variable
whose change may produce a change in
the outcome variable

- the outcome variable (Y): variable that
may change as a result of a change in
the treatment variable.

TIP: At some point, you might have learned
about dependent and independent vari-
ables. Treatment variables are a type of
independent variable, and outcome vari-
ables are the same as dependent variables.

2.2 TREATMENT AND OUTCOME VARIABLES

Tennessee legislators wanted researchers to estimate the causal
effects of small classes on educational outcomes. Specifically,
they wanted to know whether student performance improves as a
direct result of attending a small class and not just as a result of
other factors that may accompany small class sizes, such as better
teachers, higher-performing classmates, or greater resources.

Causal relationships refer to the cause-and-effect connection
between two variables. In this case, the two variables are (i)
small class and (ii) student performance.

In this book, we study causal relationships in which there is
clear directionality in how the two variables relate to each other:
changes in one variable may cause changes in the other. We use
this directionality to distinguish between the variables. We refer
to the variable where the change originates as the treatment vari-
able. We refer to the variable that may change in response to the
change in the treatment variable as the outcome variable. Here,
small class is the treatment variable, and student performance is
the outcome variable.

In mathematical notation, we represent the treatment variable as
X and the outcome variable as Y. We represent the causal rela-
tionship between them visually with an arrow from X to Y. The
direction of the arrow indicates that changes in X may produce
changes in Y but not the other way around:

X=Y

In Project STAR, we are interested in the following causal link:

small class — student performance

The distinction between treatment and outcome variables depends
on the nature of the causal relationship between them as well as
on the research question. The same variable might be the outcome
in one study but be the treatment in another. For example, in one
study we may be interested in the effect of attending a small
class on the probability of graduating from high school. Here, the
variable that indicates whether a student graduated from high
school, graduated, is the outcome variable (diagram A below). In
another study, we may be interested in the effect of graduating
from high school on future wages. In that case, graduated would
be the treatment variable (diagram B).

(A)  small class — graduated
(B) graduated — future wages



2.2.1 TREATMENT VARIABLES

In this book, for the sake of simplicity, we focus on treatment vari-
ables that are binary, that is, that indicate whether the treatment
is present or absent. We define the treatment variable for each
individual 7 as:

X — 1 if individual i receives the treatment
' 0 if individual i does not receive the treatment

Based on whether the individual receives the treatment, we speak
of two different conditions:

- treatment is the condition with the treatment (X;=1)
- control is the condition without the treatment (X;=0).

We describe the observations that receive the treatment as being
under treatment or treated and those that do not as being under
control or untreated.

For example, in the analysis of the STAR dataset, we are inter-
ested in examining the effects of attending a small class on student
performance. The treatment variable, which we name small, is a
binary variable that equals 1 if the student attended a small class
and 0 otherwise. Formally, we define small as:

small; — 1 if student i attended a small class
"7 )0 if student i did not attend a small class

2.2.2 OUTCOME VARIABLES

We will see different types of outcome variables. For example, in
the STAR dataset, we will analyze the effect of attending a small
class on three different measures of student performance: reading,
math, and graduated. While the first two outcome variables are
non-binary, the third is binary. As we will see later in the chapter,
the interpretation of the results depends on the type of outcome
variable used in the analysis.

2.3 INDIVIDUAL CAUSAL EFFECTS

When estimating the causal effect of X on Y, we attempt to
quantify the change in the outcome variable Y that is caused by
a change in the treatment variable X. For example, if interested
in the effect of small on reading, we aim to measure the extent
to which student performance on the reading test improves or
worsens as a result of attending a small class, as opposed to a
regular-size class.
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RECALL: A binary variable takes only two
values, in this book 1s and Os, and the
notation / identifies the position of the
observation in a dataframe or in a variable.

Two conditions:

- treatment: when X;=1
- control: when X;=0.

RECALL: In the STAR dataset, each obser-
vation i represents a different student
because the unit of observation is students.

The causal effect of X on Y is the change
in the outcome variable Y caused by a
change in the treatment variable X.
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Two potential outcomes:

- potential outcome under the treatment
condition (the value of Y;j if Xi=1)

- potential outcome under the control
condition (the value of Y; if X;=0).

5] 2

FORMULA 2.1. Definition of the individ-
ual causal effects of a treatment on an
outcome.

Note that when estimating a causal effect, we are trying to mea-
sure a change in Y, specifically the change in Y caused by a
change in X. In mathematical notation, we represent change with
A (the Greek letter Delta), and thus, we represent a change in
the outcome as AY.

To measure this change in the outcome Y, ideally we would com-
pare two potential outcomes: the outcome when the treatment is
present and the outcome when the treatment is absent. In math-
ematical notation, we represent these two potential outcomes as
follows:

- Yi(X;=1) represents the potential outcome under the treat-
ment condition for individual i (the value of Y; if X;=1)

- Yi(X;=0) represents the potential outcome under the control
condition for individual /i (the value of Y; if X;=0).

If, for each individual i, we could observe both potential outcomes,
then computing the change in the outcome Y caused by the treat-
ment X would be simple. We would just compute the difference
between these two potential outcomes. Mathematically, the indi-
vidual causal effects of receiving the treatment X on the outcome
Y would be computed as shown in formula 2.1.

IF WE COULD OBSERVE
BOTH POTENTIAL OUTCOMES

individual_effects; = AY; = Y;(X;=1) — Y;(X;=0)

where:

- AY; is the change in the outcome individual i would
have experienced by receiving the treatment, as com-
pared to not receiving the treatment

- Y;(X;i=1) and Y;(X;=0) are the two potential outcomes
for the same individual /, under the treatment and the
control conditions, respectively.

For example, if we are estimating the effect of attending a small
class on reading test scores using the data from Project STAR, the
treatment variable X would be small and the outcome variable Y
would be reading. In this case, for each student i/, we would like
to observe third-grade reading test scores both (i) after attend-
ing a small class from kindergarten to third grade and (ii) after
attending a reqular-size class from kindergarten to third grade.
If this were possible, we could directly measure the causal effect
that attending a small class had on each student’s reading per-
formance by calculating:



Areading; = reading;(small;=1) — reading;(small;=0)

where:

- Areading, is the change in reading test scores student j would
have experienced by attending a small class, as compared to a
reqgular-size class

- reading;(small;=1) is the third-grade reading test score of stu-
dent i after attending a small class (the value of reading; if
small;=1)

- reading;(small;=0) is the third-grade reading test score of the
same student / after attending a regular-size class (the value
of reading; if small;=0).

Let's imagine, for a moment, that we could observe both potential
outcomes for each of the first six students in the STAR dataset.
See the first two columns of table 2.1 below. For illustration
purposes, we made up the values of the potential outcomes that
were not observed (shown in gray). If these were indeed the true
potential outcomes, then the individual causal effects of small on
reading for these six students would be the values shown in the
third column of table 2.1.

i reading(small=1)  reading(small=0)  Areading
1 578 571 7

2 611 612 -1

3 586 583 3

4 661 661 0

5 614 602 12

6 607 610 -3

Based on table 2.1, we would conclude that attending a small
class as opposed to a reqular-size one:

- increased the reading score of the first student by 7 points, the
score of the third student by 3 points, and the score of the fifth
student by 12 points

- decreased the reading score of the second student by 1 point,
and the score of the sixth student by 3 points

- had no effect on the reading score of the fourth student.

Notice that the same treatment might have different effects for
different individuals. In addition, note that since a causal effect
is a measure of change, we should interpret a causal effect as an
increase if positive, as a decrease if negative, and as having no
effect if zero. (See TIP in the margin.)
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TIP: This is formula 2.1 with reading as the
Y variable and small as the X variable.
If we could observe both potential out-
comes for every student, we could use this
formula to compute the individual causal
effects of attending a small class on read-
ing test scores.

TABLE 2.1. If for each student i, we could
observe both potential outcomes, then we
could measure the causal effects of small
on reading at the individual level. (Warn-
ing: Here we made up the values of the
unobserved potential outcomes, shown in
gray, for the sake of illustrating individual
causal effects.)

TIP: When interpreting the sign of causal
effects, we should interpret:

- a positive effect as the treatment caus-
ing an increase in the outcome variable
- a negative effect as the treatment caus-
ing a decrease in the outcome variable
- an effect of zero as the treatment caus-
ing no change in the outcome variable.
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A different way of expressing the two
potential outcomes:

- the factual outcome: potential outcome
under whichever condition (treatment or
control) was received in reality

- the counterfactual outcome: poten-
tial outcome under whichever condition
(treatment or control) was not received
in reality.

FIGURE 2.1. If an individual could split
into two identical beings, and each one
of them could receive a different condition,
then we could observe the outcome under
the treatment condition and the outcome
under the control condition for the same
individual. We could then calculate the
causal effect of the treatment on the out-
come for this specific individual by simply
measuring the difference between the two
outcomes.

TABLE 22. Values of small, reading,
reading(small=1), and reading(small=0)
for the first six observations in the STAR
dataset. Unobserved potential outcomes,
or counterfactuals, are indicated as 7?7

Unfortunately, this kind of analysis is not possible. In the real
world, we never observe both potential outcomes for the same
individual. Instead, we observe only the factual outcome, which
is the potential outcome under whichever condition (treatment or
control) was received in reality. We can never observe the coun-
terfactual outcome, which is the potential outcome that would
have occurred under whichever condition (treatment or control)
was not received in reality. As a result, we cannot compute causal
effects at the individual level. In our example, a student attends
either a small or a reqular-size class during the early schooling
years but cannot enter a parallel universe to attend both at the
same time. (See figure 2.1.)

TREATMENT : SMALL CLASS

READING TEST
578

e
pots

For each student in Project STAR, for instance, we observe only
one third-grade reading test score, the score earned after the
student actually attended one of the two types of classes. As a
result, we cannot measure how class size affected each student’s
performance on the reading test. (See table 2.2, where the coun-
terfactual outcomes for the first six observations are indicated as
??7? because they were unobserved.)

i small reading reading(small=1) reading(small=0)
1 1 578 578 7
2 0 612 77 612
3 0 583 m” 583
4 1 661 661 7
5 1 614 614 7
6 0 610 77 610




Take the first student, the observation when i=1. The value
of small; is 1, which means this student attended a small
class. The value of reading,, then, indicates the performance of
this student on the reading test after attending a small class
(reading,(small;=1)=578). The score of 578 points is this
student’s factual outcome because we did observe it. What we
did not observe is the counterfactual outcome, that is, how this
student would have performed on the reading test after attending
a regular-size class (reading,(smalli=0)=7??). Consequently,
we cannot measure the effect attending a small class had on this
student’s reading test score:

Areading, = reading,(smally=1) — reading,(small;=0)
=578 - 777 =777

The fundamental problem we face when inferring causal effects
is that we never observe the same individual both receiving the
treatment and not receiving the treatment at the same time.

FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE:
To measure causal effects, we need to compare the factual
outcome with the counterfactual outcome, but we can never
observe the counterfactual outcome.

2.4 AVERAGE CAUSAL EFFECTS

To get around the fundamental problem of causal inference, we
must find good approximations for the counterfactual outcomes. To
accomplish this, we move away from individual-level effects and
focus on the average causal effect across a group of individuals.

The average causal effect of the treatment X on the outcome Y,
also known as the average treatment effect, is the average of all
the individual causal effects of X on Y within a group. Since each
individual causal effect is the change in Y caused by a change in
X for a particular individual, the average causal effect of X on Y
is the average change in Y caused by a change in X for a group
of individuals.

If we could observe both potential outcomes for each individual in
the group, then we could measure individual causal effects (using
formula 2.1) and compute the average causal effect as shown in
formula 2.2.
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We observe only what happens in real-
ity (the factual outcome). We can never
observe what would have happened had
we made different decisions (the counter-
factual outcome).

RECALL: The average of a variable equals
the sum of the values across all observa-
tions divided by the number of observa-
tions. It is often represented by the name
of the variable with a bar on top.

The average causal effect of X on Y, also
known as the average treatment effect, is
defined as the average of the individual
causal effects of X on Y across a group
of individuals. It is the average change in
Y caused by a change in X for a group of
individuals
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FORMULA 2.2. Definition of the average
causal effect of a treatment on an outcome,
or the average treatment effect.

IF WE COULD OBSERVE
BOTH POTENTIAL OUTCOMES

Sor_; individual_effects;
n

individual_effects =

where:

- individual_effects is the average causal effect for the
observations in the study, and individual_effects; is the
individual causal effect for observation i

- ELA‘t'ndividu(/lfe/fecrs,- stands for the sum of all

individual_effects; from i=1 to i=n, meaning from the
first observation of individual_effects to the last one

- n is the number of observations in the study.

Let’s return to the idealized scenario where we could observe
both potential outcomes for each of the first six students in the
STAR dataset. As we saw earlier, if the potential outcomes were
those shown in table 2.1, the individual causal effects of small on
reading for these students would be:

individual_effects = {7,-1,3,0,12,-3}

Then, the average causal effect of small on reading would be:

S, individual_effects;
number of students

individual_effects =

_ 7+ (1)+3+0+12+(-3) _ 18 _3

6 6

We would conclude that, among the first six students in Project
STAR, attending a small class, as opposed to a reqular-size one,
improved student performance on the reading test by 3 points, on
average. Remember, though, this kind of analysis is not possible
because we never observe both potential outcomes for the same
individual. Therefore, we are not going to be able to compute
average causal effects directly, either.

How can we obtain good approximations for the counterfactual
outcomes, which by definition cannot be observed? As we will
see in detail soon, we must find or create a situation in which the
treated observations and the untreated observations are similar
with respect to all the variables that might affect the outcome
other than the treatment variable itself. The best way to accom-
plish this is by conducting a randomized experiment.



2.4.1 RANDOMIZED EXPERIMENTS AND THE
DIFFERENCE-IN-MEANS ESTIMATOR

In a randomized experiment, also known as a randomized con-
trolled trial (RCT), researchers decide who receives the treatment
based on a random process.

For example, in Project STAR, researchers could have flipped
a coin to decide whether a student would attend a small or
a regular-size class. If the coin landed on heads, the student
would be assigned to a small class. If tails, the student would be
assigned to a regular-size class. (See figure 2.2)

In practice, researchers do not flip coins but instead use a com-
puter program like R to assign at random a 1 or a 0 to each
individual. Individuals who are assigned a 1 are given the treat-
ment, and individuals who are assigned a 0 are not given the
treatment.

Once the treatment is assigned, we can differentiate between two
groups of observations:

- the treatment group consists of the individuals who received
the treatment (the group of observations for which X;=1)

- the control group consists of the individuals who did not receive
the treatment (the group of observations for which X;=0).

In Project STAR, the students who attended a small class are the
treatment group. The students who attended a regular-size class
are the control group.
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A randomized experiment is a type of
study design in which treatment assign-
ment is randomized.

FIGURE 2.2. One way of assigning treat-
ment at random is to flip a coin for every
individual in the study. If the coin lands
on heads, the individual is assigned to the
treatment group. If tails, the individual is
assigned to the control group.

Heads Tails

Two groups:

- treatment group: observations that
received the treatment

- control group: observations that did not
receive the treatment.
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Pre-treatment characteristics are the
characteristics of the individuals in a study
before the treatment is administered

TIP: An unobserved characteristic is a
characteristic that we have not measured.

TIP: Using the values in the table below,
we can confirm that the average of the
difference between X and Y equals the
difference between the average of X and
the average of Y:

i X Y X-Y

1 4 2 2

2 10 4 6
averages 7 3 4

X-Y =4 and X-Y=7-3=4

When treatment assignment is randomized, the only thing that
distinguishes the treatment group from the control group, besides
the reception of the treatment, is chance. This means that
although the treatment and control groups consist of different
individuals, the two groups are comparable to each other, on
average, in all respects other than whether or not they received
the treatment.

Random treatment assignment makes the treatment and control
groups on average identical to each other in all observed and
unobserved pre-treatment characteristics. Pre-treatment charac-
teristics are the characteristics of the individuals in a study before
the treatment is administered. (By definition, pre-treatment char-
acteristics cannot be affected by the treatment.)

For example, in Project STAR, since the treatment was randomly
assigned, the average age of the treatment group—the students
who attended a small class—should be comparable to the average
age of the control group—the students who attended a reqular-
size class.

RANDOMIZATION OF TREATMENT ASSIGNMENT:

By randomly assigning treatment, we ensure that treatment
and control groups are, on average, identical to each other in
all observed and unobserved pre-treatment characteristics.

Let's return to the formula of the average treatment effect. If we
could observe both potential outcomes for each individual, we
could compute individual causal effects (using formula 2.1), and
the average treatment effect would equal the average difference
between the two potential outcomes:

average_effect = individual_effects = Y (X=1) — Y(X=0)

By the rules of summation, the average of a difference is equal to
the difference of averages. (For an example, see the TIP in the
margin.) This allows us to rewrite the average treatment effect:

average_effect = Y(X=1) — Y(X=0) = Y(X=1) — Y(X=0)

where:
- Y(X=1) is the average outcome under the treatment condition
across all observations

- Y(X=0) is the average outcome under the control condition
across all observations.



Unfortunately, we cannot compute the average treatment effect
this way because, as you may recall, we never observe both poten-
tial outcomes for each individual. Therefore, we cannot compute
either the average outcome under the treatment condition across
all observations or the average outcome under the control condi-
tion across all observations. All we can observe is the average
outcome for the treatment group after receiving the treatment and
the average outcome for the control group after not receiving the
treatment.

If the treatment and control groups were comparable before the
treatment was administered, however, then we can use the factual
outcome of one group as an approximation for the counterfactual
outcome of the other. In other words, we can assume that the
average outcome of the treatment group is a good estimate of
the average outcome of the control group, had the control group
received the treatment. Similarly, we can assume that the average
outcome of the control group is a good estimate of the average out-
come of the treatment group, had the treatment group not received
the treatment. As a result, we can approximate the average treat-
ment effect by computing the difference in the average outcomes
between the treatment and control groups. Since both of these
average outcomes are observed, this is an analysis we are able
to perform.

To summarize, if the treatment and control groups were compara-
ble before the treatment was administered, we can estimate the
average causal effect of treatment X on outcome Y with formula
2.3, which is known as the difference-in-means estimator.

IF GROUPS WERE COMPARABLE BEFORE
THE TREATMENT WAS ADMINISTERED

i fa— —
aVefage_eﬁeCt = Ytreatment group — Ycontrol group

where:

- average_effect stands for the estimated average treat-
ment effect (the “hat” on top of the name denotes that
this is an estimate or approximation)

- Y'ireatment group 1S the average outcome for the treatment

group and Y control group 1S the average outcome for the
control group (both of which are observed).

Note that the “hat” on top of the name denotes that this is an
estimate, that is, a calculation based on approximations. All esti-
mates, including this one, contain some uncertainty. (We will see
how to quantify this uncertainty in chapter 7.)
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FORMULA 2.3. The right-hand side of the
equation is the formula for the difference-
in-means estimator, which produces a
valid estimate of the average treatment
effect when the treatment and control
groups are comparable with respect to all
the variables that might affect the outcome
other than the treatment variable itself.

TIP: To estimate causal effects, it is nec-
essary to have both a treatment group and
a control group. In other words, it is not
sufficient to observe a group of individuals
who received the treatment; we also need
to observe a group of individuals who did
not receive the treatment.
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Experimental data are data collected from
a randomized experiment, whereas obser-
vational data are data collected about
naturally occurring events. Studies that
use observational data are called obser-
vational studies.

It is worth repeating that the difference-in-means is a valid esti-
mator of the average causal effect of a treatment on an out-
come only when the treatment and control groups are comparable
with respect to all the variables that might affect the outcome
other than the treatment variable itself. As stated earlier, this
is best achieved in experiments such as Project STAR, in which
the treatment is randomly assigned. The randomization of treat-
ment assignment enables researchers to isolate the effect of the
treatment from the effects of other factors.

ESTIMATING AVERAGE CAUSAL EFFECTS USING

RANDOMIZED EXPERIMENTS AND THE DIFFERENCE-
IN-MEANS ESTIMATOR: By using random treatment

assignment, we can assume that the treatment and control

groups were comparable before the administration of the

treatment. As a result, we can rely on the difference-in-

means estimator to provide a valid estimate of the average

treatment effect.

Unfortunately, we are not always able to conduct an experiment.
Three types of obstacles might prevent us from running one:

- Ethical: It would not be ethical to randomize certain treatments,
such as a potentially lethal drug.

- Logistical: Some treatments, such as height or race, cannot be
easily manipulated.

- Financial: Experiments are often expensive. Project STAR cost
many millions of dollars, for example.

Given that we cannot always run experiments, we need to learn
how to estimate causal effects in non-experimental settings, using
what is called observational data. Unlike experimental data,
which refers to data collected from a randomized experiment,
observational data are collected about naturally occurring events.
Treatment assignment is out of the control of the researchers and
is often the result of individual choices. For example, we may want
to estimate the average causal effect of small classes on student
performance by collecting data from school districts where the size
of the classes varies as a result of factors such as school budgets,
student enrollment, or the physical limitations of the school build-
ings. In these types of studies, known as observational studies,
we have to find a statistical way to make treatment and con-
trol groups comparable without relying on the randomization of
treatment assignment. We will learn how to do this in chapter 5.

Now that we know that when analyzing the STAR dataset, we
can use the difference-in-means estimator to estimate the average
causal effect of small classes on student performance, it is time to
perform the analysis.



2.5 DO SMALL CLASSES IMPROVE STUDENT
PERFORMANCE?

To follow along with this chapter’s analysis, you may create a
new R script in RStudio and practice typing the code yourself.
Alternatively, you may open “Experimental.R” in RStudio, which
contains all the code for this chapter. We begin the analysis by
running the following code from the previous chapter:

setwd ("~ /Desktop/DSS") # setwd() if Mac
setwd("C: /user/Desktop/DSS") # setwd() if Windows

star <- read.csv("STAR.csv") # reads and stores data

head(star) # shows first observations
## classtype reading math graduated
## 1 small 578 610 1
## 2 reqular 612 612
## 3 reqular 583 606
## 4 small 661 648
##5  small 614 636
## 6 reqular 610 603

[ JSE NN

Here, we are interested in using this dataset to estimate the
average causal effect of attending a small class on three different
measures of student performance: reading, math, and graduated.
For each outcome variable, we need to perform a separate analy-
sis. Since Project STAR was a randomized experiment, we can use
the difference-in-means estimator to estimate each of the three
average treatment effects.

Before we can compute the difference-in-means estimators, we
need to learn to use relational operators, which enable us to
create and subset variables.

2.5.1 RELATIONAL OPERATORS IN R

There are many relational operators in R that can be used to set
a logical test. In this book, we use only the operator , which
evaluates whether two values are equal to each other. If they
are, R returns the logical value TRUE. If they are not, R returns
the logical value FALSE. (TRUE and FALSE are not character
values. They are special values in R, with a specific meaning,
and therefore are not written in quotes.) For example, if we run:

3==3
## [1] TRUE

R lets us know that indeed 3 equals 3. If we instead run:
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TIP: If you are starting a new R session, to
operate with the data, you need to re-run
some of the code we wrote in the previous
chapter, specifically the lines of code that:

- set the working directory to the folder
containing the dataset using the func-
tion setwd()

- read the dataset using read.csv() and
store it as an object called star using
the assignment operator <-.

We provide here the code to set the work-
ing directory if the DSS folder is saved
directly on your Desktop. (Note that in
the code for Windows computers, you must
substitute your own username for user.) If
the DSS folder is saved elsewhere, please
see subsection 1.7.1 for instructions on
how to set the working directory.

== is the relational operator that
evaluates whether two values are
equal to each other. The output is
a logical value: TRUE or FALSE.
Example: 3==3.
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RECALL: In the STAR dataset, the vari-
able classtype identifies the class the
student attended. In R, we use the $
character to access a variable inside a
dataframe. To its left, we specify the name
of the object where the dataframe is stored
(without quotes). To its right, we specify
the name of the variable (without quotes).
Example: data$variable. We use quotes
around values that are text but not around
values that are numbers. In the output,
the numbers in brackets at the beginning
of each line indicate the position of the
observation immediately to the right.

ifelse() creates the contents of a
new variable based on the values of
an existing one. It requires three
arguments in the following order,
separated by commas: (1) the log-
ical test, (2) return value if test is
true, and (3) return value if test is
false.

== is the relational operator we
use to set the logical test that eval-
uates whether the observations of a
variable are equal to a particular
value. We write values in quotes
" if text but not if numbers.

Example: ifelse(data$var=="yes",
1, 0) returns a 1 when var equals
“yes” and a 0 otherwise, creating
the contents of a binary variable
using the existing character variable
var.

3==4
#4# [1] FALSE

R returns a FALSE, indicating that 3 is not equal to 4.

We can apply relational operators to all the values in a variable
at once. In this case, R considers the value of each observation
one by one and returns a TRUE or a FALSE for each of them. For
instance, if we wanted to determine which students in the STAR
dataset attended a small class, we run:

star$ classtype =="small"

## [1] TRUE FALSE FALSE TRUE TRUE FALSE

## [7] TRUE TRUE FALSE FALSE FALSE FALSE

H#HHE .

After running the code above, R returns as many logical values
as observations in the variable classtype. (Here we show you
only the first 12.) For students who attended a small class, R
returns TRUE because the value of classtype equals “small”. For
students who did not, R returns FALSE. For example, as we saw
in the output of head() above, the value of classtype for the first
observation is “small”, and therefore, here R returns TRUE as the
first output.

Now we can ask R to perform a different action depending on
the results from a logical test (the TRUE or FALSE returned
from applying the operator). For example, we can ask R to
produce values for a new variable or to extract specific values from
an existing variable based on the results of the logical test.

2.5.2 CREATING NEW VARIABLES

Using the function ifelse(), which stands for “if logical test is true,
return this, else return that,” we can create the contents of a new
variable based on whether the values of an existing variable pass
a logical test. For example, we can create the contents of a new
binary variable based on the values of classtype. For the students
whose value of classtype equals “small’, we ask R to return a 1,
and for all other students a 0.

The function ifelse() requires three arguments:

- The first is the logical test, which specifies the true/false ques-
tion that serves as the criterion for creating the contents of
the new variable. In the current application, for every student,
we want to evaluate whether the value of classtype equals
“small”. As shown above, the code star$classtype=="small'
accomplishes this.

- The second argument is the value we want the function to return
when the logical test is true. In this case, we want the return
value to be a 1 whenever classtype equals “small”.



- The third argument is the value we want the function to return
when the logical test is false. In this case, we want the return
value to be a 0 whenever classtype does not equal “small”.

Go ahead and run the following code:

ifelse (star$ classtype=="small", 1, 0)
## 1100110110000
#H# .

The function returns a 1 or a 0 for every student in the STAR
dataset depending on the type of class they attended. (Here
again, we show you only the first 12 values.)

To store these values as a new variable, we use the assignment
operator <-. To its left, we need to specify the name of the new
variable. Here, we chose to name the variable small. To store it
as a variable inside the dataframe and not just as a new object
by itself, we need to identify the name of the dataframe before
the name of the variable with the $ character in between. (Note
that the $ character allows us to create a new variable, and not
just access an existing one as we saw in chapter 1.)

Putting it all together, to create the new variable small we run:

star$small <- ifelse (star$classtype == "small", 1, 0)

Whenever you create a new variable, it is good practice to check
its contents. Doing so can save you a lot of trouble down the
road. For example, here we can take a quick look at the first few
observations of the dataframe using head() to ensure that the new
binary variable was created correctly.

head(star) # shows first observations

## classtype reading math graduated small
## 1 small 578 610 1
## 2 reqular 612 612
## 3 reqular 583 606
## 4 small 661 648
##5  small 614 636
## 6 reqular 610 603

[ JE RN NN
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Looking at the output, we can see that we have a new variable
called small. Comparing the values of small to the values of
classtype, we can confirm that whenever classtype equals “small”,
small equals 1 and that whenever classtype equals “regular”,
small equals 0. Indeed, in the first, fourth, and fifth observations,
the value of classtype is “small” and the value of small is 1. In
the second, third, and sixth observations, the value of classtype
is “reqular” and the value of small is 0.
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TIP: Here, the first return value is a 1
and the second is a 0. Why? In the first
observation of the STAR dataset, classtype
equals “small”, and so the logical test is
TRUE, and therefore, the ifelse() function
returns a 1. In the second observation,
classtype equals “reqular”, and so the log-
ical test is FALSE, and therefore, the
ifelse() function returns a 0.

$ is the character used to identify
a variable inside a dataframe, either
to access it or to create it. To its left,
we specify the name of the object
where the dataframe is stored (with-
out quotes). To its right, we specify
the name of the variable (without
quotes). Example: data$variable.

TIP: Recall that the name of an object or
variable can be anything as long as it does
not begin with a number or contain spaces
or special symbols like $ or %. For prac-
tical reasons, the name of an object or
variable should reflect the meaning of its
contents, be short, and be written in all
lowercase letters.



42

CHAPTER 2

[| is the operator used to extract
a selection of observations from a
variable.  To its left, we spec-
ify the variable we want to sub-
set. Inside the square brackets,
we specify the criterion of selec-
tion. For example, we can specify
a logical test using the relational
operator ==. Only the observa-
tions for which the logical test is
true will be extracted. Example:
data$varidata$var2==1] extracts
the observations of the variable var?
for which the variable var2 equals 1.

RECALL: mean() calculates the mean of a
variable. The only required argument is
the code identifying the variable. Exam-

ple: mean(data$variable).

Values of small and reading for the first
six observations in the STAR dataset.
Observations from students who attended
a small class (small=1) are in black, and
observations from students who attended
a reqular-size class (small=0) are in gray.

i small reading

578
612
583
661
614
610

U~ WN =
[ B Y G o W R

2.5.3 SUBSETTING VARIABLES

Using square brackets [], we can extract the selection of observa-
tions for which a logical test is true. This is useful in a variety
of situations. For example, to estimate the average causal effect
of small on reading, we need to compute the following difference-
in-means estimator:

average reading
test scores among
students in
small classes

average reading
test scores among
students in
regular-size classes

This formula requires calculating the averages of two subsets of
observations of reading for which a certain criterion is met. To
subset a variable, we use the [| operator. To its left, we specify
the variable we want to subset, star$reading in this case. Inside
the square brackets, we specify the criterion of selection. The
examples below should clarify how this works.

As stated in the previous chapter, we can use the function mean()
to compute the mean of a variable in R. To calculate the average
reading scores among all students in the STAR dataset, we run:

mean(star$reading) # calculates the mean of reading
#+# [1] 628.803

To calculate average reading scores among only the students who
attended a small class, we need to include in the average only the
observations of reading for which small equals 1. The following
code accomplishes this:

mean(star$reading| star $small==1]) # for treatment group
#+# [1] 632.7026

Only the observations of reading for which the logical test speci-
fied inside the square brackets is true are selected for the compu-
tation of the mean. For example, among the first six observations
in the dataset, only the values of reading that correspond to
observations 1, 4, and 5 are included in this average. (See the
table in the margin.) According to the output above, students who
attended a small class earned about 633 points on the reading
test, on average.

How about the students who attended a regular-size class? The
code to compute this mean is identical to the one above, except
that now the criterion of inclusion is that small must equal 0.

mean(star$reading| star $small==0]) # for control group
#+# [1] 625.492

Based on this output, students who attended a regular-size class
earned about 625 points on the reading test, on average.



Now we can easily calculate the difference-in-means estimator
as the difference between these two averages using the outputs
above (633 — 625). Better yet, we can compute it all at once, by
running the following piece of code:

## compute difference-in-means estimator for reading
mean(star$reading[ star $small==1]) -

mean(star$reading| star $small==0])
#3# [1]7.210547

For the other two outcome variables, then, we can compute the
corresponding difference-in-means estimators as follows:

## compute difference-in-means estimator for math

mean(star$math[star$small==1]) -
mean(star$math[star$small==0])

#+# [1] 5.989905

## compute difference-in-means estimator for graduated

mean(star$graduated[star$small==1]) -
mean(star$graduated|star$small==0])

## (1] 0.007031124

These two pieces of code are identical to the previous one, except
that now we use math and graduated, respectively, instead of
reading as the outcome variable of interest.

What can we conclude from these results? Assuming that the
students who attended a small class were comparable before
schooling to those who attended a regular-size class (a reason-
able assumption given that the dataset comes from a randomized
experiment), we estimate that attending a small class:

- increased student performance on the third-grade reading test
by 7 points, on average

- increased student performance on the third-grade math test by
6 points, on average

- increased the proportion of students graduating from high
school by about 1 percentage point, on average.

Notice that conclusion statements should mention the key ele-
ments of the analysis. (See TIP in the margin.) In addition, note
that the unit of measurement of the difference-in-means estima-
tor differs depending on the type of outcome variable. See the
summary provided in outline 2.1. (Just as we did when discussing
the interpretation of means in chapter 1, we exclude categorical
variables from this discussion.)
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TIP: By convention, when we include in
the R script a comment at the beginning
of a line, as opposed to after some code,
we use two # characters instead of one.

TIP: Good conclusion statements are clear,
are concise, and include the key ele-
ments of the analysis. For example, when
estimating average causal effects with ran-
domized experiments, be sure to convey:

- the assumption: the treatment and con-
trol groups are comparable based on
pre-treatment characteristics; in this
case, students who attended a small
class were comparable before schooling
to those who attended a regular-size
class

- the justification for the assumption:
dataset comes from a randomized exper-
iment

- the treatment: attending a small class

- the outcome variable(s): third-grade
reading test scores, third-grade math
test scores, and proportion of students
graduating from high school

- the direction, size, and unit of measure-
ment of the causal effect(s): an increase
of 7 points, an increase of 6 points, and
an increase of a little less than 1 per-
centage point, respectively

- the fact that you are making a causal
claim: use causal language (attending
a small class increased student perfor-
mance) rather than observational lan-
guage (students attending a small class
performed better than students attend-
ing a regular-size one)

- the fact that you are estimating average
causal effects as opposed to individual
causal effects.
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OUTLINE 2.1. Unit of measurement of
the difference-in-means estimator based
on the type of outcome variable.

TIP: What is a percentage point? It is
the unit of measurement for the arithmetic
difference between two percentages. For
example, if a student’s proportion of cor-
rect answers on a test improved from 50%
to 60% we would state that the score
increased by 10 percentage points:

Ascore = SCOref,al — SCOre€pitial
= 60% — 50% = 10 p.p.

Why is this difference not referred to as
10%? Because percentage change is dif-
ferent from percentage-point change. If
someone told us that the initial score was
50% and that it increased by 10%, the final
score would be 55% (not 60%). Because an
increase of 10% of 50% is an increase of
5 percentage points (0.10x50=5 p.p.), the
final score would be:

SCOr€final = SCOr€initial + Ascore
=50% + 5 p.p. =55%

unit of measurement of the difference-in-means estimator
|

if outcome variable if outcome variable
is non-binary: is binary:
in the same in percentage points
unit of measurement (after multiplying
as the outcome variable the result by 100)

If the outcome variable is non-binary, the unit of measurement of
the difference-in-means estimator will be the same as the unit of
measurement of the outcome variable. For example, if the outcome
variable is measured in points, as is the case with both reading
and math, then the average outcomes for the treatment and control
groups will also be in points (the average of points is measured
in points) and so will be the estimator (points—points=points).

If the outcome variable is binary, the unit of measurement of the
difference-in-means estimator will be percentage points, some-
times abbreviated as p.p. (after multiplying the output by 100).
Why?

- First, as explained in the previous chapter, the average of a
binary variable should be interpreted as a percentage (after
multiplying the output by 100), because it is equivalent to the
proportion of the observations that have the characteristic iden-
tified by the variable. As a result, when the outcome variable
is binary, as is the case with graduated, the average outcomes
for the treatment and control groups will both be measured in
percentages (after multiplying the output by 100).

- Second, the unit of measurement for the arithmetic dif-
ference between two percentages is percentage points
(percentage—percentage=percentage points). (See TIP in
the margin.) Therefore, if the outcome variable is binary, the
difference-in-means estimator will be measured in percentage
points (after multiplying the output by 100).

As an example, let’s revisit the interpretation of the difference-in-
means estimator for the binary variable graduated.

First, calculate the average of graduated for students attending a
small class and for students attending a regular-size class, sep-
arately:

mean(star$graduated|[star$small==1]) # for treatment group
#+# [1] 0.8735043

mean(star$graduated|[star$small==0]) # for control group
#+# (1] 0.8664731



The top output above indicates that among students who attended
a small class, the average high school graduation rate was 87.35%
(0.8735x100=87.35%). The bottom output indicates that among
students who attended a regular-size class, the average high
school graduation rate was 86.65% (0.8665x100=86.65%).

Second, compute the difference-in-means estimator, which is the
difference between the two averages above:

## difference-in-means for graduated
0.8735043 - 0.8664731
#+# [1] 0.0070312

As we already knew from our calculations above, the difference-in-
means estimator for graduated equals 0.007. It should be inter-
preted as an increase in the probability of graduating from high
school of 0.7 percentage points, on average (0.007x100=0.7 p.p.
or 87.35%—86.65%=0.7 p.p.).

Now that we have clarified how to interpret the difference-in-
means estimator, let's return to our estimates of the average
treatment effects above. There are two caveats to these estimates:

- First, they indicate how much the average outcome across mul-
tiple individuals changes as a result of the treatment. They do
not indicate how the treatment would affect any one individ-
ual's outcome. As we saw in the idealized scenario earlier in the
chapter, individual-level treatment effects might differ signifi-
cantly from average treatment effects. While we estimate that
student performance on the reading test improved, on average,
as a result of attending a small class, a particular student’s
performance might have suffered from it.

- Second, the validity of these estimates rests on the plausibility
of the assumption that the treatment and control groups are
comparable with respect to all the variables that might affect
the outcome other than the treatment variable itself. In this
case, we can confidently make this assumption because we are
analyzing data from a randomized experiment.

There are still a few questions that we need to answer to complete
this analysis. Two in particular are worth noting here:

- Can we generalize these results to a population of students
other than those who participated in Project STAR?

- Do the estimated causal effects represent real systematic effects
rather than noise in the data?

We learn how to answer the first type of question in chapter 5 and
explore the second in chapter 7, once we have become acquainted
with the relevant concepts.
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TIP: Because an average causal effect
estimates the average change in Y caused
by a change in X, it should be interpreted
as an average increase in Y if positive, as
an average decrease in Y if negative, and
as no average change in Y if zero.
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CHAPTER 2

2.6 SUMMARY

In this chapter, we learned about causal effects and some of the
difficulties we face when attempting to estimate them.

If we could observe the outcomes of the same individual under
both treatment and control conditions at the same time, we could
compute the causal effect of the treatment on a particular indi-
vidual's outcome as the difference between these two potential
outcomes.

Unfortunately, observing both potential outcomes is not possible.
In reality, we observe only the outcome under the condition each
individual received (the factual outcome) and can never observe
what would have happened had the individual received the oppo-
site condition (the counterfactual outcome).

To estimate a causal effect, we have to rely on assumptions to
approximate the counterfactual outcome. This leads us to estimate
average treatment effects across multiple individuals rather than
the treatment effect for each individual.

When the treatment and control groups are comparable, we can
use the average observed outcome (the factual outcome) of one
group as a good approximation for the average unobserved out-
come (the counterfactual outcome) of the other. Under these
circumstances, the difference-in-means estimator produces a valid
estimate of the average treatment effect.

The best way of ensuring that treatment and control groups are
comparable is to run a randomized experiment. By assigning
individuals to the treatment or control group based on a random
process such as a coin flip, we ensure that the two groups have
identical pre-treatment characteristics, on average. Later in the
book, we will learn how to estimate average causal effects when
we cannot run a randomized experiment and, instead, must ana-
lyze observational data.
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2.7 CHEATSHEETS

2.7.1 CONCEPTS AND NOTATION

concept/notation

causal relationship

treatment variable
(X)

outcome variable
(Y)

treatment condition

control condition

potential outcome
under the treatment
condition
(Yi(Xi=1))

potential outcome
under the control
condition
(Yi(Xi=0))

A

description

refers to the cause-and-effect connection
between two variables in which a change
in one variable systematically produces a
change in the other; we represent a causal
relationship with an arrow between the
variables:

X=Y

variable whose change may produce a
change in the outcome variable; variable
where the change originates; in this book,
the treatment variable is always binary:

1 if individual
X; receives the treatment

0 if individual i does not
receive the treatment

treatment variables are a type of
independent variable

variable that may change as a result of a
change in the treatment variable; outcome
variables are the same as dependent
variables

the condition when the treatment is
present; condition when Xi=1

the condition when the treatment is
absent; condition when X;=0

one of the two potential outcomes for
individual /; potential outcome for
individual i when the treatment is present;
the value of Y; if Xij=1

one of the two potential outcomes for
individual /; potential outcome for
individual i when the treatment is absent;
the value of Y; if X;=0

Greek letter Delta; mathematical notation
for change

example(s)

in this chapter, we explore the causal
relationship between attending a small
class and student performance:

small — performance

the question we aim to answer is, does
attending a small class increase, decrease,
or have a zero effect on student
performance, on average?

in Project STAR, the treatment variable is
small, which we define as:

1 if student i attended
a small class

0 if student i attended
a reqgular-size class

small; =

in these causal relationships:

small — reading
small — math
small — graduated

small is the treatment variable, and
reading, math, and graduated are the
outcome variables

in Project STAR, students attending a
small class were under the treatment
condition

in Project STAR, students attending a
reqular-size class were under the control
condition

in Project STAR, the potential outcome
under the treatment condition is student
erformance after attending a small class
rom kindergarten until third grade

in Project STAR, the potential outcome
under the control condition is student
performance after attending a reqular-size
class from kindergarten until third grade

AY; represents the change in Y for
individual i

continues on next page...
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2.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

individual causal
effect of X on Y

factual outcome

counterfactual
outcome

fundamental
problem of
causal inference

average causal
effect of X on Y

or average treatment
effect

description

change in the outcome variable Y caused
by a change in the treatment variable X;
if we could observe both potential
outcomes for each individual, we could
measure it as:

individual_effects; = Yi(X;=1)

— Y(X=0)

potential outcome under whichever
condition (treatment or control) was
received in reality; we always observe the
factual outcomes

potential outcome under whichever
condition (treatment or control) was not
received in reality; we never observe the
counterfactual outcomes

we never observe the counterfactual
outcome; we cannot measure the
individual causal effect of a treatment on
an outcome because we never observe
both potential outcomes; the individual
causal effect is Y,-SX,-=1) — Yi(X;=0), but
we can observe only one of the two
potential outcomes, Y;(X;=1) or
Yi(Xi=0), whichever occurs in reality
effect that X has on Y at the aggregate
level; average of the individual causal

effects of X on Y across a group of
observations:

S, individual_effects;

individual_effects = .

average change in the outcome variable Y
caused by a change in the treatment
variable X for a group of observations; if
treatment and control groups were
comparable before the treatment was
administered, then we can estimate the
average treatment effect using the
difference-in-means estimator

example(s)

suppose that the first student in the
dataset (i=1) would have scored 720
points on the reading test after attending
a small class, and 700 points after
attending a reqular-size class; therefore:
- readingy(smalli=1) = 720

- readingy(small;=0) = 700

in this h#pothetlcal case, the individual
causal effect of attending a small class on

this student’s performance on the reading
test would have been:

causal effect of small on reading =

Yi(Xi=1) — Yi(Xi=0)

reading- (small1=1) —
readingy(small;=0)

720 — 700 = 20

attending a small class, as opposed to a
regular-size one, would have increased
this student’s performance on the reading
test by 20 points

if a student attended a small class, the
factual outcome is this student’s
performance after attending a small class,
which we observe

if a student attended a small class, the
counterfactual outcome is this student’s
performance after attending a reqular-size
class, which we do not observe

students attend either a small class or a
regular-size class, but they cannot attend
both types of classes at the same time; we
can never observe each student’s
performance under both the treatment and
control conditions, and therefore, we
cannot measure the effect of attending a
small class on a specific student'’s
performance

(see difference-in-means estimator)

continues on next page. ..
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concept/notation

randomized
experiment

treatment group

control group

pre-treatment
characteristics

difference-in-means

estimator

percentage point

description

also known as a randomized controlled
trial (RCT); type of study design in which
treatment assignment (who receives and
does not receive the treatment) is
randomized; the randomization of the
treatment assignment ensures that
treatment and control groups are, on
average, identical to each other in all
observed and unobserved pre-treatment
characteristics

group of individuals who received the
treatment; observations for which X;=1

group of individuals who did not receive
the treatment; observations for which
Xi=0

characteristics of the individuals in a
study before the treatment is
administered; by definition, these
characteristics cannot be affected by the
treatment

the difference-in-means estimator is
defined as the average outcome for the
treatment group minus the average
outcome for the control group:

Ytreatment group — Ycontrol group

when treatment and control groups are
similar with respect to all the variables
that might affect the outcome other than
the treatment variable itself, it produces a
valid estimate of the average causal effect
of X on Y/ in this case, it estimates the
me)r(age change in Y caused by a change
in

interpret as:

- an average increase in Y if positive
- an average decrease in Y if negative
- no average change in Y if zero

unit of measurement of this estimator:

- if Y is non-binary: in the same unit of
measurement as Y

- if Y is binary: in percentage points
(after multiplying the result by 100)

unit of measurement of the arithmetic
difference between two percentages
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example(s)

Project STAR was a randomized
experiment in which students were
randomly assigned to attend either a
small class or a reqular-size class; as a
result, the students who attended a small
class should have similar pre-treatment
characteristics as the students who
attended a reqular-size class; for example,
the average age of the students in both
groups should be comparable

in Project STAR, students attending a
small class were in the treatment group

in Project STAR, students attending a
reqular-size class were in the control

group

in Project STAR, before students were
assigned to small or reqular-size classes,
researchers recorded students’
demographic data, such as age, gender,
and race/ethnicity

in the STAR dataset, the
difference-in-means estimator for the
reading test scores is 632.7 points -
625.49 points = 7.21 points

because Project STAR was a randomized
experiment, the difference-in-means is a
valid estimator of the average causal effect
of attending a small class on student
performance; we conclude that attending a
small class, as opposed to a regular-size
one, increased students’ reading test
scores by 7.21 points, on average

in the STAR dataset, the
difference-in-means estimator for
graduated is 87.35% — 86.65% = 0.7 p.p.;
attending a small class is estimated to
increase the proportion of students
graduating from high school by about 1
percentage point, on average

continues on next page. ..
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2.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation description
average outcome for

average observed outcome for the
the treatment group

individuals who received the treatment
(Y weatment group) (after the treatment)
average outcome for
the control group

average observed outcome for the
individuals who did not receive the
(Y control group) treatment (after no treatment)

experimental data data from a randomized experiment

observational data data collected about naturally occurring
events, in which treatment was received or
not received without the intervention of

researchers

example(s)

in the STAR dataset, the average reading
score of the students who attended a
small class was about 632.7 points

in the STAR dataset, the average reading
score of the students who attended a
regular-size class was about 625.49 points

since Project STAR was a randomized
experiment, the data we analyze in this
chapter are experimental data

data on class sizes and student
performance from districts where the size
of the classes varies as a result of factors
such as school budgets, student

observational study

enrollment, or the physical limitations of
the school buildings

type of study that analyzes observational
data

2.7.2 R SYMBOLS AND OPERATORS

code description

== relational operator used to test whether the observations of a
variable are equal to a particular value; values should be in
quotes if text but without quotes if numbers (see ')

$ character used to identify an element inside an object, such as

[

a variable inside a dataframe, either to access it or to create it;
to its left, we specify the name of the object where the
dataframe is stored liwmthout quotes); to its right, we specify the
name of the element or variable (without quotes)

operator used to extract a selection of observations from a
variable; to its left, we specify the variable we want to subset;
inside the square brackets, we specify the criteria of selectlon
for example, we can specify a logical test using the relational
operator ; only the observations for which the logical test is
true will be extracted

2.7.3 R FUNCTIONS

function

description

required argument(s)

(see previous entry)

example(s)
data$variable==
data$variable=="yes"

data$variable

# identifies the variable
named variable inside the
dataframe stored in the object
named data

data$vari|data$var2==1]

# extracts the observations of
the variable var7 for which
the variable var2 equals 1

example(s)

ifelse()

creates the contents of a three, separated by commas,

new variable based on the m the following order:

values of an existing one 1) logical test (see ==)
2) return value if test is true
(3) return value if test is false
values should be in quotes if
text but without quotes if
numbers (see "

ifelse(data$variable=="yes", 1, 0)

# returns a 1 whenever the
observation of variable equals
“yes” and a 0 otherwise, creating
the contents of a binary variable
using the existing character
variable variable




3. INFERRING
POPULATION
CHARACTERISTICS
VIA SURVEY RESEARCH

Another common goal for data analysis in the social sciences
is to estimate population characteristics using surveys. Surveys
enable us to infer the characteristics of an entire population by
measuring them in a representative sample. In this chapter, we
explain how survey research works and discuss some methodolog-
ical challenges that may arise in the process. We also learn how
to visualize and summarize both the distribution of a single vari-
able and the relationship between two variables. To illustrate
these concepts, we analyze data from and about the 2016 British
referendum on European Union (EU) membership.

3.1 THE EU REFERENDUM IN THE UK

Faced with growing discontent among the British people with the
relationship between the United Kingdom (UK) and the EU, in
2016 the UK government held a referendum. British voters were
asked to weigh in on whether the UK should stay in or leave the
EU. The second choice became known as Brexit, an abbreviation
for “British exit”

This was a high-stakes referendum, with global political, legal,
and socioeconomic ramifications. Leading up to the vote, a group
of researchers from the British Election Study (BES) conducted
a large survey to measure public opinion and predict the out-
come. In the first few sections of this chapter, we analyze data
from this survey to measure support for Brexit and determine the
demographic makeup of Brexit supporters. Subsequently, we ana-
lyze the actual referendum results to determine whether patterns
observed in the BES sample can also be observed in the popula-
tion of interest as a whole.

R symbols, operators, and functions intro-
duced in this chapter: table(), prop.table(),
na.omit(), hist(), median(), sd(), var(), ",
plot(), abline(), and cor().

Based on Sara B. Hobolt, “The Brexit
Vote: A Divided Nation, a Divided Con-
tinent,” Journal of European Public Policy
23, no. 9 (2016): 1259-77. The data come
from Wave 7 of the British Election Study.
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A sample is a subset of observations from a
target population. A representative sam-
ple accurately reflects the characteristics
of the population from which it is drawn.

TIP: Recall, the notation n stands for the
number of observations in a dataframe or
in a variable. As we see here, it also
stands for the number of observations in
a sample.

FIGURE 3.1. A sample is a subset of
observations from a target population. In
this case, the sample is clearly not repre-
sentative of the population. The proportion
of red individuals in the sample is substan-
tially different than the proportion of red
individuals in the population.

RECALL: The proportion of observations
that meet a criterion is calculated as:

number of observations
that meet criterion

total number of observations

To interpret this fraction as a percentage,
we multiply the resulting decimal by 100.

3.2 SURVEY RESEARCH

In the social sciences, we often want to know the characteristics of
a population of interest. Yet collecting data from every individual
in the target population may be prohibitively expensive or simply
not feasible.

In survey research, we collect data from a subset of observations in
order to understand the target population as a whole. The subset
of individuals chosen for study is called a sample. The number of
observations in the sample is represented by n, and the number
of observations in the target population is represented by N. For
example, in the aforementioned BES survey, researchers collected
data from just under 31,000 people to infer the attitudes of more
than 46 million eligible UK voters (n=31,000; N=46 million).
Even more remarkably, in the United States, researchers typically
survey only about 1,000 people to infer the characteristics of more
than 200 million adult citizens (n=1,000; N=200 million).

In survey research, it is vital for the sample to be representative
of the population of interest. A representative sample accu-
rately reflects the characteristics of the population from which
it is drawn. Characteristics appear in the sample at similar rates
as in the population as a whole.

POPVLATION (N

SAMPLE (n)

> (i)

If the sample is not representative, our inferences regarding the
population characteristics based on the sample will be invalid.
For example, in figure 3.1 above, the sample is clearly not rep-
resentative of the population; the proportion of red individuals
in the sample is 100% (8/8=1), while the proportion of red indi-
viduals in the population is only about 43% (19/44=0.43). As a
result, the sample would lead us to infer the wrong population
characteristics.



3.2.1 RANDOM SAMPLING

The best way to draw a representative sample is to select indi-
viduals at random from the population. This procedure is called
random sampling. For example, to select individuals from a pop-
ulation randomly, we could number the individuals from 1 to N,
write the numbers on slips of paper, put the slips of paper in a
hat, shake the hat, and choose n slips of paper from the hat. (In
practice, researchers do not use a hat but instead use a computer
program like R to draw n random numbers from 1 to N.)

See figure 3.2 for an example of a randomly selected sample. In
this case, the proportion of red individuals in the sample is 38%
(3/8=0.38), which is not far from the proportion of red individuals
in the population (43%). It is not exactly the same because n is
relatively small. As we will see later in the book, as the sample
size (n) increases, the characteristics of the sample will more
closely approximate those of the population.

POPYLATION (N}

SAMPLE (n)

In the previous chapter, we saw how random assignment of indi-
viduals into treatment and control groups makes the two groups
identical to each other, on average, before the treatment, in both
observed and unobserved traits. Here, the random selection of
individuals from the population makes the sample and the target
population identical to each other, on average, in both observed
and unobserved traits.

INFERRING POPULATION CHARACTERISTICS VIA
RANDOM SAMPLING: By randomly selecting a sample
of observations from the target population, we ensure that
the target population and the sample are, on average,
identical to each other in all observed and unobserved
characteristics. In other words, we ensure that the sample
is representative of the target population, which enables us
to make valid inferences about the population.
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Random sampling consists of randomly
selecting individuals from the population.

FIGURE 3.2. By randomly selecting indi-
viduals from the population, the proportion
of red individuals in the sample more
closely approximates the proportion of red
individuals in the population than the sam-
ple shown in figure 3.1.

TIP: Do not confuse random treatment
assignment with random sampling. Ran-
dom treatment assignment means assign-
ing treatment (deciding who receives it and
who doesn’t) at random; random sampling
means selecting individuals from the pop-
ulation at random to be part of the sample.
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The sampling frame is the complete list

of individuals in a population. Unit non-
response occurs when someone who has
been selected to be part of the survey
sample refuses to participate. ltem nonre-

sponse occurs when a survey respondent
refuses to answer a certain question. Mis-
reporting occurs when respondents pro-
vide inaccurate or false information.

3.2.2 POTENTIAL CHALLENGES

While random sampling is straightforward in theory, in practice
it often faces complications that might invalidate the results.

First, to implement random sampling, we need the complete list
of observations in the target population. This list is known as the
sampling frame. In practice, the sampling frame of a population
can be difficult to obtain. Lists of residential addresses, emails,
or phone numbers often do not include the entire population of
interest. More problematically, the individuals missing tend to be
systematically different from those included. For example, a list
of residential addresses may miss people who are either home-
less or have recently moved, two segments of the population that
are notably different from the rest. These omissions may ren-
der the lists not only incomplete but also unrepresentative of the
population.

Second, even if we have access to a comprehensive list of the indi-
viduals in the population, some of those randomly selected might
refuse to participate in the survey. This phenomenon is called
unit nonresponse. If the individuals who refuse to participate
differ systematically from those who agree, the resulting sample
will be unrepresentative.

Third, participants might agree to answer some but not all of
the questions in the survey. Respondents might feel uncomfort-
able sharing with strangers certain information about themselves.
Whenever we have unanswered questions, we encounter what is
called item nonresponse. If the missing answers differ system-
atically from the recorded answers, the data collected for the
question at hand will not accurately reflect the characteristics of
the population.

Fourth, participants might provide inaccurate or false information.
This phenomenon, known as misreporting, is particularly likely
when one answer is more socially acceptable or desirable than the
others. For example, in the United States, official turnout rates in
presidential elections have recently been around 60%, yet more
than 70% of respondents in the American National Election Stud-
ies (ANES) report voting. Voting is often perceived to be a civic
duty, so respondents might feel social pressure to lie about their
voting behavior. As a rule, whenever we rely on self-reporting,
we should be aware that misreporting might contaminate the data
collected.

The statistical adjustments necessary to address these problems
are beyond the scope of this book. For the purpose of our analysis,
we assume that the sample from the BES survey is representative
of the target population of interest, all eligible UK voters. Con-
sequently, we use it to infer the population’s support for Brexit.



3.3 MEASURING SUPPORT FOR BREXIT

Let's analyze the BES survey data to see how much support there
was for Brexit a few weeks before the referendum occurred. (The
survey was conducted between April 14 and May 4, 2016, and
the referendum took place on June 23))

The code for this chapter’s analysis can be found in the “Popula-
tion.R" file. Alternatively, you may choose to create a new blank
R script and practice typing the code yourself. The file “BES.csv”
contains the survey data, and table 3.1 provides the names and
descriptions of the variables.

variable description

vote respondent’s vote intention in the EU referendum:
“leave”, “stay”, “don’t know", or “won’t vote”

leave identifies leave voters: 1=intends to vote “leave”
or O=intends to vote “stay”; (NA=either “don’t
know” or “won't vote”)

respondent’s highest educational qualification:
1=no qualifications, 2=general certificate of
secondary education (GCSE), 3=general cer-
tificate of education advanced level (GCE A
level), 4=undergraduate degree, or 5=postgrad-
uate degree; (NA=no answer)

age respondent’s age (in years)

education

Before starting our analysis of the BES survey dataset, we need
to load and make sense of it, just as we did in chapter 1 with the
STAR dataset. (See section 1.7 for details.)

First, we change the working directory so that R knows where to
look for the data. Go ahead and run the code you used in chapter
1 to direct R to the DSS folder. Now we can read and store the
dataset in an object named bes by running:

bes <- read.csv("BES.csv") # reads and stores data

To get a sense of the dataset, we can look at the first six obser-
vations using the function head():

head(bes) # shows first observations

HH# vote leave education age
## 1 leave 1 3 60
## 2 leave 1 NA 56
## 3 stay 0 5 73
## 4 leave 1 4 64
## 5 don't know NA 2 68

#H# 6 stay 0 4 85
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TABLE 3.1. Description of the variables
in the BES survey data, where the unit of
observation is respondents.

RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd("~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.
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ADVANCED TIP: Recall that
ifelse() creates the contents of a
new variable based on the values
of an existing one. It requires
three arguments in the following
order, separated by commas: (1)
the logical test, (2) return value if
test is true, and (3) return value if
test is false. If the variable leave
had not been part of the dataframe,
we could have created it using one
ifelse() function nested in another:

bes$leave <-
ifelse(bes$vote=="leave’, 1,
ifelse(bes$vote=="stay’, 0, NA))

The observations of the variable
leave will be a 1 when vote equals
“leave”, a 0 when vote equals “stay”,
and an NA in all other cases. The
structure of this piece of code is as
follows: ifelse(test1, value if test1
is true, ifelse(test2, value if test1 is
false and test2 is true, value if both
test1 and test2 are false)).

Based on this output and table 3.1 (including the title of the
table), we learn that each observation represents a survey respon-
dent, and that the dataset contains four variables:

- vote captures how each respondent intended to vote in the ref-
erendum on Britain's EU membership at the time of the survey.
It is a character variable that can take the following four values:

nou

“leave”, “stay”, “don’t know”, or “won’t vote”.

- leave is a binary variable that identifies leave voters, that is,
Brexit supporters. It equals 1 if respondent intended to vote
“leave” and 0 if respondent intended to vote “stay”. For respon-
dents who either didn’t know how they would vote or did not
intend to vote, we have NAs, which is how R represents missing
values. (More on missing data soon.) Note that if this variable
had not been part of the dataframe, we could have created it
using the contents of vote by using multiple ifelse() functions.
(See ADVANCED TIP in the margin.)

- education represents respondents’ highest educational qualifi-
cation. It is a non-binary numeric variable that can take five
values: 1, 2, 3, 4, or 5. Each of these represents a different
level of educational attainment, where 1 is the lowest level and
5 is the highest. Nonresponses are coded as NAs.

- age captures respondents’ age in years, which means that it is
a non-binary numeric variable that can take many values.

Putting it all together, for example, we interpret the first obser-
vation as representing a survey respondent who intended to vote
“leave” in the EU referendum and was, therefore, a Brexit sup-
porter, whose highest educational qualification was the general
certificate of education advanced level (the British equivalent of
a high school diploma), and who was 60 years old at the time of
the survey.

Finally, to find out how many respondents were part of the survey,
we run:

dim(bes) # provides dimensions of dataframe: rows, columns
##[1]30895 4

Based on this output, we determine that the dataset contains
information about 30,895 respondents. In other words, the sample
size (n) is 30,895. (This is an impressively large survey!)

3.3.1 PREDICTING THE REFERENDUM OUTCOME

To predict the outcome of the referendum, we need to estimate the
proportions of eligible UK voters who were (i) in favor of Brexit
and (ii) opposed to Brexit, at the time the survey was conducted.



If the sample of respondents in the BES survey is representative
of all eligible UK voters, then we can use the proportion of indi-
viduals' characteristics in the sample as good approximations of
the proportion of individuals’ characteristics in the entire target
population.

To compute the proportions of individuals who were in favor of
and opposed to Brexit in the BES sample, we create the table
of proportions of the variable vote, but first we need to create a
table of its frequencies.

3.3.2 FREQUENCY TABLES

The frequency table of a variable shows the values the variable
takes and the number of times each value appears in the variable.

For example, if X={1, 0, 0, 1, 0}, the frequency table of X is:

values 0 1

frequencies 3 2

The table shows that X contains three observations that take the
value of 0 and two observations that take the value of 1.

To create a frequency table in R, we use the function table(). The
only required argument is the code identifying the variable to be
summarized. In this case, to calculate the frequency table of vote,
we run:

table (bes$vote) # creates frequency table
##  don't know leave stay won't vote
#H# 2314 13692 14352 537

This frequency table shows that out of the 30,895 respondents
in the BES survey, 2,314 were undecided, 13,692 intended to
vote “leave”, 14,352 intended to vote “stay”, and 537 had no
intention of voting. Note that the sum of all the frequencies
equals the total number of observations in the sample, n
(2314+13692+14352+537=30895).

3.3.3 TABLES OF PROPORTIONS

The table of proportions of a variable shows the proportion of
observations that take each value in the variable. By definition,
the proportions in the table should add up to 1 (or 100%).

For example, if X={1, 0, 0, 1, 0}, the table of proportions of X
is:
values 0 1

proportions 0.6 0.4
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The frequency table of a variable shows
the values the variable takes and the num-
ber of times each value appears in the
variable.

table() creates the frequency
table of a variable.  The only
required argument is the code
identifying the variable. Example:
table(data$variable).

RECALL: We use the $ character to access
a variable inside a dataframe. To its
left, we specify the name of the object
where the dataframe is stored (without
quotes). To its right, we specify the name
of the variable (without quotes). Example:
data$variable.

A table of proportions shows the propor-
tion of observations that take each value
in a variable.
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prop.table() converts a frequency
table into a table of proportions.
The only required argument is the
output of the function table() with
the code identifying the variable
inside the parentheses. Example:
prop.table(table(data$variable)).

The table shows that 60% of the observations in X take the value
of 0 and 40% take the value of 1. (Recall, to interpret a proportion
as a percentage, we multiply the decimal value by 100.)

To create a table of proportions in R, we use the function
prop.table(), which converts a frequency table into a table of
proportions. This function takes as its main argument either
(a) the name of the object containing the output of the function
table() or (b) the function table() directly; in both cases, the
variable of interest is specified inside the parentheses of table().
In our current example, then, to calculate the table of proportions
of vote, we could run:

## option a: create frequency table first

freq_table <- table(bes$vote) # object with frequency table
prop. table (freq_table) # creates table of proportions

## don't know leave stay won't vote

HH# 0.07490 0.44318 0.46454 0.01738

Alternatively, we could skip the step of creating an object with
the frequency table and run instead:

## option b: do it all at once
prop. table (table (bes$vote)) # creates table of proportions

## don't know leave stay won't vote
HH# 0.07490 0.44318 0.46454 0.01738

Based on the proportions in the sample shown in the outputs
above, we can estimate that when the survey was administered,
44% of eligible UK voters intended to vote “leave” and 46% to
vote “stay”; more than 7% of the population was still undecided.

At this time, then, a slightly higher proportion of respondents
intended to vote “stay” rather than “leave”.  The propor-
tion of undecided, however, was larger than this difference
(7% > 46%—44%), and thus, the survey results did not provide a
clear prediction of the outcome of the referendum.

In reality, the referendum turned out to be quite close. The leave
camp received 51.9% of the vote, and the stay camp received 48.1%
of the vote. Thus, the leave camp won with a margin of only 3.8
percentage points (51.9%—48.1%=3.8 p.p.).

3.4 WHO SUPPORTED BREXIT?

We can also analyze the BES survey data to examine the char-
acteristics of Brexit supporters and non-supporters. Specifically,
we can determine how these two groups compare in terms of edu-
cation level and age.

We begin this section by learning how different functions deal
with missing data, and then we learn how to conduct our analysis



on the observations that do not have missing information. Next,
to compare the level of education of Brexit supporters to that of
non-supporters, we explore the relationship between leave and
education by creating a two-way table of frequencies and a two-
way table of proportions. These tables are similar to the ones we
created when exploring the contents of the variable vote, except
that now we examine the contents of two variables at a time.

Then, to compare the age distribution of Brexit supporters to that
of non-supporters, we explore the relationship between leave and
age. In this case, we do not create a two-way table of frequen-
cies or a two-way table of proportions. Because age (in years)
can take a large number of distinct values, these tables would be
too large to be informative. Instead, to visualize both age dis-
tributions and compare them to each other, we create histograms
of age for supporters and non-supporters. Finally, to summarize
and compare the characteristics of the two age distributions, we
compute descriptive statistics such as the mean, median, standard
deviation, and variance of age for each group.

3.4.1 HANDLING MISSING DATA

As we saw earlier, missing values are common in survey data.
In the BES dataset, two variables contain NAs, which is how
R represents missing values. The variable leave has NAs when
respondents were undecided or didn't intend to vote. The vari-
able education has NAs when respondents refused to provide an
answer. (See the second and fifth observations of the dataframe
shown in the output of head() at the beginning of section 3.3.)

Some functions in R automatically remove missing values before
performing operations; others do not. For example, the function
table() ignores missing values by default. If you want the function
to include them, you need to specify the optional argument named
exclude and set it to equal NULL. This asks R not to exclude any
values from the table of frequencies. (See the RECALL in the mar-
gin for a brief overview of how optional arguments work.) In the
current example, to create the table of frequencies of education,
including missing values, we run:

table (bes$education, exclude=NULL) # table() including NAs
#H# 1 2 3 4 5 <NA>
## 2045 5781 6272 10676 2696 3425

Based on the output, a little more than 3,400 respondents refused
to provide their level of education. The item nonresponse rate
here, or the proportion of respondents who refused to provide an
answer to this question, was about 11% (3425/30895=0.11).

The function mean() does not automatically exclude missing val-
ues. If a variable contains any NAs, R will not be able to compute
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RECALL: Inside the parentheses of a func-
tion, we can specify optional arguments by
including the name of the optional argu-
ment (without quotes) and setting it to
equal a particular value. TRUE, FALSE,
NA, and NULL are special values in R and
should not be written in quotes. Finally,
optional arguments are specified after the
required arguments, separated by commas.
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RECALL: In R, the function mean() calcu-
lates the mean of a variable. Example:
mean(data$variable).

RECALL: The mean of a binary variable
can be interpreted as the proportion of
the observations that have the character-
istic identified by the variable (that have
a value of 1).

FIGURE 3.3. Example of the type of infor-
mation displayed in RStudio’s help tab.

the average of the variable unless we change the default settings.
For example, run the following:

mean(bes$leave) # mean() without removing NAs
## [1] NA

Here, R returns an NA, indicating the presence of missing values.

We can instruct R to remove the NAs before computing the aver-
age by specifying the optional argument named na.rm (which
stands for “NA remove”) and setting it to equal TRUE.

mean(bes$leave, na.rm=TRUE) # mean() removing NAs
#+# [1] 0.4882328

Now, R provides the result of the operation. We interpret the out-
put as indicating that, in the BES survey, out of the respondents
who had already made up their minds to vote for one camp or the
other, about 49% were Brexit supporters (0.49x100=49%).

To see how other functions deal with missing values, we can use
the help tab of RStudio (in the lower-right window). This tab
provides descriptions of all the R functions, including the actions
they perform, the arguments they require, and the settings they
use by default as well as how to change them. To read about a
particular function, all we need to do is manually select the help
tab, type the name of the function next to the magnifying glass
icon, and hit enter. (See figure 3.3 as an example.)

Files Plots

Packages | Help | Viewer

Arithmetic Mean mean

Generic function for the (trimmed) arithmetic mean
mean(x, trim = 0, na.rm = FALSE, ...)

X An R object..

trim

na.rm a logical value indicating whether NA values
should be stripped before the computation

To remove from the dataframe all observations with missing values,
we can use the function na.omit(). For our current purposes, to
get rid of all observations with at least one NA from bes, we run:



besl <- na.omit(bes) # removes observations with NAs

The code na.omit(bes) returns the original dataframe without the
observations that have any missing values. With the assignment
operator <-, we store this new dataframe in an object named bes7.
The environment (the storage room of the current R session shown
in the upper-right window) should now contain two objects: bes
(the original dataframe) and bes7 (the new dataframe).

A word of caution: The function na.omit() instructs R to delete
all observations with any missing data. To avoid removing obser-
vations needlessly, before applying this function to a dataframe,
we should make sure that all the variables in the dataframe that
contain any missing values are needed for the analysis. (Instruc-
tions for extracting the variables we want to use in the analysis
from a dataframe are in the ADVANCED TIP in the margin.)

In the case of the BES survey, only two variables contain NAs:
leave and education. We are not interested in the respondents
for whom we have a missing value in leave. They either did not
intend to vote or had not yet made up their minds about Brexit.
And, since we will use education in our analysis, we will need
to exclude respondents who refuse to provide their educational
background. Consequently, applying na.omit() to bes does not
result in unnecessarily removing any observations.

After using the function na.omit(), it is a good idea to (i) look at
a few observations from both dataframes to ensure the function
worked as expected, and (ii) compute how many observations were
deleted.

To accomplish the first task, we can use the function head():

head(bes) # shows first observations of original dataframe

HH# vote leave education age
## 1 leave 1 3 60
## 2 leave 1 NA 56
## 3 stay 0 5 73
## 4 leave 1 4 64
## 5 don't know NA 2 68
#H# 6 stay 0 4 85

head(besl) # shows first observations of new dataframe

HH# vote leave education age
## 1 leave 1 3 60
## 3 stay 0 5 73
## 4 leave 1 4 64
#H# 6 stay 0 4 85
#H# 7 leave 1 3 78
## 8 leave 1 2 51
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The only required argument

dataframe is stored.
na.omit(data).

na.omit() deletes all observations
with missing data from a dataframe.

the name of the object where the
Example:

variable.
used
observations from a dataframe.

specify the criterion of selection.

To extract a subset of

in detail in chapter 6). Example:

reduced_data <-

ADVANCED TIP: Recall that ||
is the operator used to extract a
selection of observations from a
It is also the operator
to extract a selection of

both cases, to its left, we specify
what we want to subset (whether
it is a variable or a dataframe),
and inside the square brackets, we

vari-
ables from a dataframe, we can use
the [| operator in conjunction with
the function c(), which combines
values into a vector (as we will see

This piece of code will create a new
object, named reduced_data, con-
taining a dataframe with the vari-
ables named var? and var2 from the
dataframe stored in original_data.

original_data[c("varT", "var2")]
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A two-way frequency table, also known
as a cross-tabulation, shows the number of
observations that take each combination of
values of two specified variables.

Comparing the two outputs above, we observe that, as expected,
na.omit() deleted from the original dataframe the second and fifth
observations because they both contain at least one NA. (Note
that, by default, R keeps the original row numbers; as a result,
bes1 does not have any rows numbered 2 or 5.)

To accomplish the second task, we can use the function dim():

dim(bes) # provides dimensions of original dataframe
## [1]30895 4

dim(besl) # provides dimensions of new dataframe
## (1] 25097 4

By deleting observations with missing data, we reduced
the dataset from 30,895 to 25,097 observations. A total of
5,798 observations, or close to 19% of the original observa-
tions, were removed because they contained at least one NA
(30895—25097=5798 and 5798/30895=0.19).

Before continuing with the analysis, it is worth noting that remov-
ing observations with missing values from a dataset might make
the remaining sample of observations unrepresentative of the tar-
get population, thereby rendering our inferences of population
characteristics invalid. Here, for example, if respondents who
refused to provide their level of education were all in favor of
Brexit, our analysis of the new dataframe, bes?, would under-
mine the level of support for Brexit. The statistical methods used
to address this problem are beyond the scope of this book. For
our purposes, we assume that the sample from the BES survey
is representative of all eligible UK voters, with or without the
observations with missing values.

Going forward, we will analyze the data in the new dataframe,
bes1, which does not contain any NAs. (The code identifying the
variables will follow the structure bes7$variable_name instead of
bes$variable_name.)

3.4.2 TWO-WAY FREQUENCY TABLES

To see the level of education of Brexit supporters and non-
supporters within the sample, we can create the two-way
frequency table of leave and education. A two-way frequency
table, also known as a cross-tabulation, shows the number
of observations that take each combination of values of two
specified variables.

For example, if X and Y are as defined in the first table below
(the dataframe), the two-way frequency table of X and Y is the
second table below:



i XY The two-way frequency
T 1 1 table of X and Y is:

2 0 1 values of Y
3.0 1 0 1
4 1.0 values 0 1 2
5 0 0 of X 1 ’ 11

The two-way frequency table shows that in the dataframe:

there is one observation for which both X and Y equal O (the
fifth observation)

there are two observations for which X equals 0 and Y equals
1 (the second and third observations)

there is one observation for which X equals 1 and Y equals 0
(the fourth observation)

there is one observation for which both X and Y equal 1 (the
first observation).

To produce a two-way frequency table, we use the function table(),
just as we did to produce a one-way frequency table. For the two-
way version, however, we need to specify two variables as required
arguments (separated by a comma). In the study at hand, to create
the two-way frequency table of leave and education, we run:

table (besl$leave, besl$education) # two-way frequency table
HH# 1T 2 3 4 5
## 0 498 1763 3014 6081 1898
## 1 1356 3388 2685 3783 631

In the output above, we can see that leave takes two values (0
or 1) and that education takes five (1, 2, 3, 4, or 5). (Note that
the values of the variable specified as the first argument in the
function are shown in the rows; the values of the second variable
are shown in the columns.) The numbers in each cell indicate the
frequency, or count, of each combination of values in the dataset.
For example, we see from the first cell that in the BES sam-
ple, there were 498 respondents who were not Brexit supporters
(leave=0) and had no educational qualification (education=1).

Two-way frequency tables can help us discover the relationship
between two variables. For example, in the table above we
observe that among respondents with no educational qualification
(education=1), there were fewer Brexit non-supporters than
supporters (498 non-supporters vs. 1,356 supporters). In contrast,
among respondents with the highest educational qualification
(education=D5), there were more non-supporters than supporters
(1,898 non-supporters vs. 631 supporters).
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table() creates a two-way frequency
table when two variables are spec-
ified as required arguments (sepa-
rated by a comma). In the output,
the values of the first specified vari-
able are shown in the rows; the
values of the second specified vari-
able are shown in the columns.
Example: table(data$variablel,
data$variable?).
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A two-way table of proportions shows the
proportion of observations that take each
combination of values of two specified vari-

CHAPTER 3

ables

prop.table() converts a two-way
frequency table into a two-way
table of proportions.  The only
required argument is the output
of the function table() with the
code identifying the two variables
inside the parentheses (sepa-
rated by a comma). Example:
prop.table(table(data$variableT,
data$variable?)).

3.4.3 TWO-WAY TABLES OF PROPORTIONS

To infer the level of education of Brexit supporters and non-
supporters among all eligible UK voters, we need to compute
the proportion of individuals in the sample with each combination
of relevant characteristics. Recall, if the sample is representative,
characteristics should appear in similar proportions in the sample
as in the population as a whole.

To calculate the relevant proportions within the sample, we create
a two-way table of proportions of leave and education. A two-
way table of proportions shows the proportion of observations
that take each combination of values of two specified variables.

Let’s return to the simple example from the previous subsection.
If X and Y are as defined in the first table below, the two-way
table of proportions of X and Y is the second table below:

i X Y The two-way table of
ﬁ proportions of X and Y is:
2 0 1 values of Y
3 0 1 ’ 0 1
4 1.0 values 0 02 04
5 00 of X 1 ’ 02 02

The two-way table of proportions shows that in the dataframe:

both X and Y equal 0 in 20% of the observations
X equals 0 and Y equals 1 in 40% of the observations

X equals 1 and Y equals 0 in 20% of the observations
both X and Y equal 1 in 20% of the observations.

To create a two-way table of proportions in R, we use the same
function as with the one-variable version: prop.table(). Here,
though, we need to specify two variables inside the function
table(), which is the required argument. By default, R produces
the two-way table of proportions where the whole sample is the
reference group (the denominator). Run:

## two-way table of proportions

prop. table (table (bes1$leave, besl$education))
#H# 1 2 3 4 5
## 0 0.01984 0.07025 0.12009 0.24230 0.07563
## 1 0.05403 0.13500 0.10698 0.15074 0.02514

Because the whole sample is the reference group, the sum of all
the proportions within the table equals 1. We interpret the first
cell of the table as indicating that 2% of the respondents in the
BES survey (0.02x100=2%) were against Brexit (leave=0) and
had no educational qualification (education=1).



If we wanted to know proportions within subsets of the sample,
we would need to change the reference group of the calculations.
To do so, we specify the optional argument margin and set it to
equal either 1 or 2. If it equals 1, R will use the first specified
variable to set the reference groups. For example, to compute the
proportion of different levels of education within Brexit supporters
and within Brexit non-supporters, we run:

## two-way table of proportions with margin=1

prop. table (table (bes1$leave, besl$education), margin=1)
#H# 1 2 3 4 5

## 0 0.03757 0.13302 0.22740 0.45880 0.14320

## 1 0.11450 0.28608 0.22672 0.31943 0.05328

Because we included the optional argument margin=1 and the
first specified variable is leave, the proportions are calculated
within two groups: Brexit non-supporters (leave=0) and Brexit
supporters (leave=1). The proportions in each row now add up
to 1. We interpret the first cell of the table as indicating that
among all Brexit non-supporters in the sample, close to 4% had
no educational qualification (education=1).

Alternatively, if we include the optional argument margin=2, R
will use the second specified variable to define the reference
groups. For example, to calculate the proportion of support for
Brexit within each educational level, we run:

## two-way table of proportions with margin=2

prop. table (table (bes1$leave, besl$education), margin=2)
HH# 1 2 3 4 5

## 0 0.26861 0.34226 0.52886 0.61648 0.75049

## 1 0.73139 0.65774 0.47114 0.38352 0.24951

The new proportions are calculated within five groups, one for
each level of educational attainment. The proportions in each
column now add up to 1. We interpret the first cell of the table as
indicating that among respondents with no educational qualifica-
tion (education=1), about 27% did not support Brexit (leave=0).

Two-way tables of proportions can also help us discover the rela-
tionship between two variables. For example, in the previous
table, we find that among respondents with no educational qual-
ification (education=1), the majority are Brexit supporters (27%
non-supporters vs. 73% supporters). This phenomenon reverses
with higher levels of education. Among respondents with the
British equivalent of a high school diploma (education=3), Brexit
supporters are in the minority by a slight margin (53% non-
supporters vs. 47% supporters). Among respondents with the high-
est educational qualification (education=D5), Brexit supporters are
in the clear minority (75% non-supporters vs. 25% supporters).
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The histogram of a variable is the visual
representation of its distribution through
bins of different heights. The position of
the bins along the x-axis indicates the
interval of values. The height of the bins
indicates the frequency (or count) of the
interval of values within the variable
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hist() creates the histogram of
a variable.  The only required
argument is the code identi-
fying the variable. Example:
hist(data$variable).

If the BES sample is representative of all eligible UK voters,
we can infer that voters with low levels of education were likely
to support Brexit, and voters with high levels of education were
likely to oppose Brexit.

3.4.4 HISTOGRAMS

To compare Brexit supporters to non-supporters in terms of age,
we can visualize the two age distributions by creating histograms.
A histogram is a graphical representation of the variable's dis-
tribution, made up of bins (rectangles) of different heights. The
position of the bins along the x-axis (the horizontal axis) indicates
the interval of values. The height of the bins represents how often
the variable takes the values in the corresponding interval.

For example, if X={11, 11, 12, 13, 22, 26, 33, 43, 43, 48}, the
histogram of X is the graph in the margin. It shows that the
variable X contains:

four observations in the interval from 10 to 20

two observations in the interval from 20 to 30

one observation in the interval from 30 to 40
three observations in the interval from 40 to 50.

The R function to create the histogram of a variable is hist(). In
the case at hand, to produce the histogram of age, we run:

hist (besl$age) # creates histogram
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After running this piece of code, R will display the graph shown
above in the plots tab of RStudio (the lower-right window). If R
gives you the error message “Error in plot.new(): figure margins
too large” instead, try making the lower-right window larger and
then re-run the code that creates the plot. (Note that the graphs
in the book might look a little different from those you see on your



computer. To make the book easier to read, we often modify the
default color schemes and styles of graphs. The overall patterns
should be the same, however.)

Based on the histogram above, we see that the survey does
not have any respondents below the age of 15. (The minimum
value this variable takes is actually 18.) This makes sense since
researchers purposely reached out only to eligible voters. We can
see that the distribution roughly follows a bell curve, although it
is skewed to the left. (See TIP in the margin for an explanation
of what we mean by skewed.) The largest segment (the tallest
bin) is made up of respondents between 65 and 70 years old.

The histogram above includes the age of both supporters and non-
supporters. To compare the age distribution of Brexit supporters
to that of non-supporters, we need to create two histograms, one
for each group. For each of these histograms, we need to select
only the observations of age that meet the criteria (the respondent
must be a supporter or a non-supporter, respectively). For this
purpose, we can use the [| operator in conjunction with the
operator, just as we did in chapter 2. (See subsection 2.5.3.) Then
we can apply the hist() function to each subset. All together, the
code to produce the two histograms is:

## create histograms
hist (besl$age[besl$leave == 0]) # for non-supporters
hist (besl$age[bes1$leave == 1]) # for supporters

0 20 40 60 80 20 40 60 80 100

100 0
bes1$age[bes1$leave == 0] bes1$age[bes1$leave == 1]

2000
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1500

1000 1500
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Looking at the histogram for non-supporters (the one on the left),
we see that the age distribution is relatively uniform and that the
largest segment is between 20 and 25 years old. In contrast, the
histogram for supporters (the one on the right) shows that the age
distribution approximates a bell curve, although clearly skewed to
the left, and that the largest segment is between 65 and 70 years
old. Based on the visual comparison of the age distributions of
the two groups, we conclude that Brexit supporters tended to be
older than non-supporters.
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TIP: A bell curve is skewed to the left if
the tail on the left side of the distribution
is longer than the tail on the right side (as
in the solid-line distribution below) and is
skewed to the right if the opposite is true
(as in the dashed-line distribution below).

skewed to the left

skewed to the right

RECALL: To extract a selection of obser-
vations from a variable, we use the [| oper-
ator. To its left, we specify the variable we
want to subset. Inside the square brack-
ets we specify the criterion of selection,
using for example the relational opera-

tor . Only the observations for which
the criterion is true are extracted. Exam-
ple: data$vari[data$var2==1] extracts

only the observations of the variable var?
for which the variable var2 equals 1.

TIP: In the uniform distribution, all values
between the minimum and the maximum
are equally likely.

min value

max value
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A density histogram uses densities
instead of frequencies as the height of the
bins, where densities are defined as the
proportion of the observations in the bin
divided by the width of the bin

density
0.
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10 20 30 40 50
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3.4.5 DENSITY HISTOGRAMS

Arguably a better option for visualizing the differences between
the age distributions of the two groups is to use density his-
tograms. Density histograms are especially useful for comparing
groups with substantially different numbers of observations. In a
density histogram, the height of each bin indicates the density of
the bin, defined as the proportion of the observations in the bin
divided by the width of the bin. This is true because the area of
each bin (rectangle) is equivalent to the proportion of observa-
tions that fall in the bin, that is, that take any of the values within
the interval identified by the position of the bin on the x-axis.

Here is the mathematical reasoning. The area of a rectangle or
bin is computed as follows:

area of the bin = height of the bin x width of the bin

To determine the height of each bin, we (i) rearrange the formula
above and (ii) substitute the area of the rectangle with the propor-
tion of abservations because, as mentioned, in density histograms
these two terms are equivalent:

area of the bin

height of the bin = width of the bin

__proportion of observations in the bin
B width of the bin

= density of the bin

Let’s return to the simple example from the previous subsection. If
X={11, 11,12, 13, 22, 26, 33, 43, 43, 48}, the density histogram
of X is the graph in the margin. As we can see, the height of the
first bin is 0.04. Here is why:

- out of the 10 observations in the variable, 4 are in this bin; the
proportion of observations in the bin is, therefore, 0.4 or 40%
(4/10=0.4)

- the width of the bin is 10 because the bin is positioned from
10 to 20 on the x-axis (20—10=10)

- this results in a density of 0.04 (proportion/width=0.4/10=0.04).

Density histograms have two useful properties. First, if the width
of the bins is constant, the relative height of the bins implies the
relative proportion of observations that fall in the bins. In other
words, if one bin is twice as high as another, it means that it
contains twice as many observations.



For example, the density histogram above shows that in the vari-
able X, there are:

- twice as many values in the interval from 10 to 20 as in the
interval from 20 to 30

- twice as many values in the interval from 20 to 30 as in the
interval from 30 to 40

- three times as many values in the interval from 40 to 50 as in
the interval from 30 to 40.

Second, because the area of each bin equals the proportion of
observations in the bin, the areas of all the bins in the density
histogram add up to 1.

For example, the sum of the areas of all the bins in the density
histogram above is:

> heighty, x widthy, = (0.04x10) + (0.02x10)
alt bins + (0.01x10) + (0.03x10) = 1

Why are density histograms a better option than histograms for
visualizing the differences between two distributions? Unlike
frequencies, the unit of measurement of densities is compara-
ble across distributions with different numbers of observations.
Densities are related to proportions (percentages), which are not
affected by changes in the total number of observations. In con-
trast, frequencies are related to counts, which are affected by
changes in the total number of observations. As a result, whenever
comparing two distributions with substantially different numbers
of observations, it is better to use density histograms than his-
tograms.

To illustrate this, let's compare the age distribution of respondents
who have no educational qualifications with the age distribu-
tion of respondents who have an undergraduate degree but no
postgraduate degree. Because the first group of respondents is
much smaller than the second, this comparison highlights the
advantages of using density histograms. As we saw earlier, in
the BES survey only about 2,000 respondents have no educa-
tional qualification (education=1), but more than 10,000 have an
undergraduate degree as their highest educational qualification
(education=4).

To compare these two distributions, let’s start by creating his-
tograms where the height of the bins reflect frequencies:

## create histograms
hist (besl$age[besl$education==1]) # w/ no qualifications
hist (besl$age[besl$education==4]) # w/ undergraduate degree

INFERRING POPULATION CHARACTERISTICS
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hist() creates the density histogram
of a variable when the optional
argument freq is set to equal
FALSE. The only required argument
is the code identifying the vari-
able. Example: hist(data$variable,
freq=FALSE).

TIP: Here, to facilitate the comparison of
the heights (or densities) of the bins across
the two histograms, we purposely made
both y-axes display the same range of val-
ues (from 0 to 0.05).
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Is the proportion of respondents between 65 and 70 years old
among those with no qualifications equivalent to the proportion
of respondents in that age group among those with an undergrad-
uate degree? Looking at the two histograms above, it is hard to
say. The large difference in the size of the two groups makes com-
parisons difficult. To more easily compare these two distributions,
we can create density histograms.

To create a density histogram in R, we also use the hist() function,
but we need to set the optional argument freq (which stands for
“frequencies”) to FALSE. In the current example, to produce the
density histograms of age for respondents with no qualifications
and for respondents with undergraduate degrees, we run:

## create density histograms
hist (bes1$age[besl$education==1],
freq=FALSE) # w/ no qualifications
hist (bes1$age[besl$education==4],
freq=FALSE) # w/ undergraduate degree
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Looking at the density histograms, we can clearly see that the
proportion of respondents between 65 and 70 years old among
those with no qualifications (in the graph on the left) is about
twice as large as the proportion of respondents in that age group



among those with an undergraduate degree (in the graph on the
right). We can draw this conclusion by just comparing the heights
(or densities) of the bins across the two histograms because in
both histograms the bins have all the same widths (5 years).

Now that we have learned the advantages of density histograms,
let’s return to exploring the distributions of age for Brexit sup-
porters and non-supporters. To produce the two relevant density
histograms, we run:

## create density histograms

hist (bes1$age[bes1$leave == 0]),
freq=FALSE) # for non-supporters

hist (besl1$age[bes1$leave == 1]),
freq=FALSE) # for supporters
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bes1$age[bes1$leave == 0] bes1$age[bes1$leave == 1]

Here we can see, for example, that the proportion of respondents
between 20 and 25 years old among Brexit non-supporters (in the
graph on the left) is close to three times the proportion of respon-
dents in the same age group among supporters (in the graph on
the right). In addition, the proportion of respondents between 65
and 70 years old among Brexit supporters (in the graph on the
right) is about one and a half times the proportion of respondents
in that age group among non-supporters (in the graph on the left).

In practice, we rarely care about the exact value of each density.
We usually just care about the shape of the histogram as demar-
cated by the height of the bins. We use this shape to describe or
illustrate the different distributions. (See figure in the margin.)

3.4.6 DESCRIPTIVE STATISTICS

Another option for measuring the differences between Brexit sup-
porters and non-supporters in terms of age distribution is to
compute and compare descriptive statistics. Descriptive statis-
tics numerically summarize the main traits of the distribution of
a variable.
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The descriptive statistics of a variable
numerically summarize the main charac-
teristics of its distribution.
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RECALL: The average, or mean, of a vari-
able equals the sum of the values across
all observations divided by the number of
observations. If the variable is non-binary,
the mean should be interpreted as an aver-
age, in the same unit of measurement as
the variable. If the variable is binary,
the mean should be interpreted as a pro-
portion, in percentages after multiplying
the result by 100. In R, mean() calcu-
lates the mean of a variable. Example:
mean(data$variable).

TIP: If we were interested in calculat-
ing the average age among all respon-
dents of the BES survey, we would run
mean(besT$age), without subsetting age.

The median of a variable is the value in
the middle of the distribution that divides
the data into two equal-size groups

median() calculates the median
of a variable. The only required
argument is the code identi-
fying the variable. Example:
median(data$variable).

We can use two different types of descriptive statistics:

- Measures of centrality, such as the mean and the median, sum-
marize the center of the distribution. (See the top figure in the
margin, which shows two distributions that are identical except
for their centrality.)

- Measures of spread, such as the standard deviation and the
variance, summarize the amount of variation of the distribution
relative to its center. (See the bottom figure in the margin,
which shows two distributions that are identical except for their
spread.)

In chapter 1, we saw how to compute and interpret the mean of a
variable. (See section 1.8.) In the running example, the code to
compute the average age of each group is:

## compute mean

mean(besl$age[besl$leave == 0]) # for non-supporters
## [1] 46.89
mean(bes1$age[besl$leave == 1]) # for supporters

## [1] 55.06823

Based on the results above, the average Brexit non-supporter
was 47 years old, while the average supporter was 55 years old.
This means that Brexit supporters were eight years older than
non-supporters, on average (55—47=8).

We can also describe the center of a distribution by using the
median. The median is the value at the midpoint of the distribu-
tion that divides the data into two equal-size groups (or as close
to it as possible). When the variable contains an odd number of
observations, the median is the middle value of the distribution.
When the variable contains an even number of observations, the
median is the average of the two middle values.

For example, if X={10, 4, 6, 8, 22}, the median of X is 8. To see
this more clearly, we need to sort the values of X in ascending
order (as they would be in the distribution). We end up with
{4, 6, 8, 10, 22}. Now we clearly see that the value in the middle
of the distribution is 8.

Unlike the mean, the median should always be interpreted in the
same unit of measurement as the values in the variable, regardless
of whether the variable is binary or non-binary.

The R function to calculate the median of a variable is median().
The only required argument is the code identifying the variable.
In the running example, to calculate the medians of the two age
distributions, we run:



## compute median
median(besl$age[besl$leave == 0]) # for non-supporters
## (1] 48

median(besl$age[besl$leave == 1]) # for supporters
## [1] 58

The median Brexit non-supporter was 48 years old, while the
median supporter was 58 years old. In other words, about half of
Brexit non-supporters were 48 years old or younger, and about
half of supporters were 58 years old or younger.

In the case of the age distributions here, the mean values (47 and
55) are very similar to the median values (48 and 58), but this
is not always true. One important distinction between the two
statistics is that while the mean is sensitive to outliers (extreme
values in the variable), the median is not. If, for example, we
replaced the oldest Brexit supporter aged 97 with a Brexit sup-
porter aged 107, the median value would remain the same because
the value of the observation in the middle of the distribution would
not have changed. In contrast, the new mean would be higher than
the original, since the sum of all the observations (the numerator
of the formula) would be 10 units larger.

To describe the amount of variation relative to the center of a
distribution, we can use the standard deviation. Mathematically,
it is the result of the following calculation:

sd(x) = | T XX (f’_x)z

_ \/ (X —X)? + (X0—X)? + - + (X, X)?
n

where:

sd(X) stands for the standard deviation of X

X; stands for a particular observation of X, where i denotes the
position of the observation

X stands for the mean of X
n is the number of observations in the variable
- Y1 (Xi—X)? means the sum of all (X;—X)? from i=1 to i=n.

Roughly speaking, the standard deviation of a variable provides
the average distance between the observations and the mean (in
the same unit of measurement as the variable). To better under-
stand this, let's look at a simple example step by step.
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TIP: If we were interested in comput-
ing the median age among all respon-
dents of the BES survey, we would run
median(bes1%age).

The mean of a variable is more sensitive
to outliers than the median.

The standard deviation of a variable mea-
sures the average distance of the observa-
tions to the mean. The larger the standard

deviation, the flatter the distribution.
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FORMULA IN DETAIL

If X={2, 4, 6} and the unit of measurement of X is miles:

- The average of X (including its unit of measurement) is:
RECALL: The unit of measurement of the

mean of a variable is the same as the unit noox
of measurement of the variable, when the X = Zi 177 = 2+4+6 = E = 4 miles
variable is non-binary. n 3 3

- For each i, we can calculate the term X; — X, which gives
us a sense of the distance between each observation and
the mean of X:

- for i=1: Xj—X = 2—4 = -2 miles
- for i=2: X 7_4 4 = 0 miles
- for i=3: X3—X = 6—4 = 2 miles

- Note that the term X;—X above can result in both neg-
ative and positive numbers. If we calculated the average
of this term, positive distances would cancel out nega-
tive distances. We do not want such cancellation, since
we are trying to measure the average deviation from the
center of the distribution. To avoid the cancellation, we
need to get rid of the signs. To do so, we square the
term X;—X. The resulting term, (X;—X)?, provides the
squared distance from the mean for each observation:

- for i=1: (X;—X)2 = (2—4)2 = (-2)2 = 4 miles’
- for i=2: (X;—X)2 = (4—4)% = (0)? = 0 miles?
- for i=3: (X3—X)2 = (6—4)% = (2)? = 4 miles?

- To compute the average of the squared distances across
all observations, we add them up and divide them by the
number of observations:

Y (Xi=X)?  (X1=X)2+ (X—X)2 + (X—X)?
n - 3

= # = 2.67 miles?

- To return to the same unit of measurement as the original
variable, we need to get rid of the square. To do so, we
calculate the square root of the average of the squared
distances across all observations:

(Xi—X
sd(X) = 2‘1% V/2.67 miles® = 1.63 miles

- We can now interpret this number as the average distance
between the observations and the mean in the same unit
of measurement as the original variable (miles here).



In short, a smaller standard deviation indicates the observations
are closer to the mean, on average. The distribution is concen-
trated around the mean, and consequently, the density is higher
at the center. Analogously, a larger standard deviation indicates
that the observations are farther from the mean, on average. The
distribution is dispersed, and consequently, the density is lower
at the center. For example, in the top figure in the margin, the
standard deviation of the dashed distribution is smaller than the
standard deviation of the solid distribution.

The R function to calculate the standard deviation of a variable
is sd(). The only required argument is the code identifying the
variable. Therefore, to compute the standard deviations of the age
distributions of Brexit supporters and non-supporters, we run:

## compute standard deviation
sd(besl$age[besl$leave == 0]) # for non-supporters
## 1] 17.3464

sd(besl$age[besl$leave == 1]) # for supporters
## [1] 14.96106

Among Brexit non-supporters, the average difference between
respondents’ age and the mean age is 17 years. Among sup-
porters, the average difference is 15 years. If we look back at
the two density histograms (at the end of subsection 3.4.5), we
can see that the distribution of supporters is more concentrated
around the mean than the distribution of non-supporters. It makes
sense, then, that the standard deviation of the age distribution of
supporters is smaller than that of non-supporters.

One final note about standard deviations: Knowing the standard
deviation of a variable helps us understand the range of the data,
especially when dealing with bell-shaped distributions known as
normal distributions.

As we will see in detail later in the book, one of the distinct
characteristics of normal distributions is that about 95% of the
observations fall within two standard deviations from the mean
(that is, are between the mean minus two standard deviations
and the mean plus two standard deviations). For example, we
know that the average age of Brexit supporters is 55, and the
standard deviation of their age distribution is 15 years. If the
age distribution of Brexit supporters were a perfect normal distri-
bution, then 95% of Brexit supporters would be between 25 and
85 years old (55—2x15=25 and 55+2x15=85). Looking at the
histogram shown in the bottom figure in the margin, this seems
about right, although the histogram is skewed to the left, and
thus, the formula does not apply exactly.
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sd() calculates the standard devi-
ation of a variable.  The only
required argument is the code iden-
tifying the variable. Example:
sd(data$variable).

TIP: If we were interested in computing
the standard deviation of the distribution
of age among all respondents of the BES
survey, we would run sd(bes1%age).

1
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The variance of a variable is the square of
the standard deviation.

var() calculates the variance of
a variable.  The only required
argument is the code identi-
fying the variable. Example:
var(data$variable).

" is the operator that raises a num-
ber to a power. The number that
follows it is the power, that is, the
number of times we want to multi-
ply the preceding number by itself.
Example: 372 raises 3 to the 2nd

power (32=9).

RECALL: sqrt() calculates the square root
of the argument specified inside the paren-
theses. Example: sqrt(4).

Based on Sascha O. Becker, Thiemo Fet-
zer, and Dennis Nowvy, “Who Voted for
Brexit? A Comprehensive District-Level
Analysis,” Economic Policy 32, no. 92
(2017): 601-50.

We sometimes use another measure of the spread of a distribution
called variance. The variance of a variable is simply the square
of the standard deviation:

var(X) = sd(X)?

where:
- var(X) stands for the variance of X
- sd(X) stands for the standard deviation of X.

To calculate the variance of a variable in R, we can use the func-
tion var() or simply square the standard deviation of that variable
using the operator. For example, to calculate the variance of
the age distribution of Brexit supporters, we can run either one
of the following lines of code:

var(besl$age[besl$leave==1]) # calculates variance

## (1] 223.8334

sd(besl$age[besl$leave==1])"2 # calculates square of sd
## [1] 223.8334

We are usually better off using standard deviations as our mea-
sure of spread. They are easier to interpret because, as we just
saw, they are in the same unit of measurement as the variable.
(The variance of a variable is in the unit of measurement of the
variable squared.)

If we know the variance of a variable, we take its square root to
compute the standard deviation, using the sqrt() function:

sqrt (var(besl$age[besl$leave==1])) # square root of variance
## (1] 14.96106

Not surprisingly, running this code produces the same output as
sd(bes1$%age[besT$leave==1]) on the previous page.

3.5 RELATIONSHIP BETWEEN EDUCATION
AND THE LEAVE VOTE IN THE ENTIRE UK

In the previous section, in our analysis of the data from the BES
survey, we noted that respondents who had higher levels of educa-
tion were less likely to support Brexit. In this section, we examine
the actual referendum results to see whether a similar relation-
ship can be identified in the whole population of UK voters. In
particular, we use district-level data to explore how the propor-
tion of residents with high levels of education (who earned at
least an undergraduate degree or equivalent) relates to the vote
share received by the leave camp. For this purpose, we learn
how to create scatter plots to visualize the relationship between
two variables and how to compute the correlation coefficient to
summarize their linear relationship numerically.



For this analysis, we use a dataset that contains the referendum
results on Brexit aggregated at the district level. The dataset
is provided in the file “UK_districts.csv”. Table 3.2 shows the
names and descriptions of the variables included. (Note again
that the dataset we use in this section is not from a sample of the
population but rather from the entire population of interest.)

variable description
name name of the district
leave vote share received by the leave camp in the

district (in percentages)

high_education proportion of district's residents with an
undergraduate degree, professional qualifi-
cation, or equivalent (in percentages)

In preparation for this section’s analysis (assuming we have
already set the working directory), we read and store the dataset
by running:

dis <- read.csv("UK_districts.csv") # reads and stores data

To get a sense of the dataset, we look at the first few observations
by using the function head():

head(dis) # shows first observations

HH name leave  high_education
#H# 1 Birmingham  50.42 22.98
H##H 2 Cardiff 39.98 32.33
## 3 Edinburgh City  25.56 21.92
## 4  Glasgow City  33.41 25.91
## 5 Liverpool 41.81 22.44
## 6 Swansea  51.51 25.85

Based on table 3.2 and the output above, we learn that each
observation in the dataset represents a district in the UK, and
that the dataset contains three variables:

- name is a character variable that identifies the district

- leave is a numeric non-binary variable that captures the vote
share received by the leave camp in each district, measured in
percentages

- high_education is a numeric non-binary variable that captures
the proportion of residents in the district, measured in percent-
ages, that had undergraduate degrees, professional qualifica-
tions, or the equivalent.

We interpret the first observation as representing the district
called Birmingham, where leave received a little more than 50%
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TIP: In an individual-level analysis, the
unit of observation is individuals. By con-
trast, in an aggregate-level analysis, the
unit of observation is collections of indi-
viduals. Here, our unit of observation is
districts; each observation represents the
residents of a particular district.

TABLE 3.2. Description of the variables in
the UK district-level data, where the unit
of observation is districts.

RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd("~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). |f the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.
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A scatter plot is the graphical represen-
tation of the relationship between two
variables, where one variable is plotted
along the x-axis, and the other is plotted
along the y-axis.

of the vote share, and about 23% of residents had a high level of
education (at least an undergraduate degree or equivalent).

To determine the number of observations in the dataset, we use
the function dim():

dim(dis) # provides dimensions of dataframe: rows, columns
## (1382 3

We find that the original dataframe contains information about
382 districts.

Although we did not see any NAs in the first six observations
shown by head() above, there might be some missing values in
the rest of the data. (Note that the description of variables does
not always explicitly report on NAs.) In case there are any NAs
in the dataset, we apply the function na.omit() to the dataframe.
Because we will use all the variables in our analysis, this will
not eliminate observations unnecessarily.

disl <- na.omit(dis) # removes observations with NAs

As is common practice, we use dim() to find out how many obser-
vations were deleted:

dim(disl) # provides dimensions: rows, columns
##[1]380 3

Deleting observations with missing values reduces the dataframe
to 380 districts. This means that there were only two districts
with at least one NA.

3.5.1 SCATTER PLOTS

A scatter plot enables us to visualize the relationship between
two variables by plotting one variable against the other in a two-
dimensional space.

Imagine we have the dataframe shown below with two variables
of interest, X and Y. The scatter plot of X and Y is the graph
shown to its right:

i x vy Y
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This dataframe contains only three observations. We can think
of each observation i consisting of two coordinates in the two-
dimensional space. The first coordinate indicates the position
of the point on the x-axis (the horizontal axis), and the second
coordinate indicates the position of the point on the y-axis (the
vertical axis). Let's look at the first observation (the observation
for which i=1). The value of X; is 4, which means that the dot
for this observation should be lined up with the number 4 on the
x-axis. The value of Y7 is 2, which means that the dot for this
observation should be lined up with the number 2 on the y-axis.
Together, these two coordinates create the dot (4,2).

To create a scatter plot in R, we use the plot() function. It requires plot() creates the scatter plot
that we specify two arguments in a particular order: (1) the vari- of two variables. It requires
able we want on the x-axis and (2) the variable we want on the two arguments, separated by a
. . . . . comma, in this order: (1) the
y-axis. Alternatively, we can specify which variables we want to X
X . variable to be plotted on the
plot on the x- and y-axes by including the names of the arguments x-axis and (2) the variable to be
in the specification, which are x and y, respectively. Then, the plotted on the y-axis. Example:
order of the arguments no longer matters. To create the scatter plot(data$x_var, data$y_var).  As
plot of high_education and leave in the UK district-level dataset, an alternative, we can speciy

which variables we want to plot

we can run any of the following pieces of code: o the - and g-aves hy Snelndiog

plot (dis1 $high_education, disl$leave) # scatter plot X, Y the names of the arguments in
the specification, which are x
plot (x=dis1$high_education, y=dis1$leave) # scatter plot and y, respectively. For example,
both of these pieces of code will
plot (y=dis1$leave, x=dis1$high_education) # scatter plot create the same scatter plot:

plot(x=data$x_var, y=data$y_var)
plot(y=data$y_var, x=data$x_var).

[
58
LZd
% TIP: In R functions, the order of the argu-
ments only matters when we do not specify
the name of the arguments.
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abline() adds a straight line to the
most recently created graph. To add
a vertical line, we set the argument
v to equal the value on the x-axis
where we want the line. To add a
horizontal line, we set the argument
h to equal the value on the y-axis
where we want the line. To change
the default solid line to a dashed
line, we set the optional argu-
ment [ty to equal 'dashed’. Exam-
ples: abline(v=2) and abline(h=3,
lty="dashed").

Just as in the simple example, every dot in the scatter plot above
represents an observation, a district in this case. For example, the
red dot is the observation that represents the district of Birming-
ham, where about 23% of residents had a high level of education,
and close to 50% of the votes were cast in support of Brexit.

What can we learn from this scatter plot about the relationship
between these two variables? Are districts with low proportions
of highly educated residents likely to support Brexit? What about
districts with high proportions of highly educated residents? An
intuitive way to answer these questions is by finding the averages
of both variables on the graph and using them to divide the graph
into four parts (in our imagination or otherwise).

To add straight lines to a graph in R, we can use the abline()
function. To add a vertical line, we set the argument v to equal
the value on the x-axis where we want the line drawn. To add
a horizontal line, we set the argument h to equal the value on
the y-axis where we want the line drawn. By default, R draws
solid lines. To draw dashed lines, we set the [ty argument (which
stands for “line type”) to equal "dashed". For example, go ahead
and run: -

## add straight dashed lines to the most recent graph
abline (v=mean(dis1$high_education), Ity="dashed") # vertical
abline (h=mean(dis1$leave), lty="dashed") # horizontal

dis1$leave
80

60

40

20

0 20 40 60 80
dis1$high_education



If you run the code in the sequence provided here, you should see
the graph above. This is the scatter plot of high_education and
leave we created earlier with the function plot(), with two added
dashed lines: a vertical line marking the mean of high_education
and a horizontal line marking the mean of leave. (Note that the
function abline() will add lines to the most recently created graph,
but R will give you an error message if you have yet to create a

graph.)

As shown in the figure in the margin, the dashed lines divide the
graph into four quadrants (from top right and counterclockwise):

Quadrant |: values of the observations are above both means

Quadrant |l: observations have a value of high_education below
the mean but a value of leave above the mean

Quadrant lll: values of the observations are below both means

Quadrant IV: observations have a value of high_education above
the mean but a value of leave below the mean

Now we can more easily answer our initial questions:

- Are districts with low proportions of highly educated residents
likely to support Brexit? In other words, are districts with
values of high_education below the mean likely to have values
of leave above the mean?

Looking at the bulk of the data in the scatter plot above, we
determine that the answer is yes. Here is the logic: the districts
with values of high_education below the mean are in quadrants
II'and Ill. Between these two quadrants, quadrant Il contains
a higher proportion of the data (more dots). This means that
districts with values of high_education below the mean tend to
have values of leave above the mean.

- Are districts with high proportions of highly educated residents
likely to support Brexit? In other words, are districts with
values of high_education above the mean likely to have values
of leave also above the mean?

Looking at the bulk of the data again, we see that the answer
is no. The districts with values of high_education above the
mean are in quadrants | and IV. Between these two quadrants,
quadrant IV contains a higher proportion of the data. This
means that districts with values of high_education above the
mean tend to have values of leave below the mean.

We conclude that, at the district level, a higher proportion of
highly educated residents is associated with a lower proportion
of Brexit supporters. This is consistent with the individual-level
relationship we observed using the BES survey data from a sam-
ple of the population.
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The correlation coefficient summarizes the
direction and strength of the linear asso-
ciation between two variables. It ranges
from -1 to 1. The sign reflects the direc-
tion of the linear association: It is positive
whenever the slope of the line of best
fit is positive and negative whenever the
slope of the line of best fit is negative.
Its absolute value reflects the strength
of the linear association, ranging from 0
(no linear association) to 1 (perfect lin-
ear association). The absolute value of
the correlation coefficient increases as the
observations move closer to the line of
best fit and the linear association becomes
stronger.

— higher values of Y —

— higher values of X —

< lower values of leave <

— higher values of high_education —

3.5.2 CORRELATION

While the scatter plot provides us with a visual representation
of the relationship between two variables, sometimes it is helpful
to summarize the relationship with a number. For that purpose,
we use the correlation coefficient, or correlation for short. Before
looking into how to compute this statistic, let's get a sense of how
to interpret it.

The correlation coefficient ranges from -1 to 1, and it captures
the following two characteristics of the relationship between two
variables:

- the direction of their linear association, that is, the sign of
the slope of the line of best fit (which is the line that best
summarizes the data)

- the strength of their linear association, that is, the degree to
which the two variables are linearly associated with each other.

While the direction of the linear association determines the sign of
the correlation, the strength of the linear association determines
the magnitude of the correlation. Let's look at this in detail.

Depending on the direction of the linear association, that is,
whether the line that best fits the data slopes upward or down-
ward, the correlation will be positive or negative:

- The correlation is positive whenever the two variables move in
the same direction relative to their respective means, that is,
when high values in one variable are likely to be associated
with high values in the other, and low values in one variable
are likely to be associated with low values in the other. In
other words, the correlation is positive whenever the slope of
the line of best fit is positive. For example, see the top scatter
plot in the margin and the line of best fit that we added. Is the
slope positive or negative? Positive. On average, higher values
of X are associated with higher values of Y. This means that
the correlation between X and Y is positive.

- The correlation is negative whenever the two variables move in
opposite directions relative to their respective means, that is,
when high values in one variable are likely to be associated
with low values in the other, and vice versa. For example, as we
saw in the previous subsection, the variables high_education
and leave in the UK district-level dataset move in opposite
directions relative to their respective means. As shown in the
bottom scatter plot in the margin, the slope of the line of best
fit is negative. On average, higher values of high_education
are associated with lower values of leave. This means that the
correlation between high_education and leave is negative.
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Depending on the strength of the linear association, that is, how
close the observations are to the line of best fit, the absolute
value of the correlation coefficient will be closer to 0 or to 1:

- At one extreme, the absolute value of the correlation coefficient
is approximately 0 when the linear relationship between the
two variables is non-existent. This is the case in the first scatter
plot of figure 3.4 above. Here, we would have a hard time fitting
a line that would adequately summarize the data.

- At the opposite extreme, the absolute value of the correlation
coefficient is exactly 1 if the association between the two vari-
ables is perfectly linear. This is the case in the last scatter
plot of figure 3.4, where the points are all on a single line.

- All other linear relationships result in a correlation coefficient
with an absolute value between 0 and 1. As the observations
move closer to the line of best fit, the linear association between
the two variables becomes stronger, and the absolute value
of the correlation coefficient increases. See, for example, the
progression from left to right in figure 3.4.

FIGURE 3.4. Scatter plots of variables
with weaker to stronger linear associa-
tions. As the observations move closer to
the line of best fit, the absolute value of
the correlation coefficient increases. From
left to right, the correlations are approxi-
mately 0, 0.5, 0.8, and 1.

Putting it all together, the correlation between two variables
ranges from -1 to 1. The sign of the correlation indicates the
direction of the linear association between the variables. And the
absolute value of the correlation depicts the strength of the linear
association between the variables. (See figure 3.5 above, which
illustrates how the value of the correlation coefficient depends on
the direction and strength of the linear association between the
two variables.)

FIGURE 3.5. Scatter plots of variables
with correlations ranging from -1 to 1.
From left to right, the correlations are -1,
-0.8, -0.5, approximately 0, 0.5, 0.8, and 1.
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FORMULA IN DETAIL

The z-score of an observation is the num- How is the correlation coefficient computed? In order to

ber of standard deviations the observation understand the formula for the correlation coefﬁc[entl we

is abave.ar below the mean. first need to learn about z-scores. The z-score of an obser-
vation is the number of standard deviations the observation
is above or below the mean. Specifically, the z-score of
each observation of X is defined as:

Xi— X
zx==
! sd(X)

where:

ZX stands for the z-score of observation X;

X; stands for a particular observation of X, where i
denotes the position of the observation

X stands for the mean of X
sd(X) stands for the standard deviation of X.

Returning to the example we saw when learning about stan-
dard deviations, if X={2, 4, 6}, then X=4 and sd(X)=1.63
(as we computed earlier), and the z-score of each observa-

tion of X is:

- for i=1: ZX = %=X = 224 = 123
- for i=2: sz=i—(§_77)=%=0

- fori=3: Z¥ = 52X =64 =123

The unit of measurement of z-scores is always in standard
deviations, regardless of the unit of measurement of the
original variable. In addition, the sign of the z-score indi-
cates whether the observation is above or below the mean.
For example, we interpret the three z-scores above as fol-
lows:

- for i=1: ZJ=-1.23 standard deviations; indicates that
Xi is a little more than one standard deviation below the
mean of X

- for i=2: ZX=0 standard deviations; indicates that X,
is zero standard deviations away from the mean of X
because X; and the mean coincide in value

- for i=3: Z{=1.23 standard deviations; indicates that X3
is a little more than one standard deviation above the
mean of X.
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FORMULA IN DETAIL

To compute the correlation between two variables, X and
Y, we first convert the observations of both variables to
z-scores. Then, the correlation coefficient is calculated as
the average of the products of the z-scores of X and Y.
Mathematically, the correlation between X and Y is:

nozZXxzY
cor(X,Y) = —Z'=1 nl X<i
_Z¥XZY + ZXXZY + -+ ZXxZY
- n
where:

cor(X, Y) stands for correlation between X and Y

ZX and ZY denote the z-scores of observation i for X

and Y, respectively

S1 1 ZXxZY stands for the sum of the product of the
z-scores of X and Y from i=1 to i=n, meaning from the
first observation to the last one

n is the number of observations.

For example, if X and Y are as defined in the first two
columns of the table below, the z-scores of X and Y are as
shown in the adjacent two columns:

i Xy zX zv
1 2 6 -123 123
2 4 4 0 0
36 2 123 -123

And the correlation coefficient between X and Y is:

nooXy 7Y
cor(X,Y) = Lis &7 %27 Zn’ xZ;
_ -1.23x1.23+0x0+1.23x-1.23

=-1
3

The product of the two z-scores for each observation is:

- positive when both z-scores are positive (the observation
is above the mean in both variables)

- positive when both z-scores are negative (the observation
is below the mean in both variables)
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™~ (26)

‘e (44)

N

" (6.2)

. (2,6)

e (6,2)

e (4,0)

- negative when one z-score is negative, but the other is
positive (the observation is below the mean in one vari-
able but above the mean in the other).

As a result, the sign of the correlation coefficient will be:

- positive when the two variables tend to move in the same
direction relative to their respective means, that is, when
above-average values in one variable are usually asso-
ciated with above-average values in the other (both z-
scores are positive), and when below-average values in
one variable are usually associated with below-average
values in the other (both z-scores are negative)

- negative when the two variables tend to move in the
opposite direction relative to their respective means, that
is, when above-average values in one variable are usu-
ally associated with below-average values in the other
(the two z-scores are of opposite signs).

In the formula in detail above, we manually computed that, if
X={2, 4, 6} and Y={6, 4, 2}, the correlation between X and Y
is -1. What does this tell us?

- The negative sign indicates that the two variables tend to move
in opposite directions relative to their respective means. (As we
can see in the scatter plot of these two variables shown in the
margin, the slope of the line of best fit is indeed negative.)

- The absolute value of 1 indicates that the two variables have
a perfect linear association with each other. (As we can see in
the same scatter plot, all the points are on the line of best fit.)

Note that this is an extreme example. Most correlations are
between -1 and 1, not including the endpoints. If we change
the second observation in the example above to (4,0) instead of
the original (4,4), then the new correlation between X and Y is
about -0.65. As we can see in the new scatter plot shown in the
margin, while the slope of the line of best fit continues to be neg-
ative, now the points are no longer on the line of best fit. This
means that the negative linear association is no longer perfect,
which explains why the correlation is no longer exactly -1.

To calculate the correlation coefficient between two variables in
R, we use the function cor(). Inside the parentheses, we must
identify the two variables (separated by a comma and in no par-
ticular order). For example, to calculate the correlation between
high_education and leave, we run:
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cor(dis1$high_education, disl$leave) # computes correlation cor() calculates the correlation
HH [1] -0.7633185 coefficient between two variables.

It requires the code identifying

. . . . the two variables (separated by a
The correlation between high_education and leave is -0.76, a comie 3i7d in Ko parficalar ardes).

strong negative correlation. It is negative because the slope of Example: cor(data$variableT,
the line of best fit is negative. Its absolute value is closer to 1 data$variable2).
than to 0 because the observations are scattered tightly around
the line of best fit. (See the scatter plot of high_education and
leave on the left side of the figure in the margin.)

A few final remarks about the correlation coefficient. First, the
correlation between Y and X is the same as the correlation
between X and Y. Mathematically: cor(Y, X)=cor(X,Y). For S‘

example, by running the following code we see that the correlation <7 A
between leave and high_education is the same as the correlation T
between high_education and leave (computed above):

dis1$leave

dis1$high_education
PR

dis1$high_education dis1$leave

cor(disl$leave, disl$high_education) # computes correlation
#+# (1] -0.7633185

By switching the order of the variables, we are flipping the axes
of the scatter plot—the variable that was on the x-axis is now
on the y-axis, and vice versa—but the relationship between the
variables does not change. Both the direction and strength of
their linear association remain the same. Compare the scatter
plot of leave and high_education on the right side of the figure
in the margin to the scatter plot of high_education and leave on
the left side. The slope of both lines of best fit are negative, and
the points are equally clustered around both lines.

Second, a steeper line of best fit does not necessarily mean a
higher correlation in absolute terms, or vice versa. What deter-
mines the absolute value of the correlation coefficient is how close
the observations are to the line of best fit. For example, in figure
3.6, the absolute value of the correlation is lower in the second
scatter plot than in the first (despite the steeper line) because
the observations are farther away from the line of best fit.

FIGURE 3.6. A steeper line of best fit does
not necessarily mean a higher correlation
in absolute terms.
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Third, if two variables have a correlation coefficient of zero, it
does not necessarily mean that there is no relationship between
them. It just means that there is no linear relationship between
3 : them. For example, the two variables depicted in the figure in the

' margin have a strong parabolic relationship. Their correlation is
: approximately zero, however, because there is no line that would
Y i summarize the relationship well.
/
\ K
$ /’ Finally, correlation does not necessarily imply causation. Just
because two variables have a strong linear association does not

mean that changes in one variable cause changes in the other.
As we will see in detail in chapter 5, correlation does not nec-
essarily imply causation when the treatment and control groups
are not comparable with respect to all the variables that affect
the outcome (not including the treatment itself).

CORRELATION DOES NOT NECESSARILY IMPLY CAU-
SATION: Just because two variables are highly correlated
with each other does not necessarily mean that changes in
one variable cause changes in the other.

Despite the strong negative correlation between high_education
and leave, without further evidence we cannot conclude that if UK
voters became more highly educated, they would also become less
likely to support Brexit. In other words, we do not know whether
voters' level of education and support for Brexit are causally
related in any way. Perhaps the observed relationship is spu-
rious, that is, the product of some third variable that affects both
the education level of voters and their support for Brexit, such
as the local economy. (We will discuss spurious relationships in
more detail in chapter 5.)

3.6 SUMMARY

This chapter introduced us to survey research. We saw how ran-
dom sampling can help us obtain a representative sample from a
population, enabling us to infer population characteristics from a
subset of observations.

In addition, we learned some tools that we can use to visualize
and summarize the distribution of one variable or the relationship
between two. Most data analyses in the social sciences, whether
for the purpose of measurement, prediction, or explanation, involve
exploring one variable at a time and/or trying to understand the
relationship between two variables. In this chapter, we have seen
various methods we can use for these purposes in different con-
texts. Below is a quick review.



To explore one numeric variable at a time, we can:

create a frequency table
create a table of proportions

create a histogram with frequencies or densities to visualize
the distribution of the variable

numerically summarize the center of the distribution by com-
puting the mean and/or the median

numerically summarize the spread of the distribution by com-
puting the standard deviation and/or the variance.

When exploring the relationship between two numeric variables,
we can:

create a two-way frequency table
create a two-way table of proportions
create a scatter plot to visualize their relationship

numerically summarize the direction and strength of their linear
association by computing the correlation coefficient.

These are major building blocks of data analysis, and we will use
them in many of the analyses in the remainder of the book.
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3.7 CHEATSHEETS

3.7.1 CONCEPTS AND NOTATION

concept/notation

sample

representative sample

random sampling

sampling frame

unit nonresponse

item nonresponse

misreporting

frequency table
of a variable

description

subset of observations from a target
population

sample that accurately reflects the
characteristics of the population from
which it is drawn; characteristics appear
in the sample at similar rates as in the
population as a whole

procedure that consists of randomly
selecting a sample of individuals from the
target population

complete list of individuals in a population

phenomenon that occurs when someone
who has been selected to be part of a
survey sample refuses to participate

phenomenon that occurs when a survey
respondent refuses to answer a certain
question

phenomenon that occurs when respondents
provide inaccurate or false information

table that shows the values the variable
takes and the number of times each value
appears in the variable

example(s)

the subset of students in a particular class
constitutes a sample from the population
of students who attend the school

if we randomly select students from those
who attend a particular school, we will
end up with a representative sample of the
population of students from that school;
the characteristics of the sample should
resemble those of the population; they
should have the same proportion of
olitical science majors, females,
oreign-born students, and so on

to draw observations from a population
randomly, we could number the
individuals in the population from 1 to N
(where N stands for the number of
observations in the population), write the
numbers on slips of paper, put the slips in
a hat, shake the hat, and choose n slips of
paper from the hat (where n stands for the
number of observations in the sample)

the directory of students attend‘m? a
particular school is the sampling frame of
the population of students in that school

when you refuse to participate in a survey
via phone or in person, your lack of
participation is referred to as a unit
nonresponse

survey respondents might feel
uncomfortable answering questions about
income and leave those questions blank

respondents might claim to have voted in
the last election, even if they did not, to
conform with social norms

if X={1, 0, 0, 1, 0}, the frequency table of
Xis:

values 0 1
3 2

frequencies

the table shows that X contains three
observations that take the value of 0 and
two observations that take the value of 1

continues on next page. ..



3.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation description
table of proportions table that shows the proportion of
of a variable observations that take each value in a

variable; by definition, the proportions in
the table should add up to 1 (or 100%)

two-way frequency also known as a cross-tabulation, shows

table of two variables the number of observations that take each
combination of values of two specified
variables
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example(s)

if X={1, 0, 0, 1, 0}, then the table of
proportions of X is:

values 0 1

proportions 06 04

the table shows that 60% of the
observations in X take the value of 0 and
40% take the value of 1

if X and Y are as defined in the
dataframe below:

i XY
1T 1 1
2 0 1
30 1
4 1 0
5 0 0

then the two-way frequency table of X
and Y is:

values of Y
0 1
values 0 1 2
of X 1 1 1

the two-way frequency table shows that in

the dataframe:

- there is one observation for which both
X and Y equal O (the fifth observation)

- there are two observations for which X
equals 0 and Y equals 1 (the second
and third observations)

- there is one observation for which X
equals 1 and Y equals 0 (the fourth
observation)

- there is one observation for which both
X and Y equal 1 (the first observation)

continues on next page...



92  CHAPTER3

3.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

two-way table of

proportions of two

variables

histogram
of a variable

description

shows the proportion of observations that
take each combination of values of two
specified variables; by definition, the
proportions in the table should add up to
1 (or 100%)

visual representation of a variable’s
distribution through bins of different
heights; the position of the bins along the
x-axis indicates the interval of values; the
height of the bins indicates the frequency
(or count) of the interval of values within
the variable

example(s)

if X and Y are as defined in the
dataframe below:

OB WN = -
o—_0ocOo—-| X
OO ~<

then the two-way table of proportions of
X and Y is:

values of Y

0 1
values 0 02 04
of X 1 02 02

the two-way table of proportions shows
that in the dataframe:

- both X and Y equal 0 in 20% of the
observations

- X equals 0 and Y equals 1 in 40% of
the observations

- X equals 1 and Y equals 0 in 20% of
the observations

- both X and Y equal 1 in 20% of the
observations

if X={11, 11,12, 13, 22, 26, 33, 43, 43,
48}, the histogram of X is:

<

. ___
10 30 40 50

20

frequency
3

X

the histogram shows that the variable X

contains:

- four observations in the interval from 10
to 20

- two observations in the interval from 20
to 30

- one observation in the interval from 30
to 40

- three observations in the interval from
40 to 50

continues on next page. ..



3.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

density histogram
of a variable

descriptive statistics
of a variable

median
of a variable;
median(X)

standard deviation
of a variable;
sd(X)

description

histogram that uses densities instead of
frequencies as the height of the bins,
where densities are defined as the
proportion of the observations in the bin
divided by the width of the bin; because
the width of the bins is constant, the
relative height of the bins in a density
histogram implies the relative proportion
of the observations in the bins; the sum of
the areas of all the bins in a density
histogram always equals 1

numerically summarize the main
characteristics of a variable’s distribution:
(i) measures of centrality such as mean
and median, and (it) measures of spread
such as standard deviation and variance

characterizes the central tendency of the
variable; value in the middle of the
distribution that divides the data into two
equal-size groups; it equals the middle
value of the distribution when the variable
contains an odd number of observations; it
equals the average of the two middle
values when the variable contains an even
number of observations

characterizes the spread of the variable’s
distribution; it measures the average
distance of the observations to the mean;
the larger the standard deviation, the
flatter the distribution

Z?=1 (Xi —7)2
n

sd(X) =

it is the square root of the variable’s

variance
sd(X) = +/var(X)
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example(s)

if X={11, 11,12, 13, 22, 26, 33, 43, 43,
48}, the density histogram of X is:

10 20 30 40 50

X

density

0.00 0.01 0.02 0.03 0.04

the density histogram shows that in the
variable X, there are:

- twice as many values in the interval
from 10 to 20 as in the interval from 20
to 30

- twice as many values in the interval
from 20 to 30 as in the interval from 30
to 40

- three times as man
interval from 40 to
from 30 to 40

values in the
0 as in the interval

see mean (in chapter 2), median, standard
deviation, and variance

if X={10, 4, 6, 8, 22}, the median of X is
8 because the middle value of the
distribution of X is 8: {4, 6, 8, 10, 22}
(recall that the values in the distribution
are always sorted in ascending order)

if X={10, 4, 6, 8, 22, 5}, the median of X
is 7 because the average of the two
middle values of the distribution (6 and 8)
is7: {4, 5, 6, 8 10, 22}

the standard deviation of the dashed
distribution is smaller than that of the
solid one:

if var(X) =4, then sd(X) =v4=2

continues on next page...
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3.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation description

variance characterizes the spread of the variable’s
of a variable; distribution; it is the square of the
var(X) variable’s standard deviation

var(X) = sd(X)?

scatter plot

graphical representation of the
of X and Y

relationship between two variables, X and
Y; the X variable is plotted along the
horizontal axis, and the Y variable is
plotted along the vertical axis

z-score of an number of standard deviations the

observation of X; observation is above or below the mean of

zX the variable; to transform the observations
of a variable into z-scores, we subtract the
mean, and then divide the result by the
standard deviation:

x_ Xi-X
T sd(X)

example(s)

if sd(X)=2, then var(X)=2%*=4

if X and Y are as defined in the
dataframe below:

S| X
won| <

i
1
2
3

then the scatter plot of X and Y is:

Y
5 e (85)
3 e (10,3)
2 o (42)
1]

[} 4 8 10 X

if X={2, 4, 6}, then X=4, sd(X)=1.63,
and the z-score of each observation of X
is:

4. X _ X=X _ 2-4 _

- fori=1: Z" = dxy = 163 = ~1-23
g X X=X _ 4-4 _

-ori=2 2y =y =13 =

- fori=3: Zf = i%(_x)g =% =12

continues on next page...



3.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation description

correlation or statistic that summarizes the direction and
correlation coefficient  strength of the linear association between
between two two variables

variables;

cor(X,Y) it ranges from -1 to 1

the sign reflects the direction of the linear
association: it is positive whenever the
slope of the line of best fit is positive, and
negative whenever the slope of the line of
best fit is negative

its absolute value reflects the strength of
the linear association, ranging from 0 (no
linear association) to 1 (perfect linear
association); the absolute value of the
correlation coefficient increases as the
observations move closer to the line of
best fit and the linear association
becomes stronger

a strong correlation between X and Y
does not imply that either X causes Y or
that Y causes X; correlation does not
necessarily imply causation; more on this
in chapter 5

to compute the correlation between two
variables, X and Y, we first convert the
observations of both variables to z-scores;
then, the correlation coefficient is
calculated as the average of the products
of the z-scores of X ang Y:

" ZXxzY
cor(X,Y) = Li 2727 nl X4

INFERRING POPULATION CHARACTERISTICS

example(s)
cor(X,Y)=-1
perfect negative
correlation
cor(X,Y)=-08
cor(X,Y)=-05
cor(X,Y)=0
no linear
relationship
cor(X,Y)=05
cor(X,Y)=0.8
cor(X,Y)=1

perfect positive
correlation
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3.7.2 R SYMBOLS AND OPERATORS

code description example(s)
: operator that raises a number to a power; the number that 3"2 # raises 3 to the 2nd power
follows this symbol is the power, that is, the number of times (3°=9)

we want to multiply the preceding number by itself

3.7.3 R FUNCTIONS

function description required argument(s) example(s)
table() creates the frequency code identifying the table(data$variable)
table of one variable or variable(s) (separated by a # frequency table
the two-way frequency comma, if two)
table of two variables ) . table(data$variableT,
optional argument exclude: if data$variable2)
set to equal NULL, the table
includes NAs # two-way frequency table

table(data$variable, exclude=NULL)
# includes NAs

prop.table() converts a frequenc? either (a) the name of the freqtable <- table(data$variable)
table into a table o object containing the output prop.table(freqtable) # or
proportions and a of the function tableé) or &b) prop.table(table(data$variable))
two-way frequency table  the function table() directly; # table of proportions
into a two-way table of ig botP case?‘ the cog(le “
roportions identifying the variable(s i
prop shouldgbegspeciﬁed inside the pmp'table(tagzet(adf\fgﬁgggle%%e7’

parentheses of Ealile(] # two-way table of proportions;

the whole sample is the

optional argument margin for
P J J reference group

two-way table of proportions:
if set to equal 1, the first
specified variable defines the :
groups of reference; if set to data$variable2,
equal 2, the second specified margin=1))

variable defines the groups of ~ # two-way table of proportions;

prop.table(table(data$variablel,

reference; if unspecified, the variable1 defines the reference
whole sample is the reference groups
group
na.omit() deletes all observations name of object where the na.omit(data)
with missing data from a  dataframe is stored
dataframe
hist() creates the histogram of  code identifying the variable  hist(data$variable)
a variable; by default, it ) . # frequency histogram
creates the histogram optional argument freq: if set

where the heights of the  to equal FALSE, the function hist(data$variable, freq=FALSE)

bins indicate frequencies  creates the density histogram . .
4 Y 9 # density histogram

mean() calculates the mean of a  code identifying the variable  mean(data$variable)
variable; by default, it . . # without removing NAs
does not exclude missing  optional argument na.rm: if
values set to equal TRUE, R ignores mean(data$variable, na.rm=TRUE)

the NAs when computing the

average of the variable # removing NAs

continues on next page...



3.7.3 R FUNCTIONS (CONTINUED)

function description

median() calculates the median of a
variable

sd() calculates the standard
deviation of a variable

var() calculates the variance of
a variable

plot() creates the scatter plot of

two variables

abline() adds a straight line to the
most recently created
graph; by default, it draws
a solid line

cor() calculates the correlation
coefficient between two
variables
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required argument(s)

code identifying the variable
code identifying the variable
code identifying the variable

two, separated by a comma
and in this order:
1) variable on the x-axis
2) variable on the y-axis

alternatively, we can specify
the arguments x and y to
indicate which variables we
want to plot on the x and y
axes, respectively

to add a vertical line, we set
the argument v to equal the
value on the x-axis where we
want the line; to add a
horizontal line, we set the
argument h to equal the value
on the y-axis where we want
the line

optional argument lty: if set
to equal "dashed’, R draws a
dashed line instead of a solid
one

code identifying the two
variables, separated by a
comma and in no particular
order

example(s)

median(data$variable)
sd(data$variable)
var(data$variable)

## all of these pieces of code
produce the same scatter plot:

plot(data$x_var, data$y_var)
plot(x=data$x_var, y=data$y_var)

plot(y=data$y_var, x=data$x_var)

abline(v=2)
# draws solid vertical line at 2

abline(h=3)
# draws solid horizontal line at 3

abline(v=3, lty="dashed")
# draws dashed vertical line at 3

cor(data$variablel, data$variable?2)



R symbols, operators, and functions intro-

duced in this chapter: [m() and log().

Based on J. Vernon Henderson, Adam
Storeygard, and David N. Weil, “Measur-
ing Economic Growth from Outer Space,”

American Economic Review 102, no.
(2012): 994-1028.

2

4. PREDICTING
OUTCOMES USING
LINEAR REGRESSION

We have already seen how we can analyze data to estimate causal
effects and to infer population characteristics. Another goal of
data analysis in the social sciences is to make predictions. In this
chapter, we learn how to summarize with a line the relationship
between the outcome variable of interest and another variable
called a predictor (a process known as fitting a linear regression
model). We then use this summary line to estimate the most likely
value of the outcome, given a specific value of the predictor. As an
illustration, we analyze data from 170 countries to predict GDP
growth based on changes in night-time light emissions.

4.1 GDP AND NIGHT-TIME LIGHT EMISSIONS

To assess a country’s economic activity, we often want to measure
its gross domestic product (GDP). The GDP of a country is the
monetary value of goods produced and services provided in that
country during a specific period of time. The data required to
construct GDP measures, however, may be either unreliable or
hard to collect consistently, especially in developing countries.
Consequently, we need good ways of predicting GDP using other
observed variables.

In recent years, a group of social scientists noticed that changes in
night-time light emissions, as measured from satellites circling the
earth, were highly correlated with economic activity. As economic
activity increases, so does use of electricity at night. As a result,
change in a country’s night-time light emissions as measured from
space might be a good predictor of that country’s GDP growth. In
this chapter, we explore this connection and predict GDP growth
using night-time light emission changes over time. We begin,
though, with a simpler example. To practice fitting linear models
and interpreting the results, we start by predicting a country's
GDP at one point in time using a prior value of GDP.



4.2 PREDICTORS, OBSERVED VS. PREDICTED
OUTCOMES, AND PREDICTION ERRORS

In the social sciences, we are often unable to observe the value
of a particular variable of interest, Y, either because it hasn’t
occurred yet or because it is difficult to measure. In these sit-
uations, we typically observe the values of other variables that,
if correlated with Y, can be used to predict Y. On the basis of
these other variables, we can make an educated guess about what
the value of Y is currently or will likely be at a different point in
time, on average.

When analyzing data for the purpose of making predictions, we
refer to the variable or variables that we use to make predictions
as the predictor(s) and to the variable of interest that we want to
predict as the outcome variable.

For example, if we are interested in predicting GDP using prior
GDP, then GDP is the outcome variable, and prior GDP is the
predictor. If we are interested in predicting GDP growth using
the change in night-time light emissions, then GDP growth is the
outcome variable, and the change in night-time light emissions is
the predictor.

In mathematical notation, we represent the predictor as X and
the outcome variable as Y. Although we use the same mathemat-
ical notation as when estimating causal effects, the relationship
between the X and Y variables here is not necessarily causal.

As we will see in detail later, to make good predictions, we choose
predictors that are highly correlated with the outcome variable of
interest. In other words, we choose predictors that have a strong
linear association with the outcome variable. (Note that, when
we speak of a “high degree of correlation,” we mean that the
correlation coefficient is high in absolute terms, regardless of its
sign.) As discussed in chapter 3, correlation does not necessarily
imply causation. Just because two variables are highly correlated
with each other does not necessarily mean that changes in one
variable cause changes in the other. When analyzing data for
predictive purposes, then, we do not assume that there is a causal
relationship between X and Y; we simply rely on a high degree
of correlation between them and use one variable to estimate the
value of the other.

Making predictions is a two-step process. Once we have identi-
fied our X and Y variables, we need to understand how these two
variables relate to each other. Our first step, then, is to analyze a
dataset that contains both variables and summarize the relation-
ship between X and Y with a mathematical model. We call this
process “model fitting” because it consists of fitting to the data a
model that characterizes how X is related to Y, on average.
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When making predictions, we distinguish

between two types of variables

- the predictor(s) (X): variable(s) that we
use as the basis for our predictions

- the outcome variable (Y): variable that
we are trying to predict based on the
values of the predictor(s).

TIP: Predictors are also known as inde-
pendent variables, and outcome variables
as dependent variables.

RECALL: The correlation coefficient
ranges from -1 to 1 and summarizes
the direction and strength of the linear
association between two variables. The
closer the correlation coefficient is in
absolute value to 1, the stronger the linear
association between the two variables
(that is, the closer the observations are to
the line of best fit).
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The predicted outcomes, Y, are the val-
ues of Y we predict based on (i) the fitted
model that summarizes the relationship

between X and Y in a dataset where we
observe both X and Y for each observa-
tion and (ii) the observed values of X.

1. FIT A MODEL
- we observe both X and Y

- we summarize the relationship between the
average Y and X with a model

The prediction error, € also known as a
residual, measures how far our prediction
is from the observed value; it is the differ-
ence between the observed outcome and
the predicted outcome.
Yi o (X4,Y9)

Xi

Later, once we are in a situation where we cannot observe Y
but we observe X, we use the fitted model to predict specific
average values of the outcome variable for each observed value of
the predictor. We refer to our predictions of Y as the predicted
outcomes, and we denote them as Y (pronounced Y-hat).

2. MAKE PREDICTIONS

- we observe X but not Y

- we compute 1 by plugging the observed
value of X into the fitted model

When making predictions, we aim to be as accurate as possible.
In other words, we aim to minimize the prediction errors (also
known as residuals). These are defined as the difference between
the observed outcomes and the predicted outcomes and are
denoted by € (the Greek letter epsilon with a “hat” on top).

Note that to differentiate between observed and predicted vari-
ables, we often refer to Y as the observed outcome—and not just
the outcome—to distinguish it more clearly from the predicted
outcome Y.

4.3 SUMMARIZING THE RELATIONSHIP
BETWEEN TWO VARIABLES WITH A LINE

When fitting a model for predictive purposes, we could use many
different mathematical functions. In this book, we always sum-
marize the relationship between X and Y with a line and, in
particular, the line of best fit.

Let's get a sense of how this works using a hypothetical example.
Suppose that the scatter plot of the X and Y variables (in the
dataset where we can observe both) is as shown in the margin.
As in all scatter plots, every dot represents a particular obser-
vation of X and Y. In this case, each dot is located based on
the value of the predictor and the value of the observed outcome
for a given observation. In the figure in the margin, we highlight,
as an example, the dot representing the first observation of this
imaginary dataset: (Xi, Y7).

By looking at the scatter plot of X and Y, we get a general sense
of how Y relates to X. In this case, given the observed upward
slope of the data cloud, we conclude that high values of Y are
likely to be associated with high values of X, and low values of
Y are likely to be associated with low values of X. While this



is helpful information for predicting Y using X, it would be even
better if we could summarize the relationship with a mathematical
formula so that for each value of X, we could compute a predicted
value of Y.

For example, we can summarize the relationship between X and
Y with a line. In the top figure in the margin, in addition to
the scatter plot of X and Y, we have plotted such a line, which
we call the fitted line. Now, for every value of X, we can find a
predicted Y (?), by finding the value of X we are interested in
on the x-axis, going up to the fitted line, and finding the height
of the corresponding point on the line. For example, if we were
interested in the value of X in the first observation in the dataset
(X1), based on the fitted line drawn on the plot, we would predict
a Y equal to Y;.

By looking at the scatter plot with the line, we get a sense of
the prediction errors this fitted model would produce. If we use
the line to compute the predicted outcomes for every observation,
then we can measure the prediction errors (€) as the difference
between the observed outcomes (Y) and the predicted outcomes
(?). (€=Y;—Y;.) Note that for each observation, this difference is
equivalent to the vertical distance between the dot and the fitted
line. See, for example, the bottom figure in the margin, where we
show the prediction error of the first observation. In general, the
closer the dots are to the fitted line, the smaller the prediction
errors, and the farther the dots are from the line, the larger the
prediction errors. To make the best possible predictions, then,
we always summarize the relationship between X and Y with the
line of best fit, which is the line closest to the data. (In subsection
4.3.4, we will explain the precise method used to choose this line.)

4.3.1 THE LINEAR REGRESSION MODEL

Now let’s introduce some mathematical notation. The linear
model, also known as the linear regression model, is defined as:

Yi=a+BXi+¢€;

where:

Y; is the outcome for observation i

a (the Greek letter alpha) is the intercept coefficient
B (the Greek letter beta) is the slope coefficient
Xi is the value of the predictor for observation i

- €; (pronounced epsilon sub i) is the error for observation i.

This is the theoretical model that we assume reflects the true
relationship between X and Y. If we knew the values of the
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2 (CAD)
Xi
\Z
S=Y =Y,
Yi
X4

TIP: In statistics, we use Greek letters to
represent quantities we do not know, such
as o, 3, and ¢;. The two coefficients, «
and S, are not subscripted by i because
they do not vary by observation. They are
constants and not variables.
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TIP: You might have seen the equation of
a line written as Y = mX + b where m is
the slope and b the intercept. If so, it may
be helpful for you to think that & is the b
and E is the m of the familiar model.

coefficients (o and (), as well as the values of the errors for
each observation (¢;), we could use this formula to compute the
outcomes for each observation (Y;) based on the observed values
of the predictors (X;). (By plugging the values of , 3, X;, and ¢;
into the formula above, we would compute Y;.)

Unfortunately, we do not know the values of o, 3, and ¢;. We
have to estimate them based on data. We start by estimating the
intercept (a) and the slope (), the two coefficients that define
the line. This is equivalent to fitting a line to the data, that is,
finding the line that best summarizes the relationship between X
and Y.

The formula of the line we fit to the data is:

~ -~

Yi=a+BX

where:

Y; (pronounced Y-hat sub i) is the predicted outcome for obser-
vation i

a (pronounced alpha-hat) is the estimated intercept coefficient

B (pronounced beta-hat) is the estimated slope coefficient

Xi is the value of the predictor for observation i.

Note that in this formula, Y, «, and 8 have a “hat” on top. This
indicates that they are estimates or approximations. In addition,
this formula no longer includes the errors (¢;), which means that
the resulting outcomes do not necessarily equal the true values of
Y (Y;); they equal the predicted values of Y (Y;). In other words,
for every value of X, this formula provides the corresponding value
of Y on the fitted line (instead of on the observed data point).

Note that the value of ¥ produced by a fitted model is an average
predicted value; it is the average predicted value of Y associated

with a particular value of X. Indeed, predicted outcomes (\A’) are
equivalent to average outcomes (Y).

The difference between the observed values of Y and the pre-
dicted values of Y are the estimated errors or residuals:

a=Y -
where:

- € is the estimated error, or residual, for observation i
- Y, is the observed outcome for observation i
- Y is the predicted outcome for observation i.

These are the prediction errors that we try to minimize by using
the line that best fits the data.



To recap, to make predictions using the linear regression model,
we start by analyzing a dataset that contains both X and Y
for each observation. We summarize the relationship between
them with the line of best fit, which is the line with the smallest
prediction errors possible. Fitting this line involves estimating
the two coefficients that define any line: the intercept (@) and
the slope (E). Once we have fitted the line, we can use it to
obtain the most likely average value of Y based on the observed
value of X.
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1. FIT A LINEAR REGRESSION MODEL 2. MAKE PREDICTIONS

- we observe both X and Y - we observe X but not Y

- we find the line that best summarizes the - we compute Yy by plugging the observed
relationship between them; we estimate the value of X into the fitted linear regression
intercept (@) and slope (8) of the line with model:

the smallest prediction errors possible

Let's take a moment now to understand what the two coefficients
of a line measure and how to interpret them.

4.3.2 THE INTERCEPT COEFFICIENT

Generally speaking, the intercept of a line specifies the vertical
location of the line. See, for example, the lines in the margin,
which have different intercepts but the same slope. Increasing
and decreasing the intercept moves the line up and down.

Specifically, the intercept (@) is the value of Y when X=0.

Indeed, as we can see below, if in the fitted linear model, we plug
in X=0, then Y equals a. So, & is the Y when X=0.

Y=a+pBx0=a (if X=0)

This definition of the intercept is helpful. We can use it to figure
out the value of & of any line on a graph. We just need to find
X=0 on the x-axis, go up to the fitted line, and then find the
height of the corresponding point. The value of Y at the point on
the fitted line where X=0 is the value of the intercept of the line.
(See figure in the margin.) Note that the y-axis is not always
drawn at X=0, and therefore, the intercept is not necessarily the
value of ¥ at the point where the line crosses the y-axis.

~

Y=a+p8X

—» greater intercept —

The intercept (@) is the Y when X=0.
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— greater slope —

The slope (8) is AY divided by AX
between two points on the line.

TIP: The change in a variable between
two points (initial and final) is equivalent
to the difference between the value of the
variable at the final point and the value of
the variable at the initial point. Examples:

AY = Yinal — Yinitial
AX = Xiinal — Xinitial

FIGURE 4.1. The slope (B) can be com-
puted as “rise over run,” where rise is the
change in Y and run is the change in X
between two points on the line.

We can also use the definition above to help us substantively
interpret the value of @. In predictive models, we interpret the
intercept as the predicted outcome, Y, when the predictor X
equals zero. (We will see concrete examples soon.)

4.3.3 THE SLOPE COEFFICIENT

Generally speaking, the slope of a line specifies the angle, or
steepness of the line. See, for example, the lines in the margin,
which have different slopes but the same intercept. The top line
has a positive slope, the middle line has a slope of zero, and the
bottom line has a negative slope.

Specifically, the slope (B) is the change in Y divided by the
change in X between two points on the line, commonly known as

“rise over run”:
5o rise  AY  Yinal — Yinitial
run AX Xﬁnal - Xinitial

where A (the Greek letter Delta) represents change, and thus,
AY is the change in Y and AX is the change in X.

For example, see figure 4.1, which shows the change in Y (A\A’)
and the change in X (A X) associated with two points on the line.

Yinal o (XinayYina)

-~

Yinitial o (Xintiat Viita)

AX

Xinitial Xlinal
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Substantively speaking, we can interpret the value of the slope
as the change in Y associated with a one-unit increase in X. In
mathematical notation, when AX=1, f=AY:

)

ated with a one-unit increase in X.

B\_ A_ _ A? (if AX—'I) The slope (B) represents the AY associ-
= = =

In predictive models, then, we interpret the slope as the predicted
change in the outcome, AY, associated with a one-unit increase
in the predictor X. Since BB measures a change in Y, we interpret
it as an increase when positive, a decrease when negative, and
as no change when zero.

THE FITTED LINE IS:

~ ~

Y=a+p8X
where:

- @ is the estimated intercept coefficient, which can be
interpreted as the Y when X=0

- p is the estimated slope coefficient, which can be inter-
preted as the AY associated with AX=1.

Before moving on to learning how to find the line of best fit, let's
practice figuring out the specific formula of a line by looking at

its depiction in a graph. (See figure in the margin.) - Y 225)

We start by finding the values of two points on the line:
- the point that corresponds to X=0

AY =20
- the point that corresponds to a higher value of X than 0.

In the figure in the margin, these two points are (0,5) and (2,25). 5 < (05)
Given the values of these two points, we can conclude that:

- the intercept coefficient (@) equals 5 because that is the value
of Y when X=0 (see the point (0,5) on the line)

- the slope coefficient (B) equals 10 because that is the value of
AY /AX between the two points on the line:
_AY 25-5 20

TAX  2-0 2 10

w®)

This particular fitted line is then: Y =5+10X.
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FIGURE 4.2. Three lines that we could
draw on the scatter plot of X and Y out
of the infinite number of possible lines.

FIGURE 4.3. The fit of the line improves
from left to right. The last line best sum-
marizes the relationship between X and
Y; it is closest to the observations, which
means that it produces the smallest pre-
diction errors (shown as red dashed lines).

We can check that the two points shown in the figure on the
previous page—(0,5) and (2,25)—belong to the line Y =5+10X.
For each point, we plug the value of X into the formula of the line
and find the corresponding y:

=5+10x0=5 (if X=0)

Y
Y =5+10x2=25 (if X=2)
The math above confirms that these two points are indeed on the
line Y=5+10X.

4.3.4 THE LEAST SQUARES METHOD

We could draw an infinite number of lines on a scatter plot, but
some lines do a better job than others at summarizing the rela-
tionship between X and Y. For example, of the three lines shown
in figure 4.2, we can agree that the last one does the best job of
depicting how Y relates to X. (Intuitively, we know that the line
of best fit should be as close to the dots as possible.)

How do we choose the line that best summarizes the relationship
between X and Y? Given that we want our predictions to be
as accurate as possible, generally speaking, we choose the line
that reduces the prediction errors (€), that is, the vertical distance
between each dot and the fitted line. As we can observe in figure
4.3, the line on the right produces the smallest prediction errors
(shown as red dashed lines). Therefore, we would choose this
line over the other two to summarize the relationship between X
and Y.



Formally, to choose the line of best fit, we use the “least squares”
method, which identifies the line that minimizes the “sum of the
squared residuals,” known as SSR. (Recall that residuals is a
different name for prediction errors; this method minimizes the
sum of the squared prediction errors.)

SSR= Zzz
i=1

Why do we want to minimize the sum of the squared residuals
rather than the sum of the residuals? Because in the minimization
process we want to avoid having positive prediction errors cancel
out negative prediction errors. By squaring the residuals, we
convert them all to positive numbers. (This procedure for choosing
the line of best fit is called the “least squares” method because
it minimizes the sum of the squared residuals.)

In practice, we do not undertake this minimization process our-
selves. Instead, we rely on R to make the necessary computations.
In the next section, we will go over a simple example and learn
how to ask R to estimate the two coefficients of the line that min-
imizes the sum of the squared residuals. In other words, we will
learn how to use R and the least squares method to find the line
of best fit.

4.4 PREDICTING GDP USING PRIOR GDP

The code for this chapter’s analysis can be found in the “Pre-
diction.R” file. The dataset we analyze is provided in the file
“countries.csv”, and table 4.1 shows the names and descriptions
of the variables included.

variable description
country name of the country
gdp country’s GDP from 2005 to 2006 (in trillions of

local currency units)

prior_gdp  country’s GDP from 1992 to 1993 (in trillions of
local currency units)

light country’s average level of night-time light emis-
sions from 2005 to 2006 (in units on a scale from
0 to 63, where 0 is complete darkness and 63 is
extremely bright light)

prior_light  country’s average level of night-time light emis-
sions from 1992 to 1993 (in units on a scale from
0 to 63, where 0 is complete darkness and 63 is
extremely bright light)
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TABLE 4.1. Description of the variables
in the countries dataset, where the unit of
observation is countries.
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RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd('~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

As always, we begin by reading and storing the data (assuming
we have already set the working directory):

co <- read.csv(" countries .csv") # reads and stores data

To get a sense of the dataset, we look at the first few observations:

head(co) # shows first observations

##  country gdp prior_gdp light  prior_light
## 1 USA 11107 7.373 4227 4.482
## 2 Japan 543.017 464.168 11.926 11.808
## 3 Germany 2152 1.793 10.573 9.699
## 4  China  16.558 4.901 1.451 0.735
##5 UK 1.098 0.754 11.856 13.392
## 6 France 1.582 1.208 8513 6.909

Based on table 4.1 and the output above, we learn that each
observation in the dataset represents a country, and that the
dataset contains five variables:

- country is a character variable that identifies the country.

- gdp and prior_gdp are each country's GDP at two different
points in time, 13 years apart, from 2005 to 2006 and from
1992 to 1993. They are measured in trillions of local currency
units (that is, in trillions of dollars in the case of the United
States, trillions of yen in the case of Japan, trillions of euros
in the case of Germany, and so on).

- light and prior_light are each country's average night-time
light emissions at two different points in time, 13 years apart,
from 2005 to 2006 and from 1992 to 1993. They are measured
on a scale from O to 63, where O represents no light and 63 is
extremely bright light.

We interpret the first observation as representing the United
States, where GDP was $11 trillion from 2005 to 2006 and $7
trillion from 1992 to 1993, and average night-time light emissions
were 4.2 units from 2005 to 2006 and 4.5 units from 1992 to 1993
(as measured on a scale from 0 to 63).

To find the total number of observations in the dataset, we run:

dim(co) # provides dimensions of dataframe: rows, columns
##[1]170 5

The dataset contains information about 170 countries.



4.4.1 RELATIONSHIP BETWEEN GDP AND PRIOR GDP

To get a sense of the relationship between a country’s GDP at
two points in time, we analyze how the two measures of GDP
that we have in the dataset, gdp and prior_gdp, relate to each
other. Since these two variables were measured 13 years apart,
our conclusions refer to the relationship between a country’s GDP
at one point in time and its GDP about 13 years prior.

We start the analysis by creating a scatter plot using the function
plot() to visualize the relationship between the two variables of
interest. Note that we always plot the predictor on the x-axis and
the outcome variable on the y-axis. In this case, to visualize the
relationship between gdp and prior_gdp, we run:

plot (x=co$prior_gdp, y=co$gdp) # creates scatter plot

co$gdp
1000 1500 2000

500

T T T T T T
0 200 400 600 800 1000 1200
co$prior_gdp

Looking at the scatter plot, we observe a positive association
between the two variables. Higher values of prior GDP tend to
be associated with higher values of GDP. In addition, we notice
that the relationship between the two variables appears to be
strongly linear. To further investigate the direction and strength of
the linear association, we can compute the correlation coefficient
using the function cor():

PREDICTING OUTCOMES 109

RECALL: plot() creates the scatter
plot of two variables. Examples:
plot(data$x_var, data$y_var),
plot(x=data$x_var, y=data$y_var), or
plot(y=data$y_var, x=data$x_var). Also,
if R gives you the error message “Error in
plot.new(): figure margins too large”, try
making the lower-right window larger and
then re-run the code that creates the plot.

RECALL: The correlation coefficient
ranges from -1 to 1 and summarizes
the direction and strength of the linear
association between two variables. In
R, the function cor() calculates the
correlation  coefficient between two
variables. Example: cor(data$variablel,
data$variable?).
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TIP: When writing the model for the first
time, it is helpful to (i) emphasize that
the variables may take different values for
each observation by adding the subscript
i, and (ii) specify what each observation, i,
represents. In this case, the unit of obser-
vation, i, is countries.

[m() fits a linear model. It requires
a formula of the type Y ~ X,
where Y identifies the Y variable
and X identifies the X variable.
To specify the object where the
dataframe is stored, we can either
use the $ character in the code
identifying each variable or set the
optional argument data. Examples:
Im(data$y_var ~ data$x_var) or
Im(y_var ~ x_var, data=data).

cor(co$gdp, co$prior_gdp) # computes correlation
## [1] 0.9903451

The correlation coefficient between the two variables turns out to
be 0.99, which confirms what we noticed in the scatter plot above.

Now that we have a general sense of how the two variables
relate to each other, we can fit a linear model to summarize their
relationship. This is the model we will use later to make predic-
tions. Since our outcome of interest is gdp and our predictor is
prior_gdp, the line we want to fit is:

@, —a+p8 prior_gdp;  (i=countries)

where:

- g/(-f;i is the average predicted GDP from 2005 to 2006 among
countries in which the value of prior_gdp equals prior_gdp;

- prior_gdp; is the GDP of country i from 1992 to 1993.

Once we estimate & and 3, we will be able to plug into the formula
above any value of prior_gdp and get a gdp in return.

To estimate the coefficients of the linear model using the least
squares method in R, we use the function [m(), which stands for
“linear model.” This function requires that we specify as the main
argument a formula of the type Y ~ X, where Y identifies the
outcome variable and X identifies the predictor. To fit a line to
summarize the relationship between GDP and prior GDP, we run:

Im(co$gdp ~ co$prior_gdp) # fits linear model
#H#

## Call:

## lm(formula = co$gdp ~ co$prior_gdp)

#H#

## Coefficients:

## (Intercept) co$prior_gdp

#H# 0.7161 1.6131

Note that since the variables in the model should always come
from the same dataframe, there is an alternative way of specifying
the lm() function. Instead of using the $ character for each vari-
able, we can use the optional argument data and set it to equal
the name of the object where the dataframe containing all the
variables is stored. For example, Im(gdp ~ prior_gdp, data=co)
produces the same output as the code above.

As we can see in the output of the function lm() above, the esti-

mated intercept (@) is 0.72, and the estimated slope (B), the
coefficient for the variable prior_gdp, is 1.61.



The fitted linear model is then:

ﬁ) =0.72 +1.61 prior_gdp

How should we interpret @=0.72? The value of @ equals the ¥
when X=0. Here, since Y is GDP and X is prior GDP (both
measured in trillions of local currency units), we interpret the
estimated intercept coefficient as indicating that when prior GDP
is O trillion local currency units, we predict that GDP is 0.72
trillion local currency units, on average. (Note that the interpre-
tation of the intercept does not always make substantive sense,
especially when the range of observed values of the predictor does
not include zero. This is a good example. It does not make sense
for a country to have a prior GDP of 0 trillion local currency units.
When we make predictions beyond the observed range of data,
we make the strong assumption that the relationship between X
and Y continues to hold. This is called “extrapolation,” and it
may lead to nonsensical predictions.)

How should we interpret B=1.61? The value of 3 equals the
AY associated with AX=1. Here, since the Y is GDP and
the X is prior GDP (both measured in trillions of local currency
units), we interpret the estimated slope coefficient as indicating
that an increase in prior GDP of 1 trillion local currency units is
associated with a predicted increase in GDP of 1.61 trillion local
currency units, on average.

To make it easier to work with the fitted model, we may want to
store it as an object using the assignment operator <-. (Here, we
chose the name fit, but we could have chosen another name.)

fit <- Im(gdp ~ prior_gdp, data=co) # stores fitted model

For example, now we can easily add the fitted line to the scatter
plot by using the function abline(). As we saw in the previous
chapter, this function adds a straight line to the most recently
created graph. There, we saw how to draw horizontal and vertical
lines. Here, we learn that this function will draw the fitted line
when we specify as the main argument the object that contains
the output of the fitted model. Go ahead and run:

abline ( fit ) # adds line to scatter plot

Remember, that R will give you an error message if you run this
piece of code without having first created a graph. If you run all
the code provided in this section, in sequence, you should see the
figure shown in the margin.

Now that we have fitted a line to summarize the relationship
between our two variables of interest (also known as fitting a
linear regression model), we can use the fitted model to make
predictions.
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TIP: In what units of measurement are the

two estimated coefficients, & and 3?

- If Y is non-binary, both & and Bare in
the same unit of measurement as Y.

- If Y is binary, @ is in percentages, and
Bis in percentage points (after multi-
plying both outputs by 100).

Here, since gdp is non-binary and mea-
sured in trillions of local currency units,
both & and E are measured in trillions of
local currency units.

abline() adds the fitted line to the
most recently created graph when
we specify as the main argument the
object that contains the output of
the lm() function. Example: fit <-
Im(Y ~ X) and then abline(fit).

co$gdp

co$prior_gdp
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TIP: In what units of measurement are our

predictions, Y and AY?

- If Y is non-binary, both Y and AY are
in the same unit of measurement as Y.

- If Y is binary, Yisin percentages and
AY is in percentage points (after mul-
tiplying both outputs by 100).

Here, since gdp is non-binary and mea-

sured in trillions of local currency units,

both ¥ and AY are measured in trillions

of local currency units.

644.72

« (400, 644.72)

GDP

prior GDP = 400

TIP: We arrive at this formula by using the
definition of either (a) the slope coefficient
or (b) the change in the predicted outcome
between two points (initial and final).

(a) Since E:A?/AX, then AY=BAX
(b) A? = ?ﬁnal - Vinitial
= (@+ B Xnat) — (@+ B Xinitat)
= B (Xinat —Xinitial) = B AX

Generally speaking, there are two types of predictions we may be
interested in making. First, we may want to predict the average
value of the outcome variable given a value of the predictor. When
this is the case, we use the formula of the fitted line directly.

TO COMPUTE Y BASED ON X: We plug the value of X
into the fitted linear model and calculate Y.

Y=a+p8X

For example, suppose that we want to know the current GDP of
a country, and for some reason we cannot measure it. But we
do know that 13 years ago, the country’s GDP was 400 trillion
local currency units. What would our best guess be for current
GDP, given the relationship between GDP and prior GDP that
we estimated above? To predict the value of a country’s current
GDP based on the value of that country’s GDP 13 years prior,
we plug the value of prior GDP into the fitted linear model:

5(-17) = 0.72+1.61 prior_gdp
=0.72 + 1.61x400 = 644.72

Based on the fitted line, we predict that the country has a current
GDP of about 644.72 trillion local currency units. (See figure in
the margin to visualize how we would arrive at the same conclu-
sion using the fitted line drawn in the scatter plot.)

Second, we may want to predict the average change in the out-
come variable associated with a change in the value of the pre-
dictor. When this is the case, we use the formula that computes
the change in the predicted outcome, shown below.

TO COMPUTE AY ASSOCIATED WITH AX: We plug
the value of AX into the formula below and calculate AY.

AY = BAX

For example, imagine that we want to predict the change in GDP
associated with an increase in prior GDP of 400 trillion local
currency units. To make the calculations here, we start with the
formula of change in the predicted GDP and plug in the value of
change in prior GDP:



Agdp = 1.61 Aprior_gdp
= 1.61x400 = 644

We predict that an increase in GDP 13 years ago of 400 trillion
in local currency would likely be associated with an increase in
current GDP of about 644 trillion local currency units. (Again,
see figure in the margin to visualize how we would arrive at the
same conclusion using the fitted line drawn in the scatter plot.)

4.4.2 WITH NATURAL LOGARITHM TRANSFORMATIONS

In the previous subsection, we saw how to fit a line using our
two variables of interest, gdp and prior_gdp, without any trans-
formations. To improve the fit of the line, there are times when we
might want to transform one or both of our variables of interest.
As we will soon see, these transformations affect how we interpret
the coefficients.

When a variable contains a handful of either extremely large or
extremely small values, the distribution of the variable will be
skewed. (Recall that a distribution is considered skewed when it
is not symmetric because one of its tails is longer than the other.)
Under these circumstances, it is often a good idea to transform
the variable by taking its natural logarithm. This transformation
will make the variable of interest more normally distributed and,
in turn, improve the fit of the line to the data. In the example at
hand, we will transform both variables of interest by taking the
natural logarithm, and then we will re-fit the line.

In R, the function to compute a natural logarithm is log(). To
calculate the natural logarithm of each of the values inside a
variable, we specify the code identifying the variable as the main
argument. Then, to save the results as a new variable, we can
use the assignment operator <-. To store this new variable inside
the existing dataframe, we use the $ character. Returning to the
running example, to create the log-transformed GDP variables,
log_gdp and log_prior_gdp, we run:

## create log-transformed GDP variables
co$log_gdp <- log(co$gdp) # gdp
co$log_prior_gdp <- log(co$prior_gdp) # prior gdp

To check that the new variables were created correctly, we could
look at the first few observations of the dataframe co. If you run
head(co) again, you should see that the value of the first observa-
tion of log_gdp is 2.4 (since gdp1=11.1 and log(11.1)=2.4), and
the value of the first observation of log_prior_gdp is approximately
2 (since prior_gdp1=7.4 and log(7.4)=2).
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A GDP = 644

A prior GDP
=400

TIP: The natural logarithm is the inverse
of the exponential function. The base of
the natural logarithm is the constant e,
known as Euler’s number, which is approx-
imately 2.7183. The natural logarithm of
X, log(X), is the power to which e would
have to be raised to equal X (if X=eY,
then log(X)=Y).

log() computes the natural loga-
rithm of the argument specified
inside the parentheses. Example:
log(10).
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RECALL: hist() creates the histogram of a
variable. Example: hist(data$variable).

To visualize how the transformation affected the distribution of
our two variables of interest, we can create the histograms of the
original and log-transformed variables by running:

## create histograms

hist (co$gdp) # gdp

hist (co$log_gdp) # log-transformed gdp

hist (co$prior_gdp) # prior gdp

hist (co$log_prior_gdp) # log-transformed prior gdp
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As we can see in the histograms on the left, the two original
measures of GDP contained a handful of extremely large values,
which skewed their distributions. (In both cases, the tail on the
right is longer than the tail on the left). While most observations
had values below 200 trillion local currency units, there were a
few outliers. For example, Indonesia had a GDP of more than
1,100 trillion rupiahs in 1993 and of almost 1,800 trillion rupi-
ahs in 2006. As we can see in the histograms on the right, the
distributions become more symmetrical and bell-shaped once we
log-transform the variables.

Now, we can visualize how the transformation of the variables
affected the fit of the line by creating the scatter plots between
the original variables and between the log-transformed variables:



## create scatter plots
plot (x=co$prior_gdp, y=co$gdp) # original
plot (x=co$log_prior_gdp, y=co$log_gdp) # log-transformed
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Comparing the two scatter plots, we clearly see that the natural
logarithm transformation makes the relationship between the two
variables of interest more linear. To confirm this, we can compute
the correlation coefficient between the log-transformed variables:

cor(co$log_gdp, co$log_prior_gdp) # computes correlation
## (1] 0.9982696

Indeed, the new correlation coefficient is even closer to 1 than it
was before the logarithmic transformation (0.998 vs. 0.990).

Now that we have a sense of how the two log-transformed vari-
ables relate to each other, we can fit the following linear model
to summarize their relationship:

loﬁpi —a+8 log_prior_gdp;  (i=countries)

where:

- l@pi is the average predicted natural logarithm of GDP
from 2005 to 2006 among countries in which the value of
log_prior_gdp equals log_prior_gdp;

- log_prior_gdp; is the natural logarithm of the GDP of country
i from 1992 to 1993.

To estimate the coefficients of this new line of best fit, we use the
[m() function again and run:

Im(log_gdp ~ log_prior_gdp, data=co) # fits linear model
HH#

## Call:

## Im(formula = log_gdp ~ log_prior_gdp, data=co)

HH#

## Coefficients:

## (Intercept) log_prior_gdp

HH# 0.4859 1.0105
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RECALL: [m() fits a linear model. It
requires a formula of the type Y ~ X.
To specify the object where the dataframe
is stored, we can use the optional arqu-
ment data or the $ character. Exam-
ples: Im(y_var ~ x_var, data=data) or
Im(data$y_var ~ data$x_var).
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The fitted log-log linear model is a fitted
linear model in which both Y and X have
been log-transformed

log(Y) = a + Blog(X)
In this model, we interpret 3 as the pre-

dicted percentage change in the outcome
associated with an increase in the predic-

tor of 1 percent

Using the estimated coefficients provided above, we can write the
new fitted linear model as follows:

ltg_-g\dp = 0.49 + 1.01 log_prior_gdp

This type of model, in which both the outcome and the predictor
have been log-transformed, is called the log-log linear model.
While we could interpret the coefficients the same way as in the
normal linear model, in practice, we use an approximation to avoid
dealing with the logarithms, especially when interpreting B.

As shown in the appendix near the end of this chapter, we interpret
B as the predicted percentage change in the outcome associated
with an increase in the predictor of 1 percent. Since here B=1.01,
an increase of prior GDP of 1% is associated with a predicted
increase in GDP of 1.01%, on average. Note that in this inter-
pretation of B, both the change in X and the change in Y are
measured in percentages, instead of in units, as is the case in the
standard linear model. In other words, in the log-log model, we
estimate change in relative rather than absolute terms.

4.5 PREDICTING GDP GROWTH USING
NIGHT-TIME LIGHT EMISSIONS

Let’s figure out how to fit a model to predict changes in GDP
using changes in night-time light emissions. As mentioned ear-
lier, being able to predict GDP growth using night-time light
emissions would be quite useful. In remote areas of the world,
where measuring GDP is difficult, measures of night-time light
emissions are readily available through satellite imagery.

We start the analysis by creating the two variables whose rela-
tionship we want to understand. In this model, our outcome of
interest is the percentage change in GDP between two points in
time, which is defined as:



gdp — prior_gdp 100

h =
gdp_change prior_gdp

As we saw in chapter 1, R understands arithmetic operators such
as +, —, “, and /. Thus, to create this variable, we can run:
## create GDP percentage change variable
co$gdp_change <-
((co$gdp - co$prior_gdp) / co$prior_gdp) * 100

Our predictor is the percentage change in night-time light emis-
sions over the same period of time, which is defined as:

light — prior_light
prior_light

light_change = x 100

To create this variable, we run:
## create light percentage change variable
co$light_change <-

((co$ light - co$ prior_light ) / co$ prior_light ) * 100

We could check that the new variables were created correctly
by looking at the first few observations of the dataframe co. If
you run head(co) again, you should see that the value of the first
observation of gdp_change is approximately 51, and the value
of the first observation of light_change is about -6. Since both
new variables measure change as a percentage, we interpret the
first number as indicating that the GDP of that country grew by
51% in the 13-year period under study; we interpret the second
number as indicating that the night-time light emissions in that
same country declined by 6% during the same time period.

To get a better sense of the contents of gdp_change and
light_change, we can create their histograms by running:

## create histograms

hist (co$gdp_change) # of percentage change in gdp

hist (co$light_change) # of percentage change in light
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TIP: Do not confuse percentage change
with percentage-point change. The per-
centage change is defined as the change
relative to the baseline:
Yﬁnal - Yinitial % 100
yin'nial
In contrast, the percentage-point change
is defined as the difference between the
final and initial values when these values
are measured in percentages:

Yiinal — Yinitiat  (both measured in %)
For example, if the voter turnout rate
increased from 50% to 60%, the percent-
age change would be:

60% — 50%

50% x 100 = 20%

And, the percentage-point change:
60% — 50% = 10 p.p.

We could describe this change as an
increase of either (a) 20 percent or (b) 10
percentage points.
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RECALL: We always plot the predictor on
the x-axis and the outcome variable on the
y-axis.

Here we observe that both variables are more or less normally
distributed and that while almost all countries saw their GDP
grow by between 0 and 200% over the 13-year period, a fair
number of countries saw their night-time light emissions either
grow by more than 200% or actually decline.

Now that we have constructed and learned how to interpret our
two variables of interest, we can create their scatter plot to get a
sense of how they relate to each other:

## create scatter plot
plot (x=co$light_change, y=co$gdp_ change)
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As expected, looking at the scatter plot, we can see that higher
values of night-time light change tend to be associated with
higher values of GDP change. In other words, increases in a
country’s night-time light emissions are usually accompanied by
increases in that country’s GDP. The relationship appears to be
only moderately linear, however. To confirm this, we compute the
correlation coefficient:

cor(co$gdp_change, co$light_change) # computes correlation
## [1] 0.4577672

The correlation between the two variables is 0.46, which is con-
sistent with what we saw in the scatter plot above.



To predict GDP growth using the change in night-time light emis-
sions, we are interested in the following linear model:

gdpﬁ)ge, —a+p8 light_change;  (i=countries)

where:

- gdpfcmnge, is the average predicted percentage change in
GDP from 1992-1993 to 2005-2006 among countries in which
the value of light_change equals light_change;

- light_change; is the percentage change in night-time light
emissions experienced by country /i from 1992-1993 to
2005-2006.

To estimate the coefficients of the linear model, we can use the
function lm() and run:

Im(gdp_change ~ light_change, data=co) # fits linear model
#H#

## Call:

## Im(formula = gdp_change ~ light_change, data = co)

#H#

## Coefficients:

## (Intercept) light_change

#H# 49.8202 0.2546

Based on the estimated coefficients above, we write the fitted
model as:

gdpfcmnge = 49.82 + 0.25 light_change

Now we can use the fitted model to make predictions. Imagine,
for example, that we want to know a country’s GDP growth over a
period of 13 years but do not have the data necessary to measure
it. Suppose also that we observe that night-time light emissions
increased by 20% in that country over the same period of time.
What would be our best guess for its GDP growth? To compute
this prediction, we plug into the fitted linear model a light_change
equal to 20:

gdpfcmnge = 49.82 + 0.25 light_change
=49.82 + 0.25x20 = 54.82

Based on the fitted model, we predict that the country’s GDP
grew by an average of about 55% during the 13-year period.

PREDICTING OUTCOMES
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R?, also known as the coefficient of deter-
mination, ranges from 0 to 1 and measures
the proportion of the variation of the out-
come variable explained by the model. The
higher the R?, the better the model fits the
data.

4.6 MEASURING HOW WELL THE MODEL FITS
THE DATA WITH THE COEFFICIENT OF
DETERMINATION, R?

Whenever we use a model to make predictions, we want to know
how well the model fits the data because a poor fit can lead to
inaccurate predictions. For this purpose, we use a statistic called
coefficient of determination, or R (pronounced r-squared). The
value of R? ranges from 0 to 1 and represents the proportion
of the variation of Y explained by the model. For example, we
interpret an R? of 0.8 as indicating that the model explains 80%
of the variation of Y (0.8x100=80%). Therefore, the higher the
R?, the better the model fits the data.

FORMULA IN DETAIL

In mathematical terms, R? is defined as:

TSS — YL(Yi—Y)?

R? =

where:

- SSR stands for the “sum of the squared residuals” and
measures the variation of Y not explained by the model.
This is what we minimize by using the least squares
method when choosing the line of best fit. More pre-
cisely:

SSR=Y e = Yoy
i=1 i=1

In other words, SSR sums the squared distances between
the dots and the line of best fit (shown as dashed red lines
in the top figure in the margin).

- TSS stands for “total sum of squares” and measures the
total variation of Y, explained and unexplained. This is
the numerator of the variance of Y, which, as we saw
in chapter 3, is a measure of the spread of the variable.
More precisely:

7SS = i(y,._V)2

i=1

In other words, 7SS sums the squared distances between
the dots and the mean of Y (shown as dashed red lines
in the bottom figure in the margin).



Given the definitions above, we can interpret SSR/TSS as
the proportion of the variation of Y not explained by the
model. Therefore, 1—(SSR/TSS) is the proportion of the
variation of Y that is explained by the model.

At one extreme, when the model perfectly fits the data, the
model will produce no residuals, SSR will equal 0, and R?
will equal 1. At the other extreme, when the model does not
explain any of the variation of the outcome variable, SSR
will equal 7SS, and R? will equal 0. Most situations fall
somewhere in between.

When we use a simple linear model, that is, a linear model with
only one X variable, as is the case in this chapter, R? is also
equivalent to the correlation between X and Y squared:

R? = cor(X, Y)?

Given this definition of R?, it becomes clear that the higher the
correlation between X and Y (in absolute terms), the better the
model fits the data. As the linear association between X and
Y becomes stronger (for example, moving from the first scatter
plot in figure 4.4 to the second one), the prediction errors in
the model (the vertical distance between the dots and the line)
become smaller, and the proportion of the variation of Y explained
by the model (the value of R?) increases.

At one extreme, when the relationship between X and Y is per-
fectly linear (the correlation between X and Y equals either 1
or -1), the model explains 100% of the variation of Y (R*=1?=1
and R*=(-1)2=1). At the other extreme, when there is no linear
relationship between X and Y (the correlation between X and Y
equals 0), the model explains 0% of the variation of Y (R*=0°=0).
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TIP: Linear models with only one X vari-
able are known as simple linear regres-
sion models (or just simple linear models)
to differentiate them from multiple linear
regression models, which use more than
one X variable. Linear models with only
one X variable are also known as bivariate
linear models because they estimate the
relationship between two variables, X and
Y (“bi" means two, and “variate” means
variable).

FIGURE 4.4. The higher the absolute
value of the correlation between X and
Y, the higher the R? and the better the
model fits the data. For example, the cor-
relation between the variables in the first
plot is 0.48, and the R? of the model is 0.23
(0.482=0.23). By comparison, the correla-
tion between the variables in the second
plot is 0.88, and the R? of the model is
0.77 (0.88%=0.77).



122 CHAPTER 4

When building predictive models, then, we look for variables that
are highly correlated with Y so that we can use them as predic-
tors. The higher the correlation between X and Y (in absolute
terms), the better the fitted linear model will usually be at pre-
dicting Y using X.

PREDICTING OUTCOMES USING LINEAR REGRES-
SION: We look for X variables that are highly correlated
with Y because the higher the correlation between X and
Y (in absolute terms), the higher the R? and the better the
fitted linear model will usually be at predicting Y using X.

4.6.1 HOW WELL DO THE THREE PREDICTIVE MODELS
IN THIS CHAPTER FIT THE DATA?

Let's evaluate the three predictive models we fitted in this chapter.
Figure 4.5 shows the three scatter plots with their fitted lines.
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co$prior_gdp co$log_prior_gdp co$light_change
FIGURE 45. The first model predicts They were all simple linear models, so to compute R?, we can
GDP using prior GDP. The second pre- square the correlation between the two variables of interest:
dicts the natural logarithm of GDP using
the natural logarithm of prior GDP. The ## compute R-squared for each predictive model
third predicts GDP growth using changes Cor(co$gdp, co$prior_gd p)AQ # model 1
in night-time light emissions. s [1] 0.9807834

cor(co$log_gdp, co$log_prior_gdp)"2 # model 2
#3# [1] 0.9965443

cor(co$gdp_change, co$light_change)"2 # model 3
## [1] 0.2095928



We can interpret the R? of the first model as indicating that the
linear model that uses prior GDP as a predictor explains about
98% of the variation of GDP. If we compare the R“ of the first
model to that of the second (0.98 vs. approximately 1), we can
see that the fit of the model improves ever so slightly by log-
transforming both measures of GDP. In either case, the predictive
models appear to fit the data remarkably well.

Finally, we can interpret the R? of the third model as indicating
that the linear model that uses night-time light emission changes
as a predictor explains about 21% of the variation in GDP growth.
While this might appear to be a low R? at first, given how difficult
it is to predict GDP growth, this model is quite good in relative
terms. (Note that we should only compare Rs between models
that have the same outcome variable because some outcomes are
intrinsically harder to predict than others.)

4.7 SUMMARY

This chapter introduced us to the linear regression model for mak-
ing predictions. We learned how to fit a line to summarize the
relationship between a predictor and an outcome variable. Then,
we learned how to use the fitted line to (i) predict the average
value of the outcome variable given a value of the predictor, and
(ii) predict the average change in the outcome variable associated
with a change in the value of the predictor. Along the way, we
learned about prediction errors, the difference between observed
and predicted outcomes, and how to interpret the two coefficients
of a line: the intercept and the slope. We ended the chapter by
learning how to compute and interpret R® to measure how well a
model fits the data. In the next chapter, we will see how to use
the linear regression model for the purpose of estimating causal
effects.

PREDICTING OUTCOMES
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RECALL: The slope refers to the change in
the predicted outcome between two spe-
cific points on the line. In addition, the
change in a variable between two points
(initial and final) is equivalent to the dif-
ference between the value of the variable
at the final point and the value of the vari-
able at the initial point. For example:

AY = Yinal — Yinitial

TIP: Based on the formula in detail below,
we can make the following approximations:

[t09(Yina) — l0g(Yinta)] x 100 ~

AY

Yinitial

x 100

[lOg(Xﬁnal) - lOg(Xinmal)] x 100 =~

AX
Xinitial

x 100

~

4.8 APPENDIX: INTERPRETATION OF THE
SLOPE IN THE LOG-LOG LINEAR MODEL

In the log-log linear model, both the outcome and the predictors
have been log-transformed:

log(Y) = @+ Blog(X)

Since we are interested in the interpretation of B, let's start with
the formula for the change in the predicted outcome between two
points on the line:

10g(Vinat) — 10g( Vinital) = [6 B log( Xﬁnal)] - [a+6 log( mmal)]

=oa—-oa+ IB I'c'g()<ﬁnal) B 109( lmttal)

= B [tog(Xinat) — log(Xintal)|
If we multiply both sides by 100, we arrive at:
[109(Yinat)—L0g(Vinitat) | 100 = B [10g (Xina)—L0g(Xiiat) x 100

Now, if we use the approximations shown in the TIP in the margin,
the formula becomes:

x 100 ~ B x 100

Xinitial

initial

where:

- A\A’/\A‘mmalme is the predicted percentage change in the out-
come variable

- B is the estimated slope coefficient

- AX/Xiitia X100 is the percentage change in the predictor.

Given the formula above, if the predictor increases by 1 percent
(that is, AX/Xiitiat x100=1), then the outcome is predicted to
increase by 3 percent:

AY x100 ~ Bx1 ~ B

lnltlal

Putting it all together, in the log-log model, the estimated slope
coefficient 3 is the predicted percentage change in the outcome
associated with an increase in the predictor of 1 percent.
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FORMULA IN DETAIL

The difference between the natural logarithms of two values in a variable is approximately equal to
the percentage change between those two values in that variable, when the distance between the

two values is relatively small. Here is the math:
[t0g(Xinat) — log(Xiniia)| x 100 =

= [tog(Xontat+2X) — log(Xintia)] x 100
r AX

= [log (xmmal +x~mma.—) - tog()qnma.)] x 100
L )<initial

AX
)<initial

= [tog (xmmal (1 + )) ~ log (Xiitat)| x 100

r AX
= log()<initial) + lOg (1 +

)<initial
AX
=log |1+ x 100
9 ( )<initial>

AX
)<initial

) — Log(Xini)| x 100

o~
~

x 100

because Xinal = Xinitial + DX

Xinitial
because =1
Xinitial

because log(AxB) = log(A) + log(B)

because log(14+A) ~ A when A is small
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4.9 CHEATSHEETS

4.9.1 CONCEPTS AND NOTATION

concept/notation

predictor
X

outcome variable
Y

predicted outcomes
(Y)
observed outcomes

(Y)

prediction errors
@

linear model

fitted linear model

description

variable that we use as the basis for our
predictions; predictors are also known as
independent variables

variable that we are trying to predict
based on the values of the predictor(s);
outcome variables are also known as
dependent variables

Eronounced Y-hat; values of Y we predict
ased on (i) the fitted model that
summarizes the relationship between X
and Y, and (ii) the observed values of X

observed values of Y, in contrast with
predicted values of Y, which are
estimated, not observed

pronounced epsilon-hat; also known as
residuals; difference between the observed
outcomes and the predicted outcomes:

G=Yi-%
for each observation, this difference is

equivalent to the vertical distance
between the dot and the fitted line

also known as simple linear regression
model, simple linear model, and bivariate
linear model; theoretical model that we
assume reflects the true relationship
between X and Y

Yi=a+pBXite
where:
- Y, is the outcome for observation i
- a is the intercept coefficient
- B is the slope coefficient
- X; is the value of the predictor for

observation i

- ¢; is the error for observation i

also known as fitted simple linear
regression model and fitted simple linear
model; line fitted to the data to summarize
the relationship between X and Y

Yi=a+ BXi
where:
- Y; is the predicted outcome for
observation i
- a is the estimated intercept coefficient

- B is the estimated slope coefficient
- X; is the value of the predictor for
observation i

example(s)
when trying to predict a country’s current
GDP based on prior GDP, the predictor is
prior GDP
when trying to predict a country’s current

GDP based on prior GDP, the outcome
variable is current GDP

(see computing Y based on X below)

(see prediction errors below)

if the observed outcome equals 5 and the
predicted outcome equals 3, the prediction
error equals 2

&§=5-3=2

Yi=2-3Xi+ ¢

Y:=2-3X;

continues on next page. ..



4.9.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

estimated intercept
@

estimated slope

B

computing Y based

on X

computing AY
associated with AX

description

pronounced alpha-hat; estimated
coefficient of the fitted line that specifies
the vertical location of the line

it is the Y when X=0

unit of measurement of a:

- if Y is non-binary: in the same unit of
measurement as Y’

- if Y is binary: in percentages (after
multiplying the result by 100)

pronounced beta-hat; estimated coefficient
of the fitted line that specifies the angle,
or steepness of the line; it equals the
change in the predicted outcome divided
by the change in the predictor between
two points on the line (“rise over run”)

it is the AY associated with AX=1

interpret as:

- an average increase in Y if positive
- an average decrease in Y if negative
- no average change in Y if zero

unit of measurement of E:

- if Y is non-binary: in the same unit of
measurement as Y

- if Y is binary: in percentage points
(after multiplying the result by 100)

plug the value of X into the fitted linear

model: R .

Y=a+p8X

unit of measurement of Y:

- if Y is non-binary: in the same unit of
measurement as Y

- if Y is binary: in percentages (after
multiplying the result by 100)

lug the value of AX into the formula
elow: N
AY =B AX
interpret as:
- an average increase in Y if positive
- an average decrease in Y if negative
- no average change in Y if zero

unit of measurement of AY:

- if Y is non-binary: in the same unit of
measurement as Y

- if Y is binary: in percentage points
(after multiplying the result by 100)
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example(s)
if Y=2-3X:
the estimated intercept, @, is 2

when X equals 0, we predict that Y will
equal 2 units, on average

if Y=2-3xX:
the estimated slope, B, is -3
when X increases by 1, we predict an

associated decrease in Y of 3 units, on
average

if Y=2—-3X and X=2:
Y=2_-3x2=-4

when X equals 2, we predict that Y will
equal -4 units, on average

if Y=2-3X and AX=2:
AY = -3x2=-6
when X increases by 2, we predict an

associated decrease in Y of 6 units, on
average

continues on next page. ..
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4.9.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation description example(s)

fitted log-log linear fitted linear model in which both Y and X if l@(\Y) =2+ 3log(X):

model have been log-transformed; in this model, .
we interpret the slope coefficient as the the estimated slope, 3, is 3
predicted percentage change in the
outcome associated with an increase in when X increases by 1%, we Eredict an
the predictor of 1 percent associated increase in Y of 3%, on
. R average
log(Y) = @ + Blog(X)
R? or coefficient of pronounced r-squared; statistic that if the R? of a model equals 0.80, it means
determination measures the proportion of the variation of that 80% of the variation of the outcome
the outcome variable explained by the variable is explained by the model

model
it ranges from 0 to 1

the higher the R?, the better the model
fits the data

in the simple linear model:
2 = cor(X, Y)?

when building predictive models, we look
for X variables that are highly correlated
with Y because the higher the correlation
between X and Y (in absolute terms), the

higher the R? and the better the fitted
linear model will usually be at predicting
Y using X

4.9.2 R FUNCTIONS

function description required argument(s) example(s)

Lm() fits a linear model formula of the type Y ~ X, ## both of these pieces of code fit
where Y identifies the the same linear model:
outcome variable and X
identifies the X variable Im(data$y_var ~ data$x_var)
optional argument data: Im(y_var ~ x_var, data=data)

specifies the object where the
dataframe is stored;
alternative to using $ for
each variable

abline() adds a straight line to the to add the fitted line, we fit <- lm(y_var ~ x_var, data=data)
most recently created specify as the main argument # stores fitted line into an object
graph the object that contains the named fit

output of the lm() function;
(for other uses, see page 97) abline(fit)

# adds the fitted line to the most
recently created graph

log() computes the natural what we want to compute the  log(10)
logarithm natural logarithm of



5. ESTIMATING
CAUSAL EFFECTS WITH
OBSERVATIONAL DATA

In chapter 2, we learned how to estimate average causal effects
using data from randomized experiments. Here, we learn how to
estimate them when we cannot randomly assign the treatment and
instead have to rely on observational data. As an illustration, we
estimate the causal effects of Russian TV reception on the 2014
Ukrainian parliamentary election.

5.1 RUSSIAN STATE-CONTROLLED TV
COVERAGE OF 2014 UKRAINIAN AFFAIRS

Ukraine became independent from the Soviet Union in 1991.
Since then, attitudes toward Russia have often been a point
of contention. For a long time, the Ukrainian population and
political parties were divided into pro-Russian and anti-Russian.

Leading up to the 2014 Ukrainian elections, Russia and Ukraine
(which, at the time, was governed by a party with an “anti-
Russian” agenda) were in fierce political and military conflict.
Russian state-controlled TV coverage of the conflict, and of the
issues at stake in the Ukrainian elections, was intense and one-
sided. For instance, the coverage deemed the Ukrainian govern-
ment illegitimate and claimed that the revolution that brought it
to power had been organized by foreign countries. Such cover-
age was aired not only in Russian territory but also in parts of
Ukraine. Some Ukrainians living close to the border received the
signal, and thus, could be exposed to pro-Russia propaganda.

In this chapter, we estimate the effect of Russian TV reception on
Ukraine's 2014 parliamentary election. We do so at two levels.
First, we analyze individual-level survey data to estimate the
impact on an individual's propensity to vote for a pro-Russian
party. Second, we analyze aggregate-level data to estimate the
effect on the vote share of pro-Russian parties at the precinct level.
In both cases, we focus on areas close to the Russian border.

Based on Leonid Peisakhin and Arturas
Rozenas, “Electoral Effects of Biased
Media: Russian Television in Ukraine,”
American Journal of Political Science
62, no. 3 (2018): 535-50. To simplify the
analyses, we consider that a signal
strength of 50 dBuV or above provides
reception, and we limit the number of
potential confounders.
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RECALL: The fundamental problem of
causal inference is that we can never
observe the counterfactual outcome. Yet
to infer causal effects, we need to compare
the factual outcome with the counterfac-
tual outcome.

RECALL: Observational data are data col-
lected about naturally occurring events,
where researchers do not assign treatment.

A confounding variable, or confounder,
denoted as Z, is a variable that affects
both (i) the likelihood of receiving the
treatment X and (ii) the outcome Y.

FIGURE 5.1. Representation of the causal
relationships between the confounding
variable, Z, the treatment variable, X, and
the outcome variable, Y. (Recall, we rep-
resent a causal relationship with an arrow;
the direction of the arrow indicates which
one of the variables affects the other.)

5.2 CHALLENGES OF ESTIMATING CAUSAL
EFFECTS WITH OBSERVATIONAL DATA

As we discussed in chapter 2, to estimate causal effects, we must
find or create a situation in which the treatment and control
groups are comparable with respect to all the variables that might
affect the outcome other than the treatment variable itself. Only
when this assumption is satisfied can we use the average fac-
tual or observed outcome of one group as a good estimate of the
average counterfactual outcome of the other group.

As we have already seen, in randomized experiments, we can rely
on the random assignment of the treatment to make treatment
and control groups, on average, identical to each other in terms
of all observed and unobserved pre-treatment characteristics. But
what happens when we cannot conduct a randomized experiment
and have to analyze observational data instead? We can no
longer assume that treatment and control groups are compara-
ble. To estimate causal effects using observational data, we have
to first identify any relevant differences between treatment and
control groups—known as confounding variables or confounders—
and then statistically control for them so that we can make the
two groups as comparable to each other as possible.

We begin this section by defining confounding variables. Then,
we explore why their presence poses a problem when estimating
causal effects and discuss how the randomization of treatment
assignment eliminates all potential confounders in randomized
experiments.

5.2.1 CONFOUNDING VARIABLES

A confounding variable, also known as a confounder, is a variable
that affects both (i) the likelihood of receiving the treatment X and
(it) the outcome Y.

In mathematical notation, just as we represent the treatment vari-
able as X and the outcome variable as Y, we represent a potential
confounding variable as Z. The diagram in figure 5.1 shows
the causal relationships between these variables. Note that the
arrows between Z and X and between Z and Y both originate
from Z, indicating that changes in Z affect the values of X and
Y but not the other way around.

sy



Let’s look at a simple hypothetical example to get a better sense
of how this works. Suppose we are interested in the average
causal effect of attending a private school, as opposed to a public
one, on student performance. Given the goal of our research:

- the treatment variable, X, is a binary variable indicating
whether the student attended a private school (call it private
school)

- the outcome variable, Y, is student performance on a standard-
ized test such as the SAT (call it test scores).

If we are collecting data from the real world, where children attend
the school their parents choose, can we think of any variable that
affects both (i) the likelihood of attending a private school and
(i) student performance on a test? In other words, can we think
of a confounding variable, Z?

One potential confounding variable is family wealth. Given that
private schools require that students pay tuition, private school
students are likely to come from wealthier families than public
school students. Thus, family wealth affects the likelthood that a
student attends a private school.

family wealth — private school

Family wealth also affects the likelihood that a student receives
after-school help such as one-on-one tutoring, which, in turn, will
improve performance on standardized tests.

family wealth — tutoring — test scores

Thus, since family wealth affects both private school and test
scores, it is a confounding variable.

family wealth

YN

private school —— test scores

5.2.2 WHY ARE CONFOUNDERS A PROBLEM?

Why does the presence of a confounder pose a problem when esti-
mating causal effects? Because confounders obscure the causal
relationship between X and Y.

Returning to the example above, if we observed that, on average,
private school students perform better on tests than public school
students, we would not know whether it is because they attended
a private school or because they came from wealthier families

OBSERVATIONAL DATA
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RECALL: When we speak of a “high
degree of correlation,” we mean that the
correlation coefficient is high in absolute
terms, regardless of its sign.

heat

N

ice cream drownings

that could afford to provide them with after-school help. In other
words, if we were to calculate the difference in average test scores
between the two groups (the difference-in-means estimator), we
would not know what portion of this difference, if any, could be
attributed to the treatment (attending a private school) and what
portion was the result of the confounding variable (coming from a
wealthier family).

In the presence of confounders, correlation does not necessarily
imply causation. Just because we observe that two variables are
highly correlated with each other does not automatically mean
that one causes the other. There could be a third variable—a
confounder—that affects both variables.

In the extreme, by affecting both X and Y at the same time,
confounding variables might create a completely spurious rela-
tionship between X and Y, misleading us into thinking that X
and Y are causally related to each other when, in fact, there is
no direct causal link between the two.

z

0N

X Y

For example, ice cream sales and the number of drownings are
positively correlated with each other. When we observe a larger
number of ice cream sales, we usually also observe a larger num-
ber of drownings. That does not mean that eating ice cream
causes one to drown. There is an obvious confounder: heat.

When it is hot, people are more likely to eat ice cream, and
they are also more likely to go swimming, which might sadly
lead to some drownings. The presence of the confounder, heat,
then, makes ice cream sales and number of drownings positively
correlated with each other. As far as we know, however, there
is no direct causal link between them. Eating ice cream does
not make one more likely to drown. (Note the lack of a causal
link/arrow between ice cream and drownings in the diagram in
the margin.)

Not all cases are this extreme. Typically, there is a causal link
between the treatment and the outcome, but the presence of a
confounder makes it difficult for us to estimate the causal effect
of X on Y accurately (as we saw in the example of the effect of
attending a private school on student test scores).

In short, when there is a confounding variable Z affecting X and
Y, we should not trust correlation as a measure of causation, and
thus, we cannot use the difference-in-means estimator to estimate
average causal effects.



IN THE PRESENCE OF CONFOUNDING VARIABLES:
Treatment and control groups are not comparable, cor-
relation does not necessarily imply causation, and the
difference-in-means estimator does not provide a valid
estimate of the average treatment effect.

Note that in order for a variable to be considered a confounder,
it has to affect both (i) the likelihood of being treated and (ii) the
outcome. If it affects only one, it is not a confounding variable,
and therefore, its presence does not complicate the estimation of
causal effects. (See scenarios | and Il in figure 5.2.)

v % %
X—Y X—Y X—Y
Scenario | Scenario |l Scenario Il

For example, perhaps students who are raised Catholic are more
likely to attend a private school. As long as being raised Catholic
does not also affect test performance, it does not constitute a
confounder (Scenario |).

Similarly, perhaps students who get more sleep perform better
academically, but if sleeping more doesn’t affect the likelihood of
attending a private school, then it is not a confounding variable
(Scenario I1).

Also, mechanisms by which the treatment affects the outcome are
not confounders (Scenario Ill). For example, private schools might
have smaller classes than public schools, and smaller classes may
improve student performance. The use of smaller classes in private
schools is not a confounder but may be one of the mechanisms
by which private schools improve student performance. One easy
way of seeing this distinction is by thinking about the direction
of the causal relationships. A confounder causally affects the
treatment and outcome rather than the other way around.

5.2.3 CONFOUNDERS IN RANDOMIZED EXPERIMENTS

Why don’'t we have to worry about confounders in randomized
experiments? Randomization of treatment assignment eliminates
all potential confounders. It ensures that treatment and control
groups are comparable by breaking the link between any potential
confounder and the treatment.

OBSERVATIONAL DATA 133

FIGURE 5.2. Representation of scenar-
ios where the variable V, despite its being
causally linked to X, or Y, or both, is not
a confounding variable.

raised Catholic

private school —— test scores

sleep

private school —— test scores

small class

private school —— test scores
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family wealth

Y

private school ————— test scores

Let’s return to the example above, where we were interested in the
causal effect of attending a private school on student performance.
As discussed, if parents choose the school their children attend,
a potential confounding variable is family wealth.

If we are designing our study and want to ensure that there are
no confounders, how should we decide who attends and does not
attend a private school? We can flip a coin (or use any other
method of random assignment) to determine which students attend
a private school and which attend a public school. If, for example,
there were more applicants than open seats in a private school
voucher program, we could ensure that there would be no con-
founders by allocating the vouchers through a method of random
assignment such as a lottery.

family wealth

lottery ———— private school —— test scores

Now, students from non-wealthy families would be as likely as
students from wealthy families to receive the voucher, and thus,
attend a private school. In other words, by assigning students
to attend a private school with the flip of a coin, we break the
link between family wealth and private school. As a result, family
wealth is no longer a confounder, since it no longer affects the
probability of receiving the treatment (although it continues to
affect the outcome).

In general, by assigning the treatment at random, we ensure that
nothing related to the outcome is also related to the likelthood of
receiving the treatment, including factors that we cannot observe
such as student aptitude or motivation. Random assignment of
treatment, then, eliminates any potential confounders. This is
why in chapter 2 we stated that by randomly assigning treatment,
we ensure that treatment and control groups have identical pre-
treatment characteristics, on average.

WHY ARE THERE NO CONFOUNDING VARIABLES IN
RANDOMIZED EXPERIMENTS? By randomly assigning
treatment, we break the link between any potential con-
founders and the treatment variable, thereby eliminating all
potential confounding variables.

This is the reason randomized experiments are regarded as the
gold standard for establishing causal relationships in many sci-
entific disciplines. Randomization of treatment assignment makes
the estimation of valid causal effects relatively straightforward.
All we need to do is compute the difference-in-means estimator.



5.3 THE EFFECT OF RUSSIAN TV ON
UKRAINIANS’ VOTING BEHAVIOR

In this section, we learn how to estimate average treatment effects
using observational, as opposed to experimental, data. As our
running example, we study the effects of receiving Russian TV
on the voting behavior of Ukrainians in the 2014 parliamentary
election. In particular, we analyze data from a survey conducted
a few months after the election on a random sample of Ukrainians
living in precincts within 50 kilometers (about 31 miles) of the
Russian border. (See figure 5.3.)

BELARVS 1

. kYIV

VKRAINE

The dataset is provided in the file “UA_survey.csv”. Table 5.1
shows the names and descriptions of the variables included.

variable description

russian_tv identifies whether the respondent’s
precinct receives Russian TV: 1=there is
reception or O=there is no reception

pro_russian_vote identifies respondents who reported having
voted for a pro-Russian party in the 2014
parliamentary election: 1=voted for a pro-
Russian party or 0=did not

within_25km identifies whether the respondent’s
precinct is within 25 kilometers of the
Ukraine-Russia border: 1=it is within 25
kilometers of the border or 0=it is not

The code for this chapter’s analysis can be found in the “Obser-
vational.R" file. As always, we begin by reading and storing the
data (assuming we have already set the working directory):
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FIGURE 5.3. The precincts studied are
within 50 kilometers of the border with
Russia (shown in black).

TABLE 5.1. Description of the variables in
the UA_survey dataset, where the unit of
observation is respondents.
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RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd('~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

RECALL: Simple linear models use only
one X variable to predict Y.

uas <- read.csv("UA_survey.csv") # reads and stores data

To get a sense of the dataset, we look at the first few observations:

head(uas) # shows first observations
## russian_tv pro_russian_vote within_25km

## 1 1 0 1
## 2 1 1 1
## 3 0 0 0
## 4 0 0 1
## 5 0 0 1
#H# 6 1 0 0

Based on table 5.1 and the output above, we learn that each
observation in the dataset represents a respondent, and that the
dataset contains three variables:

- russian_tv is a binary variable that identifies whether the
respondent’s precinct received Russian TV

- pro_russian_vote is a binary variable that identifies whether
the respondent reported having voted for a pro-Russian party
in the 2014 Ukrainian parliamentary election

- within_25km is a binary variable that identifies whether the
respondent’s precinct is very close to the border with Russia
(defined as within 25 kilometers).

We interpret the first observation as representing a respondent
who lived in a precinct that received Russian TV, did not vote for
a pro-Russian party, and lived in a precinct within 25 kilometers
(km) of the border.

To find the total number of observations in the dataset, we run:

dim(uas) # provides dimensions of dataframe: rows, columns
##[1]358 3

The dataset contains information for 358 survey respondents.

5.3.1 USING THE SIMPLE LINEAR MODEL TO COMPUTE
THE DIFFERENCE-IN-MEANS ESTIMATOR

In this subsection, we learn to fit a simple linear model that pro-
duces an estimated coefficient that is equivalent to the difference-
in-means estimator. This procedure is a stepping stone toward
fitting a more complex model in which we estimate an average
causal effect while statistically controlling for confounders.

While we use the same statistical method as in the previous chap-
ter, we do so with a different goal in mind. In chapter 4, we fitted
a linear model to predict a quantity of interest, that is, to predict



the outcome Y given a value of the predictor X. In this chapter,
we fit a linear model to explain a quantity of interest, that is,
to estimate the causal relationship between the treatment X and
the outcome Y. (Recall, X denotes the predictor when we are
making predictions, but it denotes the treatment variable when
we are estimating causal effects.) As we will soon see, the goal
of the analysis does not affect the mathematical underpinnings of
the model (the method used to fit the line and the mathematical
definitions of the coefficients remain the same), but it does affect
the substantive interpretations of the coefficients.

Let’s analyze the UA_survey dataset as an example. Here, we
are interested in estimating the average causal effect that receiv-
ing Russian TV had on a respondent’s probability of voting for a
pro-Russian party in the 2014 Ukrainian parliamentary election.
In other words, we are interested in the causal link between rus-
sian_tv and pro_russian_vote, where russian_tv is the treatment
variable and pro_russian_vote is the outcome variable.

Russian TV reception — pro-Russian vote

Can we use the difference-in-means estimator to estimate this
average treatment effect? The information contained in this
dataset does not come from a randomized experiment, but rather
from naturally occurring events. The reception of Russian TV was
not randomly assigned to different precincts. Instead, Russian
TV reception was determined by factors such as the terrain and
distance between the precinct where the respondent lived and
the Russian TV transmitters. The data we are analyzing are
therefore observational, not experimental.

Having said that, while the factors that determined Russian TV
reception were outside the researchers’ control, one could argue
that they produced an “as-if-random” variation of treatment that
had nothing to do with the determinants of individual voting
behavior. For example, small differences in terrain affected Rus-
sian TV reception but probably did not affect voting behavior
directly. For now, then, we assume that the respondents who
received Russian TV were similar in all relevant characteristics
to those who did not and use the difference-in-means estimator
to estimate the average treatment effect. (Later, we will see what
happens when we relax this assumption.)

In the running example, to compute the difference-in-means esti-
mator (just as we did in subsection 2.5.3), we run:

## calculate the difference-in-means estimator
mean(uas$pro_russian_vote[uas$russian_tv==1])-

mean(uas$pro_russian_vote[uas$russian_tv==0])
## (1] 01191139
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RECALL: The difference-in-means estima-
tor is defined as the average outcome for
the treatment group minus the average
outcome for the control group:

Y treatment group — Y control group

It produces a valid estimate of the average
treatment effect when treatment and con-
trol groups are comparable, that is, when
there are no confounders present.

RECALL: In R, mean() calculates the
mean of a variable and [| is the oper-
ator used to extract a selection of
observations from a variable. Example:
mean(data$vari[data$var2==1]) calcu-
lates the mean of the observations of the
variable var? for which the variable var2
equals 1.
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RECALL: The difference-in-means estima-

tor is measured in:

- the same unit of measurement as Y, if
Y is non-binary

- percentage points (after multiplying the
output by 100), if Y is binary.

Here, since pro_russian_vote is binary, the
estimator is measured in percentage points
(after multiplying the output by 100).

RECALL: In this book, we define a treat-
ment variable, X, as binary and identifying
receipt of treatment:

1 if individual i received

X — the treatment
"7 ) 0 if individual i did not receive

the treatment

Based on this output, we would write the following conclusion
statement: Assuming that respondents who received Russian TV
were comparable to those who did not, we estimate that receiving
Russian TV increased a respondent’s probability of voting for a
pro-Russian party by 12 percentage points, on average.

As we will see next, we can arrive at the same estimate by fitting
a line where X is our treatment variable and Y is our outcome
variable of interest. Then, the estimated slope coefficient (3) is
numerically equivalent to the difference-in-means estimator.

TO COMPUTE THE DIFFERENCE-IN-MEANS ESTIMA-
TOR: We can either

(a) calculate it directly, or

(b) fit a simple linear model where Y is our outcome vari-
able of interest and X is the treatment variable. In this
case, the estimated slope coefficient (3) is equivalent to
the difference-in-means estimator.

Recall that the formula of the fitted line is:

~

Y =a+8X

where the estimated slope coefficient (E) equals the change in the
predicted outcome associated with a one-unit increase in X.

When X is the treatment variable, a one-unit increase in X occurs
when X changes from 0 to 1, since those are the only two val-
ues that the treatment variable can take. This increase in X is
equivalent to changing from not receiving the treatment (X=0) to
receiving the treatment (X=1). The value of B is, therefore, the
estimated average change in the outcome variable (A\A’) associ-
ated with the change from the control condition to the treatment
condition, also known as the difference-in-means estimator. (See
the formula in detail below for a step-by-step explanation.)

FORMULA IN DETAIL

As we learned in chapter 4, the estimated slope coefficient
equals the change in Y associated with a one-unit increase
in X:

B=AY (if AX=1)



The change in Y can be calculated as Yina — Yinitial:
B = Yinat— Yl (if AX=1)

When the X is the treatment variable, a one-unit increase
in X is equivalent to changing from the control group (X=0)
to the treatment group (X=1). This makes the control group
the initial state, and the treatment group the final state:

~

~ ~
ﬂ = Ytreatment group — Fcontrol group

Finally, recall that Y is an average predicted value. In this
case, it turns out that the Ys are exactly equal to the Ys
for their respective groups. The estimated slope coefficient
is, then:

6 = Ytreatment group Ycontrol group

When in a fitted linear model the X variable is the treatment
variable, then the estimated slope coefficient 8 is numeri-
cally equivalent to the difference-in-means estimator.

Now, let's take a moment to figure out the substantive inter-
pretation of B in this model. As we just saw, E is equivalent
to the difference-in-means estimator, which, under certain condi-
tions, produces a valid estimate of the average treatment effect,
defined as the average change in the outcome variable caused
by a change in the treatment variable. As a result, when inter-
preting B in a linear model where X is the treatment variable,
we use causal as opposed to predictive language. We interpret
the value of 3 as the estimated change in the outcome variable
caused by, not just associated with, the treatment. The valid-
ity of this causal interpretation depends on the extent to which
the treatment and control groups are comparable, that is, on the
absence of confounding variables.

INTERPRETATION OF THE ESTIMATED SLOPE COEF-
FICIENT IN THE SIMPLE LINEAR MODEL:

- By default, we interpret B using predictive language: It
is the AY associated with AX=1.

- When X is the treatment variable, then E is equivalent to
the difference-in-means estimator, and thus, we interpret
,B using causal language: It is the AY caused by AX=1
(the presence of the treatment). This causal interpretation
is valid if there are no confounding variables present, and
thus, the treatment and control groups are comparable.

OBSERVATIONAL DATA
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RECALL: This model uses the true values
of a, B, and ¢; (that is, without the hats)
because it is the theoretical model that
we assume reflects the true relationship
between X and Y. Since we do not know
these values, we have to estimate them by
fitting the model to the data.

RECALL: Im() fits a linear model. It
requires a formula of the type Y ~ X
To specify the object where the dataframe
is stored, we can use the optional argu-
ment data or the $ character. Exam-
ples: Im(y_var ~ x_var, data=data) or
Im(data$y_var ~ data$x_var).

RECALL: The fitted model uses the esti-
mated coefficients, & and E but it does not
include €; (the residuals or error terms).
For every value of X, the fitted model pro-
vides an average value of Y, that is, the
value of Y on the line.

RECALL: The estimated slope coefficient,

ﬁ, is measured in:

- the same unit of measurement as Y, if
Y is non-binary

- percentage points (after multiplying the
output by 100), if Y is binary.

Here, since pro_russian_vote is binary, 8

is measured in percentage points (after
multiplying the output by 100).

Turning back to the running example, given that our treat-
ment variable is russian_tv and our outcome variable is
pro_russian_vote, the linear model we are interested in is:

pro_russian_vote, = a + (3 russian_tv; +¢;  (i=respondents)

where:

- pro_russian_vote; is the binary variable that identifies whether
respondent i voted for a pro-Russian party in the 2014
Ukrainian parliamentary election

- russian_tv; is the treatment variable, which indicates whether
the precinct where respondent i lives received Russian TV

- ¢€; is the error term for respondent .

To fit the linear model to the data, we use the lm() function:

Im(pro_russian_vote ~ russian_tv,

data=uas) # fits linear model
HH
## Call:
## Im(formula = pro_russian_vote ~ russian_tv, data = uas)
HH
#3# Coefficients:
## (Intercept)
HH 0.1709

russian_tv
0.1191

Based on the output, the fitted linear model is:

pro_ru/ssEr_vote =017 + 0.12 russian_tv

In this type of analysis, we typically go straight to the interpre-
tation of f3, since that is the coefficient that helps us estimate the
average treatment effect.

How should we interpret B=0.12? The value of B equals the AY
associated with AX=1, and because here russian_tv (the X vari-
able in the model) is the treatment variable, § is also equivalent
to the difference-in-means estimator. (Note that the value of Bis
indeed the same value we arrived at above, when we calculated
the difference-in-means estimator directly.) As a result, we inter-
pret the value of 8 as estimating that receiving Russian TV (as
compared to not receiving it) increased a respondent’s probabil-
ity of voting for a pro-Russian party by 12 percentage points, on
average. This causal interpretation would be valid if respondents
who received Russian TV were comparable to those who did not.
(In the formula in detail below, we show how the fitted line on
the scatter plot relates to the substantive interpretation of the
two coefficients in this model.)



FORMULA IN DETAIL

As shown in the scatter plot, if X is the treatment variable:

- @+ pB, which is the height of the point on the line that
corresponds to X=1, can be interpreted as the average
outcome for the treatment group (Y'ireatment group)

- @, which is the height of the point on the line that cor-
responds to X=0, can be interpreted as the average
outcome for the control group (Y control group)

- B, which is the difference between these two heights,
is then equivalent to the difference-in-means estimator

(Ytreatment group — Ycontrol group)-

o
s
3
&
2
e|
&
3
3
05 . -

(11 a+ r)) = (1 » Yireatment group) \
~1 Y ]
T B ———

Y5 N
N,
0 (0, @) = (0,Ycontrol group)

0.0 0.5 1.0
uas$russian_tv

In the running example:

- @+ B8=029; indicates that 29 percent of the respon-
dents who lived in a precinct with Russian TV reception
(russian_tv=1) voted for a pro-Russian party

- @=0.17; indicates that 17 percent of the respondents
who lived in a precinct without Russian TV reception
(russian_tv=0) voted for a pro-Russian party

- B=0.12; estimates that receiving Russian TV increased
the probability of voting for a pro-Russian party by 12
percentage points, on average (29%—17%=12 p.p.).

Had the UA_survey dataset come from a randomized experiment,
we could interpret the difference-in-means estimator as a valid
estimate of the average treatment effect. Here, we are working
with observational data, however, and so we need to worry about
potential confounders.
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TIP: When X and Y are both binary,
the scatter plot will show at most four
dots representing all observations in the
dataset. These correspond to the only
four possible combinations of Os and 1s:
(0,1), (1,1), (1,0), and (0,0). In this case,
we will not be able to discern how many
observations in the dataset have the same
combination of values because the dots
that represent them will be displayed on
top of each other.

RECALL: The predicted outcome, Y, and

the estimated intercept coefficient, @, are

measured in:

- the same unit of measurement as Y, if
Y is non-binary

- percentages (after multiplying the out-
put by 100), if Y is binary.

Here, since pro_russian_vote is binary,

both Y and & are measured in percent-

ages (after multiplying the output by 100).
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TIP: A confounder can affect the likelihood
of receiving the treatment and the outcome
in opposite directions. In our example, liv-
ing very close to the border might increase
the chances of receiving Russian TV but
decrease the probability of voting for a
pro-Russian party.

5.3.2 CONTROLLING FOR CONFOUNDERS USING A
MULTIPLE LINEAR REGRESSION MODEL

When dealing with observational data, our first step should be to
identify every potential confounding variable in the relationship
between X and Y. In the case at hand, we might worry about
whether living very close to the Russian border affected both (i)
the likelihood of receiving Russian TV and (ii) respondents’ atti-
tudes toward pro-Russian parties.

On the one hand, residents living very close to the border should
be more likely to receive Russian TV, given their geographical
proximity to Russian TV transmitters (Z—X). On the other hand,
given the military fortifications along the border during this time
period, residents living very close to the border were probably
less likely to vote for a pro-Russian party (Z—Y).

In the months leading up to the 2014 election, Ukraine prepared
to defend itself from a possible Russian invasion by deploying
its army to the border. The Ukrainian army built military fortifi-
cations (trenches and defensive walls) at a distance of up to 10
km from the border, depending on local terrain and road access.
Within that buffer zone, the army positioned tanks and troops in
strategic locations and set up military checkpoints. Residents of a
precinct located very close to the border (such as within 25 km of
it) were either in immediate proximity of a military fortification or,
at the very least, aware of its existence, making them especially
cognizant of the threat of a Russian invasion, and therefore, more
fearful of Russian influence.

In summary, living very close to the border may affect both the
treatment and outcome variables and is, therefore, a potential
confounding variable. (See the diagram below, which represents
the causal relationships between the three variables of interest.)

living within 25 km of the border

— ~

Russian TV reception ——— pro-Russian vote

In the UA_survey dataset, the variable within_25km identifies
whether a respondent lived in a precinct within 25 km of the
border, and thus, measures our confounder. We can confirm that
the confounding variable, within_25km, and the treatment vari-
able, russian_tv, are related to each other by computing their
correlation coefficient:

## compute correlation
cor (uas$within_25km, uas$russian_tv)
## (1] 0.8127747



Based on the output above, within_25km and russian_tv are
highly correlated with each other. As we know, this does not
necessarily mean that changes in one variable cause changes in
the other. The positive correlation, however, does mean that a
higher value of within_25km is associated with a higher value
of russian_tv, on average. Since both variables are binary,
russian_tv is more likely to equal 1 when within_25km also
equals 1. To confirm this, we can create the two-way table of
frequencies by running:

## create two-way table of frequencies
table (uas$within_25km, uas$russian_tv)

HH# 0 1
## 0139 14
## 1 19186

As shown in the table above, among respondents living within 25
km of the border, about 91% are in a precinct that receives Russian
TV (186+(19+186)=0.91). In contrast, among respondents living
more than 25 km away from the border, about 9% are in a precinct
that receives Russian TV (14+(139+14)=0.09). Compared to
Ukrainians living farther away from the border, then, those living
very close to it (i) are more likely to receive Russian TV and (ii)
might have many different observed and unobserved characteris-
tics that affect their propensity to vote for a pro-Russian party,
including being more aware of the threat of a Russian invasion.

Once we have identified the potential confounders, the next step
is to statistically control for them by fitting a multiple linear
regression model. In contrast to simple linear regression models,
multiple linear regression models have more than one X variable
(“multl” means more than one). The multiple linear regression
model is defined as:

Yi=oa+BXn+ -+ BpXip+e

where:

Y; is the outcome for observation i

a is the intercept coefficient

each g; is the coefficient for variable X;—we use j as a stand-in
for all the different subscripts from 1 to p (j=1,...,p)

each Xj; is the observed value of the variable X; for observation
i(ji=1,...,p)
p is the total number of X variables in the model

- €; is the error term for observation i.

Just as the simple linear model, this is a theoretical model that
is assumed to reflect the true relationship between all the X
variables and Y. Because we do not know the values of any of
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RECALL: table() creates a two-way fre-
quency table when two variables are spec-
ified as required arguments. Example:
table(data$variablel, data$variable2). In
the output, the values of the variable spec-
ified as the first argument in the function
are shown in the rows; the values of the
second variable are shown in the columns.

TIP: In this two-way table of frequen-
cies, very few observations are in the
off-diagonal (the diagonal running from
the upper right to the lower left). There
are only 14 respondents living more than
25 km away from the border who receive
Russian TV, and there are only 19 respon-
dents living within 25 km of the border who
do not receive Russian TV. This suggests
that within_25km is a strong confounder
and that our estimate of the average treat-
ment effect will rest on this small number
of observations.

Multiple linear regression models are lin-
ear models with more than one X variable.
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TABLE 5.2. Mathematical definition of
coefficients in the multiple and simple lin-
ear regression models. (Note: The Latin
expression ceteris paribus here means
holding all other X variables constant.)

In the multiple linear regression model:

- the value of & equals the Y when all X
variables equal 0

- the value of each 3; equals the AY
associated with AX;=1, while holding
all other X variables constant

the coefficients (o, B1, B2, ..., Bp) or of the error terms (¢;), we
have to estimate them by fitting the model to the data.

In this case, the fitted model can be written as:
Yi=a+BiXn+- +BpXip
where:

\7; is the predicted value of Y for observation i

a is the estimated intercept coefficient

- each Bj (pronounced beta hat sub j) is the estimated coefficient
for variable X; (j=1,...,p)

- each Xj; is the observed value of the variable X; for observation

i(j=1,...,p)

p is the total number of X variables in the model.

Note that the simple regression linear model is a special case of
the multiple linear regression model (the case in which p equals
1). When there is only one X variable, the fitted model is a line,
and we are back in the simple linear regression model. For any
p other than 1, the fitted model is not a line. If p equals 2, for
instance, the fitted model is a plane in a three-dimensional space.
(See example plane in the margin.)

Table 5.2 provides the mathematical definitions of each of the
coefficients in the multiple linear regression model. As we can
see there, the definitions of the coefficients in the simple linear
regression model can be derived from those in the multiple linear
regression model by setting the number of X variables to one.

multiple regression simple regression
Y=a+BXi+ - +B8,X, Y=a+p8X
@ Y when all X;=0 a: Y when X=0
G=1,...,p)
each B_, AY associated B: AY associated
with AX;=1, with AX=1

while holding all other
X variables constant
or ceteris paribus

Let’s look at the definition of each coefficient in turn:

- When there are multiple X variables, the value of & equals the
predicted value of Y when all X variables equal zero. When
there is only one X variable, the value of & equals the predicted
value of Y when that one X variable equals zero.



- When there are multiple X variables, there will be multiple?
coefficients (one for each X variable). The value of each g;
equals the predicted change in Y associated with a one-unit
increase in X; (the X variable affected by Bj), while holding all
other X variables constant. When there is only one X variable,
there will be only one B coefficient. The value of 3 equals the
predicted change in Y associated with a one-unit increase in
the one X variable included in the model. (Since there are no
other X variables here, there is no need to hold them constant.)

How can the multiple linear regression model help us estimate
average causal effects when confounders are present?

Let’s assume the first X variable (X) is the treatment variable.
The value of the corresponding estimated coefficient (B}) equals
the change in Y associated with the presence of the treatment,
while holding all the other X variables constant.

Now, if the model includes each potential confounding variable
we are worried about as an additional X variable (that is, as
a “control variable”), then the value of 31 equals the change in
Y caused by the presence of the treatment, while holding the
values of all confounding variables constant. In other words, now
we can interpret 51 using causal language because statistically
controlling for all confounding variables in the estimation process
makes the treatment and control groups comparable.

To better understand this, let's look at the diagram shown in
figure 5.4, which represents the causal relationships between a
confounding variable, Z, the treatment variable, X, and the out-
come variable, Y. Intuitively, by adding Z as a control variable in
the model, we statistically hold the values of Z constant, block-
ing the path shown with a gray dashed line, which links X and
Y through Z. With this path blocked, no changes in Y can be
attributed to changes in Z. Since the value of Z is being held
constant, the only remaining source of change in Y is a change
in X.

In other words, the difference in the average outcomes between the
treatment and control groups that remains after holding all con-
founding variables constant can now be directly attributed to their
difference with respect to the treatment (treated vs. untreated); no
other differences between the two groups are in play.
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TIP: In this model, only the estimated coef-
ficient that affects the treatment variable,
Bi, can be interpreted using causal lan-
guage; all others should continue to be
interpreted using predictive language.

FIGURE 5.4. Representation of the causal
relationships between a confounding vari-
able, Z, the treatment variable, X, and the
outcome variable, Y. The path blocked by
adding Z as a control variable in the model
is shown with a gray dashed line.
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Post-treatment variables are variables
affected by the treatment:

X — post-treatment variable

Example: if the treatment is attending a
private school and private schools have
smaller classes than public schools, then
small class is a post-treatment variable
because it is affected by the value of pri-
vate school.

private school — small class

FIGURE 5.5. Representation of the poten-
tial causal relationships between a post-
treatment variable, V, the treatment vari-
able, X, and the outcome variable, Y. The
path blocked by adding V as a control
variable in the model is shown with a gray
dashed line.

Does this mean that we should add to the model as many control
variables as possible? No. For example, we should make sure
not to control for post-treatment variables, which are variables
affected by the treatment. Adding a post-treatment variable to
the model would render our causal estimates invalid because we
would be controlling for a consequence of the treatment when
trying to estimate its total effect.

To illustrate this, consider the causal diagram in figure 5.5. Sup-
pose that we control for the post-treatment variable V when
estimating the causal effect of X on Y. Doing so would block
the causal path going from X to Y through V/, which is one of the
ways by which changes in X cause changes in Y, and therefore
represents a portion of the total causal effect of X on Y.

In our current analysis, for example, we would not want to add
to the model a variable capturing the average number of hours a
respondent spent watching Russian TV each week. This is a post-
treatment variable since it is causally affected by the treatment;
its value directly depends on whether a respondent received Rus-
sian TV to begin with. Thus, controlling for this variable would
soak up part of the causal effect we are interested in estimating.

ESTIMATING AVERAGE CAUSAL EFFECTS USING
OBSERVATIONAL DATA AND MULTIPLE LINEAR
REGRESSION MODELS. If, in the multiple linear regres-
sion model where Xj is the treatment variable, we control
for all potential confounders by including them in the model
as additional X variables, then we can interpret 31 as a
valid estimate of the average causal effect of X on Y.

Now that we know how to estimate an average treatment effect
in the presence of confounders, let's return to our example. Given
that our treatment variable is russian_tv, our outcome variable is
pro_russian_vote, and our confounding variable is within_25km,
the linear model we are interested in is:

pro_russian_vote; = o + 31 russian_tv;
+ B2 within_25km; + ¢; (i=respondents)



To fit a multiple linear regression model in R, we also use the
[m() function. As you may recall, this function requires a formula
of the type Y ~ X when there is only one X variable. It requires
a formula of the type Y ~ Xj +--- + X, when there are multiple
X variables. For example, to fit the linear model above, we run:
Im(pro_russian_vote ~ russian_tv + within_25km,

data=uas) # fits linear model
HH
## Call:
## Im(formula = pro_russian_vote ~ russian_tv +
##  within_25km, data=uas)
HH
## Coefficients:
## (Intercept)
HH 0.1959

within_25km
-0.2081

russian_tv
0.2876

Based on the output, the new fitted linear model is:

pro_ru/ssz_vote = 0.2+ 0.29 russian_tv
-0.21 within_25km

How should we interpret 31 =0.29? The value of 51 equals the
AY associated with AX;=1, while holding all other variables
constant. In addition, because the variable affecting this coeffi-
cient is the treatment variable, russian_tv, and the confounder we
are worried about, within_25, is included in the model as a con-
trol variable, we can interpret 31 using causal lanquage. Thus,
we interpret the value of 31 as estimating that, when we hold
living very close to the border constant, receiving Russian TV (as
compared to not receiving it) increased a respondent’s probabil-
ity of voting for a pro-Russian party by 29 percentage points,
on average. The validity of this causal interpretation depends
on whether living very close to the border is the only confound-
ing variable. If there are other confounders, this estimate of the
average treatment effect would not be valid.

5.4 THE EFFECT OF RUSSIAN TV ON
UKRAINIAN ELECTORAL OUTCOMES

In the prior section, we found that Russian TV reception was
estimated to increase a respondent’s probability of voting for
a pro-Russian party, suggesting that the propaganda aired by
Russian TV in the months leading up to the 2014 Ukrainian par-
liamentary election may have helped parties with a pro-Russian
agenda garner more votes. In this section, we examine whether we
can find a similar causal relationship at the aggregate level. This
analysis is particularly appropriate since the treatment variable
itself (Russian TV reception) is measured at the precinct level.
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Im() fits a linear model. It requires
a formula of the type Y ~ X; +
-+ + Xp. Note that when there
is only one X variable, this for-
mula becomes Y ~ X. To specify
the object where the dataframe is
stored, we can use the optional
argument data or the $ char-
acter. Examples:  Im(y_var ~
x_varl + x_varZ, data=data) or
Im(data$y_var ~ data$x_varl +
data$x_var?2).

TIP: The unit of measurement of 31 in the
multiple linear regression model follows
the same rules as the unit of measurement
of Bin the simple linear regression model.
Here, since pro_russian_vote is binary, Zﬂ
is measured in percentage points (after
multiplying the output by 100).

RECALL: In an individual-level analysis,
the unit of observation is individuals. By
contrast, in an aggregate-level analysis,
the unit of observation is collections of
individuals. For example, here our unit
of observation is precincts, and therefore,
each observation represents the residents
of a particular precinct.
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TABLE 5.3. Description of the variables in
the UA_precincts dataset, where the unit
of observation is precincts.

RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd('~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

Here, we use aggregate-level data from all the precincts in three
provinces in northeastern Ukraine: Chernihiv, Sumy, and Kharkiv.
Among the Ukrainian provinces bordering Russia, only these three
did not close their polling stations as a result of the ongoing
conflict. These are the same provinces where the respondents to
the survey analyzed above lived.

The dataset is provided in the file “UA_precincts.csv”. Table 5.3
shows the names and descriptions of the variables included.

variable description

russian_tv identifies precincts that receive Russian
TV: 1=there is reception or O=there is no
reception

vote share received in the precinct by
pro-Russian parties in the 2014 Ukrainian
parliamentary election (in percentages)
prior_pro_russian vote share received in the precinct by
pro-Russian parties in the 2012 Ukrainian
parliamentary election (in percentages)
identifies precincts that are within 25 kilo-
meters of the Russian border: 1=it is
within 25 kilometers of the border or 0=it
is not within 25 kilometers of the border

pro_russian

within_25km

As always, we start by reading and storing the data (assuming
we have already set the working directory):

uap <- read.csv("UA_precincts.csv") # reads and stores data

To get a sense of the dataset, we look at the first few observations:

head(uap) # shows first observations
##  russian_tv pro_russian prior_pro_russian within_25km

## 1 0 27210884 25.14286 1
## 2 0 0.8928571 35.34483 0
## 3 1 1.6949153 20.53232 1
## 4 0 722689076 84.47761 1
## 5 0 1.2820513 28.99408 0
#H# 6 1 1.4285714 45.58824 0

Based on table 5.3 and the output of above, we learn that each
observation in the dataset represents a precinct, and that the
dataset contains four variables:

- russian_tv is a binary variable that identifies whether the
precinct received Russian TV

- pro_russian and prior_pro_russian are the vote shares received
by pro-Russian parties in the precinct in the parliamentary



elections of 2014 and 2012, respectively (both variables are
measured in percentages)

- within_25km is a binary variable that identifies whether the
precinct is within 25 km of the border.

We interpret the first observation as representing a precinct in
Ukraine that does not receive Russian TV, where pro-Russian
parties received about 3% and 25% of the votes in the parliamen-
tary elections of 2014 and 2012, and that is within 25 km of the
border with Russia.

To find the total number of observations in the dataset, we run:

dim(uap) # provides dimensions of dataframe: rows, columns
##(1]3589 4

The dataset contains information about 3,589 precincts.

5.4.1 USING THE SIMPLE LINEAR MODEL TO COMPUTE
THE DIFFERENCE-IN-MEANS ESTIMATOR

In this analysis, we are interested in estimating the effect that
the intense, one-sided Russian TV coverage of Ukrainian politics
had on the electoral performance of pro-Russian parties in the
2014 Ukrainian parliamentary election at the precinct level. Since
the treatment took place between the 2012 and 2014 elections,
we define our outcome variable as the change in the vote share
received by pro-Russian parties between these two elections.

The causal link we are interested in is, then, between russian_tv
and pro_russian_change, where russian_tv is the treatment vari-
able and pro_russian_change is the outcome variable.

Russian TV reception — pro-Russian vote share change

Since we do not have our outcome variable of interest readily
available in the dataset, we start the analysis by creating it. The
change in the precinct-level vote share received by pro-Russian
parties between 2012 and 2014 is defined as:

pro_russian_change = pro_russian — prior_pro_russian

To create this variable, we run:

## create pro-russian change variable
uap$pro_russian_change <-
uap$pro_russian - uap$prior_pro_ russian

OBSERVATIONAL DATA
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The new variable, pro_russian_change, is measured in percentage
points because it is the difference between two percentages. For
example, it equals -20 p.p. when a precinct’s pro-Russian vote
share dropped to 40% from 60% (40%—60%=-20 p.p.).

To get a sense of the contents of pro_russian_change, we can
create its histogram by running:

## create histogram
hist (uap$pro_russian_change)
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uap$pro_russian_change

Note that all the values of pro_russian_change are negative,
which means that in all the precincts under study, the vote share
received by pro-Russian parties decreased between these two
elections. As a result of the conflict leading up to the 2014 elec-
tion, pro-Russian political parties lost support across the coun-
try, even in their traditional strongholds in eastern and southern
Ukraine. Our question is, then, whether Russian TV reception
caused the precinct-level vote share for pro-Russian parties to
decline by a smaller amount.

To calculate the difference-in-means estimator, we can fit a simple
linear model without any controls, just as we did in the previous
section. The linear model we are interested in here is:

pro_russian_change; = o + 3 russian_tv; +¢; (i=precincts)

where:

- pro_russian_change; is the percentage-point change in the vote
share received by pro-Russian parties in precinct i between the
2012 and 2014 Ukrainian parliamentary elections

- russian_tv; is the treatment variable, which indicates whether
precinct i received Russian TV

- ¢ is the error term for precinct i.



To fit the linear model, we run:

Im(pro_russian_change ~ russian_tv,
data=uap) # fits linear model
HH
## Call:
## Im(formula = pro_russian_change ~ russian_tv, data=uap)
HH
#3# Coefficients:
## (Intercept) russian_tv
##  -25.146 1.783

Based on the output, the fitted linear model is:

pro_rusﬁchange = -25.15+ 1.78 russian_tv

How should we interpret B=1.78? The value of 3 equals the AY
associated with AX=1, and because russian_tv (the X variable
in the model) is the treatment variable, B is also equivalent to
the difference-in-means estimator. As a result, we interpret the
value of B as estimating that receiving Russian TV (as compared
to not receiving it) increased the change in the precinct-level vote
share received by pro-Russian parties by 1.78 percentage points,
on average. Note that the positive sign of B is consistent with
our expectation regarding the effect of Russian TV propaganda. It
indicates that pro-Russian parties experienced smaller vote share
losses in precincts with Russian TV reception. The validity of
this causal effect estimate depends on whether the precincts that
received Russian TV were comparable to the precincts that did
not; that is, it depends on the absence of confounding variables.

5.4.2 CONTROLLING FOR CONFOUNDERS USING A
MULTIPLE LINEAR REGRESSION MODEL

A confounding variable we might worry about, again, is close prox-
imity to the border. On the one hand, precincts very close to the
border should be more likely to receive Russian TV (Z—X). On
the other hand, given the military deployments along the border,
we might expect that pro-Russian parties experienced larger vote
share losses in precincts very close to the border (Z—Y).

Given that close proximity to the border (defined here as being
within 25 km) affects both (i) the likelihood of receiving the treat-
ment and (ii) the outcome, it constitutes a confounder.

located within 25 km of the border

— T

Russian TV reception —— pro-Russian vote share change
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RECALL: The estimated slope coefficient,

ﬁ, is measured in:

- the same unit of measurement as Y, if
Y is non-binary

- percentage points (after multiplying the
output by 100), if Y is binary.

Here, since pro_russian_change is non-

binary and measured in percentage points,

B is also measured in percentage points.
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In the UA_precincts dataset, the variable within_25km captures
whether a precinct is within 25 km of the border, and thus, mea-
sures our confounder. We can confirm that the confounding vari-
able, within_25km, and the treatment variable, russian_tv, are
related to each other by computing their correlation coefficient:

## compute correlation
cor (uap$within_25km, uap$russian_tv)
## (1] 0.5317845

Based on the output above, within_25km and russian_tv are mod-
erately correlated with each other.

Now that we have identified the confounding variable, we are
ready to fit a multiple linear regression model to estimate the
average treatment effect. Here, since the treatment variable is
russian_tv and the potential confounding variable is within_25km,
the linear model we are interested in is:

pro_russian_change; = o+ 3¢ russian_tv;
+ B2 within_25km; + €; (i=precincts)

To fit the multiple linear regression model above, we run:

Im(pro_russian_change ~ russian_tv + within_25km,
data=uap) # fits linear model

HH

## Call:

## Im(formula = pro_russian_change ~ russian_tv +

HH within_25km, data=uap)

HH

#3# Coefficients:

HH (Intercept) russian_tv within_25km
HH -24.302 8.822 -14.614

Based on the output, the new fitted linear regression model is:

pro_rusﬁchange = -24.3 + 8.82 russian_tv
-14.61 within_25km

How should we interpret B1=8.82? The value of 51 equals the
AY associated with AX;=1, while holding all other variables
constant. In addition, because the variable affecting this coef-
ficient is the treatment variable, russian_tv, and the confounder
we are worried about, within_25, is included in the model as
a control variable, we can interpret 1 using causal language.
Thus, we interpret the value of B, as estimating that, when we
hold close proximity to the border constant, receiving Russian
TV (as compared to not receiving it) increased the change in



the precinct-level vote share received by pro-Russian parties by
8.82 percentage points, on average. If the close proximity of the
precincts to the border successfully captures the only confound-
ing variable in the relationship between our two main variables
of interest, then this is a valid estimate of the average treatment
effect.

5.5 INTERNAL AND EXTERNAL VALIDITY

We have already learned how to estimate the average change
in the outcome caused by the treatment. (In chapter 2, we saw
how to estimate the average treatment effect using data from a
randomized experiment, and in this chapter, we have seen how to
estimate it using observational data.) There are more issues we
must consider when conducting or evaluating a scientific causal
study, including the following two properties: (i) internal validity
and (ii) external validity.

The internal validity of a study refers to the extent to which the
causal assumptions are satisfied. In other words, it reflects the
confidence we have in our causal estimates. It asks, is the esti-
mated causal effect valid for the sample of observations in the
study? The answer depends on whether we have successfully
eliminated or controlled for all potential confounders, that is, on
whether the treatment and control groups used for the estima-
tion can be considered comparable, after statistical controls are
applied (if any are).

The external validity of a study refers to the extent to which the
conclusions can be generalized. It asks, is the estimated causal
effect valid beyond this particular study? The answer depends on
(i) whether the sample of observations in the study is representa-
tive of the population to which we want to generalize the results,
and (ii) whether the treatment used in the study is representative
of the treatment for which we want to generalize the results.

5.5.1 RANDOMIZED EXPERIMENTS VS.
OBSERVATIONAL STUDIES

How do studies based on experimental data compare to those
based on observational data along these two dimensions?

When it comes to internal validity, randomized experiments have a
significant advantage over observational studies. In experiments,
the use of random treatment assignment eliminates all poten-
tial confounding variables. By contrast, in observational studies,
while we can statistically control for observed confounders, there
is always the possibility that we fail to account for unobserved
confounders.
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The internal validity of a study refers to

the extent to which its causal conclusions
are valid for the sample of observations in
the study. The external validity of a study
refers to the extent to which its causal con-

clusions can be generalized.

RECALL: In a representative sample, char-
acteristics appear at similar rates as in the
population as a whole.
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When it comes to external validity, randomized experiments can
suffer from limitations that put them at a disadvantage compared
to observational studies. First, for ethical and logistical rea-
sons, randomized experiments are often done using a convenient
sample of subjects who are willing to participate in the study.
(For example, you have probably seen ads recruiting subjects for
experiments in exchange for money.) In some cases, then, volun-
teers come from a particular segment of the population; they may
be low-income and/or underemployed. In such cases, the sam-
ple of individuals would likely be non-representative of the whole
population of interest. By contrast, in observational studies, we
can usually analyze data from either the entire population or a
random selection of observations from that population.

Second, randomized experiments are often conducted in artificial
environments such as laboratories, making the treatments less
realistic, and therefore, less comparable to real-world treatments.
For example, it is not the same to watch a TV program in a
laboratory as in the comfort of your own home, where many other
things compete for your attention (phone calls, visits to the fridge,
and TV programs on other channels). By contrast, in observational
studies, we usually observe the treatment in the environment in
which we are interested.

In summary, an advantage in internal validity often comes with
a compromise in external validity, and vice versa. Studies based
on randomized experiments tend to have strong internal valid-
ity but relatively weak external validity. Observational studies
tend to have relatively weak internal validity but strong external
validity. This dynamic explains why scholars use both types of
studies to estimate causal effects; they often have complementary
strengths. Nonetheless, some studies based on experimental data
have strong external validity, and some studies based on observa-
tional data have strong internal validity. We should pay attention
to the study details when evaluating them.

5.5.2 THE ROLE OF RANDOMIZATION

The ideal research design for estimating average treatment effects
would make use of the two kinds of randomization we have seen.
It would not only randomly select its observations from the popu-
lation, but it would also randomly assign treatment among those
observations. (See figure 5.6 on the next page.)

Assuming that we were also able to make the treatment as real-
istic as possible, this design would create a study with strong
external and internal validity. As discussed, random sampling is
the best way to make the sample representative of the popula-
tion and, thereby, ensure strong external validity (enabling us to
generalize the results to the target population). Similarly, ran-



dom treatment assignment is the best way to make treatment and
control groups comparable and, thereby, ensure strong internal
validity (enabling us to draw valid causal inferences).
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As discussed in chapter 2 and above, for ethical, logistical, and
financial reasons, few studies include both types of randomization.
It is useful, however, to know what the ideal research design would
look like; it serves as a benchmark when designing or evaluating
causal studies.

5.5.3 HOW GOOD ARE THE TWO CAUSAL ANALYSES IN
THIS CHAPTER?

Let’s evaluate the internal and external validity of the two data
analyses in this chapter: (i) the individual-level analysis and (ii)
the precinct-level analysis.

How strong is their internal validity? In both analyses, receipt of
the treatment (Russian TV reception) was determined by factors
outside of the control of the researchers, such as the terrain and
distance of the precincts to the Russian TV transmitters. Neither
study is, therefore, a randomized experiment. Despite the fact
that we cannot rely on the randomization of treatment assignment
to eliminate all potential confounders, we can argue that both
analyses have relatively strong internal validity.

First, once we focus on areas close to the Ukraine-Russia border
(as we do in both cases), the variation in the reception of Russian
TV plausibly yields an “as-if-random” assignment of the treat-
ment; it is influenced by terrain and other factors that are likely
to be unrelated to the level of support for pro-Russian parties.
Second, we arguably remove any remaining differences between
the treatment and control groups by statistically controlling for
potential confounders. In both instances, we control for being
very close to the border. If this is the only confounding variable
present, then the internal validity of the analyses is strong.

FIGURE 5.6. The ideal research design
would make use of the two kinds of ran-
domization we have seen: random sam-
pling and random treatment assignment.
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See Diane Whitmore Schanzenbach,
“What Have Researchers Learned from
Project STAR?" Brookings Papers on
Education Policy, no. 9 (2006): 205-28.

How strong is their external validity? In the individual-level anal-
ysis, we use data from a random sample of individuals living in
the precincts in which we are interested. In the aggregate-level
analysis, we use data from all the Ukrainian precincts in which
we are interested. In addition, in both studies we observe the
treatment (that is, Russian TV reception) in its real-world envi-
ronment. As a result, if we were interested in generalizing our
results to the region from which our observations come, then, the
external validity of both studies is strong. If we were interested
in generalizing the conclusions to a different type of one-sided
televised coverage of a political event in a different region of the
world, we would have to assess to what degree the treatment and
the observations in the analyses here are representative of the
actual treatment and population of interest.

5.5.4 HOW GOOD WAS THE CAUSAL ANALYSIS IN
CHAPTER 27

As you may recall, in chapter 2 we analyzed the STAR dataset to
estimate the effects of attending a small class on student perfor-
mance. The data came from a randomized experiment conducted
in Tennessee, where students were randomly assigned to attend
either a small class or a regular-size class.

How strong is its internal validity? Since the treatment was
assigned at random, all potential confounding variables should
have been eliminated, making the group of students who attended
a small class similar in all aspects to the group of students
who attended a reqular-size class. Thanks to random treatment
assignment, then, the causal assumption is satisfied, and we can
be confident that the causal estimates we arrived at are valid for
the group of students who participated in the experiment. We can
conclude that this analysis has strong internal validity.

How strong is its external validity? Given the characteristics of
the study, only students from large schools in Tennessee were
able to participate in the experiment. As a result, the sample
of participating students was not perfectly representative of all
students in Tennessee. The sample was also not representa-
tive of students in the United States. For example, according
to Schanzenbach (2006), the proportion of African Americans was
larger in the sample than in the state overall, and the proportion
of Hispanics and Asians was smaller in the sample than in the
country as a whole. Consequently, we can conclude that, although
we do get to observe the treatment of interest in the real world,
the analysis has relatively weak external validity, especially if
one wishes to generalize the study’s conclusions to all schools
and students in Tennessee or in the entire United States.



5.5.5 THE COEFFICIENT OF DETERMINATION, R?

Note that at no point during our evaluation of the causal analyses
did we mention any of the models’ coefficient of determination,
or R%. This statistic is of no direct relevance when estimating
average treatment effects. A model with a small R? might do a
fine job estimating a valid causal effect, especially when the effect
is small and there are few (or no) confounders we need to control
for statistically. Alternatively, a model with a large R® might
estimate an invalid causal effect, especially if the confounders we
control for explain a large variation of the outcome variable, yet
controlling for them fails to make treatment and control groups
comparable.

5.6 SUMMARY

In this chapter, we returned to estimating causal effects but, this
time, using observational data. We learned about confounding
variables and why their presence complicates the estimation of
causal effects. We saw how to fit a simple linear model to com-
pute the difference-in-means estimator and how to fit a multiple
linear model to control for confounders. Finally, we discussed how
to evaluate causal studies based on their internal and external
validity.

The statistical method used in this chapter, fitting a linear regres-
sion model, is the same as the one we used in the previous chapter.
(Although we did not see an example of it, social scientists often
use multiple linear regression models to make predictions, and
not just simple linear regression models.) The goals of the analy-
ses, however, differ. In chapter 4, we aimed to predict a quantity
of interest, while in this chapter we aimed to explain a quantity
of interest (that is, to estimate a causal effect).

Even though the mathematical models are the same, the role the
X variable plays in the research question, the substantive inter-
pretations of the estimated coefficients, and what we pay attention
to in the analysis depend on whether we are analyzing data to
make predictions or to estimate causal effects.

For example, when fitting a simple linear regression model to
make predictions:

- X is a predictor.

- We interpret B as the change in Y associated with a one-unit
increase in X.

- Since the goal is to make predictions with the smallest possible
errors, we seek predictors that are highly correlated with the
outcome variable of interest. The stronger the linear associa-
tion between X and Y, the higher the R? and the better the
fitted linear model will usually be at predicting Y using X.
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RECALL: R?, also known as the coefficient
of determination, ranges from 0 to 1 and
measures the proportion of the variation
of the outcome variable explained by the
model. The higher the R?, the better the
model fits the data.
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By contrast, when fitting a simple linear regression model to esti-
mate causal effects:

- X is the treatment variable.

- We interpret B as the change in Y caused by the presence of
the treatment X.

- Since the goal is to arrive at valid estimates of causal effects,
we seek to find or create situations in which the treatment and
control groups used in the analysis can be considered com-
parable, after statistical controls are applied (if any are). In
other words, we seek to eliminate or control for all potential
confounding variables.

Thus, whenever we conduct a regression analysis or evaluate one
conducted by someone else, we should keep the goal in mind.



5.7 CHEATSHEETS

5.7.1 CONCEPTS AND NOTATION

concept/notation description

confounding variable  also known as an omitted variable or a
or confounder control variable; variable that affects both
(2) (i) the likelihood of receiving the

treatment X and (ii) the outcome Y

V4
X—Y
confounders obscure the causal
relationship between X and Y/; just
because we observe that two variables are
highly correlated with each other does not
automatically mean that one causes the

other; there could be a third variable—a
confounder—that affects both variables

in the presence of confounding variables,
correlation does not necessarily imply
causation, and the difference-in-means
estimator does not provide a valid
estimate of the average treatment effect

in randomized experiments, the
randomization of treatment assignment
eliminates all potential confounding

variables
fitted simple linear if, in the fitted simple linear regression
regression model model, X is the treatment variable,
where X is the B is equivalent to the difference-in-means
treatment variable estimator, and thus, we interpret it using

causal, not predictive, language

this causal interpretation is valid if there
are no confounding variables present

multiple linear linear model with more than one X

regression model variable; theoretical model that we
assume reflects the true relationship
between Y and multiple X variables

Yi=a+biXan+-+BpXppte

where:

- Y; is the outcome for observation i

- a is the intercept coefficient

- each f; is the coefficient for variable X;
u=1,...,p)

- each Xj; is the observed value of the
variable X; for observation i
u=1,...,p)

- p is the total number of X variables

- ¢ is the error term for observation i
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example(s)

family wealth is a confounder in the
causal relationship between attending a
private school and test scores

family wealth

N

private school ————— test scores

students from wealthy families are more
likely to attend a private school (family
wealth — private school); students from
wealthy families are more likely to receive
after-school help such as one-on-one
tutoring, which, in turn, will improve
performance on tests (family wealth —
tutoring — test scores)

in the presence of the confounder, famil
wealth, we do not know what portion (i
any) of the observed difference in average
test performance between private and
public school students is due to the
schools the students attend and what

ortion is due to their differing levels of
amily wealth

if X is the treatment variable and the
fitted model is Y =2 —-3X:

we interpret 3 as estimating that
receiving the treatment decreases the
outcome by 3 units, on average (in the
same unit of measurement as the
difference-in-means estimator)

Yi=143Xi1 +5Xi2 + ¢

continues on next page. ..
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5.7.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

fitted multiple linear
regression model

fitted multiple linear
regression model
where Xj is the
treatment variable

post-treatment
variables

internal validity

external validity

description

linear model fitted to the data to describe
the relationship between Y and multiple
X variables

Yi=G+BiXn + -+ BpXip

where:

- Y; is the predicted outcome for
observation i
- @ is the estimated intercept coefficient

- each g is the estimated coefficient for
variable X; (j=1,...,p)

- each Xj; is the observed value of the
variable X; for observation i

U=1,...,p)

interpretation of @: the Y when all X
variables equal 0

interpretation of each BJ the AY
associated with AX;=1, while holding all
other X variables constant

if, in the fitted multiple linear regression

model where Xj is tﬁe treatment variable,
we control for all potential confounders by
including them in the model as additional
X variables (that is, as control variables),

then we can interpret 31 as a valid
estimate of the average causal effect of X
onY

variables affected by the treatment:
X — post-treatment variable

post-treatment variables should not be
added as control variables; adding a
post-treatment variable to the regression
model would render our causal estimates
invalid because we would be controlling
for a consequence of the treatment when
trying to estimate its total effect

refers to the extent to which the causal
conclusions of a study are valid for the
sample of observations in the study; it
depends on whether the treatment and
control groups used for the estimation can
be considered comparable, after statistical
controls are applied (if any are)

refers to the extent to which the causal
conclusions of a study can be generalized;
it depends on (i) whether the sample of
observations is representative of the
population to which we want to generalize
the results, and (ii) whether the treatment
used in the study is representative of the
treatment for which we want to generalize
the results

example(s)

~

Yi =1+3Xin —5Xx

in this fitted multiple linear regression
model:

a=1; when both X; and X, equal 0, we
predict that Y will equal 1 unit, on
average

B1=3; when X increases by 1 and X;
remains constant, we predict an associated
increase in Y of 3 units, on average

B2=-5; when X; increases by 1 and X;
remains constant, we predict an associated
decrease in Y of 5 units, on average

if X; is the treatment variable, X5 is the
only potential confounder, and the fitted

model is Y =1 +3X; +5Xa:

we interpret 3 as estimating that, while
holding X; constant, receiving the
treatment increases the outcome by 3
units, on average (in the same unit of
measurement as the difference-in-means
estimator)

if the treatment is attending a private
school and private schools have smaller
classes than public schools, then small
class is a post-treatment variable because
it is affected by the value of private school

private school — small class

when estimating the causal effect of
attending a private school, we should not
control for class size

randomized experiments have strong
internal validity because the
randomization of the treatment assignment
eliminates all potential confounders;
observational studies may also have
strong internal validity if the analysis
controls for all potential confounders

observational studies typically have
strong external validity because they often
analyze the entire target population and
observe the treatment in the environment
in which we are interested; randomized
experiments may also have strong external
validity if they manage to use a
representative sample of subjects and
make the treatment comparable to the
real-world one



5.7.2 R FUNCTIONS

function

description

required argument(s)
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example(s)

Im()

fits a linear model

when there is only one X
variable: Y ~ X;

when there are multiple X
variables: Y ~ Xj + .-+ X,

optional argument data:
specifies the object where the
dataframe is stored;
alternative to using $ for
each variable

## both of these pieces of code fit
the same simple linear regression
model:

Im(data$y_var ~ data$x_var)
Im(y_var ~ x_var, data=data)
## both of these pieces of code fit
the same multiple linear regression

model:

Im(data$y_var ~ data$x_varl +
data$x_var2)

Im(y_var ~ x_varl + x_var2,
data=data)




R symbols, operators, and functions intro-
duced in this chapter: c(), sample(),
rnorm(), pnorm(), for(i in 1:n){}, and print().

According to the frequentist interpreta-
tion, probabilities represent proportions
of specific events occurring over infinitely
many identical trials.

RECALL: We define the proportion of
observations that meet a criterion as:

number of observations
that meet criterion

total number of observations

To interpret a proportion as a percentage,
we multiply the decimal value by 100.

According to the Bayesian interpretation,
probabilities represent personal, subjec-
tive beliefs about the relative likelihood of
events.

6. PROBABILITY

In the last four chapters, we have analyzed data for the purpose
of (i) estimating causal effects with both randomized experiments
and observational data, (ii) inferring population characteristics via
survey research, and (iii) making predictions. Thus far, we have
focused our attention on identifying systematic relationships and
ignored the noise in the data. Real-world data, however, contain
a nontrivial amount of noise, or irrelevant variation, which adds
uncertainty to our conclusions. In the next chapter, we will learn
how to quantify the degree of statistical uncertainty in our empir-
ical findings. First, though, we need to learn about probability
and how we can use it to model variation.

6.1 WHAT IS PROBABILITY?

There are two different ways of interpreting probability: frequen-
tist and Bayesian.

According to the frequentist interpretation, probabilities repre-
sent proportions of specific events occurring over a large number
of identical trials. Specifically, the probability of an event is the
proportion of its occurrence among infinitely many identical trials.

Think of a coin flip, for example. What is the probability of get-
ting heads when flipping a coin? Imagine flipping the coin a large
number of times. The probability of getting a head can be approx-
imated by the number of heads realized over the number of coin
flips. If the coin is fair, as we increase the number of flips, the
proportion of heads should approach 0.5, meaning that about 50%
of the coin flips should result in heads.

In contrast, according to the Bayesian interpretation, probabili-
ties represent one's subjective beliefs about the relative likelihood
of events. For example, when we state that the probability of rain
today is about 80%, we are not describing the frequency of rain
events over multiple days. We are simply describing how certain
we are about the event occurring. A probability of 1, or 100%,
indicates certainty that the event will occur. A probability of 0,
or 0%, indicates certainty that the event will not occur.



Critics of the frequentist interpretation arqgue that it is impossible
to conduct an infinite number of identical trials. (For example,
when flipping a coin, it would be difficult to maintain the same
launch angle and speed.) Critics of the Bayesian interpretation
argue that personal, subjective beliefs should not play a role when
analyzing data. Fortunately, despite their differences, the two
interpretations rely on the same mathematical rules. For the rest
of the chapter, we focus on these common rules.

6.2 AXIOMS OF PROBABILITY

Probability axioms are the basic rules upon which the entire
probability theory rests. Before we learn about the axioms of
probability, we need to define some concepts:

- A trial is an action or set of actions that produces outcomes of
interest. For example, rolling a die can be considered a trial.

- An outcome is the result of a trial. Rolling a die produces one
of six possible outcomes: 1, 2, 3, 4, 5, or 6.

- An event is a set of outcomes. In the example at hand, one
possible event is rolling a number less than 3, which includes
two possible outcomes, 1 and 2. Note that events may include
any number of outcomes. For example, another possible event
is rolling a 3, which includes only one outcome, 3.

- Mutually exclusive events are events that do not share any
outcomes. The two events defined above, rolling a number less
than 3 and rolling a 3, for example, are mutually exclusive
events since they have no outcomes in common.

- The sample space, denoted as 2 (the Greek letter Omega), is
the set of all possible outcomes produced by a trial. Since it
is a set of outcomes, the sample space is also considered an
event. In the case of rolling a die, 2 = {1, 2, 3, 4, 5, 6}.

- An event is said to occur if any one of the possible outcomes
included in the event is realized. For example, if we roll a 1,
we would consider that the event rolling a number less than 3
has occurred and so has the event defined by the sample space.

There are three axioms of probability. Remarkably, we can derive
the entire probability theory from these three basic rules.

1. The first axiom states that the probability of any event A is
non-negative. In mathematical notation, we can write this
axiom as:

P(A) >0

where P stands for “the probability of” and A represents the
event.

PROBABILITY 163

A trial is an action or set of actions that
produces outcomes of interest. An out-
come is the result of a trial. An event

is a set of outcomes. Mutually exclusive
events are events that do not share any

outcomes. The sample space is the set of
all possible outcomes produced by a trial.
An event is said to occur if any one of the
possible outcomes included in the event is
realized.
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This means that probabilities can be either zero or positive.
For example, the probability of rolling a 3 cannot be negative.

2. The second axiom states that the probability of the sample
space is always 1. In mathematical notation:

P(R) =1

where 2 represents the sample space, that is, the set of all
possible outcomes produced by a trial.

For example, when rolling a die, the sample space, 2, is
{1, 2,3, 4,5, 6}. Recall that an event is said to occur if any
one of the possible outcomes included in the event occurs. In
this case, P(£2) represents the probability that any one of the
six possible outcomes occurs. In mathematical notation:

P(2)=(1or2or3or4or50r6)=1

3. The third axiom states that, if events A and B are mutually
exclusive (that is, they cannot occur at the same time), then
the probability that either A or B occurs equals the proba-
bility that A occurs plus the probability that B occurs. In
mathematical notation:

P(A or B) = P(A) + P(B)

if A and B are mutually exclusive events

For example, the probability of either rolling a number less
than 3 or rolling a 3 equals the probability of rolling a number
less than 3 plus the probability of rolling a 3, since the two
events are mutually exclusive.

These axioms together imply that probabilities range from 0 to 1
and that the probabilities of all possible outcomes produced by a
trial must add up to 1.

Consider flipping a coin once. This trial can result in two possible
outcomes: getting a head or getting a tail. The sample space in
this case is, then: 2 = {head, tail}.

The probability of getting a head and the probability of getting
a tail must both be between 0 and 1, and together they must add
up to 1 since they constitute the sample space (that is, no other
outcome is possible).

Let's see how we arrive at this conclusion using mathematical
notation. We can start with axiom 2:

P(head or tail) =1



Since getting a head and getting a tail are two mutually exclusive
events, according to axiom 3:

P(head or tail) = P(head) + P(tail) =1

Therefore, the probabilities of the two possible outcomes produced
by flipping a coin must add up to 1.

6.3 EVENTS, RANDOM VARIABLES, AND
PROBABILITY DISTRIBUTIONS

We can categorize most things that occur in our lives as events.
The fact that you are reading this book is an event, and so is your
height, the color of your eyes, your political party preference, and
your choice to attend or not to attend college.

As soon as we assign a number to an event, we create what is
known as a random variable. A random variable assigns a numeric
value to each mutually exclusive event produced by a trial. In fact,
we have been dealing with random variables throughout this book.
We have just been calling them variables.

For example, if we assign a 1 to the event of attending college
and a 0 to the event of not attending college, then the binary
random variable college, as defined below, would capture these
events.

POSSIBLE EVENTS RANDOM VARIABLE
PRODUCED college
BY A TRIAL

- college;=1 if individual i
- attending college attends college
- college;=0 if individual i

- not attending college does not attend college

Each random variable has a probability distribution, which char-
acterizes the likelihood of each value the variable can take. By
definition, all probabilities in a distribution must add up to 1.

In mathematical notation, we can write the probability that the
random variable X takes the value x as:

P(X=x)=p
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An event is a set of outcomes that occur
with a particular probability. A random
variable assigns a numeric value to each
mutually exclusive event produced by a
trial. The probability distribution of a ran-
dom variable characterizes the likelihood
of each possible value the random variable
can take.

PROBABILITY
DISTRIBUTION OF
college
- P(college=1)

- P(college=0)



166  CHAPTER 6

TIP: We use uppercase letters to refer to
random variables (such as X, Y, and Z)
and lowercase letters to refer to fixed val-
ues the random variables may take (such
as x, y, and z).

The Bernoulli distribution is the probabil-
ity distribution of a binary variable. It is
characterized by one parameter, p, which
is the probability that the binary random

variable takes the value of 1. Conse-
quently, 1—p is the probability that the
binary random variable takes the value of

0. The mean of a Bernoulli distribution is
p and the variance is p(1—p).

where:

- X is the random variable
- x is the fixed value the random variable X may take
- p is the probability that X takes the value x.

For example, the distribution of the random variable college above
represents the probability of attending college, P(college=1),
and the probability of not attending college, P(college=0), since
those are the only two possible values the variable can take.

6.4 PROBABILITY DISTRIBUTIONS

In this book, we focus on two types of probability distributions:
(i) the Bernoulli distribution, which is the probability distribution
of a binary variable; and (ii) the normal distribution, which is the
probability distribution we commonly use as a good approximation
for many non-binary variables. Within the normal distribution, we
will pay special attention to the standard normal distribution.

As we saw in chapter 3, functions such as mean, median, standard
deviation, and variance can be used to summarize numerically the
main traits of the probability distribution of a random variable. In
this section, we focus on (i) the center of the distributions as
measured by the mean, and (ii) the spread of the distributions as
measured by the variance (which, as you may recall, is equivalent
to the standard deviation squared).

6.4.1 THE BERNOULLI DISTRIBUTION

The Bernoulli distribution is the probability distribution of a
binary variable. Since binary variables can take only two values
(1 or 0), the Bernoulli distribution characterizes two probabilities:
the probability that the variable equals 1 and the probability that
the variable equals 0.

By definition, the sum of all probabilities in a Bernoulli distribu-
tion must equal 1. If we use p to denote the probability that the
binary variable equals 1, the probability that the binary variable
equals 0 is 1—p (notice that p+(1—p)=1).

Consider again the flip of a coin. The action of flipping a coin
can result in only one of two possible events: heads or tails.
If we assign 1 to heads and 0 to tails, we can create a binary
random variable with the results. The distribution of this ran-
dom variable—a Bernoulli distribution—represents the probabil-
ity that we get heads as well as the probability that we get tails.
The definition of this binary random variable and its distribution
are:



p 1 if coin flip i lands on heads; P(flip=1)=p
ip, =
P 0 if coin flip 7 lands on tails;  P(flip=0) =1—p

The mean of a Bernoulli distribution is equal to p, that is, the
probability that the binary variable equals 1, and the variance of
a Bernoulli distribution is equal to p(1—p). (We will see examples
shortly.)

To approximate the value of p, we could flip the coin many times
and calculate the proportion of heads among the multiple flips.
For illustration purposes, see the example below, where we hypo-
thetically flip a coin 12 times and calculate the corresponding
proportions.

REALIZED EVENTS REALIZED VALUES
OF A RANDOM
Q O VARIABLE
D000 wer
1,1,1,1,
olie

In the example above, the proportion of heads is 67%, and the pro-
portion of tails 33%. These proportions are far from 50% because
we flipped the coin only 12 times. As we increase the number
of flips, if the coin is fair, the proportion of heads, p, and the
proportion of tails, 1—p, should approach 50%.

To get a better sense of this, we can use R to simulate flipping
a fair coin 1 million times and then calculate the proportions of
heads and tails. We start by listing the two possible values that
might result from each coin flip using the function c(), which stands
for “combine values into a vector.” The following code creates an
object named possible_values with a vector containing a 1 and a
0, where 1 stands for heads and 0 for tails:

## create a vector with possible values
possible_values <- c¢(1, 0) # 1 for heads, 0 for tails

Now we can ask R to choose one of these two values at random 1
million times, where the probability of choosing 1 and the proba-
bility of choosing 0 are each 0.5. To accomplish this, we can use
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RECALL: As we saw in chapter 1, the mean
of a binary variable is equivalent to the
proportion of the observations that have
the characteristic identified by the vari-
able. In other words, the mean of a binary
variable is the probability that the variable
equals 1, denoted as p.

APPROXIMATE
PROBABILITY DISTRIBUTION

number of heads
“number of flips
~8/12 = 0.67
number of tails

number of flips
~4/12=033

P(flip=1) ~

P(flip=0) ~

TIP: In mathematical notation, the symbol
~ stands for “approximately equal to."

c() combines values into a vector (a
collection of elements, each identi-
fied by an index). The values to be
combined should be specified inside
the parentheses and separated by
commas. Example: c(1, 2, 3).

TIP: The code used in this chapter can be
found in the “Probability.R" file.
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sample() randomly samples from a
set of values. The only required
argument is a vector with the set
of values to draw from. By default,
this function samples values without
replacement. To specify the num-
ber of draws, we use the argument
size. To draw with replacement,
which allows the same value to be
sampled more than once, we set
the argument replace to TRUE. To
specify the probabilities of select-
ing each value, we set the argu-
ment prob to equal a vector con-
taining the probabilities of each
value. Examples: sample(c(1, 2, 3))
and sample(c(0, 1), size=1000000,
replace=TRUE, prob=c(0.2, 0.8)).

TIP: When writing code, do not use
a comma to indicate thousands or mil-
lions. Commas in R are reserved for
separating arguments. Example: write
size=1000000, not size=1,000,000.

RECALL: prop.table() converts a fre-
quency table into a table of propor-
tions. The only required argument
is the output of the function table()
with the code identifying the vari-
able inside the parentheses. Example:
prop.table(table(data$variable)).

RECALL: mean() calculates the mean of
a variable, and var() calculates the vari-
ance. Examples: mean(data$variable)
and var(data$variable).

the function sample(), which stands for “randomly sample from a
set of values.” Inside the parentheses, we first specify a vector
with the set of values from which we want to sample. In this case,
we use possible_values for this vector. Then, we specify that (i)
we want 1 million draws by setting the argument size to equal
1000000, (ii) the draws should be with replacement—meaning
that we allow the same value to be sampled more than once—by
setting the argument replace to TRUE, and (iii) the probabilities
of selecting each value are both 0.5 by setting the argument prob
to equal the vector c(0.5, 0.5), where the first number identifies
the probability of selecting a 1 (the first value in possible_values)
and the second number identifies the probability of selecting a 0
(the second value in possible_values).

## randomly sample from possible_values

flip <- sample(possible_values, # vector to draw from
size =1000000, # 1 million times
replace=TRUE, # with replacement
prob=c(0.5, 0.5)) # from a fair coin

The variable flip contains the results of simulating 1 million flips
of a fair coin. (It contains 1 million observations of 1s and 0s.) To
calculate the proportion of 1s (heads) and Os (tails), we can use
the function prop.table() in conjunction with the function table().

prop. table (table( flip )) # creates table of proportions
#+# flip

#H# 0 1

## 0.499933 0.500067

As we can see in the output above, once we simulate flipping a fair
coin 1 million times, the proportion of heads (p) and the propor-
tion of tails (1—p) both approximate 0.5. (Note that the values
you will see in your console after running the code above will
likely not be the exact values shown here. Because we created
flip via a random process, it will contain slightly different values
each time it is created. In fact, all computations in this chapter
rely on random processes, and therefore, you should expect slight
differences throughout between the outputs we show and what
you see in your console.)

Now we can calculate the mean and variance of flip by running:
mean(flip) # calculates the mean

#4# [1] 0.500067

var( flip ) # calculates the variance
#+# [1] 0.2500002

The mean of flip is about 0.5, which is what we expected given
that the mean of a Bernoulli distribution is equivalent to p, the
probability that the binary random variable equals 1 (here p=0.5).



We can interpret the mean of flip, then, as indicating that the
probability of the coin landing on heads is 50% (0.5x100=50%).

Finally, the variance of flip is 0.25, which is also what we expected
given that the variance of a Bernoulli distribution is equal to
p(1—p) (in this case: 0.5(1-0.5)=0.25).

6.4.2 THE NORMAL DISTRIBUTION

The normal distribution is a well-known symmetric, bell-shaped
distribution, commonly used as an approximation for the distribu-
tion of many non-binary variables.

For an illustration, let's return to the dataset we analyzed in
chapter 2 and create the density histogram of the reading test
scores from Project STAR:

star <- read.csv("STAR.csv") # reads and stores data

hist (star$reading, freq=FALSE) # creates density histogram

3, \(!
= O
2 o
[ -
hel AN
s \
[}
o
= 7
e \
3 ’
g , .
B \
N\
g ____mfl B
O' T T T T T T 1
500 550 600 650 700 750 800

star$reading

If we focus on the shape of the histogram demarcated by the height
of the bins (shown by the dashed line we added to the density
histogram above), we can see that the probability distribution
of reading is more or less symmetric and bell-shaped. We can
approximate the distribution of this non-binary variable using a
normal distribution.

The theoretical normal distribution is a family of probability dis-
tributions that (i) characterize random variables that can take
any value on the real line (from negative infinity to infinity), and
(it) follow a symmetric bell curve that has a very specific shape
determined by the formula given in detail below. We refer to ran-
dom variables that follow a normal distribution as normal random
variables.
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The normal distribution is the distribu-

tion of a normal random variable. It is
characterized by two parameters: mean
(1, pronounced mu) and variance (o, pro-
nounced sigma-squared). In mathematical
notation, we write a normal random vari-
able X as:

X ~ N(p,o0%)

RECALL: Before loading the dataset, we
need to set the working directory. If the
DSS folder is saved directly on your Desk-
top, to set the working directory, you must
run setwd('~/Desktop/DSS") if you have
a Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see sub-
section 1.7.1 for instructions on how to set
the working directory.

RECALL: A density histogram provides a
visualization of the (probability) distribu-
tion of a (random) variable. The relative
height of the bins implies the relative like-
lihood of the values. The areas of all
the bins in a density histogram must add
up to 1. In R, the function hist() cre-
ates a density histogram when we set the
optional argument freq to FALSE. Exam-
ple: hist(data$variable, freq=FALSE).
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The probability density function of the
normal distribution represents the likeli-
hood of each possible value the normal
random variable can take (from negative
infinity to infinity). The relative height of
the curve provides the relative likelthood
of the values. The total area underneath
the curve of a probability density function
equals 1.

FIGURE 6.1. Probability density function
of a normal random variable:

X ~ N(u, o)

RECALL: The variance of a variable is the
square of the variable’s standard deviation.
If o is the standard deviation, then o2 is
the variance.

FORMULA IN DETAIL

The probability density function of the normal probability
distribution is determined by the following formula:

1 otew?/20
oV 2w
where:

u is the mean of the random variable

o is the standard deviation and o2 is the variance of the
random variable

x is any value on the real line (from negative infinity to
infinity) that the random variable may take

7 is the constant pi, which is approximately 3.1416

e is the constant known as Euler’s number, which is
approximately 2.7183.

The probability density function of the normal distribution (the
formula in detail above) provides the height of the density curve
for each value of x. (See figure 6.1.)

density
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The shape of the curve of the probability density function depends
on the values of two parameters:

- p (the Greek letter mu), which stands for the mean of the random
variable and determines the center of the distribution

- o2 (the Greek letter sigma, squared), which stands for the vari-
ance of the random variable and determines the spread of the
distribution.

In mathematical notation, if a random variable X follows a normal
distribution, we write:

X ~ N(u,0%)



where:
- X is the name of the random variable

the symbol ~ stands for “distributed according to”
N stands for “normal distribution”

 is the mean and o2 is the variance of the variable.

For example, to state that X is distributed according to a normal
distribution with mean 3 and variance 4, we write: X ~ N(3, 4)

To visualize the shape of the probability density function of
N(3, 4), we can use the formula in detail above. Alternatively
and more conveniently, we can ask R to simulate it for us.

Using R, we can randomly draw 1 million observations from the
normal distribution we are interested in. Then, we can create the
density histogram of the drawn observations. A sample of 1 million
observations is large enough that its distribution should approx-
imate the distribution from which the observations are drawn.

We can start by using the function rnorm(), which stands for
“randomly sample from a normal distribution." The one required
argument is the number of observations we want to sample. By
default, this function samples from the normal distribution with
mean 0 and variance 1. If we want to sample from another
normal distribution, we can specify a different mean with the
optional argument mean, and a different standard deviation with
the optional argument sd. (Note that we need to specify the stan-
dard deviation, o, not the variance, o2, of the normal distribution
we want to sample from.) For example, to draw 1 million obser-
vations from N(3, 4) and save them as a variable named X, we
run:
## randomly sample from distribution N(3, 4)
X <- rnorm (1000000, # sample size

mean=3, # mean

sd=2) # standard deviation

Now, to visualize the probability distribution of X, we can create
its density histogram.

hist (X, freq=FALSE) # creates density histogram
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rnorm() randomly samples from a
normal distribution. The only
required argument is the number of
observations we want to sample. By
default, this function samples from
the normal distribution with mean
0 and variance 1 (known as the
standard normal distribution). To
sample from a different normal dis-
tribution, we can specify a different
mean with the optional argument
mean, and a different standard devi-
ation with the optional argument
sd.  Examples: rnorm(100) and
rnorm(100, mean=3, sd=2).
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FIGURE 6.2. Probability density
functions of three normal distributions:
N(0, 1), N(2, 1), and N(O, 4).

TIP: The area under the probability den-
sity function from negative infinity to x
equals the cumulative probability that the
normal random variable takes a value less
than or equal to x: P(X < x). The function
that produces this probability is known as
the cumulative distribution function.

The shape of the probability density function of N(3, 4) is demar-
cated by the height of the bins of the density histogram (shown
by the dashed line we added to the histogram above).

To find out the mean and variance of X, we run:

mean(X) # calculates the mean
## [1] 2.998545

var(X) # calculates the variance
#+# [1] 3.998968

Based on the outputs above, the distribution of X is centered at
about 3 with variance of about 4. This confirms that the sample of
1 million observations approximately follows the same distribution
as the one from which the observations were drawn.

Now, we can follow the same procedure a few times to get a better
sense of how the shape of normal distributions varies when the
two defining parameters change. For example, figure 6.2 shows
the probability density functions of three different normal distri-
butions: N(0, 1), N(2, 1), and N(O, 4).

density

As shown above, both N(0, 1) and N(O, 4) are centered at 0, but
N(0, 4) is flatter and more spread out than N(0, 1) because of its
larger variance. The spread and height of N(0, 1) and N(2, 1)
are the same because they have the same variance, but N(2, 1)
is centered at 2, whereas N(0, 1) is centered at 0.

How can we use a probability density function to compute prob-
abilities? We can use the area underneath the curve of the
probability density function to compute what are often referred to
as cumulative probabilities, that is, the probability that a normal
random variable takes a value within a given range. For example,
the area under the curve between x4 and x, equals the probability
that the normal random variable takes a value between x; and x5.
(Since all probabilities in a distribution must add up to 1, the
total area underneath the curve of a probability density function
equals 1.)



FOR PROBABILITY DENSITY FUNCTIONS

P(x1 < X <xp) = area under the curve between x; and x,

X1 X2

This property of probability density functions enables us to fig-
ure out relative probabilities. For example, take a look at the
probability density function of X shown in figure 6.3.

X1 X2 X3 X4

The area under the curve between x; and x; (shaded in red) is
larger than the area under the curve between x3 and x4 (shaded
in gray). This means that the probability that X takes a value
between x; and x; is greater than the probability that X takes a
value between x3 and x4. In mathematical notation, we can state:

Px1<X<x2) > P(x3<X<x4)

6.4.3 THE STANDARD NORMAL DISTRIBUTION

The standard normal distribution is the normal distribution with
mean 0 (1=0) and variance 1 (6°=1). Since the square root of 1
is 1, the standard deviation of the standard normal distribution is
also 1 (o=1).

In mathematical notation, we usually refer to the standard normal
random variable as Z and write it as:

Z ~ N(O, 1)

(Note that Z here has nothing to do with the Z we used to denote
confounding variables in chapter 5.)
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TIP: The height of the density curve for a
particular value of x is not equivalent to
the probability of x. There are infinitely
many values a normal random variable,
X, can take, and the probability that X
takes a value equal to any specific value,
x, is zero. As discussed here, however,
we can use the area under the curve of
a probability density function to compute
the probability that X takes a value within
a specific range.

FIGURE 6.3. Probability density func-
tion of X where the area under the curve
between x; and x, (shaded in red) is
greater than the area under the curve
between x3 and x4 (shaded in gray).
Therefore, the probability that X takes a
value between x; and x; is greater than the
probability that X takes a value between
X3 and X4.

The standard normal distribution is the
normal distribution with mean 0 and vari-
ance 1. In mathematical notation, we refer
to the standard normal random variable as
Z and write it as:

Z ~ N(0, 1)
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RECALL: As we mentioned in chapter 3,
one of the distinct characteristics of nor-
mal distributions is that about 95% of the
observations fall within two standard devi-
ations from the mean (that is, are between
the mean minus two standard deviations
and the mean plus two standard devia-
tions). Here, since the standard deviation
equals 1, about 95% of the observations
are between -2 and 2 (or more precisely,
between -1.96 and 1.96).

Two properties of the standard normal distribution are particularly
useful. First, because the distribution is symmetric and centered
at 0, the probability that Z takes a value less than or equal to -z
is the same as the probability that Z takes a value greater than
or equal to z (where z is defined as z>0). This is true because
the area under the curve between negative infinity and -z is the
same as the area under the curve between z and infinity.

FOR THE STANDARD NORMAL
RANDOM VARIABLE, Z

P(Z<-2) = P(Z22)

(where z > 0)

—oo -z 0 z oo

Second, in the standard normal distribution, about 95% of the
observations are between -2 and 2, or more precisely, between
-1.96 and 1.96.

FOR THE STANDARD NORMAL
RANDOM VARIABLE, Z

P(-1.96 < Z < 1.96) ~ 0.95

-1.96 1.96

Let’s learn how to calculate probabilities of normal random vari-
ables in R so that we can better understand these two properties.

To calculate probabilities of normal random variables, we can use
the function pnorm(), which stands for “the cumulative probability
of a normal random variable from negative infinity to x” By
default, this function calculates the probability that the standard
normal random variable takes a value less than or equal to the
number specified inside the parentheses. (See figure in the mar-
gin.) For example, to calculate the probability that Z takes a
value less than or equal to -1.96, we run:



## probability of Z less than or equal to -1.96
pnorm(-1.96)
#+# [1] 0.0249979

Based on the output, we can state that the probability that
Z takes a value less than or equal to -1.96 is about 2.5%
(0.025x100=2.5%).

If we are interested in the probability that Z takes a value greater
than or equal to a value, z, we can calculate the probability that Z
takes a value less than or equal to z and then compute 1 minus the
resulting probability. (This is true for all normal random variables
because all probabilities in a distribution must add up to 1.)

FOR A NORMAL RANDOM VARIABLE, X
P(X>x) = 1—-P(X<x)

For example, if we want to calculate the probability that Z takes
a value greater than or equal to 1.96, we run:

## probability of Z greater than or equal to 1.96
1 - pnorm(1.96)
#+# [1] 0.0249979

Based on the output, we can state that the probability that Z
takes a value greater than or equal to 1.96 is also about 2.5%.
This confirms that the probability that Z takes a value less than
or equal to -1.96 is the same as the probability that Z takes a
value greater than or equal to 1.96.

Now, if we are interested in the probability that Z takes a value
between z; and z,, we can calculate the probability that Z takes
a value less than or equal to z; minus the probability that Z
takes a value less than or equal to z1. (This is also true for all
normal random variables because, again, all probabilities in a
distribution must add up to 1.)
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pnorm() calculates the probability
that the standard normal random
variable, Z, takes a value less than
or equal to the number specified
inside the parentheses. To calculate
probabilities of a different normal
random variable, we can specify
a different mean with the optional
argument mean and a different stan-
dard deviation with the optional
argument sd. Examples: pnorm(0)
and pnorm(0, mean=3, sd=2).

TIP: For a normal random variable, X:

P(X=x) =0

Therefore:

P(X>x) = P(X >x)
P(X<x) = P(X <x)
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TIP: For a normal random variable, X:
P(X=x)=0
Therefore:
P(xi X <x2) = P(x < X <x2)
P(X<x)=P(X<x)

FORMULA 6.1. Formula to transform a
normal random variable, X, into the stan-
dard normal random variable, Z.

FOR A NORMAL RANDOM VARIABLE, X
P(X1 SXSXz) = P(XSXz) — P(XSX1)

For example, if we are interested in the probability that Z takes
a value between -1.96 and 1.96, we can compute:

P(-196 <Z<196) = P(Z<196)— P(Z<-1.96)

So, to calculate the probability that Z takes a value between
-1.96 and 1.96, we can run in R:

## probability of Z between -1.96 and 1.96
pnorm(1.96) - pnorm(-1.96)
## [1] 0.9500042

This output confirms that in the standard normal distribution,
about 95% of the observations are between -1.96 and 1.96.

As we will soon see, it is helpful to know these two properties of
the standard normal distribution because we can transform any
normal random variable into the standard normal random variable.
All we need to do is standardize it, that is, subtract the mean from
the original normal random variable, and then divide the result
by the standard deviation. Graphically, this transformation shifts
the center and adjusts the spread of the distribution.

HOW TO TRANSFORM
A NORMAL RANDOM VARIABLE INTO
THE STANDARD NORMAL RANDOM VARIABLE

X~ N o), =P o, 1)
g

where:
- i is the mean of X
Y e 5
- o is the variance of X
. . . [/
- o is the standard deviation of X (c=Vc?).




The resulting standardized variable is commonly referred to as
the z-scores of the original random variable. (These are the same
z-scores as the ones we used in chapter 3 when computing the
correlation coefficient between two variables.)

Take, for example, the normal random variable, X, we created in
the subsection above. The variable X has mean 3 and variance
4. Given formula 6.1, (X—3)/2 should follow the standard normal
distribution. (Note that to standardize a normal random variable,
we use the standard deviation, o, not the variance, o2, in the
denominator. To compute the standard deviation, we take the
square root of the variance. In this case, the variance is 4, and
therefore the standard deviation is 2.)

if X ~ N3, 4), ¥ ~ N(O, 1)

To confirm this, we can ask R to create a new random variable,
Z, equivalent to the variable X standardized:

## create new random variable
Z <- (X -3) / 2 # standardized X

Then, we can create the density histogram of Z to visualize its
probability distribution:

hist (Z, freq=FALSE) # creates density histogram

As we can see in the density histogram above, Z closely follows
the standard normal distribution (centered at 0 and with a vari-
ance of 1). To verify this, we calculate the mean and variance of
Z by running:

A
o

density

02 03

0.1

mean(Z) # calculates the mean
#+# [1] -0.0007277148

var(Z) # calculates the variance
#+# [1] 0.999742

As we expected, the distribution of Z is centered at more or less
0, and its variance is approximately 1.

PROBABILITY
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FIGURE 6.4. Probability density func-
tions of X and Z, where Z is equivalent
to standardized X.

RECALL: To calculate probabilities of a
different normal distribution than the stan-
dard normal with pnorm(), we specify the
optional arguments mean and sd. Exam-
ple: pnorm(0, mean=3, sd=2).

To summarize, while X was a random variable distributed as
N(3, 4), after standardization (subtracting the mean and then
dividing the result by the standard deviation), the resulting ran-
dom variable is distributed as N(0, 1). (See figure 6.4, which
shows the probability density functions of both X and Z.)
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Why is the transformation of a normal random variable into the
standard normal random variable helpful? Because we can use the
properties of the standard normal distribution to compute proba-
bilities for all the other types of normal distributions.

Imagine we want to know the range of values that contains 95%
of the observations of the normal random variable X above, which
again follows a N(3, 4) distribution. Now that we know how to
transform X into the standard normal distribution, we can use as
our starting point the fact that in the standard normal distribution,
about 95% of the observations are between -1.96 and 1.96.

P(-1.96 < Z <1.96) =~ 0.95
P(-1.96 < % <1.96) = 0.95 (since Z = ?
P(-092 < X <6.92) = 095 (after multiplying by 2

and adding 3 to each term)

After substituting Z and isolating X, we arrive at the conclusion
that 95% of the observations of X are between -0.92 and 6.92.

To confirm this result, we can calculate the probability that N(3, 4)
takes a value between -0.92 and 6.92, by running:

## probability of N(3, 4) between -0.92 and 6.92
pnorm(6.92, mean=3, sd=2) -

pnorm(-0.92, mean=3, sd=2)
## [1] 0.9500042

Based on the output above, 95% of the observations of X ~ N(3, 4)
are indeed between -0.92 and 6.92.
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6.4.4 RECAP

In this book, we focus on two types of random variables: binary
and normal. Their probability distributions are summarized below.

IF X IS A BINARY IF X IS A NORMAL
RANDOM VARIABLE RANDOM VARIABLE
X has a Bernoulli X has a normal
distribution, distribution, characterized
characterized by one by two parameters:
parameter: p w and o?
mean = p mean = p
variance = p(1—p) variance = o2

Now that we are familiar with what probability is and the prob-
ability distributions of binary and normal random variables, let's
clarify the distinction between population parameters and sample
statistics.

6.5 POPULATION PARAMETERS VS. SAMPLE

STATISTICS
When analyzing data, we are usually interested in the value of TIP: Parameters are unknown quantities
a parameter at the population level. For example, we might be of interest (often at the population level).

Statistics are based on the sample of data

interested in the level of support for a particular political candi- observed: that is, they are sample-specific.

date among the population of all voters in a country. Typically,
however, we have access to statistics from only a small sample of
observations drawn from the target population. For example, we
may know only the proportion of supporters among the voters who
responded to a survey. In this section, we see how to use sample
statistics to learn about the corresponding population parameters.

POPULATION SAMPLE The sample mean of X, X, refers to the
PARAMETERS OF STATISTICS OF average value of X in a particular sam-
RANDOM VARIABLE n OBSERVATIONS OF ple, while the expectation of X, E(X),
X X refers to the population mean of the ran-

. dom variable X. The sample variance of

mean = E(X) mean = X X, var(X), refers to the variance of X in
(expectation of X) (sample mean of X) a particular sample, while the population

N . variance of X, V(X), refers to the popu-
variance = V(X) varlance = Var(X) lation variance of the random variable X.

(population variance of X) (sample variance of X)

To distinguish the sample statistics from the corresponding
parameters at the population level, we use different terms to refer
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RECALL: The mean of a binary variable
is equivalent to the proportion of observa-
tions that have the characteristic identified
by the variable.

Sampling variability refers to the fact that
the value of a statistic varies from one
sample to another because each sample
contains a different set of observations
drawn from the target population. Smaller
sample size generally leads to greater
sampling variability.

The law of large numbers states that as
sample size increases, the sample mean of
X approximates the population mean of X.

to them. The sample mean of X, denoted as X, refers to the
average value of X in a particular sample, while the expectation
of X, denoted as E(X), refers to the population mean of the
random variable X. The sample variance of X, denoted as
var(X), refers to the variance of X in a particular sample, while
the population variance of X, denoted as V(X), refers to the
population variance of the random variable X.

In the current example, we can define support as a binary vari-
able that identifies whether individual i supports the candidate of
interest (1=support, 0=no support). The sample mean of support
would be the proportion of supporters among survey respondents,
and the expectation of support would be the proportion of sup-
porters among all the individuals in the target population.

Are the population-level parameters identical to the sample-level
statistics? They are generally not the same unless the sample is
the entire population.

The sample statistics differ from the population parameters
because the sample contains noise. The noise comes from
sampling variability. If we randomly draw multiple samples
from the same population, each sample will contain different
observations. As a result, each sample will yield different values
of sample statistics, even if all the observations are drawn using
random sampling. In the running example, different surveys will
show varying levels of support for the candidate because they
contain different respondents. This will be true even when the
surveys use exactly the same method to select their respondents.

Smaller sample size generally leads to greater sampling variabil-
ity. Conversely, as sample size increases, sampling variability
decreases. This is why when we get to extremely large sample
sizes, such as 1 million observations, the sample statistics approx-
imate the population parameters well. In the survey example, as
the sample size increases, we expect the sample proportion of
supporters to approach the population proportion of supporters.

When drawing conclusions about the population from a sample,
we need to take into consideration the noise in the data intro-
duced by sampling variability. The two large sample theorems we
discuss in this section—the law of large numbers and the central
limit theorem—nhelp us do just that by clarifying the relationship
between population parameters and sample statistics.

6.5.1 THE LAW OF LARGE NUMBERS

The law of large numbers states that as the sample size increases,
the sample mean of X approximates the population mean of X,
also known as the expectation of X.



THE LAW OF LARGE NUMBERS

— "X
as n increases, X = Z:’% ~ E(X)

where:

- n is the sample size

- X is the original random variable
- X is the sample mean of X

- E(X) is the population mean of X.

To illustrate the law of large numbers, we can use R to draw
random samples of different sizes from the same distribution and
compare the sample means to the population mean. To show
the general applicability of this theorem, we will do this exercise
twice, once with an original random variable that is binary and
once with an original random variable that is normal.

EXAMPLE WITH A BINARY RANDOM VARIABLE

Suppose we are interested in the binary variable support as
defined above (1=support, 0=no support). Since this is a binary
variable, it has a Bernoulli distribution.

Further suppose that 60% of the voters in the country support
the political candidate of interest. The probability that support
equals 1, then, is 0.60 (p=0.60), which is equal to the population
mean of support (E(support)=0.60). (As we saw earlier, the mean
of a Bernoulli distribution is equivalent to the probability that the
binary variable equals 1, denoted as p.)

Now we can use the function sample() to draw three random sam-
ples from this particular binary variable, each of a different size.
Note that in this case, we set the argument prob to equal c(0.6,
0.4) because the probability of 1 is 0.6 (p=0.60) and the proba-
bility of 0 is 0.4 (1—p=1-0.6=0.4).

## draw random samples from binary variable
support_sample_1 <- sample(c(1, 0), # possible values
size=10, # n=10
replace=TRUE, # with replacement
prob=c(0.6, 0.4)) # probabilities

support_sample_2 <- sample(c(1, 0),
size =1000, # n=1,000
replace=TRUE,
prob=c(0.6, 0.4))
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RECALL: sample() randomly samples
from a set of values. The only required
argument is a vector with the set of values
to draw from. By default, this function
samples values without replacement.
To specify the number of draws, we
use the argument size. To draw with
replacement, which allows the same value
to be sampled more than once, we set the
argument replace to TRUE. To specify
the probabilities of selecting each value,
we set the argument prob to equal a
vector containing the probabilities of
each value. Examples: sample(c(1, 2, 3))
and sample(c(0, 1), size=1000000,
replace=TRUE, prob=c(0.2, 0.8)).
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RECALL: The mean of a binary variable is
interpreted as the proportion of observa-
tions that have the characteristic identified
by the variable (after multiplying the num-
ber by 100).

RECALL: rnorm() randomly samples from
a normal distribution. The only required
argument is the number of observations we
want to sample. By default, this function
draws observations from the standard nor-
mal distribution (mean=0 and sd=1). To
sample from a different normal distribu-
tion, we can specify a different mean with
the optional argument mean and a differ-
ent standard deviation with the optional
argument sd. Examples: rnorm(100) and
rnorm(100, mean=3, sd=2).

support_sample_3 <- sample(c(1, 0),
size =1000000, # n=1,000,000
replace=TRUE,
prob=c(0.6, 0.4))

As we can see in the code above, the first sample contains 10
observations, the second contains 1,000 observations, and the
third contains 1 million observations. To calculate the mean for
each of the three samples, we run:

## calculate sample means
mean(support_sample_1) # in n=10 sample
## 1] 0.8

mean(support_sample_2) # in n=1,000 sample
#+# (1] 0.62

mean(support_sample_3) # in n=1,000,000 sample
#+# [1] 0.599957

The proportion of support among respondents varies across the
three samples. In the first sample, 80% of respondents support the
candidate; in the second, 62% of respondents support the candi-
date; and in the third, close to 60% of respondents support the
candidate. The sample with the largest number of observations,
sample 3 with 1 million observations, produces the proportion of
support that is closest to the true proportion of support in the
population. This finding is consistent with the fact that as the
sample size increases, the sample mean tends to be closer to the
population mean, which in this case is 60%.

EXAMPLE WITH A NORMAL RANDOM VARIABLE

Now suppose we are interested in the height, measured in inches,
of each person in a population. We assume that the corresponding
random variable, height, follows a normal distribution. Further
suppose that we know that the mean of this normal distribution
is 67 inches and the variance is 14 inches.

We can use the function rnorm() to draw three random samples
from this normal random variable, each of a different size:

## draw random samples from normal distribution
height_sample_1 <- rnorm(10, # n=10
mean=67, # population mean=67
sd=sqrt(14)) # population variance=14

height_sample_2 <- rnorm(1000, # n=1,000
mean=>67,
sd=sqrt(14))



height_sample_3 <- rnorm(1000000, # n=1,000,000
mean=67,
sd=sqrt(14))

As in the previous example, the first sample contains 10 obser-
vations, the second contains 1,000 observations, and the third
contains 1 million observations. To calculate the sample mean for
each of the samples, we run:

## calculate sample means
mean(height_sample_1) # in n=10 sample
#+# [1] 65.21607

mean(height_sample_2) # in n=1,000 sample
#+# [1] 66.81554

mean(height_sample_3) # in n=1,000,000 sample
#+# [1] 66.99905

The average height varies across the three samples. It is about
65.22 inches in the first sample, 66.82 inches in the second, and
67 inches in the third. Here, too, as the sample size increases,
the sample mean tends to approach the population mean of the
original random variable, which in this case is 67 inches.

6.5.2 THE CENTRAL LIMIT THEOREM

The central limit theorem states that as the sample size increases,
the standardized sample mean of X can be approximated by the
standard normal distribution.

THE CENTRAL LIMIT THEOREM

- E X a rox.
as n increases, V—() RN, 1)

where:
- nis the sample size

- X is the original random variable, and X is the sam-
ple mean, a random variable containing the sample
means from multiple large samples of X

- E(X) is the population mean of X, and V(X) is the
population variance of X

- P2 stands for “approximately distributed accord-

ing to,” and N(0O, 1) is the standard normal distri-
bution.
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RECALL: When using the function rnorm(),
to change the spread of the normal distri-
bution, we need to specify the standard
deviation, not the variance. Here, given
that the variance is 14, the standard devi-
ation is sqrt(14).

The central limit theorem states that as
the sample size increases, the standard-
ized sample mean of X can be approxi-
mated by the standard normal distribution.
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Let's see how we arrive at this theorem so that we can understand
it better.

First, we can think of the sample mean of X as a random variable
because it varies from one sample to another. As is the case
with all random variables, the sample mean of X has its own
distribution.

Second, the central limit theorem implies that as the sample size
increases, the distribution of the sample mean of X approaches
the normal distribution.

as n increases, X is approximately distributed as normal

Third, as you may recall, the normal distribution is characterized
by two parameters: mean and variance. To figure out the mean
and variance of the sample mean of X, we need to rely on the
properties of expectations and variances. (See the formulas in
detail below.)

FORMULA IN DETAIL

Some properties of expectations:

- E(aX)=aE(X) where a is a constant and X is a random
variable

- E(X) + X3) = E(Xq) + E(X2) where X; and X, are ran-
dom variables.

Given the properties above, what is the population mean or
expectation of the sample mean of X, E(X)?

E(X)=E iz Xi because X = i X%
n n

1 n
=- E (Z X,~> because E(aX) = aE(X)

17 because
= ZE(X,') E(X + X3) = E(X7) + E(X2)

i=1
1 n
=X nE(X) because ;E(X;) =nE(X)

= E(X)



FORMULA IN DETAIL

Some properties of variances:

- V(aX)=a? V(X) where a is a constant and X is a ran-
dom variable

- V(X1 + X2) = V(X)) + V(X2) where X; and X5 are ran-
dom variables that are independent of each other (that
is, the values of one variable cannot be used to infer the
values of the other).

Given the properties above, what is the population variance

of the sample mean of X, V(X)?
V(X)=V (@) because X = 2z Xi
n

_ (%>2V (Z x,-) because V(aX) = a’ V(X)

- 1\2" V(X because
= (E) ; (Xi) V(X1 4+ X2) = V(X1) + V(Xy)

1 n
=— X b V(X)) =nV(X
Ry nV(X) ecause ; (Xi)=nV(X)

As shown in detail above:

- the population mean of the sample mean of X equals the pop-
ulation mean of X:

E(X) = E(X)

- the population variance of the sample mean of X equals the
population variance of X divided by the sample size:

Fourth, now that we know the population mean and variance of
the sample mean, we can standardize the sample mean of X by
subtracting the population mean and dividing the result by the
population standard deviation (see formula 6.1). The standardized
sample mean is then:

X —E(X)

VV(X)/n
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185



186  CHAPTER 6

¢() combines values into a vector. If
no main argument is provided, this
function creates an empty vector
that can be used to store outputs.
Example: c().

According to the central limit theorem, as the sample size
increases, the standardized sample mean of X (as defined above)
can be approximated by the standard normal distribution:

X — ]E(X) approx.

VV(X)/n

Remarkably, this theorem holds when the original random variable
X follows a Bernoulli distribution. In fact, it holds when the
original random variable follows almost any of the distributions
we use in statistics. This is important because we rarely know
the probability distribution that generates the data of interest.

as n increases, N(O, 1)

To illustrate this theorem, we can use R to (i) draw multiple, large
random samples from the same distribution, (ii) compute the mean
of each sample, (iii) standardize the mean of each sample applying
formula 6.1 using the population mean and population variance of
the sample mean, (iv) save the standardized sample means as a
new variable, and (v) examine the distribution of the standardized
sample means. If the samples are large enough, the standardized
sample means should approximately follow the standard normal
distribution.

Here we go over only one example, one in which the original
random variable is binary. If the original random variable is nor-
mal, we do not need the central limit theorem. In this case, the
standardized sample mean follows exactly the standard normal
distribution, which makes the large sample approximation unnec-
essary.

EXAMPLE WITH A BINARY RANDOM VARIABLE

Let’s return to the binary random variable support, which, as we
discussed above, follows a Bernoulli distribution.

We continue to suppose that 60% of the voters in the country sup-
port the political candidate of interest. So, in this case: p=0.60.

Given the properties of Bernoulli distributions, the original ran-
dom variable, support, should be centered at 0.60 and have a
variance of 0.24.

E(support) = p = 0.60
V(support) = p(1—p) = 0.6 x (1-0.6) = 0.24

To start the simulation, we need to create an empty vector where
we will store the standardized means of the samples from the
random variable support. For this purpose, we can use the func-
tion c(), which creates an empty vector when no arguments are
specified inside.



## create an empty vector to store standardized sample means
sd_sample_means <- ¢()

Now, we can use R to draw 10,000 random samples from support,
each one containing 1,000 observations, and save the standard-
ized mean of each sample in the vector we have just created.
Because we do not want to write the code to draw a random sam-
ple 10,000 times, we can use what is known as a for loop. A for
loop executes a given code repeatedly, for as many times as indi-
cated. (For a more detailed explanation on how for loops work,
please see the appendix near the end of this chapter.)

For example, by running the code below, we are asking R, for
each i in the sequence from i=1 until i=10,000 (so, 10,000 times
in total), to:

- draw a random sample of 1,000 observations from a binary ran-
dom variable with p=0.6

- calculate the standardized sample mean, which in this case is:

support; — E(support)  support; — 0.60

v/V(support)/n +/0.24/1000

- store the standardized sample mean in observation i of the
empty vector sd_sample_means.

## for loop with 10,000 iterations
for (i in 1:10000){
## draw a random sample of 1,000 observations
## from binary random variable with p=0.6
support_sample <- sample(c(1, 0), # possible values
size=1000, # n=1,000
replace=TRUE, # with replacement
prob=c(0.6, 0.4)) # probabilities
## calculate and store the standardized sample mean
sd_sample_means]i] <-
(mean(support_sample) -0.60) / sqrt(0.24 / 1000)

After running the code above, sd_sample_means will contain the
standardized sample means of 10,000 samples from the binary
random variable we are interested in (that is, p=0.6).

Now we can visualize the distribution of the standardized sample
means by creating the density histogram:

## create density histogram
hist (sd_sample_means, freq=FALSE)
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for(i in 1:n){} is the basic syntax
of a for loop. A for loop executes
a given code repeatedly, for each i
in the sequence from 1 to n (mean-
ing for i={1,...,n}, using one i
at a time, starting with i=1 and
ending with i=n). The code to
be executed repeatedly should be
specified inside the curly brackets.
Example: for(i in 1:3){print(i)} dis-
plays the value of i from i=1 until
i=3.

TIP: Here i is not representing the position
of the observation but rather the number
of the iteration of the for loop. In the first
iteration, i=1. In the last iteration, i=n
(10,000 in this case).

[| is the operator used to extract
a selection of observations from a
vector. To its left, we specify the
vector we want to subset. Inside
the square brackets, we specify the
criterion of selection. For exam-
ple, we can specify the position of
the observation i to be extracted.
Example: vector(i].

TIP: Make sure to run this piece of code
all at once, starting with for(i in 1:n){ and
all the way until }. Otherwise, R will not
be able to execute it and will give you an
error message.
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TIP: The central limit theorem states:
7 — ]E(X) approx.
VV(X)/n

N(0,1)

Using formula 6.1 in the opposite direction,
we can conclude:

5 P (E X, V(X))

n

The sampling distribution of the sample
mean characterizes how much the sample
means vary from one sample to another
due to sampling variability
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sd_sample_means

As we expected, even though the samples were drawn from a
binary random variable, the standardized sample means approxi-
mately follow the standard normal distribution.

6.5.3 SAMPLING DISTRIBUTION OF THE SAMPLE MEAN

Thanks to the central limit theorem, we know that if we drew
multiple large samples of a random variable X, with mean E(X)
and variance V(X), the sample means would approximately follow
a normal distribution with mean E(X) and variance V(X)/n.

POPULATION

random variable X
population mean = E(X)
population variance = V(X)

3
SAMPLE 1 SAMPLE 2 SAMPLE K
75ample1 YsampleZ YsampleK
3

SAMPLE MEANS FROM
MULTIPLE LARGE SAMPLES

X = {Xsample1 ) XsampleZa o ,XsampleK}

BASED ON THE CENTRAL LIMIT THEOREM
X PN (IE(X), V—(nx)>

The distribution above is known as the sampling distribution of
the sample mean. It characterizes how much the sample means
vary from one sample to another due to sampling variability.



6.6 SUMMARY

This chapter introduced us to probability. First, we learned about
the frequentist and Bayesian interpretations of probability and
the axioms of probability. Next, we saw the probability distribu-
tions of two types of random variables, binary and normal, paying
special attention to the standard normal distribution. Then, we
learned two large sample theorems—the law of large numbers
and the central limit theorem—and specifically how they help us
understand the relationship between population parameters and
sample statistics. Finally, we ended the chapter by using the
central limit theorem to derive the sampling distribution of the
sample mean. In the next chapter, we will learn how to use this
knowledge to quantify the level of uncertainty in our population-
level conclusions.
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RECALL: for(i in 1:n){} is the basic syntax
of a for loop. A for loop executes a given
code repeatedly, for each i in the sequence
from 1 to n (meaning for i={1,...,n},
using one i at a time, starting with i=1
and ending with i=n). The code to be
executed repeatedly should be specified
inside the curly brackets. Example: for(i in
1:3){print(i)} displays the value of i from
i=1 until i=3.

print() displays in the R console
the argument specified inside the
parentheses. Example: print("this").

6.7 APPENDIX: FOR LOOPS

Let’s start by looking at a simple example to understand how for
loops work in R. Go ahead and run the following code:
for(i in 1:3){
print (i) # print the value of i
}
## 1] 1
## (1] 2
## (1] 3

The first line of code, for(i in 1:3){, can be interpreted as: “For
each i in the sequence from 1 to 3 (meaning for i={1, 2, 3}, using
one i at a time, starting with i=1 and ending with i=3), execute
the following code.”

The second line is the code that will be executed repeatedly, in
sequence, from i=1 until i=3. In this case, the code simply asks
R to print the value of i using the function print().

Finally, the third line of code closes the parentheses we started
in the first line, to indicate the end of the code to be executed
repeatedly.

After running the three lines of code all together, R provides us
three outputs, one for each i between 1 and 3. The first output is
1, since that was the value of i in the first iteration and so on.

Now, let's modify the for loop above to change the code we want
R to execute repeatedly. Go ahead and run:

## for loop with 3 iterations
for(i in 1:3){
## draw a random sample of 1,000 observations
## from binary variable with p=0.5
flip <- sample(c(1, 0), # possible values
size =1000, # n=1,000
replace=TRUE, # with replacement
prob=c(0.5, 0.5)) # probabilities
## print sample mean
print (mean(flip))
}
## (1] 0.495
#+# (1] 0.505
#+# (1] 0.502

Because we didn’t modify the first line of code, the for loop
includes only three iterations. Hence, running the code produces
three outputs. Each is the sample mean of simulating 1,000 flips
from a fair coin (where 1 stands for heads and 0 stands for tails).
Notice that each sample mean is slightly different. As we dis-
cussed earlier, these differences are due to sampling variability.



Now, we can modify the for loop so that instead of printing the
sample means, R stores them into a vector. We start by creating
an empty vector to store the sample means:

## create an empty vector to store sample means
sample_means <- ¢()

Then, we need to modify the code to be executed repeat-
edly. Instead of print(mean(flip)), we write sample_means|i|
<- mean(flip). This code saves each sample mean as a new
observation in the vector sample_means. The [i] following the
name of the vector on the left hand side of the assignment
operator subsets the vector to the observation i. As a result, the
first sample mean is saved as the first observation of the vector,
and so on.

## for loop with 3 iterations
for(i in 1:3){
## draw a random sample of 1,000 observations
## from binary variable with p=0.5
flip <- sample(c(1, 0), # possible values
size=1000, # n=1,000
replace=TRUE, # with replacement
prob=c(0.5, 0.5)) # probabilities
## store sample mean
sample_means[i] <- mean(flip)

}

After running the code above, sample_means should contain the
sample means of three random samples. To confirm this, run the
name of the object so that R provides its contents:

sample_means # shows contents of object
#+# (1] 0.481 0.531 0.485

Finally, if we wanted to draw 10,000 samples instead of three, we
would modify the first line of the for loop. Instead of for(i in 1:3),
we would write for(i in 1:10000).

## for loop with 10,000 iterations
for (i in 1:10000){
## draw a random sample of 1,000 observations
## from binary variable with p=0.5
flip <- sample(c(1, 0), # possible values
size=1000, # n=1,000
replace=TRUE, # with replacement
prob=c(0.5, 0.5)) # probabilities
## store sample mean
sample_means[i] <- mean(flip)

}
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RECALL: c() combines values into a vec-
tor. If no main argument is provided, this
function creates an empty vector that can
be used to store outputs. Example: c().

RECALL: [] is the operator used to extract
a selection of observations from a vec-
tor. To its left, we specify the vector we
want to subset. Inside the square brack-
ets, we specify the criterion of selection.
For example, we can specify the position
of the observation to be extracted. Exam-
ple: vector[i].
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6.8 CHEATSHEETS

6.8.1 CONCEPTS AND NOTATION

concept/notation

frequentist
interpretation of
probabilities

Bayesian
interpretation of
probabilities

trial
outcome

event

mutually exclusive
events

sample space

(@)

random variable

probability
distribution

Bernoulli distribution

description

probabilities represent proportions of
specific events occurring over infinitely
many identical trials

probabilities represent personal,
subjective beliefs about the relative
likelihood of events; a probability of 1, or
100%, indicates certainty that the event
will occur; a probability of 0, or 0%,
indicates certainty that the event will not
occur

action or set of actions that produces
outcomes of interest

the result of a trial

a set of outcomes; an event is said to
occur if any one of the possible outcomes
included in the event is realized

events that do not share any outcomes

denoted by the Greek letter Omega; the
set of all possible outcomes produced by a
trial; considered an event in itself

assigns a numeric value to each mutually
exclusive event produced by a trial

characterizes the likelihood of each
possible value a random variable can take;
all probabilities in a distribution must add
up to 1

probability distribution of a binary
variable

it is characterized by one parameter, p,
which is the probability that the binary
random variable takes the value of 1;
consequently, 1—p is the probability that
the binary random variable takes the
value of 0

the mean of a Bernoulli distribution is p
and the variance is p(1—p)

example(s)

when flipping a coin, the probability of
heads is the proportion of heads observed
over infinitely many identical flips

when stating that the probability of rain
today is 80%, we are describing how
certain we are about the rain event
occurring; we are not describing the
frequency of rain events over multiple days

rolling a die

rolling a die produces one of six possible
outcomes: 1, 2, 3, 4,5, or 6

rolling a number less than 3 is one of the
potential events that may occur when
rolling a die; if we roll a 1, we would
consider that the event rolling a number
less than 3 has occurred

rolling a number less than 3 and rolling a
3 are mutually exclusive events when
rolling a die

in the case of rolling a die:
2={1,22345,6}

we can create a random variable, flip, to
capture the results of flipping coins, where
1s mean heads and Os mean tails:

flip; = {

the probability distribution of the random
variable flip above could be:

P(flip=1) = p = 0.67
P(flip=0) =1-p =1-0.67 = 0.33

1 if coin flip i lands on heads
0 if coin flip 7 lands on tails

flipping a coin can result in only one of
two possible events: heads or tails; if we
assign 1 to heads and 0 to tails, we can
create a binary random variable with the
results of multiple coin flips; this binary
random variable will follow a Bernoulli
distribution

P(flip=1)=p
P(flip=0) =1-p

continues on next page. ..



6.8.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

normal distribution

robability density
unction of the normal
distribution

standard normal
distribution

description

distribution of a normal random variable

we write a normal random variable X as:
2
X ~ N(u,0%)

it is characterized by two parameters:

- u (the Greek letter mu), which stands
for the mean of X

- o2 (the Greek letter sigma, squared),
which stands for the variance of X

two useful properties of X:
- P(X>2x)=1-P(X<Xx)
- P(x1 <X <x)=P(X<x2)—P(X<x1)

determined by the following formula:

T ox-w?/20?
oV2w

represents the likelihood of each possible
value the normal random variable can take
(from negative infinity to infinity); the
relative height of the curve provides the
relative likelihood of the values

the area under the curve between x; and
x2 equals the probability that the normal
random variable takes a value between x,
and x; the total area underneath the
curve equals 1

normal distribution with mean 0 and
variance 1

in mathematical notation, we refer to the
standard normal random variable as Z
and write it as:

Z ~ N(0, 1)

two useful properties of Z:
- P(Z<-2z)=P(Z>2z) (where z>0)
- P(-1.96 < Z<1.96) ~ 0.95

to transform a normal random variable X
into the standard normal random variable
Z, we subtract the mean and then divide
the result by the standard deviation:

X~ N(p,o?), X < N, 1)
g

PROBABILITY

193

example(s)

the density histogram of the normal
random variable, X, with mean 3 and
variance 4 is:

|||| 3
-IlllIll‘ ||IIII.I_
3

the shape of the probability density
function is demarcated by the height of
the bins of the density histogram; below is
the density histogram of X ~ N(3, 4) with
the probability density function shown as
a dashed line:

______ ‘.‘alll‘ | b
-4 1 3 5

10 X

density

0.00 005 010 015 0.20

-4

density

005 010 015 020

0.00

the area under the curve between -4 and
1 is smaller than the area under the curve
between 1 and 5; therefore, the
probability that X takes a value between
-4 and 1 is lower than the probability that
X takes a value between 1 and 5

the probability density function of Z is:

density

f N(O, 1)
g -4 -2 0 2 4 z
if X ~ N(3, 4), then:
X-3
—— ~N(0,1
=~ N, 1)

continues on next page. ..
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6.8.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

expectation of X or
expected value of X
or E(X)

sample mean of X or
X

population variance of
X or V(X)

sample variance of X
or var(X)

sampling variability

law of large numbers

central limit theorem

sampling distribution
of the sample mean

description

mean of the random variable X at the
population level

average value of X in a particular sample

variance of the random variable X at the
population level

variance of a sample of observations of X

refers to the fact that the value of a
statistic varies from one sample to another
because each sample contains a different
set of observations drawn from the target
opulation; smaller sample size generally
eads to greater sampling variability

states that as the sample size increases,
the sample mean of X approximates the
population mean of X

states that as the sample size increases,
the standardized sample mean of X can
be approximated by the standard normal
distribution

characterizes how much the sample means
vary from one sample to another due to
sampling variability

% Wy (E(X)’V(X)>

n

6.8.2 R SYMBOLS AND OPERATORS

example(s)

if the true support for a candidate at the
Eopulation level is 40% and support is a

inary variable that identifies the support
for this candidate, then:

E(support)=p=0.40

if the support for a candidate amon(I] a
sample of individuals from the population
above is 35%, then:

support=0.35

in the example above, because support is
a binary variable, the population variance
of support is:

V(support)=p(1—p)=0.4(1—-0.4)=0.24

in the example above, the variance of the
variable support in the sample is:

var(support)=0.35(1-0.35)=0.23

if we conduct 100 surveys, each containing
a representative sample of 1,000
individuals from a population of millions,
the results will differ from one survey to
another because of sampling variability

the mean of a sample of 100,000
observations of X is likely to be closer to
the population mean of X than the mean
of a sample of 100 observations of X

if we were to draw multiple large samples
of X, the standardized sample means will
follow the standard normal distribution,
regardless of how X is distributed

if we drew multiple samples of 1,000
observations of a random variable X, with
mean 2 and variance 4, the sample means
would approximately follow a normal
distribution with mean 2 and variance
0.004 (4/1000=0.004)

code description example(s)

for(i in 1:n){}  basic syntax of a for loop; a for loop executes a given for(i tn 1:3){
code repeatedly, for each i in the sequence from 1 to n, print(i)
meaning for i={1,..., n}, using one i at a time, starting } # displays the value of i
with i=1 and ending with i=n; the code to be executed from i=1 until i=3

repeatedly should be specified inside the curly brackets
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6.8.3 R FUNCTIONS

function description required argument(s) example(s)

o) combines values into a values to be combined, e(1:.2,.3)
vector (a collection of separated by commas; if no
elements, each identified by  main argument is provided, c() # creates an empty vector
an index) this function creates an empty

vector that can be used to
store outputs

sample() randomly samples from a set the vector with the set of sample(c(1, 2, 3))
of values; by default, it values to draw from # randomly draws one
samples without . _ observation at a time from
replacement optional argument size: the vector (1, 2, 3)
specifies the number of draws \yithout replacement
optional argument replace: if
set to TRU%, the function Sa|11ple(§(i(z),e1:)1,000
draws with replacement replace=TRUE
(allowing the same value to prob=c(0.2, 0.8'))

be drawn more than once) # randomly draws 1,000

optional argument prob: observations of Os and 1s,
specifies the probabilities of with replacement, where
selecting each value in the the probability of a 0 is 20% and
vector; we set this argument the probability of a 1 is 80%

to equal a vector containing

the probabilities of each value

rnorm() randomly samples from a the number of observations rnorm(100)
normal distribution; by we want to sample # randomly draws 100
default, this function observations from
samples from the standard optional argument mean: the standard normal distribution

normal distribution specifies the mean of the
normal distribution to sample rnorm(100, mean=3, sd=2)

Ijr:fn;u([ltf gflfg-))rent than the # randomly draws 100

observations from
the normal distribution with

optional argument sd: S
p g mean 3 and standard deviation 2

specifies the standard
deviation of the normal
distribution to sample from (if
different than the default of 1)

pnorm() calculates the probability the number for which we want  pnorm(0)
that a normal random to calculate the probability # computes the probability that
variable takes a value less the standard normal random
than or equal to the number  optional argument mean: variable takes a value less than
specified inside the specifies the mean of the or equal to 0
palrenltheses; bbg t()1(-,[fault, ift normal random variaglebvlve
calculates probabilities o want to compute probabilities = =
the standa?d normal random  of (if differen% thaﬂ the default pnorm(0, mean=3, sd 2)‘ .
variable of 0) # computes the probability that

the normal random variable with
optional argument sd: mean 3 and standard deviation 2
specifies the standard takes a value less than or equal
deviation of the normal to 0
random variable we want to
compute probabilities of (if
different than the default of 1)

print() displays in the R console what we want to have print("this")
the specified argument displayed in the R console




R symbols, operators, and functions intro-
duced in this chapter: nrow(), predict(),
abs(), and summary()$coef.

A parameter is an unknown quantity of
interest. An estimate is a sample-level
statistic that estimates a parameter. An
estimator is a function of observed data
that is used to produce an estimate of a
parameter.

7. QUANTIFYING
UNCERTAINTY

In the previous chapters, we analyzed data to estimate different
quantities of interest. For example, in chapter 2, we analyzed
data from Project STAR to estimate the average causal effect
of attending a small class on students’ reading test scores. In
chapter 3, we analyzed data from the BES survey to estimate
the proportion of UK voters in favor of Brexit. In chapter 4, we
analyzed data from 170 countries to predict GDP growth using
night-time light emissions. Finally, in chapter 5, we analyzed
data from a survey of Ukrainians to estimate the average causal
effect of receiving Russian TV on respondents’ voting behavior.
The results we arrived at in each of these analyses are, at best,
applicable only to the sample of observations we analyzed. In
most instances, however, we want to generalize our conclusions to
the population from which the sample of observations was drawn.
To do so, we need to account for sampling variability, which intro-
duces uncertainty and makes the sample-level estimates different
from the population-level quantities of interest. In this chapter, we
learn how to quantify the degree of uncertainty in our estimates.
As illustrations, we revisit each of the aforementioned analyses.

7.1 ESTIMATORS AND THEIR SAMPLING
DISTRIBUTIONS

As we saw in chapter 6, when analyzing data, we are usually
interested in a quantity at the population level, yet we typically
have access to only a sample of observations. For example, in
chapter 3, we were interested in the level of support for Brexit
among all UK voters, but we knew only the proportion of support-
ers among BES survey respondents.

We call the unknown quantity of interest the parameter. (Param-
eters can be sample-level quantities, but we focus on population-
level parameters.) We call the statistic that we compute using
the sample data the estimate, and the formula that produces it,
an estimator. Formally, an estimator is a function of observed
data used to produce an estimate of a parameter.



In this book, we have seen how to use four estimators:

- In chapter 2, we used the difference-in-means estimator to esti-
mate average treatment effects with a randomized experiment.

- In chapter 3, we used the sample mean to estimate population-
level averages and proportions.

- In chapter 4, we used a fitted linear model to predict outcomes.

- In chapter 5, we used the coefficients of a fitted linear model
to estimate average treatment effects with observational data.

In each of these analyses, we used an estimator to produce an
estimate of the corresponding parameter. These estimates, how-
ever, are not necessarily identical to the parameters we are inter-
ested in. As we saw in the previous chapter, sample statistics
differ from population-level parameters because each sample is
only a subset of the target population, and sample statistics vary
from one sample to another. In the case of the BES survey, the
respondents account for only a tiny fraction of all UK voters. As
a result, the sample proportion of survey respondents in favor of
Brexit is not necessarily the same as the population proportion of
all UK voters in favor of Brexit. In technical terms, our estimates
have some uncertainty due to sampling variability.

Our goal, then, is to quantify the uncertainty in our estimates
so that we can draw conclusions about the parameter. Since the
value of an estimator varies from one sample to another, we can
think of an estimator as a random variable.

POPULATION
parameter = unknown quantity of interest

A
SAMPLE 1 SAMPLE 2 SAMPLE K
using the using the using the
estimator, estimator, ' estimator,
we compute we compute we compute
estimate estimate; estimateg
A

RANDOM VARIABLE
estimator = {estimateq, estimatey, . .., estimatex }
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The sampling distribution of an estimator
characterizes the degree to which the esti-
mator varies from one sample to another
due to sampling variability. The standard
error of an estimator is the estimated stan-
dard deviation of the sampling distribution
of the estimator.

FIGURE 7.1. Sampling distribution of
an estimator. All the estimators covered
in this book have a sampling distribution
that is approximately normal and centered
at the true value of the population-level
parameter. The standard error of an esti-
mator quantifies the spread of its sampling
distribution, which is a measure of the
degree of uncertainty of the estimator.

The sampling distribution of this random variable characterizes
the variability of the estimator from one sample to another, and in
relation to the population-level parameter. To quantify the amount
of uncertainty in our estimates, then, we need to characterize this
sampling distribution.

At the end of the previous chapter, we used the central limit
theorem to derive the sampling distribution of the sample mean.
We can do the same for the other estimators.

One implication of the central limit theorem is that all the esti-
mators covered in this book have a sampling distribution that
is approximately normal and centered at the population-level
parameter. (Note that we always assume that the samples are
large enough that we can reliably use the central limit theorem.)

To quantify the variation around the population-level parameter,
we need to measure the spread of the sampling distribution of
the estimator. As we saw in chapter 3, we can use the standard
deviation of a random variable to measure the spread of its dis-
tribution. Unfortunately, in most cases we cannot compute the
standard deviation of the sampling distribution of an estimator
directly. Doing so would require drawing multiple samples from
the target population, but we rarely have access to more than
one sample. Instead, we estimate the standard deviation based
on the one sample we draw. We refer to the estimated standard
deviation of the sampling distribution of an estimator as the stan-
dard error of the estimator. (The formula for the standard error
is different for each estimator; some of these formulas are quite
complicated and beyond the scope of this book.)

Figure 7.1 depicts the sampling distribution of an estimator. As
we can see, the standard error quantifies the degree of uncer-
tainty of the estimator due to sampling variability. It measures
the amount of variation of the estimator around the true value of
the population-level parameter.

| standard
error
>

true value



Note that since we usually draw only one sample from the popu-
lation, we can compute only one value of the estimator. This one
estimate might be close to the true value of the parameter (as is,
for example, the value of estimate; in the figure in the margin), or
it might be quite far away (as is the value of estimate;). When
working with only one sample of data, we never know how far our
estimate is from the true value since the true value is unknown.

The difference between the estimate and the true value is called
the estimation error:

estimation error; = estimate; — true value

where:

- estimation error; is the estimation error for sample i

- estimate; is the estimate for sample i

- true value is the true value of the population-level parameter.

In the hypothetical cases above, the estimation errors would be
(estimateq—true value) and (estimate,—true value).

While we can never compute the estimation error of a particular
estimate, we can calculate two helpful statistics about the esti-
mation error using the central limit theorem.

First, we can derive the average estimation error, also known as
bias, over multiple hypothetical samples.

FORMULA IN DETAIL

In mathematical notation, the average estimation error is:

average estimation error = E(estimate; — true value)

where:

- E is the population mean
- estimate; is the estimate for sample J

- true value is the true value of the population-level param-
eter, which equals the population mean of the sampling
distribution of the estimator.

An estimator is said to be unbiased if the average estimation error
over multiple hypothetical samples is zero. While the details are
beyond the scope of this book, it is worth noting that all the
estimators covered here are unbiased estimators of their corre-
sponding parameters. They provide, on average, accurate esti-
mates. This is consistent with the fact that our estimators all
have a sampling distribution that is centered at the true value of
the population-level parameter.
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estimate; true value estimate,

The estimation error is the difference
between the estimate and the true value
of the parameter. The average estimation
error, also known as bias, is the average
difference between the estimate and the
true value of the parameter over multiple
hypothetical samples. An estimator is said
to be unbiased if the average estimation
error over multiple hypothetical samples
is zero. The standard error is an estimate
of the average size of the estimation error
over multiple hypothetical samples
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Second, we can derive the average size of the estimation error
over multiple hypothetical samples. This is actually what the
standard error of the estimator measures. (As we saw in chapter
3, the standard deviation of a random variable measures the aver-
age distance of the observations to the mean; here, this average
distance is equivalent to the average size of the estimation error.)

FORMULA IN DETAIL

In mathematical notation, the standard error of the estimator is:

standard error = /V(estimator) because standard deviation =/ V(X)
= \/]E[(est’tmate; — E(estimator))? because V(X)= E[(X—E(X))?]

= \/]E[(est’tmate; — true value)?] because E(estimator) = true value

where:

- V is the population variance, and E is the population mean

- estimator is a random variable across multiple hypothetical samples, and estimate; is the estimate
for sample i

- true value is the true value of the population-level parameter, which equals the population mean
of the sampling distribution of the estimator.

Note the difference between the average estimation error and the
standard error. In the formula for the average estimation error,
positive errors cancel out negative errors. By contrast, in the
formula for the standard error, positive errors do not cancel out
negative errors. (The errors are squared so that they are all
positive. Then, after computing the average squared error, we
take the square root to return to the initial unit of measurement.)
As a result, these two statistics generally differ from each other.
While the estimators we use have average estimation errors that
equal zero, their standard errors usually do not equal zero.

Putting it all together, if we were to draw multiple samples from
the target population and calculate the estimate for each sample,
the random variable estimator would be approximately distributed
as follows:

estimator "% N (true value, (standard error)z)

where:

- estimator is a random variable containing the estimates from
multiple hypothetical samples

- PR stands for “approximately distributed according to”

- N stands for “normal distribution,” the first number inside the
parentheses denotes the mean of the normal distribution, and
the second number denotes the variance



- true value is the true value of the population-level parameter

- standard error is the estimated standard deviation of the esti-
mator across multiple samples, so (standard error)? is the esti-
mated variance of the estimator across multiple samples.

Since the sampling distributions of all the estimators in this book
can be approximated with the normal distribution, we can stan-
dardize the estimators using formula 6.1.

For each of the estimators, then, if we drew multiple samples from
the same target population and computed the standardized esti-
mate for each sample, the resulting statistic would approximately
follow the standard normal distribution. (See formula 7.1.)

THE STANDARDIZED ESTIMATOR

estimator — true value approx.

N(O, 1
standard error (0. 1)

where:

- estimator is a random variable across multiple hypo-
thetical samples

- true value is the true value of the population-level
parameter

- standard error is the estimated standard deviation of
the estimator across multiple samples.

As we will see in detail below, we can use this distribution to draw
conclusions about a population-level parameter. In particular, we
can use it for two purposes:

First, we can use the sampling distribution to compute confidence
intervals. The confidence interval of an estimator provides the
range of values that is likely to include the true value of the
parameter. In section 7.2, we learn how to construct confidence
intervals for the sample mean, the difference-in-means estimator,
and the predicted value of an outcome.

Second, we can use the sampling distribution for hypothesis test-
ing. Through hypothesis testing, we determine whether the true
value of a parameter is likely to equal a particular value. For
example, we may want to determine whether an average treatment
effect is different from zero at the population level. In section 7.3,
we learn to use hypothesis testing with the difference-in-means
estimator as well as with estimated regression coefficients.
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FORMULA 7.1. Formula of the standard-
ized estimator and its distribution across
multiple hypothetical samples.
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A confidence interval provides the range
of values that is likely to include the true
value of the parameter.

TIP: We focus on this property of the stan-
dard normal distribution because we want
to construct the 95% confidence interval.
If we wanted to construct the 99% con-
fidence interval instead, for example, we
would start with the fact that in the stan-
dard normal distribution, about 99% of the
observations are between -2.58 and 2.58.
The resulting confidence interval would be
much wider.

FORMULA 7.2. Formula to construct the
95% confidence interval, the 95% Cl for
short. In 95% of the samples, the 95%
confidence interval constructed using this
formula will contain the true value of the
parameter.

7.2 CONFIDENCE INTERVALS

A confidence interval provides the range of values that is likely
to include the true value of the parameter.

Three levels of confidence are conventionally used in the social
sciences to construct confidence intervals: 90%, 95%, and 99%.
The level of confidence indicates the probability, over multiple
samples, that the true value lies within the interval. With higher
levels of confidence, the degree of uncertainty decreases, but the
width of the confidence interval increases. The most commonly
used level of confidence is 95%, so that is what we use here.

To construct a 95% confidence interval, we start with one of the
properties of the standard normal distribution. As we saw in
chapter 6, about 95% of the observations in the standard normal
random variable fall between -1.96 and 1.96. In mathematical
notation, if Z is the standard normal random variable, then:

P(-1.96 < Z < 1.96) ~ 0.95

Since the standardized estimator approximately follows the stan-
dard normal distribution (see formula 7.1), over multiple samples,
95% of the standardized estimators fall between -1.96 and 1.96.

estimator — true value
standard error

p (_1 96 < < 1.96) ~ 0.95

After moving terms around to isolate the true value, we arrive at:

P (estimator — 1.96 x standard error
< true value <
estimator + 1.96 x standard error ) ~ 0.95

Given the probability above, we can define the 95% confidence
interval of an estimator as shown in formula 7.2.

95% CONFIDENCE INTERVAL

95% Cl = [ estimator — 1.96 x standard error,
estimator + 1.96 x standard error |

where:

- estimator is a random variable across multiple hypo-
thetical samples

- standard error is the estimated standard deviation of
the estimator across multiple hypothetical samples.




This confidence interval provides bounds on where the true value
of the parameter is likely to be. Since the confidence level of
the interval is 95%, if we were to draw multiple samples from
the same population, 95% of the intervals constructed using this
formula should contain the true value of the parameter. In other
words, the confidence level of the interval refers to the probability
that the interval contains the true value over multiple samples.

In reality, as we have already discussed, we usually draw only
one sample. As a result, we can construct only one confidence
interval. This one confidence interval may or may not contain the
true value. Discerning whether it does or not is impossible since
we do not know the true value.

Thanks to the central limit theorem, we know that in 5% of the
samples, the 95% confidence interval will not contain the true
value of the parameter. Unfortunately, we have no way of knowing
whether we happen to be analyzing one of those fringe samples.
This is why it is so important to replicate social scientific studies,
that is, to arrive at similar conclusions when analyzing a different
sample of data from the same target population. While getting
one unlucky sample occurs 5% of the time, getting two unlucky
independent samples in a row occurs only 0.25% of the time.

Now that we know the general formula for constructing confidence
intervals, let's see how we can use it to construct the confidence
interval for the following three estimators: (i) the sample mean,
(it) the difference-in-means estimator, and (iii) predicted outcomes
from a fitted linear model.

7.2.1 CONFIDENCE INTERVAL FOR THE SAMPLE MEAN

Let’s return to the analysis of chapter 3. There, we analyzed data
from the BES survey conducted before the 2016 Brexit referendum
to measure public opinion among the entire UK population.

By running the following code, we (i) read and store the dataset
in an object named bes, (ii) eliminate observations with missing
data (including observations from respondents who were either
undecided or did not intend to vote) and store the new dataset in
an object named besT, (iii) show the number of observations and
the number of variables in the bes7 dataset, and (iv) show the first
six observations. (Remember to first set the working directory so
that R knows where to find the CSV file.)

bes <- read.csv("BES.csv") # reads and stores data
besl <- na.omit(bes) # eliminates observations with NAs

dim(besl) # provides dimensions of dataframe: rows, columns
## [1]25097 4
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It is important to replicate social scientific
studies to confirm that we arrive at simi-
lar conclusions when analyzing a different
sample from the same target population.

TIP: The code for this chapter’s analysis
can be found in the “Uncertainty.R" file.

RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd('~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.
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head(besl) # shows first observations
## vote leave education age

## 1 leave 1 3 60
## 3 stay 0 5 73
## 4 leave 1 4 64
## 6 stay 0 4 85
## 7 leave 1 3 78
## 8 leave 1 2 51

As you may recall, leave is a binary variable that identifies Brexit
supporters, that is, respondents who intended to vote “leave”.

If we want to know the proportion of BES respondents who were
in favor of Brexit, we can calculate the mean of leave, since the
mean of a binary variable is equivalent to the proportion of the
observations that have the characteristic identified by the vari-
able. The mean of leave can be calculated by running:

mean(bes1$leave) # calculates the mean
#+# (1] 0.4718891

Based on the output, we can state that 47.19% of BES respon-
dents were in favor of Brexit (0.4719x100=47.19%).

Can we infer from this that about 47% of all UK voters were in
favor of Brexit? We cannot. This is a sample-level result. To
draw conclusions at the population level, we need to take into
consideration the noise introduced by sampling variability.

We can construct a measure of uncertainty for the sample mean.
In particular, we can derive the 95% confidence interval by sub-
stituting in formula 7.2 the sample mean and its standard error.
This results in the following 95% confidence interval:

95% CONFIDENCE INTERVAL
FOR THE SAMPLE MEAN

Y - 1.96“/L(Y), Y 4 196 x /@) }
n n

where:

- Y is the sample mean of Y
- y/var(Y)/n is the standard error of the sample mean

- var(Y) is the sample variance of Y

n is the number of observations in the sample.




This interval provides the range of values that is likely to contain
the true value of the population mean of Y, or E(Y).

In the running example, to compute the confidence interval for
the sample mean of leave, we start by computing and storing the
sample size, n, into an object so that we can more easily operate
with its value.

To compute the sample size of a dataframe, we can use the function
nrow(), which stands for “number of rows.” The only required
argument is the name of the object where the dataset is stored.
Here, to compute and store the sample size in an object named
n, we run:

n <- nrow(besl) # computes and stores n

Now we can compute the lower limit of the interval by running:

## calculate lower limit of the 95% Cl for sample mean
mean(besl$leave) - 1.96 * sqrt(var(besl$leave) / n)
#+# [1] 0.4657127

And, we can compute the upper limit by running:

## calculate upper limit of the 95% Cl for sample mean
mean(bes1$leave) + 1.96 * sqrt(var(besl$leave) / n)
#+# [1] 0.4780655

Based on the outputs above, we conclude that the true proportion
of support for Brexit among all UK voters was likely to be between
46.57% and 47.81%.

There is an alternative way of expressing confidence intervals,
which is popular in the world of polling. It involves using what is
known as the margin of error, defined as half the width of the con-
fidence interval. Using this term, we can express the confidence
interval as:

estimator £+ margin of error

In this case, the margin of error equals 0.62 percentage points.
(The width of the confidence interval is 47.81%—46.57%=1.24 p.p.;
half of that is 0.62 p.p.) Thus, we can state that the likely propor-
tion of support for Brexit among all UK voters was 47.19% with a
margin of error of 0.62 percentage points.

The margin of error here is small because, as we computed earlier,
the BES survey has a large sample size of 25,097 observations.
Most polls have a much smaller sample size, of about 1,000 obser-
vations, and as a result their margins of error are much larger. (As
the sample size, n, decreases, the width of the confidence interval
increases.) In general, the degree of uncertainty of our estimates
will be larger with smaller sample sizes.
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nrow() computes the number of
rows of a dataframe. The only
required argument is the name of
the object where the dataframe is
stored. Example: nrow(data).

The margin of error of an estimator is
defined as half the width of the estima-
tor’s confidence interval. As a result, we
can express the confidence interval as:

estimator £ margin of error

RECALL: The difference between two per-
centages is measured in percentage points

(%—%=p.p.).

TIP: Here, the 95% confidence interval can
be expressed as either [46.57%, 47.81%] or
47.19% £+ 0.62 p.p.
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RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd('~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

7.2.2 CONFIDENCE INTERVAL FOR THE DIFFERENCE-
IN-MEANS ESTIMATOR

We can use a similar procedure to construct the confidence inter-
val for the difference-in-means estimator. Let's return to the
analysis of chapter 2. There, we analyzed data from Project
STAR, an experiment in which students were randomly assigned
to attend either a small class or a reqular-size class.

By running the following code, we (i) read and store the dataset
in an object named star, (ii) show the number of observations
and the number of variables in the dataset, (iii) show the first six
observations, and (iv) create a new binary variable named small
identifying the students who were assigned to attend a small
class. (Remember to first set the working directory.)

star <- read.csv("STAR.csv") # reads and stores data

dim(star) # provides dimensions of dataframe: rows, columns
##(1]1274 4

head(star) # shows first observations
##  classtype reading math graduated
## small 578 610 1

## 2 reqular 612 612 1
## 3 reqular 583 606 1
## 4 small 661 648 1
## 5 small 614 636 1
## 6  reqular 610 603 0
star$small <- ifelse (star$ classtype =="small",

1, 0) # creates the treatment variable

As you may recall, the purpose of the analysis was to estimate the
average causal effect of attending a small class on three measures
of student performance: third-grade reading test scores, third-
grade math test scores, and the probability of graduating from
high school. We focus here on the causal effect on the reading
scores.

Because the treatment was randomly assigned, we can assume
that students who attended a small class were comparable before
schooling to students who attended a reqular-size class. As a
result, we can use the difference-in-means estimator to estimate
the average treatment effect.

To calculate the difference-in-means estimator for reading, we run
the following piece of code:

## compute the difference-in-means estimator for reading

mean(star$reading| star $small==1]) -
mean(star$reading| star $small==0])

## [1]7.210547



Based on the output, we can state that among the students who
participated in Project STAR, attending a small class increased
performance on the third-grade reading test by an estimated 7.21
points, on average. This value is the estimated average treatment
effect for the sample of 1,274 students who participated in the
experiment. How about at the population level? What would
have been the average causal effect of attending a small class
on the entire population of students from which the sample was
drawn?

We can construct a measure of uncertainty for the difference-in-
means estimator. We can derive the 95% confidence interval by
substituting in formula 7.2 the difference-in-means estimator and
its standard error:

95% CONFIDENCE INTERVAL
FOR THE DIFFERENCE-IN-MEANS ESTIMATOR

LOWER LIMIT:

group group

_ _ var( Yieatment var(Yeontrol
erealmenl - YCOMTO[ - 1.96 X \/ ( feqlimen ) + ( COMEe )

N treatment group N control group

UPPER LIMIT:

Var(\/treatment) + Var(ycontrol)

N treatment group N control group

group group

Vtrealmenl —V(onlrol + 1.96 X \/

where:

- Y teament — Y ontat 1S the difference-in-means estimator

group group

-V V(”‘(; Yiloatmon‘r )//n treatment group + VOI'( Y(ontrol )/n control group
is the standard error of the difference-in-means estimator

- var( Yireatment) @and var(Yeontrol) are the sample variances
of Y under the treatment and control conditions

= N treatment group @Nd N control group are the number of obser-
vations in the treatment and the control groups in the
sample.

To compute the confidence interval for the difference-in-means
estimator, we start by creating two separate dataframes, one for
the treatment group and one for the control group. This will help
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[| is the operator used to extract
a selection of observations from a
dataframe. To its left, we spec-
ify the dataframe we want to sub-
set. Inside the square brackets,
we specify the criterion of selec-
tion. Since a dataframe is com-
posed of two dimensions, rows and
columns, we can specify a crite-
rion of selection on one or both
dimensions. First, we specify the
criterion of selection of the rows,
and then the criterion of selec-
tion of the columns (separated by a
comma). If the first criterion is left
blank, all rows are extracted, and
if the second criterion is left blank,
all columns are extracted. Exam-
ple: data|data$vari==1,] extracts
the observations that have a value
of 1 in var? as well as their cor-
responding values in all the other
variables in the dataframe data.

simplify our computations. To subset the original dataframe, we
can use the [| operator. To its left, we specify the dataframe we
want to subset, star in this case. Inside the square brackets we
specify (1) the criterion of selection of the rows, and (2) the cri-
terion of selection of the columns (in this order and separated by
a comma). To extract the observations that refer to the treatment
group, we use star$small==1 as the criterion of selection of rows.
To extract the observations that refer to the control group, we use
star$small==0 as the criterion of selection of rows. (As you may
recall, we can use the relational operator to specify a logical
test.) In both cases, we leave the criterion of selection of columns
blank, indicating that we want to extract all variables. To subset
and store as new objects the two dataframes, then, we run:

## create separate dataframes for each group
treatment <- star[star$small==1, | # for the treatment group
control <- star[star$small==0, | # for the control group

Next, we can compute and store as a new object the sample size
of each of the two dataframes by running:

## compute and store sample sizes for each group
n_t <- nrow(treatment) # for the treatment group
n_c <- nrow(control) # for the control group

Now, to compute the lower limit of the 95% confidence interval for
the difference-in-means estimator, we run:

## calculate lower limit of 95% Cl for diffs-in-means
mean(treatment$reading) - mean(control$reading) -
1.96 * sqrt(var(treatmentS$reading) / n_t
+ var(control $reading) / n_c)
## [1] 3.167621

And, to compute the upper limit, we run:

## calculate upper limit of 95% Cl for diffs-in-means
mean(treatment$reading) - mean(control$reading) +
1.96 * sqrt(var(treatmentS$reading) / n_t
+ var(control $reading) / n_c)
## (1] 11.25347

Based on the outputs above, we conclude that the average causal
effect of attending a small class on third-grade reading test scores
among all students in the target population was likely an increase
of between 3.17 and 11.25 points or, expressed differently, an
increase of 7.21 £+ 4.04 points. (The width of the confidence inter-
val here is 11.25—-3.17=8.08 points, and so the margin of error is
4.04 points.)



7.2.3 CONFIDENCE INTERVAL FOR PREDICTED
OUTCOMES

Finally, we can use a similar procedure to construct confidence
intervals for predicted outcomes. Let's return to the analysis of
chapter 4, where we fitted a linear model to predict GDP growth
using changes in night-time light emissions.

By running the following code, we (i) read and store the dataset
in an object named co, (it) show the number of observations and
variables in the dataset, (iii) show the first six observations, and
(iv) create our two variables of interest. (Remember to first set
the working directory.)

co <- read.csv(" countries .csv") # reads and stores data

dim(co) # provides dimensions of dataframe: rows, columns
##[1]170 5

head(co) # shows first observations

##  country gdp prior_gdp light  prior_light
## 1 USA 11107 7.373 4227 4.482
## 2  Japan 543017  464.168 11.926 11.808
## 3 Germany 2152 1.793 10.573 9.699
## 4  China 16.558 4.901 1.451 0.735
##5 UK 1.098 0.754 11.856 13.392
## 6 France 1.582 1.208 8513 6.909

## create GDP percentage change variable
co$gdp_change <-
((co$gdp - co$prior_gdp) / co$prior_gdp) * 100

## create light percentage change variable
co$light_change <-
((co$ light - co$ prior_light ) / co$ prior_light ) * 100

As you may recall, to predict GDP growth using the percentage
change in night-time light emissions, we employed the following
linear model:

~

gdpfcmnge,. =0+ B light_change;  (i=countries)

where:

- gdpfcmnge,. is the average predicted percentage change in
GDP from 1992-1993 to 2005-2006 among countries in which
the value of light_change equals light_change;

- light_change; is the percentage change in night-time light
emissions experienced by country /i from 1992-1993 to
2005-2006.
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RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd('~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.
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predict() makes predictions based
on a fitted linear model. The only
required argument is the name
of the object that contains the
output of the Im() function. By
default, this function produces a
prediction for every observation
in the dataset used to fit the
linear model. To produce only one
prediction based on a particular
value of the predictor(s), we set
the optional argument newdata to
equal data.frame(), where inside
the parentheses we specify the
value of the predictor(s). To also
produce the 95% confidence interval
of that one prediction, we set the
optional argument interval to equal
‘confidence'. To change the level of
confidence of the interval, we would
specify the optional argument
level. Example: fit <- Im(y_var ~
x_var, data=data) then predict(fit,
newdata=data.frame(x_var=5),

interval="confidence', level=0.99).

To fit the linear model and store it as an object, we run:

fit <- Im(gdp_change ~ light_change,
data=co) # fits and stores linear model

fit # shows contents of object

HH#

## Call:

## Im(formula = gdp_change ~ light_change, data = co)
HH#

## Coefficients:

## (Intercept) light_change

HH# 49.8202 0.2546

The fitted model is then:

gdpfc-lEnge = 49.82 + 0.25 light_change

Now, we can use this model to make predictions. For example,
in chapter 4, we found that a country in which night-time light
emissions increased by 20% during a 13-year period is predicted
to have experienced GDP growth of about 55% in the same time
period, on average (49.82+0.25x20=54.82).

Because of potential noise in the data, there is some uncertainty
around this prediction. As we did in the last two subsections, we
can construct a 95% confidence interval to measure this uncer-
tainty. In this case, the math is much more complicated, so we
ask R to compute it for us.

To calculate the 95% confidence interval for a predicted outcome,
we can use the function predict(), which makes predictions based
on a fitted linear model. This function requires as its main arqgu-
ment the name of the object that contains the output of the lm()
function. To specify the value of the predictor we want to use for
the prediction, we use the optional argument newdata. This arqu-
ment needs a dataframe, which we can create using the function
data.frame(). Inside these parentheses, we specify the value of the
predictor: light_change=20 in this case. Finally, if in addition to
the prediction, we want R to provide the 95% confidence interval,
we set the optional argument interval to equal "confidence’. By
default, this argument provides the interval using a level of con-
fidence of 95%. (If we wanted a different level of confidence, we
would specify the optional argument level.)

## compute 95% confidence interval for prediction

predict ( fit , # object with lm() output
newdata=data.frame(light_change=20), # set value of X
interval ="confidence") # provide 95% confidence interval

#H# fit lwr upr

## 1 54.91233 48.77123 61.05343



The first number R provides is the predicted outcome based on
the specified (i) fitted linear model and (ii) value of the predictor.
The next two numbers are the lower and upper limits of the 95%
confidence interval. Based on the output above, then, we can
state that the 95% confidence interval of our predicted outcome is
[48.77, 61.05].

We can, therefore, conclude that a country in which night-time
light emissions increased by 20% during a 13-year period would
have likely experienced in the same time period an average GDP
growth of between 48.77% and 61.05%, or 54.91% + 6.14 p.p. (The
width of the interval here is 61.05%—48.77%=12.28 p.p., and so
the margin of error is 6.14 p.p.)

7.3 HYPOTHESIS TESTING

Hypothesis testing is a methodology that we use to determine
whether a parameter is likely to equal a particular value. (There
are other uses of hypothesis testing, but we focus on this spe-
cific application.) For example, we can use hypothesis testing to
determine whether or not an average treatment effect is different
from zero in the target population.

Hypothesis testing is based on the idea of proof by contradiction.
We start by assuming the contrary of what we would like to prove
and show how this assumption leads to a logical contradiction.

Specifically, we begin by defining what is known as the null
hypothesis, denoted as Hp. This is the hypothesis we would
like to eventually refute, that is, find sufficient evidence against.
For example, if we are interested in whether a treatment affects
an outcome, on average, at the population level, we would set the
null hypothesis to state that the true value of the parameter—the
average treatment effect at the population level, in this case—
equals zero. This would mean that the outcome neither increases
nor decreases, on average, as a result of the treatment.

In general, the null hypothesis can state that the true value equals
any particular value, which we denote by 6 (the Greek letter
theta). In this book, however, we always set the null hypothesis
to state that the true value of the parameter equals zero. In
mathematical notation, the null hypothesis is:

Ho: true value =46 (in general)
Ho: true value =0 (in this book)
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Hypothesis testing is a methodology we
use to determine whether a parameter is
likely to equal a particular value. The
null hypothesis, Ho, is the hypothesis we
would like to eventually refute; in this

book, Hg: true value=0. The alternative
hypothesis, Hy, is the hypothesis we test
the null hypothesis against; in this book,
Hy: true value#£0.
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A test statistic is a function of observed
data that can be used to test the null
hypothesis. Here we use a test statistic
called the z-statistic, whose distribution
under the null hypothesis is the standard
normal distribution.

FORMULA 7.3. Formula of the test statis-
tic and its distribution under the null,
when the null hypothesis states that the
true value of the parameter equals zero.

Next, we set the alternative hypothesis, denoted as Hq. This is
the hypothesis we test the null hypothesis against. In this book,
we employ what is known as a two-sided alternative hypothesis,
which states that the true value of the parameter is not 6, without
restricting the parameter to being above or below 6. In particular,
since we set 6 to equal zero in our null hypothesis, our alternative
hypothesis states that the true value of the parameter is not zero,
without restricting the sign of the parameter to being positive or
negative. In mathematical notation, the alternative hypothesis is:

Hq: true value #46 (in general)

Hq: true value #0 (in this book)

Now, let’s return to the distribution of our standardized estimator
over multiple hypothetical samples (formula 7.1):

estimator — true value approx.
~y
standard error

N(O, 1)

If the null hypothesis is correct and the true value of the parameter
equals 6, then we end up with:

estimator — 0 approx. .
- @ ~ N O, 1 ft lue=0
standard error (0, 1) (if true value=6)

This random variable is known as the z-statistic. The z-statistic
is an example of a test statistic, which is a function of observed
data that can be used to test the null hypothesis.

In the case of our null hypothesis, in which the true value of the
parameter is set to equal zero, the test statistic and its distribution
across multiple hypothetical samples are:

TEST STATISTIC

estimator .
z-statistic= —————— PR N(O, 1)
standard error

where:

- estimator is a random variable across multiple hypo-
thetical samples

- standard error is the estimated standard deviation of
the estimator across multiple hypothetical samples.




Suppose we were to draw multiple samples from the same target
population and compute the z-statistic for each sample. Then,
thanks to the central limit theorem, we know that if the null
hypothesis were true, the z-statistics would approximately follow
the standard normal distribution. In reality, however, we usually
draw only one sample. As a result, we can observe only one real-
ization of the z-statistic. We denote the observed value of the
z-statistic as z°.

Now we can gauge the degree of consistency between what we
observe and the null hypothesis. Here is the general idea: If
the observed value of the test statistic is extreme relative to the
distribution of the test statistic under the null hypothesis (as is,
for example, the value of z3% in the figure in the margin), then
what we observe would be highly unlikely if the null hypothesis
were true. We would, thus, conclude that the null hypothesis is
likely to be false. In statistical terms, we would reject the null
hypothesis. Alternatively, if the observed value of the test statistic
is typical under the null hypothesis (as is the value of z5*), then
what we observe would be likely if the null hypothesis were true.
We would, in this case, not have enough evidence to claim that
the null hypothesis is likely to be false. In statistical terms, we
would fail to reject the null hypothesis. Let's add more details.

Because we know the distribution of the test statistic under the
null hypothesis, we can compute the probability that we observe
a value at least as extreme as the one we observed if indeed the
null hypothesis is true. This probability is called the p-value.
Here, because our alternative hypothesis is two-sided, we calcu-
late what is known as the two-sided p-value.

The two-sided p-value computes the probability that we observe
a test statistic as extreme as the one we observed in either direc-
tion of the real line. Here, it is equivalent to (i) the area under the
curve of the standard normal distribution between negative infin-
ity and -|z°>%|, plus (ii) the area under the curve of the standard
normal distribution between |z°*s| and infinity (where, again, z°%
is the observed value of the z-statistic). (See the shaded areas in
figure 7.2.)
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TIP: The distribution of the test statistic
under the null hypothesis is the distribu-
tion the test statistic would approximately
follow if the null hypothesis were true.
Here, the distribution of the test statistic
under the null hypothesis is the standard
normal distribution, N(0, 1).

distribution of
. the test statistic
*\. under the null

The p-value is the probability that we
observe a value of the test statistic at
least as extreme as the one we actually
observed if the null hypothesis is true.

RECALL: The probability that Z takes a
value between z; and z, is equivalent to
the area under the curve of the standard
normal distribution between z; and z,.

FIGURE 7.2. The two-sided p-value is
the probability of observing a test statis-
tic below -|z°%| plus the probability of
observing a test statistic above |2°°%| in the
standard normal distribution, which is the
distribution of the test statistic if the null
hypothesis is true.
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obsl

The significance level determines the
rejection threshold of the test and char-
acterizes the probability of false rejection
of the null hypothesis

RECALL: To interpret a proportion or a
probability as a percentage, we multiply
the decimal value by 100.

In mathematical notation, the two-sided p-value is defined as:
two-sided p-value = P(Z <-[z°%|) + P(Z>|z°*))

Since the standard normal distribution is symmetric and centered
at zero, the probability of a value below -|z°>| is the same as the
probability of a value above |z°%|. This property enables us to
simplify the formula of the two-sided p-value:

two-sided p-value = 2 x P(Z <-[z°*|)

When calculating the two-sided p-value, we add the two above-
mentioned probabilities because we consider extreme values in
either direction of the real line. We use this type of p-value
whenever the alternative hypothesis is two-sided, that is, when it
does not constrain the sign of the parameter. Had we stated as
our alternative hypothesis that the parameter is positive (because
we knew for sure that it could not be negative), then we could
compute a one-sided p-value, which would equal the probability
that we observe a test statistic as extreme as the one we observed
only in the positive direction. (See figure in the margin.)

In general, a smaller p-value provides stronger evidence against
the null hypothesis. A very small p-value indicates that the
observed value of the test statistic would be highly unlikely if the
null hypothesis were true. Thus, when the p-value is very small,
there are two possible scenarios: either (a) the null hypothesis is
true and we observed something highly unlikely, or (b) the null
hypothesis is not true. As the p-value decreases into extremely
small magnitudes, we become increasingly confident that the null
hypothesis is not true, and thus, we reject it.

How small does the p-value need to be for us to reject the null
hypothesis? We reject the null hypothesis when the p-value
is equal to or smaller than what is known as the significance
level (or just “level”) of the test. Social scientists conventionally
use one of three significance levels: 10%, 5%, and 1%. In this
book, we use 5% as our significance level. Thus, we reject the
null hypothesis when the p-value is equal to or smaller than 0.05
(or 5%), and we fail to reject the null hypothesis when the p-value
is greater than 0.05 (or 5%).

Note that through this procedure, we never accept the null
hypothesis. Failing to reject the null hypothesis is not the same
as accepting it. Just because we have not found evidence against
the null hypothesis doesn't mean that we have proven it to be
true. On the flip side, however, rejecting the null hypothesis is
the same as accepting the alternative hypothesis, although we
typically do not express it that way.



A result is said to be statistically significant at the 5% level
when we can reject the null hypothesis using the 5% rejection
threshold and conclude that the corresponding parameter is dis-
tinguishable from zero. Alternatively, a result is said to be not
statistically significant at the 5% level when we fail to reject the
null hypothesis using the 5% rejection threshold and conclude that
the corresponding parameter is not distinguishable from zero.

When a result is statistically significant at the 5% level, do we
know for sure that the true value of the corresponding parameter
is not zero? No, we do not. A p-value of 5% does not rule
out the possibility that the parameter is zero. In fact, thanks to
the central limit theorem, we know that if the null hypothesis
is true, in 5% of the samples drawn from the target population,
we will wrongly reject the null when using a significance level
of 5%. Indeed, the significance level of a test characterizes the
probability of false rejection of the null hypothesis (known as type
I error). The smaller the level used in the test, the less likely we
are to falsely reject the null. The possibility of wrongly rejecting
the null illustrates the importance of replicating social scientific
studies to confirm their conclusions. While the probability of
falsely rejecting the null hypothesis in any one sample is 5%,
the probability of falsely rejecting the null twice in a row, when
analyzing two independent samples of data drawn from the same
target population, is only 0.25%.

The cut-off points of the test statistic used to determine whether
to reject the null hypothesis are called critical values. If the dis-
tribution of the test statistic is well-approximated by the standard
normal distribution and our alternative hypothesis is two-sided,
the critical value for the 5% significance level is 1.96. This means
that when we observe a z-statistic that in absolute value is greater
than or equal to 1.96, we will reject the null at the 5% level, and
when we observe a z-statistic that in absolute value is less than
1.96, we will fail to reject the null at the 5% level. (For an expla-
nation, see the formula in detail below.)

FORMULA IN DETAIL

First, recall that the two-sided p-value is:
two-sided p-value = P(Z < -|2°|) + P(Z >|2°®|)

If |2°%%| equals 1.96, the two-sided p-value will approxi-
mately equal 0.05 (or 5%):

two-sided p-value = P(Z <-1.96) + P(Z >1.96) =~ 0.05
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A result is statistically significant at the
5% level when the corresponding parame-
ter is distinguishable from zero using 5%
as the rejection threshold. Conversely, a
result is not statistically significant at the
5% level when the corresponding parame-
ter is not distinguishable from zero using
5% as the rejection threshold

A critical value is the cut-off point of the
test statistic used to determine whether
to reject the null hypothesis. If the
distribution of the test statistic is well-
approximated by the standard normal dis-
tribution and our alternative hypothesis is
two-sided, the critical value for the 5% sig-
nificance level is 1.96
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Here is the reasoning: As we saw in chapter 6, the prob-
ability that Z takes a value between -1.96 and 1.96 is
approximately 95%. Therefore, the probability that Z takes
a value less than or equal to -1.96 plus the probability that
Z takes a value greater than or equal to 1.96 is approxi-
mately 5% (1—0.95=0.05).

P(Z=<-1.96)~0.025 , . P(Z=1.96)~0.025

l " P(-1.96<Z<196)~095 . l

-1.96 1.96

Second, note that as |z°’%| increases, that is, moves farther
into the tails of the distribution, the associated two-sided
p-value decreases because the area under the curve that
measures this probability becomes smaller. (As we move
from left to right in the figure below, the values of |2°%|
increase and the associated two-sided p-values decrease.)

Taken together, if the absolute value of the z-statistic is
greater than or equal to 1.96, the two-sided p-value will be
less than or equal to 0.05 (or 5%), and so we will reject the
null at the 5% significance level. Conversely, if the absolute
value of the z-statistic is less than 1.96, the two-sided p-
value will be greater than 0.05 (or 5%), and so we will fail
to reject the null at the 5% significance level.

To summarize, below is the formal procedure for conducting
hypothesis testing to determine whether a parameter is likely
different than zero using the 5% significance level. Note, again,
that you can compare either the absolute value of the observed
z-statistic to 1.96 or the associated two-sided p-value to 0.05.
These two procedures are mathematically equivalent and lead to
the same conclusion.



HYPOTHESIS TESTING
WITH 5% SIGNIFICANCE LEVEL

1. Specify null and alternative hypotheses:

Ho: true value =0
Hi: true value # 0

2a. Compute observed value of the test statistic:

obs estimator

standard error

2b. Compute associated two-sided p-value:

two-sided p-value = 2 x P(Z <-|z°|)

3. Conclude:

- If |z°°%] >1.96 or p-value <0.05,
reject the null hypothesis and conclude that the result
is statistically significant at the 5% level.

- 1f |2°%°| < 1.96 or p-value > 0.05,
fail to reject the null hypothesis and conclude that the
result is not statistically significant at the 5% level.

Reject Hg Reject Hg

12°°% = 1.96 Fail to reject Hy 12°%% = 1.96
p-value < 0.05 s ) 0 % p-value < 0.05
-1.96 1.96

Now that we know the general procedure for conducting hypoth-
esis testing, let's see how we can use it to determine whether
a treatment affects an outcome, on average, at the population
level. We start by learning how hypothesis testing works with
the difference-in-means estimator. Then, we learn how it works

with estimated regression coefficients.
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7.3.1 HYPOTHESIS TESTING WITH THE DIFFERENCE-
IN-MEANS ESTIMATOR

Let's return to our analysis of Project STAR. Since this was a
randomized experiment, we can use the difference-in-means esti-
mator to estimate average treatment effects.

To conduct hypothesis testing with the difference-in-means esti-
mator, first we set the null hypothesis to state that the true value
of the average treatment effect at the population level equals zero.
In mathematical notation:

Ho: IE[Y,(X,=1) - Y,(X,=O)] =0
where:
- E[Yi(Xi=1) — Yi(X;=0)] is the average treatment effect at the
population level, where E denotes the population mean

- Yi(X;=1) and Y;(X;=0) are the potential outcomes under the
treatment and control conditions, respectively, for individual /.

Next, we set the alternative hypothesis to state that the treatment
either increases or decreases the outcome, on average, at the
population level. In mathematical notation:

H1: IE[Y,(X,=1) - Y,(X,=O)] 75 0

Then, using formula 7.3, we construct the following test statistic
for the difference-in-means estimator:

TEST STATISTIC
FOR THE DIFFERENCE-IN-MEANS ESTIMATOR

Ytreatment group Ycontrol group

\/ var( ereatment) + VGI’( Ycuntml)

N treatment group 1 control group

z-statistic =

where:

- Y ieamenn — Yool 1S the difference-in-means estimator
group arotp
( Yireatment) /ar( Yeontrol) A

_ \/‘n(”( ueament) 2T . ) is the standard error of the
treatment group control group

difference-in-means estimator

- var( Yireatment) @nd var( Yeontrol) @re the sample variances
of Y under the treatment and control conditions

= N treatment group @Nd 1 control group @re the number of obser-
vations in the treatment and the control groups in the
sample.




Now that we know what we need to compute to test the null
hypothesis in this case, let’s continue the analysis we started in
subsection 7.2.2. To compute (and store) the observed value of
the test statistic in the running example, we run:

## calculate and store observed value of test statistic
z_obs <- (mean(treatment$reading) -
mean(control$reading)) /
sqrt (var(treatment$reading) / n_t +
var ( control $reading) / n

<)

z_obs # shows contents of object
## [1] 3.495654

In the sample of data we are analyzing, the value of the test
statistic is 3.5. Since its absolute value is greater than 1.96, we
can already reject the null hypothesis and conclude that the effect
is statistically significant at the 5% level.

Even so, let’s continue to compute the associated p-value. Since
the test statistic is 3.5, the two-sided p-value is the probability
that in the standard normal distribution, we observe a value less
than -3.5 or greater than 3.5. This is equivalent to two times the
probability that we observe a value below -3.5.

To compute p-values in R, we can use the function pnorm() in
conjunction with the function abs(), which stands for “absolute
value.” For example, to compute the p-value here, we run:

## calculate the associated two-sided p-value
2 % pnorm( - abs(z_obs))
#+# (1] 0.0004729011

Based on the output above, if the null hypothesis is true, the
probability of observing a test statistic equal to or larger than
3.5 (in absolute value) is 0.05% (0.0005x100=0.05%). This is an
extremely small probability.

Since the p-value is smaller than 5%, we reject the null hypothesis
and conclude that the effect is statistically significant at the 5%
level. In other words, we conclude that attending a small class is
likely to have a non-zero average causal effect on reading scores
for all students in the target population, and not only for those
who participated in Project STAR.

Note that we could have arrived at the same conclusion using the
95% confidence interval for the difference-in-means estimator we
computed in subsection 7.2.2. If the 95% confidence interval of an
estimator does not include zero, we will reject the null hypothesis
that the corresponding parameter equals zero at the 5% level. By
the same logic, if it does include zero, we will fail to reject the
null hypothesis.
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TIP: If you are starting a new R session

here, you need to re-run the lines of code

that we wrote in subsection 7.2.2 that:

- set the working directory

- read and store the dataset

- create the treatment variable

- create two separate dataframes, one for
the treatment group and one for the
control group

- compute and store the sample sizes of
each of the two dataframes.

RECALL: pnorm() calculates the proba-
bility that the standard normal random
variable, Z, takes a value less than or
equal to the number specified inside the
parentheses. Example: pnorm(0).

abs() calculates the absolute value
of the argument specified inside the
parentheses. Example: abs(-2).

TIP: Computing confidence intervals and
conducting hypothesis testing are equiv-
alent procedures and will lead us to the
same conclusions as long as the level
of confidence of the interval equals 100
minus the significance level of the test.
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RECALL: If the DSS folder is saved
directly on your Desktop, to set
the working directory, you must run
setwd('~/Desktop/DSS") if you have a
Mac and setwd('C:/user/Desktop/DSS")
if you have a Windows computer (where
user is your own username). If the DSS
folder is saved elsewhere, please see
subsection 1.7.1 for instructions on how
to set the working directory.

RELATIONSHIP BETWEEN CONFIDENCE INTERVALS
AND HYPOTHESIS TESTING: If the 95% confidence inter-
val of an estimator does not include zero, we will reject
the null hypothesis that the corresponding parameter equals
zero at the 5% level. By the same logic, if it does include
zero, we will fail to reject the null hypothesis.

In the example at hand, the 95% confidence interval for the
difference-in-means estimator was [3.17, 11.25].  Since the
interval did not include zero, we could have already concluded
that the effect is statistically significant at the 5% level.

7.3.2 HYPOTHESIS TESTING WITH ESTIMATED
REGRESSION COEFFICIENTS

We have just learned how to use hypothesis testing to determine
whether an average treatment effect is statistically significant
based on the difference-in-means estimator. This procedure is
useful for analyses of randomized experiments in which we do not
have to worry about confounding variables.

As we saw in chapter 5, when analyzing observational data, we
do worry about the presence of confounding variables obscuring
the causal relationship between the treatment and the outcome.
In this case, the difference-in-means estimator no longer provides
a valid estimate of the average treatment effect. Instead, we can
fit a multiple linear regression model in which Xj is the treatment
variable and all other X variables are the confounding variables.
If the model includes all potential confounding variables as con-
trol variables, 3; (the estimated coefficient affecting the treatment
variable Xj) can be interpreted as a valid estimate of the average
treatment effect. We can then use hypothesis testing to determine
whether the effect, represented by B, is likely to be zero.

Let’s return to the analysis in chapter 5 of the survey conducted
after the 2014 election on a random sample of Ukrainians living
in precincts within 50 kilometers of the Ukraine-Russia border.

By running the following code, we (i) read and store the dataset
in an object named was, (ii) show the number of observations and
variables in the dataset, and (iit) show the first six observations.
(Remember to first set the working directory.)

uas <- read.csv("UA_survey.csv") # reads and stores data

dim(uas) # provides dimensions of dataframe: rows, columns
##[1]358 3
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head(uas) # shows first observations
## russian_tv pro_russian_vote within_25km

## 1 1 0 1
## 2 1 1 1
## 3 0 0 0
## 4 0 0 1
## 5 0 0 1
#H# 6 1 0 0

As you may recall, we were interested in estimating the effect that
receiving Russian TV had on a respondent’s probability of voting
for a pro-Russian party in the 2014 parliamentary election. We
were concerned that living in close proximity to the border was a
confounding variable, given the existence of military fortifications
along the border at the time.

The treatment variable was russian_tv, the outcome variable was
pro_russian_vote, and the confounding variable was within_25km.
To estimate the average treatment effect, we employed the follow-
ing multiple linear regression model:

pro_russian_vote, = a + (1 russian_tv;
+ B, within_25km; + ¢; (i=respondents)

where:

- pro_russian_vote; is the binary variable that identifies whether
respondent i voted for a pro-Russian party in the 2014
Ukrainian parliamentary election

- russian_tv; is the treatment variable, which indicates whether
the precinct where respondent i lives received Russian TV

- within_25km; is the confounding variable, which indicates
whether the precinct where respondent i lives is within 25
kilometers of the border

- ¢ is the error term for respondent .

To fit the linear model and store it as an object, we run:

fit <- Im(pro_russian_vote ~ russian_tv -+ within_25km,
data=uas) # fits and stores linear model

fit # shows contents of object

HH

#3# Call:

## Im(formula = pro_russian_vote ~ russian_tv
HH + within_25km, data=uas)

HH

## Coefficients:
## (Intercept) russian_tv  within_25km
H#H# 0.1959 0.2876 -0.2081
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Based on the value of 31 above, we estimate that, when we hold
living very close to the border constant, receiving Russian TV (as
compared to not receiving it) increased a respondent’s probability
of voting for a pro-Russian party by 29 percentage points, on
average.

Does this mean that the average treatment effect is different from
zero at the population level (that is, across all Ukrainians who
live near the border with Russia)? To decide whether we have
statistically significant evidence to conclude one way or the other,
we use hypothesis testing.

First, we set the null hypothesis to state that receiving Russian
TV had an average causal effect on Ukrainians’ voting behavior
at the population level of zero. In other words, we set the true
value of 51 to equal zero. (Note that when we speak of the true
regression coefficient, we do not use the “hat,” because it is not
an estimate. We are referring to the value one would obtain if the
model were fitted to the population.) In mathematical notation:

Ho: 81 =10

Next, we set the alternative hypothesis to state that the true
coefficient does not equal O; that is, receiving Russian TV either
increased or decreased Ukrainian's probability of voting for a
pro-Russian party, on average, at the population level. In math-
ematical notation:

Hi:81 #£0

Then, using formula 7.3, we construct the following test statistic
for the estimated regression coefficient 8:

TEST STATISTIC FOR 3
Bi

z-statistic = =
standard error of (3

where:
- [1 is the estimated regression coefficient

- standard error of (37 is the estimated standard deviation
of the estimated regression coefficients over multiple
samples.

In this case, we do not go into the specifics of how to compute the
standard error of 81 because it is rather complicated. We focus
instead on how to ask R to compute it.



For this purpose, we can use the function summary(), which com-
putes several statistics related to a fitted linear model, including
the standard errors of the estimated regression coefficients. To
focus on the statistics we are interested in, we can ask R to show
us only the element named coef of the output from the function
summary() by running summary()$coef, where inside the paren-
theses we specify the name of the object that contains the output
of the lm() function. (Recall that we use the $ character to access
a variable inside a dataframe; in general, we can use it to access
an element within an object.) For example, go ahead and run:

## show table with statistics related to fitted model
summary(fit)$coef

#H# Estimate Std. Error t value Pr(>|t])
##(Intercept) 0.19590 0.0345782 5.665602 3.0321e-08
#H#russian_tv 0.28759 0.0765243 3.758194 2.0002e-04
##within_25km -0.20806 0.0768105 -2.708802 7.0798e-03

As shown above, R provides a table of statistics related to the
fitted linear model. The first column shows the estimated coef-
ficients: @, B;, and ;. The second column shows the standard
errors of each of the coefficients. The third column shows the
values of the test statistics for each of the coefficients. Finally,
the fourth column shows the associated two-sided p-values.

Note that, by default, R does not assume that the sample size
is large enough to use the central limit theorem. As a result,
the distribution of the test statistic under the null hypothesis is
no longer the standard normal distribution but rather a distri-
bution called the t-distribution. Consequently, the name of the
test statistic changes from z-statistic to t-statistic, although the
formula remains the same. (Note that R refers to the observed
value of the t-statistic as t-value.) Compared to the standard
normal distribution, the t-distribution is also symmetric and bell-
shaped but has fatter tails. The p-values computed by R here
are slightly larger and, as a result, lead to somewhat more con-
servative inferences. As long as the sample is not very small,
however, the difference is typically negligible. (In fact, as the
sample size increases, the t-distribution converges to the stan-
dard normal distribution.) When drawing conclusions, then, we
can ignore the differences and rely on the p-values provided by
R in the table above.

The statistics we care about are those related to 31, the estimated
coefficient that affects russian_tv, since that is the coefficient that
can be interpreted as the average treatment effect in this case.

Based on the tabAle of results above, the value of the test statistic
associated w'Lth B1 is 3.76. This is indeed the result we arrive at
if we divide B by its standard error (0.2876,/0.0765=3.76).
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summary()$coef provides a table
with  the following statistics
related to a fitted linear model:
estimated regression coefficients,
standard errors, test statistics,
and two-sided p-values. The one
required argument is the out-
put of the m() function. Example:
fit <- lm(y_var ~ x_var, data=data)
and then summary(fit)$coef.

TIP: What does R mean by 2.0002e —04?
(See p-value associated with B .) It means
0.00020002, or 2.0002x10™*.  When a
number is either too large or too small
to be displayed compactly, R uses what
is known as scientific notation, where e
stands for “times ten raised to the power
of” To get a better sense of how scientific
notation works, see the examples below:

2e+04 = 2x10* = 20,000
0e+00 = 0x10° = 0
2e—04 = 2x10™* = 0.0002

TIP: Most studies that fit linear regres-
sion models to analyze data report the
estimated coefficients and their standard
errors in a table similar to one of the two
below:

Estimated  Standard

Coefficients Errors
Russian TV 0.2876 (0.0765)
Within 25 km -0.2080 (0.0768)
Intercept 0.1959 (0.0346)

Or, if multiple models are fitted:

Model 1 Model 2

Russian TV 0.1191 0.2876
(0.045) (0.0765)

Within 25 km -0.2080
(0.0768)

Intercept 0.1709 0.1959
(0.0336) (0.0346)

Although the values of the test statis-
tics are not provided, they can be easily
computed by dividing the estimated coeffi-
cients by their standard errors, which are
usually displayed in parentheses.
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A result is scientifically significant when
it is large enough to be consequential.

Because the absolute value of the test statistic is greater than
1.96 (the critical value for the 5% level), we already have enough
evidence to reject the null hypothesis at the 5% significance level
and determine that the effect is statistically significant.

Even so, let’s take a look at the associated p-value. Based on the
table above, the two-sided p-value associated with B1 is 0.0002.
Thus, if the null hypothesis is true, the probability of observing
a test statistic equal to or larger than 3.76 (in absolute value)
is 0.02% (0.0002x100=0.02%). Since the p-value is smaller than

%, here too we reject the null hypothesis and determine that the
effect is statistically significant at the 5% level.

We conclude, then, that receiving Russian TV likely had a non-
zero average causal effect on the probability of voting for a pro-
Russian party in the 2014 parliamentary election for all Ukraini-
ans living close to the border with Russia, not just for those who
participated in the survey.

7.4 STATISTICAL VS. SCIENTIFIC
SIGNIFICANCE

A common misconception is that statistical significance is equiv-
alent to scientific significance. As we have just seen, an effect is
statistically significant when it is not likely to be zero. In con-
trast, an effect is scientifically significant when its size is large
enough to be consequential. Therefore, results that are statisti-
cally significant are not necessarily scientifically significant, and
vice versa.

Suppose that we found that reducing class sizes had a tiny,
albeit statistically distinguishable from zero, effect on test per-
formance. This effect would be statistically significant but not
scientifically significant. Based on this study, we would not rec-
ommend redirecting educational resources toward extra teachers
and classroom space to implement a policy of class-size reduction.

By comparison, imagine that we found that attending a remedi-
ation program doubled the probability of graduating from high
school, although the effect was found to be not distinguishable
from zero due to the small size of the program. This effect would
be scientifically significant but not statistically significant. Based
on this study, we would at the very least recommend expanding
the study by involving a larger number of students.

Typically, we aim to find results that are both statistically and
scientifically significant.



7.5 SUMMARY

In this chapter, we learned to make inferences about unknown
population-level quantities of interest using sample data. First,
we learned to compute confidence intervals, which identify the
range of values that is likely to include the true value of our quan-
tity of interest. Then, we learned to conduct hypothesis testing to
figure out whether an average causal effect is likely to be different
than zero at the population level. Finally, we discussed the dif-
ference between statistical and scientific significance. Along the
way, we completed some of the analyses from chapters 2 through
5. In particular, we quantified the degree of uncertainty in our
estimates so that we could draw conclusions regarding all the
observations in the target population and not just those in the
sample of data analyzed.

With this chapter, we complete our friendly introduction to data
analysis for the social sciences. We hope we have piqued your
interest in data science and how it can be used to answer impor-
tant questions about the real world.
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7.6 CHEATSHEETS

7.6.1 CONCEPTS AND NOTATION

concept/notation

parameter

estimate

estimator

sampling distribution

of an estimator

standard error of an

estimator

estimation error

average estimation

error

unbiased estimator

description

unknown quantity of interest; it can be a
sample-level quantity, but we focus on
population-level parameters

sample-level statistic that estimates a
parameter

function of observed data that is used to
produce an estimate of a parameter

characterizes the degree to which the
estimator varies from one sample to
another due to sampling variability; it
enables us to quantify the amount of
uncertainty in our estimates; for all the
estimators we use in this book:

estimator "% N (true value, (s.e.)z)

where true value is the true value of the
population-level parameter and s.e. is the
standard error of the estimator

estimated standard deviation of the
sampling distribution of the estimator;
estimate of the average size of the
estimation error over multiple hypothetical
samples

difference between the estimate and the
true value of the parameter

also known as bias; average difference
between the estimate and the true value
of a parameter over multiple hypothetical
samples

estimator for which the average estimation
error over multiple samples is zero;
estimator that provides, on average,
accurate results

example(s)

the level of support for Brexit among all
UK voters is a population-level parameter

the proportion of supporters among BES
survey respondents is an estimate of the
level of support for Brexit among all UK
voters

the sample mean is the estimator used to
produce the estimate above

thanks to the central limit theorem, we
know that if we drew multiple large
samples of a random variable X, with
mean E(X) and variance V(X), the
sample means would approximately follow
a normal distribution with mean E(X) and
variance V(X)/n; the sample distribution
of the sample mean is thus:

X PN (E(X),@)

the formula for the standard error is
different for each estimator; given the
samplinﬂ distribution of the sample mean

above, the standard error of the sample
mean is:
Vix)
n

(recall that the standard deviation equals
the square root of the variance)

since the true value of the parameter is
unknown, we can never compute the
estimation error for any one sample, but
thanks to the central limit theorem, we
can derive (i) the average size of the
estimation error over multiple hypothetical
samples (see standard error above), and
(ii) the average estimation error over
multiple hypothetical samples

all the estimators covered in this book
have an average estimation error equal to
zero

all the estimators covered in this book are
unbiased estimators of their corresponding
parameters; their sampling distributions
are centered at the true value of the
parameter

continues on next page. ..
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concept/notation

confidence interval

margin of error

hypothesis testing

null hypothesis or Hy

alternative hypothesis
or H1

test statistic

description

provides the range of values that is likely
to include the true value of the parameter

three levels of confidence are
conventionally used in the social sciences
to construct confidence intervals: 90%,
95%, and 99%; the level of confidence
refers to the probability that the interval
contains the true value of the parameter
over multiple samples; the formula to
construct the 95% confidence interval is:

95% Cl = [estimator—1.96 xstandard error,
estimator+1.96 xstandard error]

defined as half the width of the
estimator’s confidence interval; as a result,
we can express the confidence interval as:

estimator + margin of error

methodology we use to determine whether
a parameter is likely to equal a particular
value

hypothesis we would like to eventually
refute; it states that the true value of the
parameter equals a particular value, 6 (the
Greek letter theta)

Ho: true value = 6

in this book, our null hypothesis states
that the true value of the parameter is zero

Ho: true value =0

hypothesis we test the null hypothesis
against; the two-sided alternative
hypothesis states that the true value of
the parameter is not 6, without restricting
the parameter to being above or below 6

Hq: true value # 6

in this book, our alternative hypothesis
states that the true value of the parameter
is not zero

Hyq: true value # 0

function of observed data that can be used
to test the null hypothesis
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example(s)

the 95% confidence interval for the sample
mean of leave in the BES survey is:

[0.4657, 0.4781]

we conclude, then, that the true proportion
of suPEort for Brexit among all UK voters
was likely to be between 46.57% and
47.81%

in the example above, the margin of error
equals 0.62 percentage points, which is
half the width of the confidence interval;
we can state that the likely proportion of
support for Brexit among all UK voters
was 47.19% with a margin of error of 0.62
percentage points

we can use hypothesis testing to
determine whether or not an average
treatment effect is different from zero in
the target population

in our analysis of the survey of

Ukrainians, B, is the estimator we use to
estimate the average causal effect of
receiving Russian TV on Ukrainians’
probability of voting for a pro-Russian
party in the 2014 parliamentary election;
our null hypothesis states that Russian
TV reception had zero average causal
effect on Ukrainians voting behavior; in
other words, it states that $; (the true
value of the coefficient affecting the
treatment variable) equals zero

Ho: 31 =0

in our analysis of the survey of
Ukrainians, our alternative hypothesis is
that receiving Russian TV had either a
positive or a negative average causal
effect on Ukrainians’ voting behavior; in
other words, it states that 81 does not

equal zero
Hi: 81 #0

the z-statistic is an example of a test
statistic

continues on next page. ..
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7.6.1 CONCEPTS AND NOTATION (CONTINUED)

concept/notation

z-statistic

p-value

significance Llevel

statistical
significance

critical value

scientific significance

description

test statistic whose distribution under the
null hypothesis is the standard normal
distribution; in general:

estimator — 0

z-statistic = —————
standard error

N(O, 1)

in this book, since Hg: true value = 0:

estimator

z-statistic = ————
standard error

we denote the observed value of the
z-statistic as z°°°

probability that we observe a value of the
test statistic at least as extreme as the
one we actually observed if the null
hypothesis is true; when the null
hypothesis is two-sided, we compute the
two-sided p-value, which conveys the
probability that we observe a test statistic
as extreme as the one we observed in
either direction of the real line:

two-sided p-value = 2 x P(Z <-|2°*|)

determines the rejection threshold of the
test and characterizes the probability of
false rejection of the null hypothesis;
social scientists conventionally use one of
three significance levels: 10%, 5%, and 1%

a result is statistically significant at the
5% level when it is distinguishable from
zero using 5% as the rejection threshold

specifically, if [z°**| > 1.96 or the
two-sided p-value <0.05, we will reject
the null hypothesis and conclude that the
{esullt is statistically significant at the 5%
eve

conversely, a result is not statistically
significant at the 5% level when it is not
distinguishable from zero using 5% as the
rejection threshold

cut-off point of the test statistic used to
determine whether to reject the null
hypothesis

a result is scientifically significant when it
is large enough to be consequential

example(s)

when the estimator is [:)\1, the formula of
the test statistic is:

B

z-statistic = =
standard error of

in our analysis of the survey of Ukrainians,
the observed value of the test statistic is:

s 0.2876
= 00765~ >7°

in our analysis of the survey of
Ukrainians, the two-sided p-value is:

p-value = 2 x P(Z <-|3.76|) =~ 0.0002

if the null hypothesis is true, the
probability oP observing a test statistic
equal to or larger than 3.76 (in absolute
value) is 0.02% (0.0002x100=0.02%)

if we use 5% as our significance level:

we will reject the null hypothesis when
the p-value is equal to or smaller than
0.05 (or 5%), and we will fail to reject the
null hypothesis when the p-value is
greater than 0.05 (or 5%)

we will wrongly reject the null thothesis
in 5% of the samples drawn from the
target population

in our analysis of the survey of
Ukrainians:

|2°**| =3.76 and p-value ~ 0.0002

thus, we reject the null hypothesis and
conclude that receiving Russian TV was
likely to have a non-zero average causal
effect on the probability of voting for a
pro-Russian party in the 2014
parliamentary election for all Ukrainians,
not just for those in the sample we
observed

if the distribution of the test statistic is
well-approximated by the standard normal
distribution and our alternative hypothesis
is two-sided, the critical value for the 5%
significance level is 1.96; if [2°%°| > 1.96,
we will reject the null hypothesis;

conversely, if |2°%] < 1.96, we will fail to
reject the null hypothesis

a result might be statistically significant
but be so small as to not be scientifically
significant



7.6.2 R SYMBOLS AND OPERATORS

code

[

description

operator used to extract a selection of observations from a
dataframe; to its left, we specify the dataframe we want to

subset; inside the square brackets, we specify the criterion of

selection; since a dataframe is composed of two dimensions,
rows and columns, we can specify a criterion of selection on
one or both dimensions; first, we specify the criterion of
selection of the rows, and then the criterion of selection of
the columns (separated by a comma); if the first criterion is
left blank, all rows are extracted, and if the second criterion
is left blank, all columns are extracted; (for other uses, see

pages 50, 61, and 187)

7.6.3 R FUNCTIONS

function

nrow()

predict()

abs()

summary()
$coef

description

computes the number of
rows of a dataframe

makes predictions based
on a fitted linear model

calculates the absolute
value

rovides a table with the
ollowing statistics
related to a fitted linear
model: estimated
regression coefficients,
standard errors, test
statistics, and two-sided
p-values

required argument(s)

name of the object where the
dataframe is stored

the name of the object that
contains the output of the
Im() function

by default, this function
produces a prediction for
every observation in the
dataset used to fit the linear
model; to produce only one
prediction based on a
particular value of the
predictor(s), we set the
optional argument newdata to
equal data.frame(), where
inside the parentheses we
specify the value of the
predictor(s)

to also produce the 95%
confidence interval of one
prediction, we set the
optional argument interval to
equal "confidence’; to change
the confidence level of the
interval to a probability
different than 95%, we would
lspeclifg the optional argument
eve

what we want to compute the
absolute value of

the name of the object
containing the output of the
Im() function
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example(s)

dataldata$var1==1,]

# extracts the observations
that have a value of 1 in var?
as well as their corresponding
values in all the other variables
in the dataframe data

example(s)

nrow(data)

fit <- lm(y_var ~ x_var, data=data)

# stores fitted model into an object
named fit

predict(fit,
newdata=data.frame(x_var=5),

interval="confidence",
level=0.99)

# [Jroduces the predicted average
value of y_var when x_var=5 as
well as the 99% confidence interval
for the given predicted outcome

abs(-2)

fit <- lm(y_var ~ x_var, data=data)

# stores fitted model into an object
named fit

summary(fit)$coef
# provides table with results
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absolute value, 219

alternative hypothesis, 212, 218, 222, 227
average, 22, 25

average causal effects, 33, 48

average estimation error, 199, 226

average outcome for the control group, 37, 50

average outcome for the treatment group, 37, 50

average treatment effects, 33, 48
axioms, 163

Bayesian interpretation of probabilities, 162,
192

Bernoulli distribution, 166, 179, 192

bias, 199, 226

binary random variables, 20, 25, 29, 179

binary variables, 166, 192

bivariate linear model, 121

categorical variables, 23

causal assumption, 43, 130, 134, 139, 147, 151,
153

causal effects, 27, 29, 129, 196, 206, 218, 220,
224

causal inference, 27, 129, 211

causal language, 43, 139, 145

causal relationships, 28, 47

central limit theorem, 183, 194

character variables, 20, 25

coefficient of determination, 120, 128, 157

coefficients, 103, 104, 127, 140, 141, 144, 151,
220

confidence interval, 202, 227

confidence level, 202

confounders, 130, 159

confounding variables, 130, 159

control condition, 29, 47

control group, 35, 49

control variables, 159

correlation, 82, 95, 109, 121

correlation coefficient, 82, 95, 121

counterfactual outcomes, 32, 48

critical value, 215, 228

cross-tabulations, 62, 91

cumulative distribution function, 172, 174

dataframes, 18, 25

density function, 170, 193

density histograms, 68, 93

dependent variables, 28, 47, 99, 126

descriptive statistics, 71, 93

difference-in-means estimator, 37, 49, 136, 138,
206, 218

dummy variables, 20

estimate, 196, 226
estimated intercept, 127
estimated slope, 127
estimation error, 199, 226
estimator, 196, 197, 226
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events, 163, 192

expectation, 180, 194

experimental data, 38, 50

experiments, 35, 49

explaining a quantity of interest, 27, 129, 196,
206, 218, 220, 224

external validity, 153, 160

extrapolation, 111

factor variables, 23

factual outcomes, 32, 48

fitted line, 105, 126

fitted linear model, 102, 105, 126, 144

fitted log-log linear model, 116, 128

fitted multiple linear regression model, 160

fitted multiple linear regression model where Xj
is the treatment variable, 160

fitted simple linear model, 126

fitted simple linear regression model, 126

fitted simple linear regression model where X is
the treatment variable, 159

frequency tables, 57, 90

frequentist interpretation of probabilities, 162,
192

histograms, 66, 92
hypothesis testing, 211, 227

independent variables, 28, 47, 99, 126
individual causal effects, 29, 48
intercept, 103

intercept coefficient, 103, 127

internal validity, 153, 160

item nonresponse, 54, 90

large sample theorems, 180

law of large numbers, 180, 194
least squares, 106

level of test, 214, 228

line of best fit, 82, 100, 101, 106
linear association, 82, 95

linear model, 101, 121, 126, 143

linear regression, 101, 126

linear relationship, 82, 83, 95, 109
log-log linear model, 116, 124
logarithmic transformation, 113

margin of error, 205, 227

mean, 22, 25, 72

measuring a quantity of interest, 51, 196, 203
median, 72, 93

misreporting, 54, 90

multiple linear regression model, 121, 143, 159
mutually exclusive events, 163, 192

natural logarithm, 113

non-binary random variables, 20, 25, 29, 179
non-binary variables, 169, 193

nonlinear relationship, 88

nonresponse, 54, 90

normal distributions, 169, 179, 193

normal random variables, 169, 179

null hypothesis, 211, 218, 222, 227

numeric variables, 20, 25

observational data, 38, 50
observational studies, 38, 50, 153
observations, 18, 25

observed outcomes, 100, 126
omitted variables, 159

one-sided p-value, 214

outcome, 47, 163, 192

outcome variables, 28, 47, 99, 126

p-value, 213, 228

p.p., 44, 49, 58, 127, 138, 140, 147, 150, 151,
153, 205, 222, 227

parameter, 179, 196, 226

percentage change, 44, 117

percentage points, 44, 49, 58, 127, 138, 140,
147, 150, 151, 153, 205, 222, 227

percentage-point change, 44, 117

population mean, 180, 194

population variance, 180



INDEX OF CONCEPTS 233

post-treatment variables, 146, 160 simple linear regression model, 101, 121, 126
potential outcome, 30 simulations, 167, 171, 186, 187
potential outcome under the control condition, slope, 104

47 slope coefficient, 104, 127
potential outcome under the treatment condition, standard deviation, 73, 93

47 standard error, 198, 226
pre-treatment characteristics, 36, 49 standard normal distribution, 173, 193
predicted outcomes, 100, 126, 209 standardize, 176
predicting a quantity of interest, 98, 196, 209 standardized estimator, 201
prediction errors, 100, 107, 126 standardized variable, 176, 201
predictors, 99, 126 statistical controls, 143
probability, 162 statistical significance, 215, 228
probability density function, 170, 193 sum of squared residuals (SSR), 107, 120
probability distributions, 165, 192 survey research, 51
proof by contradiction, 211 surveys, 51

proportions, 23
t-distribution, 223

random sampling, 53, 90, 154 t-statistic, 223
random treatment assignment, 35, 36, 49, 134, table of proportions, 57, 91

154 test statistic, 212, 218, 222, 227
random variables, 165, 192 total sum of squares (TSS), 120
randomized controlled trials, 35, 49 treatment condition, 29, 47
randomized experiments, 35, 49, 133, 153 treatment group, 35, 49
RCT, 35, 49 treatment variables, 28, 47
regression line, 101, 126 trial, 163, 192
replication, 203, 215 two-sided p-value, 213, 228
representative sample, 52, 90 two-way frequency tables, 62, 91
residuals, 100, 107 two-way tables of proportions, 64, 92

type | error, 215
sample, 52, 90

sample mean, 180, 188, 194, 203
sample space, 163, 192
sample statistic, 179

unbiased estimator, 199, 226
uniform distribution, 67

unit nonresponse, 54, 90

sample variance, 180, 194 it of t 23 25 43 112 138. 140
sampling distribution, 188, 194, 198, 226 AT gaq e R e A% TR T TR

sampling frame, 54, 90
sampling variability, 180, 194
sampl:lng W:lth replacement, 168, 195 variables, 18, 25
sampling without replacement, 168, 195 variance, 76, 94 194
scatter plots, 78, 94

scientific significance, 224, 228
significance level, 214, 228
simple linear model, 121

unit of observation, 18, 25

z-scores, 84, 94, 176
z-statistic, 212, 218, 222, 228






Index of Mathematical Notation

a, 101, 143, 159

&, 103, 127, 140, 144, 160

B8, 101

Bj, 143,159

B, 102, 104, 127, 138, 140, 151, 153
B1, 145-147, 220, 222

B, 144, 160

A, 30, 47

AX, 104

AY;, 30, 34, 48

AY, 104,112, 127

e, 101, 143, 159

€ 100, 126

&, 102

9, 212, 228

. 169-171, 173, 176, 179, 193
™, 170, 193

S, 22,25

o, 169, 170, 173, 176, 193

02, 169-171, 173, 176, 179, 193
Q, 163, 164, 192

=, 167
~, 169, 171, 173, 176, 179, 193

approx.

~,183

—, 28, 47, 130, 142, 145, 159

cor(X,Y), 82, 95, 121

E, 180, 184, 199, 200, 218
E(X), 180, 181, 183, 188, 194
E[Y;(Xi=1) — Yi(X;=0)], 218
e, 170, 193

estimate;, 199, 200

estimation error;, 199
estimator, 200-202, 212

Ho, 211, 227
Hy, 212, 227

i, 18, 25
log(X), 113, 128
median(X), 72, 93

N (number of observations in the population), 52

N (a normal distribution), 169, 171, 173, 176,
179,183, 193

name of the variable, 22, 25

N(0, 1), 172,173, 176, 183, 193, 201, 202, 212

n, 21, 22, 25, 34, 52, 181, 183, 204

N control group: 207, 218

N treatment group» 207: 218

P, 163, 192
p, 166, 179, 192

R?, 120, 128, 157
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sd(X), 73, 93

SSR, 107,120

(standard error)?, 200
standard error of 31, 222
standard error, 200-202, 212

true value, 199-201
7SS, 120

V, 180, 185, 200

V(X), 180, 183, 188, 194
var(X), 76, 94, 180, 194
var(Y), 204

Var( Ycontrol), 207, 218
VOI‘( Ytreatment), 207, 21 8

X (a predictor), 99, 126

X (a random variable), 18, 22, 25, 166, 169, 171,
176, 179, 181, 183, 188, 193

X (the treatment variable), 28, 47, 130, 159

X (the treatment variable), 145

Xa,..., X, (statistical controls), 145

Xi, 18, 22, 25, 101, 102

Xij, 143, 144, 159, 160
X, 22, 25,72, 180, 181, 183, 188, 194
x, 166, 170

Y, 28, 47, 99, 100, 126, 130, 159
Y;, 101, 126, 143, 159

Y;(X;=0), 30, 47, 218

Y,(X;=1), 30, 47, 218

Y (X=0), 36, 48

Y(X=1), 36, 48

Y, 204

Ycontrol groups 37, 49, 50, 207, 218

Y'ireatment groups 37, 49, 50, 207, 218

Vtreatment group _Vcontrol group: 37: 49: 138: 207: 218
Y;, 102, 126, 144, 160

Y, 100, 105, 112, 126, 127, 209

Z (a confounding variable), 130, 159

Z (the standard normal random variable), 173,
176, 193, 201, 202

ZX, 84, 94

z°%, 213, 228

z,174
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" 11, 26

~,9,26

~, 110, 128

0. 12, 26

*, 9,26

+,9,26

13

/9,26

<-, 10, 26

+ 76, 96

==, 39, 40, 50

[l 42, 50, 61, 187, 208, 229
#,14, 26

##, 9

$, 26, 40, 50, 57, 110, 128, 223

abline(), 80, 97, 111, 128
abs(), 219, 229

arguments, 12, 26
assignment operator, 10, 26

c(), 167, 195
cor(), 86, 97
CSV file, 15

data, 110, 128
data.frame(), 210, 229
dim(), 20, 26

environment, 8

Error in plot.new(): figure margins too large, 66,

109
Error: object not found, 11
exclude, 59, 96

FALSE, 11, 26, 39, 70, 96
for(i in 1:n){}, 187, 190, 194
freq, 70, 96

Google, 11

h, 80, 97

head(), 17, 26
help, 8, 60
hist(), 66, 70, 96

ifelse(), 40, 50, 56
interval, 210, 229

level, 210

Im(), 110, 115, 128, 140, 147, 161
log(), 113, 128

lty, 80, 97

margin, 65, 96
mean, 171, 175, 195
mean(), 22, 26, 96
median(), 72, 97

n, 17
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NA, 11, 26, 59, 96 sample(), 168, 195
na.omit(), 60, 96 sd, 171,175, 195
na.rm, 60, 96 sd(), 75, 97
newdata, 210, 229 setwd(), 15, 26
nrow(), 205, 229 size, 181, 195
NULL, 11, 26, 59, 96 sqrt(), 13, 26
Stack Overflow, 11
plot(), 79, 97, 109 summary()$coef, 223, 229
plots, 8, 66

pnorm(), 195

. t-value, 223
g:fi‘(?qgf; 2'92529 table(), 57, 63, 96, 168
prob, 181, 195 TRUE, 11, 26, 39, 60, 96, 181, 195
prop.table(), 58, 64, 96, 168
v, 80, 97
R console, 8 var(), 76, 97
R errors, 8, 11, 13, 14, 16, 17, 66, 81, 109, 111, View(), 17, 26

187
R functions, 12, 26

working directory, 15, 26
R objects, 10, 26

workspace, 10, 14

R script, 8
read.csv(), 16, 26
replace, 181, 195 x, 79, 97

rnorm(), 171, 195
run icon, 9 y, 79, 97















