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PREFACE

In mathematics, as in any scientific research, we find two tenden-
cies present. On the one hand, the tendency toward abstraction
seeks to crystallize the logical relations inherent in the maze of
material that is being studied, and to correlate the material in a
systematic and orderly manner. On the other hand, the tendency
toward intuitive understanding fosters a more immediate grasp
of the objects one studies, a live rapport with them, so to speak,
which stresses the concrete meaning of their relations.

As to geometry, in particular, the abstract tendency has here led
to the magnificent systematic theories of Algebraic Geometry, of
Riemannian Geometry, and of Topology ; these theories make exten-
sive use of abstract reasoning and symbolic calculation in the sense
of algebra. Notwithstanding this, it is still as true today as it ever
was that intuitive understanding plays a major role in geometry.
And such concrete intuition is of great value not only for the
research worker, but also for anyone who wishes to study and
appreciate the results of research in geometry.

In this book, it is our purpose to give a presentation of geometry,
as it stands today, in its visual, intuitive aspeets. With the aid of
visual imagination we can illuminate the manifold facts and prob-
lems of geometry, and beyond this, it is possible in many cases to
depict the geometric outline of the methods of investigation and
proof, without necessarily entering into the details connected with
the strict definitions of concepts and with the actual calculations.
For example, the proof of the fact that a sphere with a hole can
always be bent—no matter how small the hole—or of the fact that
two different toroidal surfaces can not in general be wrapped onto
each other conformally, can be treated in such a fashion that even
one who does not wish to follow the details of the analytical argu-
ments, may still gain an insight into how and why the proof works.

In this manner, geometry being as many-faceted as it is and
being related to the most diverse branches of mathematics, we
may even obtain a summarizing survey of mathematics as a whole,
and a valid idea of the variety of its problems and the wealth of
ideas it contains. Thus a presentation of geometry in large brush-
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iv PREFACE

strokes, so to speak, and based on the approach through visual
intuition, should contribute to a more just appreciation of mathe-
matics by a wider range of people than just the specialists. For
it is true, generally speaking, that mathematics is not a popular
subject, even though its importance may be generally conceded.
The reason for this is to be found in the common superstition that
mathematics is but a continuation, a further development, of the
fine art of arithmetic, of juggling with numbers. Our book aims
to combat that superstition, by offering, instead of formulas, figures
that may be looked at and that may easily be supplemented by
models which the reader can construct. This book was written to
bring about a greater enjoyment of mathematics, by making it
easier for the reader to penetrate to the essence of mathematics
without having to weight himself down under a laborious course
of studies.

With aims like these to strive after, there could be no question
of strict systematic arrangement or of completeness, nor was it
possible to treat individual topics exhaustively. Also, it was im-
possible to assume the same amount of mathematical training on
the reader’s part as a prerequisite for all sections of the book;
while the presentation is for the most part quite elementary, there
are nevertheless some beautiful geometric investigations which can
be fully explained only to those with a certain amount of training
if tiresome length of presentation is to be avoided.

The appendices to the various chapters all assume a certain
amount of knowledge for their understanding ; they are throughout
supplements to, and not explanations of, the main text.

The various branches of geometry are all interrelated closely and
quite often unexpectedly. This shows up in many places in this
book. Even so, because of the great diversity of the material
treated, it was necessary to make each chapter more or less self-
contained, and to avoid making the later chapters dependent for
their understanding on a complete acquaintance with the earlier
ones. We hope that, by making a few minor repetitions, we have
rendered each chapter taken by itself—occasionally even an indi-
vidual section taken by itself—understandable and interesting.
We want to take the reader on a leisurely walk, as it were, in the
big garden that is geometry, so that each may pick for himself a
bouquet to his liking.
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The basis for this book was a course of lectures, given four
times weekly, called Anschauliche Geometrie, which I gave at
Gottingen in the winter of 1920-21 and for which W. Rosemann
worked out notes. In essence, the outline and contents of that
course have been retained for this book, but S. Cohn-Vossen has
re-worked many details, and has supplemented the material in
quite a few places.

The line diagrams have all been drawn by K. H. Naumann and
H. Bodeker (Goéttingen). The photographic pictures were taken
by W. Jentzsch (Goéttingen), and the models he photographed
belong to the collection of the Gottingen Mathematical Institute.
The following have read the manuscript and proofs and made many
valuable suggestions: W. Fenchel, H. Lewy, H. Schwerdtfeger,
H. Heesch, and especially A. Schmidt. The final arrangement of
the book has been S. Cohn-Vossen’s responsibility.

Davip HILBERT
Gottingen, June 1932
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CHAPTER 1
THE SIMPLEST CURVES AND SURFACES

§ 1. Plane Curves

The simplest surface is the plane. The simplest curves are the
plane curves, and of these the simplest is the straight line. The
straight line can be defined as the shortest path between two points,
or as the intersection of two planes, or as an axis of rotation.

The next simplest curve is the circle. Even so simple a figure as
this has given rise to so many and such profound investigations
that they could constitute a course all by themselves. We define the
circle as the curve whose points are of
constant distance from a given point. We
generate it by means of the well-known
construction using a thread or a compass.

From this construction it is evident that the 5
circle is a closed curve that is everywhere

convex. Hence a definite straight line—the

tangent—can be drawn through any point

of the circle so as to have only this one point

—the point of contact—in common with the Fic. 1

circle while remaining outside the circle

everywhere else (see Fiig. 1). If B is the point of contact, the radius
MB must be the shortest path joining the center M to the tangent ¢.
For, all other points of ¢, being outside the circle, must be farther
from M than the point of contact. From this it follows that the
radius MB is perpendicular to the tangent. To prove this, we reflect
the center M in the tangent ¢, i.e. we drop the perpendicular from M
onto ¢ and extend it by its own length to M’; M’ is called the image
of M. Now since MB is the shortest path from M to ¢, it follows
because of symmetry that M’B is the shortest path from M’ to ¢.
Consequently the polygonal path MBM’ must be the shortest path
from M to M’ and is thus not bent at B; that is, MB is indeed
perpendicular to t¢.



2 I. THE SIMPLEST CURVES AND SURFACES

Let us consider a generalization suggested by the construction of
the circle. In constructing the circle by means of a thread, we had
to hook the closed thread around a fixed point, the center, and keep
it stretched while drawing the circle. We obtain a similar curve if
we keep the closed thread stretched around two fixed points. This
curve is called an ellipse, and the two fixed points are called its foci.
The thread construction characterizes the ellipse as the curve with
the property that the sum of the distances from two given points
to any point on the curve is constant. If the distance between the
two points is diminished until the points coincide, we obtain the
circle as a limiting case of the ellipse. There is a simple property
of the ellipse corresponding to each of the properties of the circle
mentioned above. The ellipse is a closed curve that is convex every-
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where, and at each point it has a tangent that remains outside the
ellipse everywhere except at the point of contact. Corresponding to
the radius of a circle are the two line-segments connecting a point
of the ellipse with the foci; these are called the focal radii of the
point on the ellipse. In analogy to the fact that any tangent to a
circle is perpendicular to the radius at the point of contact, every
tangent to an ellipse forms equal angles with the focal radii at the
point of contact. In the notation of Fig. 2, this statement reads as
follows: /F,BT,= /F.BT,. To prove this, we reflect F; in the
tangent (Fig. 8), and call the image F'y’. The straight line F, F,’ is
the shortest path joining F'; and F'y’. Letitintersect the tangent at B,.
Then F'; B, F; is the shortest path from F, via a point of the tangent
to F'y; for if B, is any other point on the tangent, Fy B, Fo=F, B, F,’
is longer than F, B, F,=F, B, F;. But the shortest path from F,
to F, meeting the tangent is formed by the focal radii of B, the
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point of contact. For since every other point of the tangent lies
outside the ellipse, the sum of the distances from the foci to such a
point must always exceed the sum of the distances to the point B on
the ellipse. Hence B coincides with B,. Now F, and F’ are sym-
metrical with respect to the straight line 7', T',, so that / Fo’B, T, —
LF;B;,T,. Also the vertical angles Fy’B;T»
and F', B, T, are equal, and it follows that our
assertion is true.

This property of the tangent to an ellipse
admits of an application to optics to which
the terms focus and focal radius owe their
origin:! if a source of light is located at one
of the foci of a mirror having the form
of an ellipse, the reflected light will converge
at the other focus.

Another construction, which is not quite as easily carried out as
the construction of the ellipse but is just as simple in principle,
generates a curve with the property that the difference of the
distances from two fixed points to any point on the curve is con-
stant. The curve is called a hyperbola, and the two fixed points are
called its foci. It is thus required that F; B — F, B — const. = a or
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F;B'— F;B’— const. = a for every point B or B’ on the curve
(see Fig. 4). The hyperbola consists, accordingly, of two separate

! The literal meaning of the Latin word focus is “fireplace.” The German term
for focus is Bremnpunkt or “burning point.” [Trans.]



4 I. THE SIMPLEST CURVES AND SURFACES

branches. Intuitively it is clear that the hyperbola is everywhere
convex and has a tangent at every point. Later on we shall prove
(see footnote 3, p. 9) that here, as in the case of the ellipse and the
circle, the tangent has no point in common with the curve other
than the point of contact. By a method analogous to that used in
proving the corresponding property for the ellipse, it can be proved
that the tangent to a hyperbola bisects the angle between the focal
radii at the point of contact (see Fig. 6).

Another curve, the parabola, can be obtained from the ellipse by
a limiting process (Fig. 5). To this end, we fix one focus, say F},
and the vertex S nearest to this focus (where the vertices of the
ellipse are defined to be the two points of intersection of the ellipse
with the line joining the foci). Let us consider the ellipses that
result when the second focus F'; keeps moving further and further
away from F; on the extension of the line SF,. These ellipses
approach a limiting curve, and this is the parabola. From this
limiting process we can derive a simple definition of the parabola.
If in the thread construction of the ellipse the distance F, F is
large, then the thread from F', is approximately parallel to SF, as
long as the pencil is near S (see Fig. 5). If a perpendicular ! is
now erected at any point L on F, F, and if L’ is the foot of the
perpendicular dropped from B onto [l it follows that the equation

F,B+ BFy=F,B + BL’ + LF, — const.
is approximately true. If a new constant is introduced in place of

const.— LF,,
we get
F: B+ BL’ — const.

(for, LF, is constant for a fixed curve). Thus the last equation
becomes more and more nearly correct as the distance F, F, is
increased, and for the limiting curve it is strictly true. Hence the
parabola is a curve with the property that the sum of the distances
of any point on it from a fixed point and a fixed straight line is a
constant. This comes to the same thing as saying that the distance
of any point on the curve from a fixed point is equal to the distance
from a certain fixed straight line, namely the line, known as the
directrix of the parabola, that is parallel to / and is on the other
side of S at a distance from S equal to SF,.
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If a ray of light parallel to SF, strikes a parabolic mirror, the
reflected ray will converge at F,. This is another consequence of
the above limiting process.

We have considered the “family” of all ellipses that have a vertex
and the nearest focus in common. Let us now consider the family
of all ellipses having both foci in common. This family of ‘“con-
focal” ellipses “covers the whole plane simply”; i.e. given any
point of the plane there is exactly one curve of the family passing
through it. For, the sum of the distances from the two foci to the
given point has a definite value, so that the point lies on.the ellipse
the sum of whose focal distances has that particular value.?

Let us now add the family of all hyperbolas having the same
pair of foci as the ellipses we have just been considering. This
family also covers the plane simply.?
Thus there are exactly two curves of
the system of confocal ellipses and
hyperbolas passing through every
point of the plane (see Fig. 6). At
every given point, except at the foci,
the tangent to the ellipse and the
tangent to the hyperbola bisect the
two supplementary angles formed by
the focal radii at the point and are
therefore perpendicular to each other. F1c. 6

Thus the confocal ellipses and hyperbolas form an ‘“orthogonal
net of curves” (two families being called orthogonal if every curve
of one family intersects every curve of the other at right angles,
where the angle between two curves at their point of intersection
is defined to be the angle between their tangents at this point). In
order to obtain an over-all view of this system of curves, we begin
with the perpendicular bisector of F'; F, (see Fig. 7) and then pass
through the family of hyperbolas. These flatten out until we arrive

? The straight-line segment joining the foci is a (degenerate) ellipse: the sum
of the focal distances of any point on this ellipse is equal to the distance between
the foci.

* The part of the line joining the foci that is not between the foci is a degen-
erate hyperbola, and so is the perpendicular bisector of the segment joining the
foci. In the latter case the difference of the focal distances has the constant
value zero.
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at the pair of half-lines that continue F, F; on either side. The
plane has now been completely covered once. We then jump over
to the line segment F', F,. This broadens first into very flat ellipses

which gradually become more
and more like circles as they
grow indefinitely in size. We
have now covered the plane
for a second time.

Another particularly simple

F1c. 7

example of orthogonal fami-
lies of curves are concentric
circles and the straight lines
passing through their com-
mon center. This figure is
obtained as a limiting case
from the above when the foci
approach each other until they
coincide; the ellipses become

circles, and the hyperbolas become pairs of straight lines.

The contour lines and lines of maximum slope on a map con-
stitute another example of orthogonal nets of curves.

In conclusion, let us mention another thread construction that

]

2xkr

F1G. 8

leads to an orthogonal net of curves.
A thread is wound around a closed
curve, say a circle. We consider the
path traced by the free end when the
stretched thread is unwound (see
Fig. 8). The curve obtained in this
way is called an “involute” of the
circle, and is seen to be a spiral.
It is apparent from the construction
that the curve is always perpendicular
to one of the two tangents from any
of its points to the circle. All the
other coils of the spiral also cut this
tangent at right angles, and the seg-

ment of the tangent that is cut off by two successive coils has
a constant length which is equal to the circumference of the

renerating circle.
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We can draw any number of other involutes of the same circle
by starting to unwind the thread at different points of the circum-
ference. On the other hand, this whole family of involutes can also
be obtained by rotating one member of the family about the center
of the circle. The family covers the whole plane simply, except for
the interior of the circle. It is orthogonal to one of the two families
of half-tangents of the circle.

For any other family of straight lines, the orthogonal family of
curves also consists of involutes; they are always
generated by the curve (in our example the circle)
that the given straight lines envelop. We shall re-
turn to this phenomenon in the study of differential
geometry (p. 178) and of kinematics (pp. 276, 277).

§ 2. The Cylinder, the Cone, the Conic Sections and
Their Surfaces of Revolution

The circular cylinder is the simplest curved sur-
face. It can be obtained from the simplest curves
—the straight line and the circle—by moving a
straight line around the circumference of a circle
while keeping it perpendicular to the plane of the
circle. Another way to get the cylinder is by rotat-
ing a straight line about an axis parallel to it. Thus
the circular cylinder is a surface of revolution.
The surfaces of revolution are an important class
of surfaces, characterized by the property that Fre. 9
they can be generated by rotating a plane curve about an axis lying
in the plane of the curve. We meet them in the course of everyday
living in the guise of drinking glasses, bottles, etc.

A circular cylinder intersects every plane at right angles to its
axis in a circle. A plane not at right angles to the axis nor parallel
to it intersects the cylinder in a curve that looks like an ellipse.
We shall prove this this curve really is an ellipse. To this end, we
take a sphere that just fits into the cylinder, and move it within the
cylinder until it touches the intersecting plane (Fig. 9). We then
take another such sphere and do the same thing with it on the other
side of the plane. The spheres touch the cylinder in two circles
and touch the intersecting plane at two points, F; and F,. Let B
be any point on the curve of intersection of the plane with the
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cylinder. Consider the straight line through B lying on the cylinder
(i.e. parallel to the axis). It meets the circles of contact of the
spheres at two points, P, and P,. BF,; and BP, are tangents to a
fixed sphere through a fixed point B, and all such tangents must be
equal, because of the rotational symmetry of the sphere. Thus
BF, = BP,; and similarly BF,— BP,. It follows that

BF1+BF2=BP1+BP2=P1P2.

But by the rotational symmetry of our figure, the distance P, P, is
independent of the point B on the curve. Therefore BF',+ BF, is
constant for all points B of the section; i.e. the curve is an ellipse
with foci at F'; and F',.

The fact that we have just proved can also be formulated in
terms of the theory of projections as follows: The shadow that
a circle throws onto an oblique plane is an ellipse if the light rays
are perpendicular to the plane of the circle.

The circular cone is, next to the circular cylinder, the simplest
surface of revolution. It is obtained by rotating a straight line
about an axis that intersects it. Thus the tangents from a fixed
point to a fixed sphere form a circular cone, and so do the rays
passing through the circumference of a circle from a fixed point
on its axis.

A plane perpendicular to the axis of a circular cone intersects
the cone in a circle. When the plane is slightly inclined, the section
becomes an ellipse. This is proved with the aid of two auxiliary
spheres in exactly the same way as in the case of the cylinder.

As the intersecting plane is inclined more towards the axis, the
ellipse becomes more elongated. Finally the plane becomes parallel
to a generating line of the cone, and the section ceases to be a closed
curve. A limiting process that we have carried out before (see
Fig. 5, p. 3) shows that the section has become a parabola.

If the intersecting plane is inclined still nearer to the axis of the
cone, it meets both branches of the cone (which it did not do in the
previous cases). Now the curve of intersection looks like a hyper-
bola, (see Fig. 10). In order to prove that it really is a hyperbola,
we consider the two inscribed spheres that touch both the cone
and the intersecting plane. This time the spheres occupy different
branches of the cone but lie on the same side of the plane (whereas
in the first case both spheres were in the same branch of the cone
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but on opposite sides of the plane). In analogy to the proof on
pages 7 and 8, we have (See Fig. 10).

BF,=BP,, BF;=BP,, BF,— BF,—BP;— BP,— P, P,—const.

We have thus seen that every plane that does not contain the
vertex intersects a cone either in an ellipse? or in a parabola or in a
hyperbola. There is, accordingly, a relation between these curves
that justifies applying the com-
mon term conic section? to all
of them.? Apart from the three
types of “proper” conics men-
tioned above, there are the limit-
ing cases obtained from them by
letting the intersecting plane pass
through the vertex of the cone or
letting the cone degenerate into a
cylinder. Thus the following con-
figurations may be considered as
degenerate conics: a single point,
a straight line “counted twice,”
twointersecting straight lines, two
parallel straight lines, and the
empty plane. The conics are also
known as the curves of the second
order because they are repre-
sented by equations of second
degree in Cartesian coordinates.
The property of being a curve of
second order cannot be directly
expressed in visual terms. It is true that it implies another property
that is easily accessible to visual perception: a second-order

Fic. 10

*The circle being considered as a limiting case of an ellipse.

* Or simply conic. [Trans.]

* Thus the shadow of a circle on any plane is a conic if the light comes from
a point on the axis of the circle. We can see that the curves obtained in this way
include the hyperbola, for the cone of light coming from an automobile headlight
illuminates the inside of a branch of a hyperbola on the highway. From the
fact that every tangent to a hyperbola can be considered as the shadow of a
tangent to a circle, it follows that the point of contact is the only point that
any tangent has in common with a hyperbola, as we stated on page 4.
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curve cannot intersect a straight line in more than two points.
But there are many other curves besides the conics that share
this latter property.

In the appendices to this chapter we shall discuss two other
geometrical phenomena which, like the construction by use of the
foci, characterize the non-degenerate conics. They are the pedal-
point construction of the conics and the properties of the directrices.

Now that we have seen how the cylinder and the cone are gener-
ated by rotating a straight line about an axis, it would appear
reasonable to consider the surfaces of revolution obtained by rotat-
ing a conic section. Let us choose an axis of symmetry as the axis of
rotation; for then a half-turn merely interchanges the parts of the
curve lying on either side of the axis, so that we obtain a single
surface, whereas we would ob-
tain a more complicated con-
figuration on rotating the curve
about any other axis.

Let us begin with an ellipse.
It has two axes of symmetry,
giving rise to two different sur-
faces of revolution. We obtain
a prolate spheroid (see Fig.
11) or an oblate spheroid (see
Fig. 12) depending on whether
we rotate the ellipse about its major axis or about its minor axis.
The egg is an approximation to the former type of spheroid, while
the earth is a familiar example of the latter type.

We get the transitional case between the
two types of spheroids by letting the differ-
ence between the major and minor axes of the
ellipse approach zero. In the limit, the ellipse
becomes a circle, and our surface of revolution
becomes a sphere. Since the circle is sym-
metrical about every diameter, the sphere can
be generated by rotation in infinitely many
ways. This property is characteristic of the sphere; it is the only
surface that can be generated by rotation in more than one way.

The parabola has only one axis of symmetry. Thus it gives rise to
only one surface of revolution, the paraboloid of revolution (Fig. 13).

F1c. 11 F1G. 12

F1G. 18
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The hyperbola, on the other hand, gives rise to two different sur-
faces of revolution. According to whether we rotate a hyperbola
about the line connecting the foci or about the perpendicular
bisector of that line, we
obtain the hyperboloid of
\/ revolution of two sheets

(Fig. 14) or the hyper-
boloid of revolution of one
sheet (Fig. 15). Now it is
/ \ a surprising fact that there

are infinitely many straight
lines on the hyperboloid of
one sheet. Indeed, this sur-
face can also be generated by rotating a straight line about a skew
axis. (So far we have have only considered surfaces obtained by

rotating a curve about an axis in its own plane.) The proof of
this fact can only be given analytically. It is visually apparent,

“ however, that the construction indicated
.9\
//
//

Fic. 14 F16. 15

b must generate the surface in two different

Fic. 16 F1G. 17

ways; for if the straight line ¢’ (in Fig. 16) and the original gen-
erating line g are symmetrical with respect to a plane through the
axis a, then g’ must generate by rotation the same surface as g.
Accordingly, there are two families of straight lines on the hyper-
boloid of revolution of one sheet, and each family covers the surface
completely. Every straight line of one family intersects every
straight line of the other (or is parallel to it), but any two lines of
the same family are mutually skew (see Fig. 17).
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§ 3. The Second-Order Surfaces

The surfaces obtained by rotating conics are special types of a
broader class of surfaces which are called, for analytical reasons,
“surfaces of second order” ; these are the surfaces satisfying equa-
tions of the second degree in three-dimensional Cartesian coordin-
ates. The second-order surfaces are also known as “quadrics.” It is
easy to show analytically that the quadrics have the property of
intersecting every plane in a (proper or degenerate) conic.
Furthermore, the cone consisting of all the tangents from a fixed
point to a quadric cuts every plane in a conic, and the points of

(
il )

71—\

F1G. 18 F16. 19

contact of this cone with the surface form a conic. Moreover, the
quadrics are the only surfaces having any one of these properties.:
Let us consider the different types of quadrics.

By generalization of the circular cylinder we obtain the elliptic
cylinder; it is generated by a straight line moved along an ellipse in
such a way as to be always perpendicular to the plane of the curve.
We get the parabolic and the hyperbolic cylinder from the parabola
and the hyperbola by the same procedure. (See Figs. 18 and 19.)

An analogous generalization of the circular cone produces the
general cone of the second order; it consists of the lines joining the
points of any non-degenerate conic to a fixed point outside the plane
of the curve. We must bear in mind, however, that we do not get

* A consequence of the first of these properties is that a straight line that
does not have a whole segment on the surface cannot have more than two points
in common with it. However, there are many other surfaces that share this
property with the second-order surfaces—the surface of a cube, for example.



§ 8. THE SECOND-ORDER SURFACES 13

different types of cones by starting variously with an ellipse, a para-
bola, or a hyperbola, although there were three distinct classes of
cylinders corresponding to these curves. Indeed, we have seen that a
variable plane intersects a fixed cone in all three types of second-
order curves, which is not the case with a fixed cylindrical surface.

The most general cone and the elliptical cylinder can also be
obtained from the corresponding surfaces of revolution by a
deformation called dilatation. This is achieved by holding fixed
all the points of some arbitrary plane containing the axis of rota-
tion and moving all other points in a fixed direction toward the
plane or away from it in such a way that the distances from
the plane of all points in space change in a fixed ratio. It can be
proved that such a transformation changes all circles into ellipses
(or circles), straight lines into
straight lines, planes into planes,?
and all second-order curves and
surfaces into second-order curves
and surfaces respectively.

By dilatation of a spheroid
(either prolate or oblate), we get
the most general ellipsoid. While Fie. 20
a spheroid is symmetrical about every plane through the axis, the
general ellipsoid has only three planes of symmetry. They are
called the principal planes of the ellipsoid. They are mutually
perpendicular, and the segments of their lines of intersectio: cut
off by the surface are three unequal axes, called the major, mean,
and minor axes of the ellipsoid (Fig. 20). The general ellipsoid
can be transformed back into an oblate or a prolate spheroid by
dilatations that make the major and the mean axes or the mean
and the minor axes, respectively, equal.

The ellipsoidal shape can often be recognized in stones that are
exposed to the waves of the ocean. A stone of any shape becomes
increasingly similar to an ellipsoid as the water wears away at it.
The mathematical study of this phenomenon involves problems of
the theory of probability.

The hyperboloids of one and of two sheets and the elliptic para-
boloid are the most general surfaces that can be obtained from

* A dilatation subjects the figures of a plane to the same changes as does a
parallel projection of this plane onto an intersecting plane.
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the hyperboloids of revolution and the paraboloid of revolution by
dilatations. Both types of hyperboloids have three principal planes;

\ |
2 N1
P
F1G. 21

the elliptic paraboloid has two.

Like the corresponding sur-
face of revolution, the general
hyperboloid of one sheet con-
tains two families of straight
lines, since a dilatation always
transforms straight lines into
straight lines. Again the lines
are arranged in such a way that
every line of one family has a
point in common with every
line of the other family and any

two lines of the same family are skew.
This gives rise to the following construction of the hyperboloid of

one sheet (see Fig. 21).

F16. 22

We start with any three straight lines

of one family. Since no two of
them have a plane in common,
every point P on one of them is
on one and only one straight
line » meeting the other two
given lines, namely the inter-
section of the plane containing
P and the second line with the
plane containing P and the
third line. p has three points
in common with the hyper-
boloid. But no straight line
can intersect a quadric in more
than two points. Consequently
p must be one of the lines on
the hyperboloid. If the point P

traverses the first line, the corresponding line p will take on the
positions of all the straight lines of that family on the hyperboloid
to which the first line does not belong. If we choose any three straight
lines of this family, we can get the other family by the same pro-
cedure, and of course this will also include the three lines with
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which we started originally. The construction shows that every
pair of straight lines of the same family must be skew, provided it is
at all possible to find three non-coplanar straight lines in one of the
families. For, if we could find three skew straight lines with which
to carry out our construction, while p and p’ were to meet at a point
@, (Fig. 21), then the original lines would all have to lie in the
plane PP’Q, in contradiction to one of the assumptions. On the
other hand, it is clear that our surface would be not a hyperboloid,
but a plane, if three lines of the same family always turned out
to be coplanar.

Thus three skew straight lines always define a hyperboloid of
one sheet, except in the case where they are all parallel to one plane
(but not to each other). In this case they determine a new type of
second-order surface, called the hyperbolic paraboloid, which does
not include any surface of revolution as a special case. The hyper-
bolic paraboloid looks somewhat like a saddle (see Fig. 22). It has
two mutually perpendicular planes of symmetry which it intersects
in parabolas. Like the three straight lines that we started with
in the construction of the surface, all straight lines belonging to a
given one of the two families are parallel to a fixed plane. It is
apparent on inspection that every plane intersects our surface in
a curve that extends to infinity, so that the intersection can never
be an ellipse. Consequently the hyperbolic paraboloid cannot be
obtained from any surface of revolution by a dilatation, for there
are circles on every surface of revolution, and these would be
transformed into ellipses by a dilatation.

We have thus learned a new method for generating surfaces.
It consists of fixing a certain course in space along which we move
a straight line. A surface that can be generated in this manner
is called a ruled surface. Thus of the nine different types of quadrics,
six are ruled surfaces, namely the three kinds of cylinders, the cone,
the hyperboloid of one sheet, and the hyperbolic paraboloid. Of
these, the last two are distinguished by the special property that each
point of the surface is on more than one of the straight lines. A
surface that contains two families of straight lines or “rulings” is
called a doubly ruled surface. The plane and the two last-mentioned
quadrics are the only doubly ruled surfaces.

The remaining three types of quadrics—the ellipsoid, the elliptic
paraboloid, and the hyperboloid of two sheets—cannot contain any
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straight lines, as is immediately evident from the fact that none of
these surfaces extends uninterruptedly to infinity in any two oppo-
site directions.

The two families of straight lines that lie on the hyperboloid of
one sheet and on the hyperbolic paraboloid have a surprising prop-
erty. Let us imagine all these straight lines to be made of a rigid
material and fastened together at all the intersections in a way
that permits of rotation but not of sliding. It would seem reason-
able to think that the straight lines fastened in this way must form
a rigid framework. But as a matter of fact, the framework is

FI1G. 23a

movable (see Figs. 23a and 23b). In order to get a picture of the
way in which the model of the hyperboloid can change its form, we
shall keep in a fixed horizontal position the principal plane whose
intersection with the surface is an ellipse, and try to deform the
framework in such a way that this plane always continues to be a
principal plane. Since the hyperboloid and the hyperbolic para-
boloid are the only doubly ruled surfaces (except for the plane),
it is clear that the configuration obtained by deforming the rod
model of the hyperboloid must either stay a hyperboloid or become
a hyperbolic paraboloid, and it can be proved that the latter cannot
occur. We may now try to raise the framework up in such a way
as to keep making the rods more and more nearly perpendicular to
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the principal plane. Then the surface becomes progressively less
curved. The intersection with the principal plane traverses the
family of confocal ellipses described in § 1 which become more and
more narrow. In the limit, the framework folds up in a vertical
plane, and the rods are tangents to a hyperbola in this plane, while
the horizontal ellipse degenerates into a double straight-line segment.
In much the same way, we can deform the framework in the opposite
direction by inclining the rods more closely to the horizontal plane.
In this process the constriction of the surface near the principal plane
becomes more pronounced,
and in the limit the struc-
ture folds up in a horizontal
plane in which the rods now
envelop an ellipse. We shall
give an analytic proof for
the movability of the rod
model in one of the appen-
dices to this chapter.

We can proceed analog-
ously for the hyperbolic
paraboloid. Here the frame-
work always retains the
form of a paraboloid, fold-
ing up to form the envelope
of a plane parabola in both FIc. 23b
limiting cases.

There is yet another criterion for classifying the quadrics into
two types. Three of them—the hyperbolic and parabolic cylinders
and the hyperbolic paraboloid—do not intersect any plane in a
circle; for, any plane section of any one of these surfaces extends
to infinity. On each of the six other types of surface, however,
there are infinitely many circles, which is also connected with the
fact that these six surfaces include surfaces of revolution as special
cases, in contrast to the three types mentioned first.

We shall use the ellipsoid to illustrate the proof of the existence
of circular sections (see Fig. 24). Every plane through the mean
axis b cuts the ellipsoid in an ellipse having one axis equal to b.
Beginning with the plane containing b and the minor axis ¢ of the
ellipsoid and rotating about b until the plane containing b and the
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major axis a of the ellipsoid is reached, the section is at first an
ellipse with its other axis shorter than b, but in the final position
is an ellipse with its other axis longer than b. Somewhere in between
there must be a position of the intersecting plane where the second
axis is equal to b, so that the section is a circle. Because of the
symmetry of the ellipsoid, there is a second plane through b—
obtained by reflection of the first one in the plane (b, ¢)-—which also
intersects the surface in a circle. Furthermore, it can be proved
that every plane parallel to a circular section also intersects the
ellipsoid in a circle. Thus there are two families of parallel circles
on every ellipsoid (see Fig. 25). On the ellipsoid of revolution, the
two families coincide.

The same considerations can be applied to other second-order
surfaces whose intersections with
some planes are closed curves.

A theorem similar to the one
considered above, concerning the
straight lines on the hywperboloid,
applies to the two families of cir-
/' cular sections. Let all the circles be
fastened together at their points of
intersection in such a way that they
can rotate without sliding. The re-
sulting framework is not rigid, but movable. (In Figs. 25a and 25b,
circular disks made of cardboard are attached in mutually inter-
secting positions by means of suitably chosen slits. The reader
will be satisfied that this model does not differ essentially from
the one described above.) The families of surfaces obtained by
changing the form of such movable models of circular disks are
not the same as the families obtained from the rod models. The
conics in the principal planes of the present model do not in general
form a confocal family. For example, a model of circular disks
forming a general ellipsoid can always be changed into the form
of a sphere; here every section by a plane of symmetry is a circle,
although a circle cannot appear in a family of confocal ellipses.
Like the rod model, the model of circles is movable to such an extent
that it can be folded up into a plane.

Although the two kinds of models are very different, they are
related by a transitional case. This is the movable rod model of the

Fi6. 24
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hyperbolic paraboloid, which may also be regarded as a limiting
case of a circle model in which the radii of the circles have become
infinite, i.e. in which the circles have become straight lines. If we
have a family of hyperboloids of one sheet approaching the form

F1G. 26a F16G. 25b

of a hyperbolic paraboloid, both the circles and the straight lines
on the hyperboloid become straight lines on the paraboloid.

§ 4. The Thread Construction of the Ellipsoid,
and Confocal Quadrics

Since the quadrics play a role in space which is analogous to that
of the conics in the plane, it is not unreasonable to investigate the
possibility of adapting the thread construction of the ellipse to
these surfaces. The problem was solved by Staude, who in 1882
found a thread construction for the ellipsoid. His construction
makes use of a fixed framework consisting of an ellipse and a hyper-
bola (see Fig. 26). The plane of the hyperbola is perpendicular to
the plane of the ellipse and passes through the major axis of the
ellipse. The hyperbola has its vertices at the foci F; and F, of the
ellipse and has its foci at the vertices S; and S, of the ellipse; the
hyperbola is thus uniquely determined once the ellipse is given.

One end of a thread is now attached to a vertex, say S;, of the
ellipse. The other end of the thread is then passed behind the
nearest branch of the hyperbola and in front of the ellipse and
finally attached to F',. If we stretch the part of the thread that is
between the hyperbola and the ellipse, the thread will occupy the
polygonal path S; HBEF,, where the part BHS; is the shortest path
from B to S; via a point on the hyperbola, and BEF, has a corres-
ponding property. If the point B now changes its position in such
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a way as to keep the thread stretched, it will move on an ellipsoid.
When the thread is arranged as in Fig. 26, the possible positions

FI1G. 26

taken on by B cover a quarter
of the ellipsoid, namely the
front part of the lower half.
The other quarters can be ob-
tained by passing the thread
through the framework accord-
ing to different schemes before
attaching the second end to F,.}

The part played by the
framework of two conics in the
construction of the ellipsoid is
analogous to that played by the
foci in the construction of an
ellipse. For this reason we call
them focal curves (focal ellipse
and focal hyperbola) of an
ellipsoid. In general, we say

of any quadric that two given conics are its focal curves if their
planes are principal planes of the surface and intersect it in conics

F1c. 27

that are confocal with the focal
curves. Since each of the sec-
tions must be an ellipse or a
hyperbola, we have to consider
four possible cases. If both sec-
tions are ellipses, we get an
ellipsoid (Fig. 27). If both are
hyperbolas, we get a hyper-
boloid of two sheets (Fig. 28).
If the surface cuts the plane of
the focal hyperbola in a hyper-
bola and that of the focal ellipse
in an ellipse, it is a hyperboloid
of one sheet (Fig. 29). The

* The ends of the thread may also be attached to the ellipse and the hyperbola
at any other points, instead of at S: and F", the only requirement being that the
relative positions of the ends do not make it impossible to stretch the thread

as prescribed.



§ 4. THREAD CONSTRUCTION OF ELLIPSOID, AND CONFOCAL QUADRICS

fourth possibility—
where the surface
cuts the plane of the
focal hyperbola in an
ellipse and that of
the focal ellipse in a
hyperbola—is ruled
out; for, here the el-
lipse and the hyper-
bola would have to
intersect the straight
line F', F, (in Fig. 30)
in four distinct points
E,, E,, H,, and H,,
and therefore the
plane of the focal
hyperbola would have an
ellipse and two points
H,, H, not on the ellipse
in common with the sur-
face, and this would con-
tradict the definition of a
second-order surface.

If the thread construc-
tion of the ellipsoid is per-
formed with threads of
different lengths, while
the focal curves are fixed,
there results a family of
“confocal ellipsoids” (i.e.
ellipsoids having the same
focal curves) which fills
the whole space simply.
The family of hyperbol-
oids of two sheets with
the same focal curves
also fills the whole space
simply, and so does the
corresponding family of

F1c6. 29
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hyperboloids of one sheet, thus one ellipsoid, one hyperboloid of
one sheet, and one hyperboloid of two sheets pass through any given
point in space (see Fig. 81). Now it is true, just as in the case of
confocal conics in the plane, that the confocal quadrics in space
intersect each other at right angles, i.e. the tangent planes of the
three surfaces passing through any given point in space are mutually
perpendicular.? Such systems of three mutually orthogonal families
of surfaces—the systems of confocal quadrics being the outstanding
example—occur in many mathematical and physical considerations.
Thus the analytic repre-
sentation of these sur-
faces leads to “elliptic
coordinates,”” which
have proved very effec-
tive in the treatment
of numerous problems,
among them problems
in astronomy.

We can get an over-
all picture of the way
in which a system of
confocal quadrics is
built up, by going over
the different surfaces
in a certain order. Let
us start with the very large almost spherical surfaces of the family
of ellipsoids and then gradually make the major axes shorter. Since
the surfaces are subjected to unequal compressions in the directions
of the three axes, they must become flatter and lose their resem-
blance to spheres as the process continues. As a limiting case of
the ellipsoids we finally get the inside of the focal ellipse, covered
twice. In the plane of this focal ellipse, we now jump over to the
part that is outside the curve; if we also imagine this part of the
plane doubly covered, it serves as the limiting case of a flattened
hyperboloid of one sheet. Beginning with this limiting surface,
we pass through the family of hyperboloids of one sheet which get
progressively steeper and approach the plane of the focal hyperbola

F1c. 30

* The points of the focal curves are exceptional; here two of the three planes
are indeterminate, Cf. the following paragraph.
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from both sides. Meanwhile the ellipses in the plane where the
hyperboloids are narrowest become more slender as they pass
through a confocal family, until they become “infinitely thin,” i.e.
fold up to form a double straight-line segment. The surfaces have
collapsed to form a double cover for the plane strip bounded by the
two branches of the focal hyperbola.* Now we make a discontinuous
transition once more in going over to the other side of the focal
hyperbo.~, which
must again be
thought of as being
doubly covered;
here we have the
limiting case of a
flat hyperboloid of
two sheets. Let us
gradually inflate the
two shells of the
hyperboloid. The
surface will ap-
proach both sides of
that plane through
the center of the
two focal curves
that is perpendicu-
lar to the planes of
both curves, and in
the limiting position
we get a double
cover for this plane.
Now we have gone through the complete system of confocal quadrics
and have seen the way in which each separate family fills up the
whole space simply.

There is another property that characterizes the way in which
the focal curves are related to each other and to the quadrics gene-
rated by them. If from any point on the focal hyperbola we look
along the tangent toward the focal ellipse, that curve looks like a
circle with its center on the line of sight. Thus the focal hyperbola

O
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*It is precisely this family of hyperboloids, including the limiting positions in
a plane, that is described by the movable rod model considered earlier.
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is the locus of the vertices of all circular cones that pass through
the focal ellipse, and the axis of rotation of each such cone is tangent
to the hyperbola at the vertex of the cone. Moreover, the cones con-
sisting of tangents from an exterior point lying on the hyperbola
to any ellipsoid having the given focal curves, is also circular, and
furthermore, it always has the same axis as the cone considered
before. More generally, we have the theorem that every surface
of the confocal system when viewéd from a point lying on a focal
curve and not enclosed by the surface, looks like a circle with its
center on the line of sight, provided the line of sight is tangent to
the focal curve. (But the points at which a tangent cone touches
the surface do not by any means generally form a circle; they may
form any conie, including even a hyperbola.)*

Now that we have discussed the focal curves, it is not out of place
to consider also the other curves in which pairs of unlike surfaces
of a confocal system intersect. In terms of differential geometry
these curves have a simple property which we shall discuss later
(cf. p. 188). Also they afford us a first example of curves that are
not in a plane. It is easy to see that a curve in which two arbitrary
quadrics in arbitrary positions intersect cannot meet any plane in
more than four points, unless the curve has a whole arc in common
with the plane. For, the plane intersects the surfaces in two conics;
and it is easy to prove analytically that two conics that do not coin-
cide or have a whole straight line in common cannot meet at more
than four points (cf. p. 160)—a theorem which is intuitively evident
as well.

This property of the points of intersection is connected with the
analytic basis for classifying the curves as curves of the fourth
order. (Curves of the n-th order have the corresponding property
that they have either at most » points or a whole arc in common with
any plane.) But there also exist curves of the fourth order that do
not form the intersection of two second-order surfaces.® The space

* The following is another property of the confocal system, which, incidentally,
includes the property just mentioned as a limiting case: The planes of symmetry
of the tangent cone from any point P in space to any surface of the system which
does not enclose P are the tangent planes at P to the three surfaces of the
system that pass through P.

* But for any curve of intersection of two quadrics it can be proved analytically
that there are infinitely many additional quadrics passing through it, including
four cones some of which may coincide or degenerate into cylinders.
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curves of higher orders would be difficult to study without the aid
of analytic methods; so we shall not go into them here.

APPENDICES TO CHAPTER 1

1. The Pedal-Point Construction of the Conics

Let a curve K and a point F'; be given (see Fig. 32). If we drop
perpendiculars from F'; onto all the tangents ¢ of K, the feet of these
perpendiculars trace out a second curve
k which is called the pedal curve of K
with respect to F,. Conversely, we can
obtain K if we are given F, and k. For
this purpose we connect F, with the
points of k& and at these points draw the
perpendiculars ¢ to the connecting lines.
Then the straight lines ¢ envelop K. We shall call this second con-
struction a pedal-point construction and say that K is generated by
a pedal-point construction on & (with respect to /',). We note that
the pedal-point construction on a single curve k can give rise to a
variety of different curves K, depending on the choice of F',.

We shall prove the following : The pedal-
point construction on the circle and the
straight line always gives rise to conics. If
the center of the circle is at M, and F, is
inside the circle, then we obtain an ellipse
with one focus at F; and the other at the
point F',, where F', is the point on F, M pro-
duced such that MF,=F, M. If F, is out-
side the generating circle we get a hyper-
bola with the foci F; and F', defined as be-
fore. Starting with a straight line g instead Fic. 33
of the circle, we get a parabola. Here the focus is at F; and the
directrix is that straight line £ which is parallel to g and such that
h and F'; are equally distant from ¢ and on opposite sides of it.

To begin with, we shall prove this for the case of the ellipse
(Fig. 33). We draw any straight line through F,; and denote by C
and C’ its points of intersection with the circle. Let F and F’ be
the points on this straight line defined by the relations F,C =CF
and F,C’' = C’'F’. Let t and ¢ be the perpendiculars to CC’ erected

F1G. 32
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at C and C’ respectively. Now we define the point F, as indicated
above, so that M bisects the segment F,F,. If F,F intersects t
at B and F,F’ intersects ¢’ at B’, then F,B = F B and therefore
F\B + BF,=FF,. But M and C bisect the segments F;F, and

£ F.\F, so that FF,—=2CM. This
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) ¢
\ﬂ
| b g
£ "
£ | =TT
2 7 /7' co€—/f /’_ \
/ 71
gl &
FIG. 34 Fi1c. 35

yields the equation BF, + BF, = 2r, where r is the radius of the
circle. Hence B lies on the ellipse whose foci are at F'; and F', and
whose major axis has length 2r. Now it only remains to prove
that ¢ is tangent to the ellipse at B. This follows from the fact,
demonstrated on page 2, that any tangent to an
ellipse makes equal angles with the focal chords
at its point of contact; for, according to our
construction, /CBF; = /CBF. The proof for
the line ¢’ is completely analogous, using the
points B’, C’, and F".

The proof for the hyperbola follows from
Fig. 34. This is exactly the same as Fig. 33
except for the fact that F; is now assumed to be outside the
circle. In this case B and B’ trace out the two separate branches
of the hyperbola; for, FFy — 2r — BF; — BF; and F'F; = 2r =
B'F, — B'F,.

For the parabola, the proof has to be modified slightly. If the
points C and F' and the straight line ¢ are constructed in the same
way as before, it is necessary in this case to drop the perpendicular
from F onto g (see Fig. 35). If this perpendicular intersects ¢ at
the point B, we have BF;, — BF. But F moves on the straight line 2

Fic. 36
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defined above.* Hence B actually does trace out a parabola having F',
as focus and h as directrix. Here again ¢ is tangent to the parabola
at B because of the fact that ¢ bisects the angle FBF',.?

If F, is on the circumference of the circle (as in Fig. 36), the
lines t and # rotate about F';, and F',, and we obtain a pair of pencils
of lines. This is a well-known degenerate case of the second-order
curves, which occurs quite naturally when they are regarded as
configurations consisting of tangents.

2. The Directrices of the Conics

The parabola was defined in the first chapter as the locus of all
points whose distance from
a fixed point F, the focus, is
equal to their distance from
a fixed straight line g, the
directrix. A similar defini-
tion can be given for the
ellipse and the hyperbola.
Consider all points whose
distance from a fixed point
F is in a constant ratio v to
their distance from a fixed
line g. If v=1 we obtain
a parabola. We shall prove
the following statement: If
v < 1, the locus is an ellipse;
if v > 1, it is a hyperbola.
In each case F' is a focus of
the conic. Conversely, there
are two straight lines g, and
g defined by every ellipse or hyperbola, such that for all points of
the curve the distance from F; (or F,) is in a fixed ratio to the
distance from g, (or g,, respectively).
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*In the pedal-point construction of the ellipse and hyperbola, F' describes a
circle with center at F'; and with radius equal to twice the radius of the original
circle, since FF,=2CM. Moreover, it follows from FF,—= 2CF, that F, is the
center of the magnification by which the two circles are related.

2 Of course we can derive Fig. 35 from Fig. 33 by the same limiting process by
which we got the parabola from the ellipse on page 4.
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The proof is based on Fig. 37. Consider a circular cone intersecting
aplane ein an ellipse k. We shall prove the statement for this ellipse.
As in Fig. 10, we make use of a sphere which touches the cone in a
circle K and the plane at a point F. Then we know that F is a focus
of k. Let f be the plane of K and g the line in which f intersects e.
Take any point B on the ellipse and drop the perpendiculars BC
and BD onto g and f respectively. Now consider the lines BF' and
BS, where S is the vertex of the cone, and let BS intersect K at the

point P. Set /DPP—a and /DBC — . Then BC — B2 and

cosf

BP —BD Al BF — BP, because both lines are tangents to the

COoSsx
same sphere from the same point B. Hence

BF _ BP _ cosf
BC = BC =~ cosa

But the angles a and § are inde-
pendent of the choice of B, since
a is equal to half the angle of
aperture of the cone and § is
equal to the angle at which the
plane ¢ in inclined to the axis of

cosf
cosx

we have proved our assertion for
the ellipse k and have at the same
time found a construction for the
directrix g. A second directrix, associated with the second focus,
is immediately evident if we consider the symmetry of the ellipse
about its minor axis.

If, as in Fig. 38, e intersects the cone in a hyperbola rather than
in an ellipse, the proof is exactly the same as before; only we must
note that a < g in the first case and a > g in the second, so that
v < 1 for the ellipse k¥ but v > 1 for the hyperbola k.

So far our considerations have only proved the existence of the
directrix for given ellipses and hyperbolas, whereas we have set
out to do the converse, i.e. given a number v, a point F, and a
straight line g, to find the corresponding curve. But clearly the
form of the desired curve depends only on the value of v, and since
we can arrange the construction so that « and g and therefore v
assume any values we please, it follows that our construction pro-

the cone. Hence, setting

=7,

Fic. 38
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duces all the possible forms of the desired curve; thus the curve
must indeed be a conic section.

The parabola is characterized by a = §, i.e. v =1 (if we retain
the notation used above), which leads us back to the original defini-
tion of the parabola. On the other hand, if e intersects the cone
in a circle the construction is impossible, because in this (and
only this) case the planes e and f do not have a line of intersection
but are parallel. Every non-degenerate conic can be regarded as
a section of a circular cone and is thus, except for the circle, subject
to our construction. Hence the property of having directrices is
shared by all non-degenerate conics other than the circle.

Incidentally, the Greek names of the conics are based on the way
they are related to their directrices; thus the names indicate that
v falls short of the number 1 in the case of the ellipse (8A2eimewy),
exceeds it in the case of the hyperbola (dnegfdidery) and exactly
reaches it in the case of the parabola (7agafidiiew).

3. The Movable Rod Model of the Hyperboloid

We shall prove the statement, made on page 16, that the rod model
of the hyperboloid of one sheet is movable. (In this proof some
knowledge of three-dimensional analytic geometry is presupposed.)
We shall prove at the same time that as the framework changes
shape it runs through a family of confocal hyperboloids of one sheet.

Let x,, 22, x; and vy, ¥, ¥; be the Cartesian coordinates in three
dimensions of the points P and Q respectively. Let us consider the
confocal quadrics

(1) it

3 2 >y

2—;.+a3—3-;.=2a,._z=1'

Let us choose a value of 1 such that (1) represents a hyperboloid
of one sheet. P is supposed to be a point of this surface, as (1)
indicates. Let Q be another point of the surface satisfying the
additional condition that it is on one of the straight lines of the
surface that pass through P. These conditions are equivalent to
the equations

3
Vi
(2) Za;—/1=1’
1
3

) D e — 1.
1
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For, the midpoint M of the segment PQ must certainly be on the
surface, and M has the coordinates z}(x, + v:). Thus

a; — a—i

which amounts to the same thmg as (3). Conversely, the whole

straight line PQ lies on the surface if it has the three points P, Q, M

in common with the surface, i.e. if (1), (2), and (3) are true.
Let us calculate the distance PQ = r. We have

Z,(xe— YR =222+ Dy — 22wy
—Z(a.—z) 1+2 B X
=2“‘[aﬁz+ —1_2 f'—yiz

—1[2‘,_1*2&;.—22:—‘3%]-

Because of (1), (2), (3), the expression in the last pair of brackets
vanishes, so that we obtain

— (ri—y:)?
) = Dl

Now let 1’ be a value such that (1) gives us another hyperboloid
of one sheet if we substitute A’ for A. This is the case if and only
if a; — A’ has the same sign as a,— A for each 7. Accordingly the
relations

(5) d=n)2 =X =1,23)

a; — i

define a real affine transformation. Evidently (5) transforms the
surface (1) into another hyperboloid of one sheet which is confocal
with (1). We shall call this hyperboloid (1’). If P’(x’) and
@’ (y/) are the images of P and Q under the transformation (5),
then the whole straight line P’ Q’, being the image of PQ, is on (1).
Our result will be proved as soon as we can prove that the distance
P’'Q" = r’ is equal to PQ, i.e. that ¥ = . For ' we have the formula

i 2
(4,) 7?2 _2 el _j;./) s

analogous to (4). From (5) it follows that

(=i (=) .
a—¥ a4 (i=123),
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and hence, because of (4) and (4’), the equality » =+’ holds.

If we fix 4 and vary 1/, then (5) represents the paths along which
the points of the rod model move when the model is deformed in
such a way that the principal planes are held fixed, as we have
always stipulated. An easy calculation shows that these paths are
the curves of intersection of the ellipsoids and hyperboloids of two
sheets confocal with (1).



CHAPTER II

REGULAR SYSTEMS OF POINTS

In this chapter we shall consider the metric properties of space
from a new point of view. We have till now been concerned with
curves and surfaces—that is, with continuous entities. Now we
shall turn to systems consisting of discrete elements. Such systems
are frequently found also in other branches of mathematics, espe-
cially in the Theory of Numbers, in the Theory of Functions and
in Crystallography.?

§ 5. Plane Lattices

A particularly simple structure consisting of discrete parts is
the square lattice in the plane (Fig. 39). In order to construct it,
we begin by marking out four corners of a unit square in a plane.
Then we move the square through one unit of length in a direction
parallel to one of its sides and mark the positions of the two new
corners. We now imagine this process to be repeated indefinitely,
first in the same direction and then in the opposite direction. We
obtain in this way a strip consisting of two rows of equidistant
points in the plane. We now move this strip through one unit of
length in a direction perpendicular to itself, mark the newly gene-
rated points, and imagine that this process as well is repeated
indefinitely in both directions. The totality of points so marked
constitutes the square lattice; it can also be defined as the set of
all points of the plane whose Cartesian coordinates are integers.

In this lattice we may of course form figures other than squares
from four points—parallelograms, for example. Now it is easy
to see that the whole square lattice can be generated from any such

* Where the subject of crystallography is touched upon in the following sec-
tions, we shall not always adapt our notation to the usual terminology of
crystallography; in the simple geometrical considerations to which we shall
confine our attention, other names are often found to be briefer and more
suggestive.

32
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parallelogram as well as from a square,
provided the parallelogram does not have
any lattice points in its interior or on its
boundary other than its vertices (for
otherwise, the generating process could
not give us all the points of the lattice).
Also, consideration of any such parallelo-
gram shows that it must have the same
area as the generating square (see Fig.
39) ; we shall give a rigorous proof of this on page 34.

Even this simple lattice has given rise to important mathematical
investigations. The first of these was made by Gauss. He tried to
determine the number f(r) of lattice points in the interior and on
the boundary of a circle of radius », where the center of the circle
is a lattice point and
r is an integer. Gauss
found the value of this
number empirically for
many values of ». For
example:

r= 10 f('r)= 317 °
r= 20 f(r)= 1257 °
r= 30 f(r)= 2821 °~°
r=100 f(r)= 31417 °
r=200 f(r)=125629 °
r=3800 f(r)=282697. °

His interest was ,
prompted by the fact -
thataninvestigatiOHOf ©o o o o o o o o o o 0o ®» o o o o
this function yields a
method for approximat-
ing the value of #. For since every generating square has unit area,
f(r) is equal to the area of the region F' covered by all the squares
whose lower left-hand corners are inside or on the boundary of the
circle (see Fig. 40). Thus the difference between f () and the area
ar? of the circle is at most equal to the combined area A () of those
squares (the counted as well as the omitted ones) that are cut by
the boundary of the circle;

F16. 39
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|[f(r) —r2r| < A(r),
A
| 1o _ .nl <40
Now it takes only a simple argument to get an estimate of A4 (7).
The maximum distance between any two points of a unit square
is \/§ Hence all the squares cut by the boundary of the circle are
contained in an annulus of width 21/2 bounded by circles of radii
r + /2 and r — /2. The area of this annulus is equal to

B@) =|(r +V2) — (r — y2))n = 412r.

But A () < B(7r) ; therefore

4y2=
2z,

f—:;l—a’<

From this, a limiting process yields the formula

(1) lim

which is what we were looking for. Inserting in this equation the
values found by Gauss of the function f(r), we get the following
approximations to the value of n — 3.14159:

r=10 =3.17
20 3.1425
30 3.134
100 3.1417
200 3.140725
300 3.14107.

We give, as an application of equation (1), a proof of the asser-
tion, made on page 33, that the area of any parallelogram that gener-
ates the square lattice is equal to unity. To this end, we consider every
lattice point of the circular region as a vertex of a generating
parallelogram, letting all of these vertices have like positions on
the parallelograms assigned to them, and we compare the region F
covered by the parallelograms, with the circle. Here again, the
difference of the areas is less than the area B(r) of a circular
annulus of radii » + ¢ and r — ¢, where ¢ is the maximum distance
between two points of a generating parallelogram (and is inde-
pendent of r). If the area of the generating parallelogram is a,
then the area of F is a<f(r), and we obtain the formula

|af(r) — r?a| < B(r) = 4rcm,



§ 5. PLANE LATTICES 35

i.e.

afl) _ | e
| 2 ,<T’
limm_l
7> 00 72 a

But we have proved above that
f(r)

lim —~ = =&.
Hence? the assertion that a = 1 follows.

We shall now turn to the study of general ‘“unit lattices,” i.e.
lattices that can be constructed from an arbitrary parallelogram
of unit area in the same way as the square lattice was constructed
from the unit square. Once again, different parallelograms can
generate the same lattice, but again they must be of unit area,
which is proved in the — --—-- - - +—————— -}
same way as it was in I

the case of the square

, i 7]
lattice. LA cl
For any such unit ' !
lattices, the minimum ¢
distance ¢ between two
lattice points is a char-
acteristic quantity. FIc. 41

There are unit lattices

for which ¢ is arbitrarily small, e.g. the lattices generated by a
rectangle with sides ¢ and 1/¢. On the other hand it is obvious that
¢ can not be arbitrarily large, for then the lattice could not be a
unit lattice. Thus ¢ must have an upper bound. We shall determine
this bound.

In any given unit lattice, choose any pair of lattice points the
distance between which is the minimum distance ¢ (Fig. 41). On
the straight line g passing through these two points there must,
according to the definition of the lattice, be infinitely many more
lattice points spaced at intervals of length ¢. The straight line
that is parallel to g and at a distance 1/¢ from it must also contain
infinitely many lattice points, but the strip between g and 2 cannot

? We could have used, instead of the circle, any other region whose boundary
can be covered by a strip of arbitrarily small width relative to the total area of
the region.
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contain any. Both of these facts follow from the unit property of
the lattice. We now draw circles of radius ¢ about all the lattice
points on g. The totality of circles covers a strip of the plane bounded
by circular arcs. Every interior point of this strip is less than ¢
distant from at least one lattice point and therefore, by the defini-
tion of ¢, is not itself a lattice point. Hence 1/¢ is greater than or
equal to the shortest distance between the boundary of the strip
and g. Evidently this distance is the altitude of an equilateral
triangle of side ¢. Thus we have

S=—13,
2
. Cél/‘ﬁ.

The number V% is the desired upper bound for ¢. Moreover,

there is a lattice in which ¢ actually attains this maximal value;
for, as can be seen from Fig. 41, this is the case in a lattice generated
by a parallelogram that is composed of two equilateral triangles.

By expansion or contraction, any lattice can be obtained from a
unit lattice. Hence if a? is the area of a generating parallelogram
in a lattice and if C is the minimum distance between two lattice
points, then

Céal/%.

Once again equality holds if and only if the lattice is built up
of equilateral triangles. For a given minimum distance, this lattice
therefore has the smallest possible generating parallelogram. But
as we have already seen on page 34, the area of large regions is
asymptotic¢ally equal to the number of lattice points in the region
multiplied by the area of the generating parallelogram. Of all
lattices with a given minimum distance, the lattice composed of
equilateral triangles therefore has the greatest number of points
in a given large region.

If we draw circles of radius equal to half the minimum distance
of a lattice about all the points of the lattice, we get a system of
circles no two of which overlap, but in which tangencies occur.
A system constructed in this way is known as a regular packing
of circles. One packing of circles is called closer than another if a
(sufficiently large) prescribed region accommodates more circles of
the first packing than of the other. Accordingly, the lattice of
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equilateral triangles gives rise to the closest packing of circles
(see Fig. 42).

As a measure of the density of a packing of circles we choose the
total area of the circles contained in a given region divided by the
area of the region. For sufficiently large regions, this value obvi-
ously approaches the ratio of the area of a single circle of the
packing to that of the generating parallelogram. The lattice of
equilateral triangles gives us the optimum value for the density,

D=-'"n=0289x.
2]/3

§ 6. Plane Lattices in the Theory of Numbers

The theory of lattices
enters into many problems
of Number Theory. We
shall give some examples
of this. However, in order
to avoid lengthy explana-
tions, it will be necessary
to presuppose a little more
mathematical background
in this section than else-
where in the book.

e . b 1 1 .
1. Leibniz’ series: T=1—g+5—5+—- As in §5,

let f(r) denote the number of points of the square unit lattice in
the interior and on the circumference of a circle of radius » whose
center is a lattice point. Let us introduce Cartesian coordinates
with the origin at the center of the circle, in such a way that the
lattice points are the points with integer coordinates. Then f(7)
is the number of pairs of integers x, y for which x? + y? < r2
But z2 + y? is always an integer n. Hence we can obtain f(r) by
taking each integer n = 72, counting the number of ways in which
it can be represented as the sum of the squares of two integers, and
then adding up the number of possible representations of this kind
for all the different values of n. We shall now make use of the
following theorem of Number Theory: The number of representa-
tions of an integer n as the sum of the squares of two integers is
equal to four times the excess of the number of factors of » having
the form 4k + 1 over the number of factors of the form 4k + 3. In
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this connection, representations like n =a? + b, n=b* + a?, n=
(—a)? + b?, ete., corresponding to different points of our lattice,
are to be regarded as distinct, so that every representation (except
some special cases like ¢ = = b, a = 0, b = 0) gives rise to a set
of eight representations. To illustrate the theorem, let us consider
the number n = 65. Its factors are 1, 5, 13, and 65, all of the form
4k + 1; there are no factors of the form 4k + 3. Thus the excess
in which we are interested has the value 4, and it follows from our
theorem that there must be 16 different ways of writing the num-
ber 65 as the sum of two squares (or, what amounts to the same
thing, the circle of radius \/?53 about the origin passes through 16
lattice points). And indeed, we have 65 =12 4 82 and 65 = 42 + T2,
and each of these representations has to be counted eight times.

According to this theorem, we get the number } (f(r) — 1) by

subtracting the number of factors of the form 4k + 3 from the
number of factors of the form 4% + 1 for each positive integer
n = r? and adding up these differences. It is much simpler, how-
ever, to perform these additions and subtractions in a different
order. We shall first add the number of factors of the form 4k + 1
for all » < r? and then subtract the total number of factors of the
form 4k 4+ 3. In order to determine the first sum, we write the
numbers of the form 4% + 1 in order thus, 1, 5, 9, 13, ..., omitting
all numbers greater than 2. Each of these numbers appears as
many times as a factor as there are multiples of it that do not
exceed 72; thus 1 must be counted [72] times but 5 only [72/5] times,
where [a] denotes, in general, the largest integer that does not
exceed a. Hence the total number of factors of the form 4k 4 1 in

which we are interested is [7?] +[’ﬂ+[§]+[g]+ By defini-

tion of the symbol [a], this series breaks off as soon as the denom-
inator in a bracketed expression exceed the numerator. The same
argument can be applied to the factors 4k + 3, giving rise to the

expression [%2] + [r—;] + [g] + ... for the total number of factors

of this form. We have to subtract this second sum from the first
sum. Since both sums have a finite number of terms, it is again
permissible to change the order of the terms at will; we shall
find it expedient to do this in the subsequent passage to the limit
in which » - «. Let us write the result in the form
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Cgor—n =2+ 2] - [2] 4 ] =[]+ -

To get a better idea as to when the series breaks off, we shall
suppose r odd; the series then has (7> 4+ 1) /2 terms. The terms
alternate in sign, and their absolute values are non-increasing. The
error committed in breaking off after the term [72/r] = [r] =1 is
therefore at most equal to the last term r, so that we can write
this error as #r, where ¥ is a proper fraction. If we omit the
brackets on the 3 (r + 1) terms that we retained, the resulting
error in each term is less than unity, and therefore the total result-
ing error can be written as #'r, where # is a proper fraction.
Accordingly we have

L=t =r = Lt Sty
4 3 5 7 - ’
or, dividing through by 2,
14 1 1 1 1

r? r?

If » now increases indefinitely (taking on all odd integral values),
f(r) /r? approaches n, as we have proved in § 5. Thus we have
arrived at Leibniz’ series

fr=t—f -+
2. The minimal value of quadratic forms. Let
f(m, n) = am? + 2bmn + cn?
be a quadratic form with real coefficients a, b, ¢ and with deter-
minant D =ac— b?>=1. Then a cannot vanish. Let us assume
a>0. It is a well-known fact that the form f(m, n) satisfying
these conditions is positive definite, i.e. positive for all pairs of real

numbers m, n except m =—=n=0. We shall prove the following:
There are two integers m, n, not both equal to zero, such that

f(m,n) = V—

conditions ac — b*=1 and a > 0.

The truth of this proves to be a consequence of our discussion
on the minimal distance between two points of a unit lattice. By
completing the square in the customary manner and using the equa-
tion D =1, we get

n) = (]/;m + V%n)2+ (V; n)z.

for all values of the coefficients a, b, ¢ satisfying our
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Now we consider the points with coordinates
x = ]/;m + LA

=N
Va '

y= 2"

in a system of plane Cartesian coordinates, where m and » assume
all integral values. It follows from elementary theorems of analytic
geometry that these points form a unit lattice; for, they are obtained
from the points of the square unit lattice x =m, y=n by the
affine transformation

x=Yat+ 2,
Va

1
y= V; Y
whose determinant is unity. But now f(m, n) = 2? + 2, and thus
Vf(m, n) represents the distances from the origin of the lattice

points obtained when m and n take on all integral values. Accord-
ing to the theorem mentioned above, there is a point P of the

lattice for which this distance does not exceed ‘/% For the pair

of integers m, n that are the coordinates of P, we therefore have
fimmn) = 2,
V3

as was to be proved.

This result can be applied to the problem of approximating real
numbers by rational numbers. Let a be any given real number.
Let us consider the form

— 2 2
fm,n) = (“"8 m) + &2n? = sizm2 — Zj—zmn + (Z‘T + ez)rﬂ

with determinant
1 2 2
D=?(f—z+‘2)—%=1'
where ¢ is an arbitrary positive number. By the result proved above,
we can always find two integers m, n satisfying the inequality

axn —m
&

2 2
'*‘ £2n2§___’
) V3

from which it follows a fortiori that the two inequalities

e N A
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are valid. From these we get the inequalities*
m e 1/ 2 11/ 2

If a is not rational, the left-hand side of the first inequality must
differ from zero. Hence we must necessarily obtain infinitely many
such number pairs m, n by assigning smaller and smaller values
to e; for ioc — %‘ has to approach zero in the process. We obtain
in this way a sequence of rational numbers m/n approximating the
irrational number « as close as we please. On the other hand, we
can eliminate ¢ by means of the second inequality, getting

We thus have a sequence of approximating fractions in which
the degree of approximation is proportional to the square of the
denominator, so that a rather good approximation is obtained with
comparatively small denominators.

3. Minkowski’s Theorem. Minkowski succeeded in proving a
theorem on lattices which has, despite its simplicity, resolved
many problems of Number Theory that could not be treated by
other methods. For the sake of clarity we shall not state the
theorem here in its most general form but shall content ourselves
with a special case which, although particularly simple to formu-
late, contains all that is essential for the method. The theorem
is as follows:

If a square of side 2 is superimposed on any given unit lattice in
the plane in such a way that the center of the square coincides
with a lattice point, then there is bound to be another lattice point
inside the square or on its boundary.

To prove the theorem, we consider any large region defined in
the plane of the lattice, say the interior and circumference of a
large circle ¢ of radius » with center at a lattice point. For every
lattice point in this region, construct a square of side s with center
at the lattice point (see Fig. 43). Let us now require that no two
of these squares overlap, no matter how large a value of r we

! Division by n is permissible for sufficiently small ¢ since the inequality

lon —m| = I/ 72_— could not hold if » were equal to zero.
3
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choose, and let us estimate the length of the sides s subject to this
condition. There are, in our previous notation, f(r) lattice points
in the region ; the total area of the non-overlapping squares is there-
fore s2f(r). On the other hand, all the squares are certainly con--
tained in the interior of the circle concentric with ¢ but of larger
radius » + 2s. Therefore we have the inequality

s f(r) = m(r + 25)2,

or
2% 25\?
= o1+
If s is kept fixed while » increases without bound, we see from our
previous discussion of f(r)
that the right-hand side of the
inequality approaches unity.
Hence we have the condition

s=1.

Since there are only two possi-
bilities, either that the squares
overlap, or that they do not, it
follows that there must be over-
lapping for every positive ¢ no
matter how small, if we start
with squares of side 1 + . We
have made no assumptions con-
cerning the positions of the
squares with respect to each other, and so we may rotate the squares
at will about their centers. Let us think of all the squares as being
parallel. If we now pick out two overlapping squares a, b with
centers at A, B (which, according to our assumption, are lattice
points), then the mid-point M of the segment AB must also be
situated in the interior of both squares (see Fig. 44).

For brevity we shall use the term “bisecting point” of the lattice
for all points which, like M, bisect a segment joining two lattice
points. We can derive the following: Every square of side 1 + ¢
whose center is a lattice point contains a bisecting point in its
interior. For, if we draw squares of the same size and orientation
as a with centers at all the other lattice points, there must be some
overlapping ; and since all the squares are equivalent in this figure,
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a must itself be partly covered by another square b and must there-
fore contain a bisecting point constructed like the point M in
Fig. 44. This established, we can easily complete an indirect proof
of the theorem. If a square of side 2 with a lattice point A at its
center could be placed so that no additional lattice point is inside
the square or on its boundary, then it could be slightly enlarged
to a parallel and concentric square a’ of side 2(1 + ¢) containing
in its interior no lattice point other than the center A. On the
other hand, we can shrink this square to a
parallel and concentric square a of half the é\%

linear dimensions which, having a lattice point
at its center and being of side 1 + & must
contain a bisecting point, by what we have just
proved. Here we have a contradiction; for
if AM is extended its own length to the point B, Fic. 44

B must be a lattice point, and from the relative positions of a
and a’ it would follow that this lattice point would be inside o’
(see Fig. 45).

A particularly effective application of Minkowski’s theorem
relates to the problem of approximating real numbers by rational
numbers, a problem which was already mentioned in the last sub-
section. Our method will be quite similar to that used before, but
the result will be a little stronger. Using the given irrational
number a, we construct the lattice consisting of the points with
Cartesian coordinates

~

2(7+E&)
n-—m
X = d , Y =¢£n, 7+E
€ A
where m and n assume all integral values and ¢ isan | L (\5;9
arbitrary positive number. We can see in the same =

way as before that this is a unit lattice. A generating
parallelogram of the lattice is exhibited in Fig. 46; in F1G. 45
this figure it is assumed that 0 < a < 1. Let us draw a square of
side 2 with center at the origin and with sides parallel to the co-
ordinate axes. By Minkowski’s theorem, this square must contain
another lattice point, and this point is characterized by a certain
pair of integers m, n, not both equal to zero. On the other hand, the
coordinates of the points inside and on the boundary of the square
are given by the inequalities | # | =1, |y | = 1. Thus the numbers
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m, n satisfy the inequalities

“""78—"‘21, len| =1
or

|n|’
This gives rise to another sequence of fractions m/n approximating
a to any desired degree of accuracy. By eliminating ¢ we get
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Thus Minkowski’s theorem proves the existence of a sequence of

. . . fractions that approx-
= o m-0 o imate to a even better
P 7 R than the sequence of
— ”'f“:, o—— fractions constructed
. ° =00 . in the preceding sub-
o o o section could be proved
to do. For there we
Fic. 46 had only obtained the

approximations

m 2 1
‘ x — 7‘ = V—g‘ w

and these are weaker, since V% >1.

Of course, the methods described in this section can be applied
not only in the plane but also in spaces of any number of dimen-
sions, where they give rise to much more general number-theoretical
results.

§ 7. Lattices in Three and More than Three Dimensions

A space lattice is constructed from a parallelepiped by using in
three-dimensional space the same process by which the plane lattice
was constructed in two dimensions from a parallelogram. Here
again, the same lattice can be generated by parallelepipeds of dif-
ferent forms, but all the generating parallelepipeds must have the
same volume. Furthermore, every generating parallelepiped must
have its corners at points of the lattice but must not contain any addi-
tional lattice points in its interior or on its surface. If a generating
parallelepiped has unit volume we refer to it as a unit lattice.
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For the same reason as in the plane, the minimum distance
between two points of a space lattice does not have a positive lower
bound but does have an upper bound. The determination of the
bound is accomplished by the same method as in the plane and
will therefore be omitted. In this connection, the regular tetra-
hedron plays the same part in space as the equilateral triangle does
in the plane. But whereas the generating parallelogram in the
plane is composed of two equilateral triangles, the regular paral-
lelepiped corresponding to it in space—the regular rhombohedron—
consists of two regular tetrahedra and one regular octahedron
(see Fig. 49, p. 48).® The volume of this parallelepiped is equal
to ¢3/ \/2—, where ¢ is the length of an edge of the tetrahedron. But
since it is required that this volume be equal to unity, we have
¢/\/2=1,0rc = Vz Thus we have the result, for three-dimensional
unit lattices, that every lattice point has at least one other lattice
point closer than j2.

In the same way as in the plane, our result at the same time
provides the solution for the problem of finding the closest regular
packing of spheres, for this packing is realized when the centers
of the spheres form the rhombohedral lattice. If the spheres have
unit radius, the length of the edges of the tetrahedra is 2, so that
the volume of the unit cell is equal to

23 . —
5 =4
Accordingly, a region of volume J contains approximately Tl]/f

lattice points and the same number of spheres of the corresponding
packing; the approximation, as in the plane, becomes more nearly
exact as J increases.

We shall now give a more detailed description of this packing
of spheres. To begin with, let us imagine a flat layer of unit spheres
arranged so that the centers form the lattice corresponding to the
closest packing of circles in the plane. Evidently this gives us the

! In the plane the closest packing of circles leads to a tiling of the whole plane
by congruent equilateral triangles. It might be expected that the analogous
problem in space leads to a system of congruent regular tetrahedra filling the
space. It can be proved, however, that space can not be tiled by congruent
regular tetrahedra at all.
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closest packing of spheres in a plane layer. Let us now take a
second layer of the same kind and try to place it on top of the first

F16. 47a

FI1G. 47b

Fi16. 47¢

layer in such a way as to make room for
the two layers between two parallel planes
that are the smallest possible distance
apart. To this end, we must place the
spheres of the second layer so that they
will just fit into the hollows of the first
layer. However, there is not sufficient
room to fit a sphere into every hollow, so
that we must alternate, leaving every other
hollow empty (see Fig. 42, p. 37). If a
third layer is now to be placed on top of the
first two in the same manner, this condi-
tion does not uniquely determine the posi-
tion of the three layers relative to each
other. We may place the spheres of the
third layer into the hollows of the second
in such a way that the first and third layers
are symmetric with respect to the second
(Fig.47a). On the other hand, we may also
place the spheres of the third layer over
those hollows that were left free in the
arrangement just mentioned (Fig. 47b,c) ;
then the same translation that moves the
first layer into the position of the second
layer will move the second layer into the
position of the third. In this case the re-
peated application of the same translation
in both directions gives rise to the packing
corresponding to the rhombohedral lattice.
Thus we have seen that whereas in the
plane the maximum density is attained by
only one packing of circles, the same prob-

lem in space leads to two entirely different arrangements of spheres.?
The centers of the spheres need not by any means form a figure that

? Both arrangements actually occur in nature. The first case is realized in
the hexagonal crystals of the type of magnesium, the second in the face-centered

cubic crystals. Cf §8.
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is regular throughout space, for in passing from one layer to the
next we can change from one of the possible arrangements to the
other at will. But there is one property that is characteristic of all
the packings under consideration: Every sphere touches exactly
twelve other spheres, namely six spheres in the same layer and three
in each of the two adjacent layers.

The problem of finding the closest regular packing of spheres
has also been studied in four-dimensional and five-dimensional
space. Strangely enough, it has been found that the lattices in higher
dimensional space corresponding to the triangular and rhombo-
hedral lattices no longer generate the closest packing of spheres.
The results are summarized in the following table:

c=minimum distance Density of
between two points the packing
/2
Plane . . . . . . . .. }—ﬁ—=1075 0.2897 = 0.907
_ 2
Ordinary Space . . . . . . ?/2 =1.122 g %n = 0.740
2
Four-dimensional Space . . . i/E= 1.189 | % = 0.617
e 0= V2
Five-dimensional Space . . . V2 =1.074 Eo—"z = 0.465

(The volume of the sphere of unit radius is equal to */2 in four dimensions
and 8x%/15 in five dimensions.)

Now there are numerous other regular packings that are of in-
terest besides those of maximum density. As an example we note
the cubic packing, where the centers of the unit spheres form the
lattice generated by a cube of side 2. Here every sphere is in con-
tact with exactly six neighboring spheres; it should therefore be
expected that the density of this packing will be considerably less
than that of the rhombohedral packing, in which every sphere
touches twelve other spheres. To prove that this is so, we move the
cubic lattice into such a position that every cube encloses exactly
one sphere. The cube with edge of length 2 has a volume of 8;
hence the number of spheres contained in a large region of vol-
ume 8z is asymptotically equal to x. Since the volume of a unit
sphere is 4z, it follows that the density of the cubic packing is

1 4 n
g'?ﬂ—g—0524
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It is now natural to investigate the problem, suggested by the
one above, of finding the loosest of all the packings in space that
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hold the spheres fixed in position. It is necessary here that every
sphere touch at least four other spheres with centers not all in

A

o Points of Lattice K
® Points of Lattice L

F16G. 50

one plane nor all on one hemisphere;
for if this condition were not satisfied,
the sphere would not be held fixed by
its neighbors. Now it might perhaps
be expected that every sphere in the
loosest packing touches exactly four other
spheres and that their centers form the
vertices of aregular tetrahedron. Weshall
proceed to construct a system of points
arranged in this way, leaving aside for the
moment the question of whether the cor-
responding packing is really the loosest.

To the points of a cubic lattice we add
the centers of the faces of the cubes. The
resulting set of points also forms a lattice
(the face-centered cubic lattice), for it

can be generated by parallel translation from the parallelepiped
ABCDEFGH of Figs. 48 and 49. (These figures illustrate the
fact mentioned before, that the same point lattice can be con-
structed from various, and quite different, unit cells.) From Fig. 49
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it is apparent that we are dealing with the same lattice we
encountered before as the lattice corresponding to the closest pack-
ing of spheres. For, in the plane A BD, the parallelogram ABDE
defines the lattice of equilateral triangles; the next parallel plane
containing lattice points is CF G, and the position of the lattice
points in this plane relative to those in the first plane is such as
to form regular tetrahedra, such as ABCD in Fig. 49.

To this lattice K we add a congruent lattice L obtained from K
by a translation in the direction of the diagonal A H of the cube
through a distance equal to one fourth of its length (Fig. 50). We

F1G. 51

shall see that the points of L together with those of K make up the
centers of the desired “tetrahedral” packing of spheres, and further-
more that the radius of the spheres must be equal tc 3 AA’, where A’
is the point of L obtained from A. For, it is evident from the con-
struction that the distances from A’ to the points labelled A4, B, C, D
in Fig. 49 are all equal ; therefore the sphere with center at A’ just
touches the spheres having their centers at the vertices of the tetra-
hedron ABC D. For reasons of symmetry, the corresponding state-
ment must be true for all spheres with center at points of L. But
the same also applies to the spheres with center at points of K
(e.g. H in Fig. 50), since the positions of K and L relative to each
other are the same except for the sense of the translation that moves
one into the other. Figs. 51 and 52 illustrate the arrangement of
the centers of the spheres forming the tetrahedral packing; the
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centers of contiguous spheres are connected by straight lines.?

We shall now compute the density of the tetrahedral packing.
It is clear that there are four spheres of the lattice L for every
cube; for in the translation that transforms K into L, the points
E, F, G, H (in Fig. 49) and the spheres with centers at these points
are moved completely out of the cube, while the spheres with centers
at A, B, C, D are moved into its interior. Since K has the same
density as L, there are exactly eight spheres of the packing in each
cube. As usual, let us set the radius $ AA’ of the spheres equal to
unity, and let us denote the length of the edges of the cubes by a

and that of the diagonals by b. Then b = 44A’ = 8 = a+/3. Hence
the volume of the cube is a® = —3—% .
The density D that we wished to
find is
o _
D=F'%7l=lj—gn=0.340

by the same type of argument used
before.

We shall show (by a method
due to H. Heesch and F. Laves,
Gottingent) that the tetrahedral
packing is by no means the loosest
packing but can be used as the start-
ing point of a simple construction that gives rise to a substantially
looser packing, in which each sphere still touches four other spheres
and all the spheres are equivalent. It should be mentioned, however,
that the centers of the four spheres contiguous to any given sphere
in the new arrangement will form the vertices not of a regular
tetrahedron as before, but of another kind of tetrahedron, with an
equilateral triangle as its base and isosceles triangles as its faces.

To construct this packing, we begin with a sphere K of the tetra-
hedral packing and inscribe four smaller spheres k, to k., of equal

FiG. 52

*The locus of the centers in this packing is not a lattice; it does not, for
example, contain the point A” defined in Fig. 50 as the point on AA’ produced
for which A’A” = A A’, whereas a lattice containing A and A’ would also
have to contain A" as one of its points. The structure with which we are dealing
is called a system of points. The systems of points are characterized by more
general properties of symmetry than are the lattices. They will be defined in § 9.

* Cf. Zeitschrift fiir Kristallographie, Vol. 82, p. 10, Fig. 7.
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radius, touching K from inside at the same points at which K touches
the neighboring spheres of the tetrahedral packing. Since these
four points of contact are the vertices of a regular tetrahedron, so
are the centers of the small spheres. The radius of the small spheres
k, to k. may be chosen so as to make each pair of spheres tangent;
each sphere thus touches the other three. We may now carry out
the corresponding construction for all the other spheres of the
tetrahedral packing. Then k, not only touches the spheres k., k.,
and k, inside K, but also touches another small sphere k; situated
outside K, the point of contact being the point at which k, touches K
from inside. For at this point K is in contact with a sphere K’ of
the tetrahedral packing, and at this point K’ is touched, in its
interior, by a small sphere which we shall call k;. Of course the
property we have demonstrated for k, applies equally to all the
other congruent spheres of our construction, so that they still form
a packing in which each sphere is held fixed by its neighbors. To
see how the density d of our new packing compares with D, the
density of the tetrahedral packing, it is clear that we need only
compare the combined volume of k,, k., k;, and k, with the volume
of K. If the radii of k&, and K are » and R respectively, then

a _4-gart 7,

D~ $aR® T "R3?
by elementary reasoning, it follows from our construction that

R—=(\/3/2 + 1)r, whence d— 01—11—)3- D =—0.3633D. Accord-
ingly, the packing is considerably less close than the tetrahedral
packing. There are reasons for believing that it is the loosest pos-
sible packing. The following table shows the characteristic con-

stants for the four packings of spheres that we have discussed.

Closest Packing . . D= Vg . % 7 = 0,740 12
Cubic Packing . D=t .4, _o Every |
g 3T Sphere others
V3 touches
Tetrahedral Packing . D= 3 61/_3 . % m = 0.340 4
Loosest (?) Packing . D =o0.123 4

We could drop the requirement that the arrangement of the
circles or spheres be regular, and replace it by a weaker condition,
say that every sufficiently extended region of the plane (or space)
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contain as many circles (or spheres) of a fixed size as possible.
The problem then has to be treated by different methods. In the
case of the plane it has been proved that the centers of the circles
satisfying the new condition will of necessity form a lattice. In
spaces of three and higher dimensions the problem has not yet
been solved.

§ 8. Crystals as Regular Systems of Points

The most important application of the theory of discontinuous
regular systems of points is in crystallography. Judging by the
regular exterior form of crystals and their cleavability, it is to be
expected that the individual atoms or molecules of this structure,
when considered as points, form a figure that can be continued
congruent to itself so as to fill all of space. Any figure obtained
by such an extension is called a system of points. Later on we
shall make this concept more precise and show that there is only
a finite number of essentially different systems of points. There
now arise two problems, partly of a mathematical and partly of
a physical nature. First of all there is the problem of determining
the system of points corresponding to each type of crystal. And
then there is the problem of explaining the physical behavior of
the different types of crystal in terms of the geometrical properties
of the corresponding systems of points.

The first attempts to achieve a definite point of view on the
structure of crystals by means of this approach date back to
Bravais (1848). But his theory was not given a firm empirical
basis until Laue’s method using the diffraction of X-rays by
crystals (1913) had made it possible to establish empirically not
only the existence of crystal lattices but also their precise structure.

Obviously the crudest picture we may form of an atom is as a
point with a number of “arms’” equal to the valence of the atom.
In this model we assume that the arms representing the valence
bonds are arranged in space as symmetrically as possible, as long
as no special reason exists for them to deviate from this symmetry.
The combination of individual atoms to form a molecule is then
represented by letting two arms of different atoms coincide.

Hydrogen (H), oxygen (O), nitrogen (N), and carbon (C), for
example, have the valences one, two, three, and four respectively.
Accordingly we may represent these atoms by points with one, two,
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three, or four arms as the case may be (Fig. 58). In the case of
H, O, and N, symmetry demands that all the arms lie in one plane.
For the same reason, we are led to expect that the four arms of a
carbon atom point towards the four corners of a regular tetra-
hedron having the atom at its center.
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As examples of molecules, we may consider the molecules of carbon
dioxide (CO.), methane (CH,), and ethane (C.H;). Fig. 54 shows
a schematic representation of the way the atoms are connected
(the “structural formula”) with-
out regard to the actual relative
positions in space. Possible spatial
arrangements for the molecules of
methane and ethane which, accord-
ing to recent investigations, are
probably the correct arrangements,
are illustrated in Fig. 55 (Van
t'Hoff, 1874). In the model of
ethane we have to think of the line
connecting the C atoms as an axis
about which the two tetrahedra can
be rotated relative to each other.

Now the question arises whether it would not be possible for
whole crystals to be generated like molecules by the ¢..achment of
more and more atoms. The possibility of such a construction will

F16. 55
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first of all be demonstrated for the simplest case, where the crystal
consists of a single element. We choose as an example the diamond,
which, as is well known, consists of pure carbon. Thus the problem
is to arrange a great many C atoms, each consisting of a point with
four arms, as symmetrically as possible in such a way that each
point is connected with four others by pairs of coinciding arms.
Whether such a structure exists is a purely geometrical question.
In point of fact it does exist ; the atoms are arranged like the centers
of spheres forming a tetrahedral packing. For, by the construc-
tion considered in § 7, every point in this arrangement has four
neighboring points that form the vertices of a regular tetrahedron

e ———
e — ;

’l——F——K
=

|
<]
||

<

F1c. 56

with the original point at the center (cf. Figs. 50 to 52, pp. 48 to 50).
Measurements due to Braggs reveal that this pattern, which we
arrived at by purely geometrical methods, is the pattern in which
the diamond crystal is actually built up from its atoms. These
measurements also revealed that the distance between neighboring
points in the diamond crystal is 1.53 X 10—8 e¢m.!

There is, besides the diamond, another crystal that consists of
C atoms only, namely graphite. Measurements disclose that the
arms of the C atoms in graphite are not symmetrically arranged
and that they are in fact not even equal in length. Thus one of

! The crystals of zinc-blende (ZnS) also have this atomic structure, which
corresponds to the tetrahedral packing. Here the Zn atoms and the S atoms
separately constitute the two lattices from which we constructed the tetrahedral
point system on p. 48 (Fig. 50).
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the arms is lengthened to 3.41 X 10—8 cm. while the others are only
1.45 X 10—8 cm. in length. The latter three are approximately in
a plane. The experimental evidence is not yet adequate to tell us
whether they deviate from the plane position at all, and to what
extent, but for the present discussion it will suffice to assume that
they are exactly coplanar. With this assumption we can describe
the structure of graphite as follows. In the plane we construct a
system of regular hexagons with one atom at each corner (Fig. 56) ;
this accounts for three of the valence bonds of each atom. In order
to connect the layer above the plane with the one below, the valence
bonds that are still free—exactly one for each atom—must be con-
nected alternately with atoms of the upper layer and atoms of the
lower layer. Then all three
layers are indeed congruent, ) P
and the points of the middle
layer are alternately vertically
below a point of the upper . e ~|
layer and vertically above a
point of the lower layer. In the
same way the structure can be (
extended indefinitely in all
directions.

The systems of points we have constructed as models for the
diamond and for graphite explain some of the physical differences
between the two crystals, such as the fact that graphite has far
greater cleavability and compressibility than the diamond. On the
other hand, the explanation of some other differences involves
considerable difficulties.

As an example of a crystal composed of more than one kind of
atom, we may mention common table salt (NaCl). The salt crystal
is a cubic lattice with its points occupied alternately by a Cl atom
and a Na atom (Fig. 57). The distance between neighboring lattice
points is 2 X 10—8 cm. and is thus greater than the length of the
short arms and smaller than that of the long arm of the C atom
in graphite. In the salt crystal every lattice point has six neigh-
boring points. But the Na and Cl atoms are univalent. Hence
this crystal is not arranged in accordance with the theory of val-
ences described above. In the general case too, there is no direct
connection between the valences of the atoms forming a crystal

F1G. 57
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and the number of neighboring points of any point in the structure.
The diamond, where the two numbers coincide, is an exception.

Of particular interest is the fact that in the lattice of table salt
there are no pairs of points distinguished that might correspond
to the NaCl molecule. Thus the lattice is composed simply of the
two types of atoms. On the other hand, there are crystals in which
molecules—or at least complexes of atoms—have a fairly distinct
identity. In the space lattice of calcite (CaCO;) the radical CO;
can be clearly recognized as a coherent unit.

While the diamond exemplifies the tetrahedral packing, there is
a large number of crystals, represented by the “face-centered cubic”
lattice, that corresponds to that closest packing of spheres in which
the relative positions of two consecutive layers are always the same
(see Figs. 47b and 47c, p. 46). The other form of closest packing,
where alternate layers fill alternate sets of hollows (Fig. 47a, p. 46),
is exemplified by the magnesium crystal. This arrangement is
known as the “hexagonal closest packing of spheres.”

§ 9. Regular Systems of Points and Discontinuous Groups of Motions

The study of crystallography leads to the purely geometrical
problem of determining all the possible regular arrangements of
objects, e.g. of atoms. Since it is sufficient for many purposes to
visualize these objects as points, such an arrangement is called a
regular system of points. In accordance with the earlier discussion
we shall therefore define a regular system of points by the following
three properties:

1. A regular system of points in the plane or in space is to con-
tain infinitely many points; moreover the number of points of the
system contained in a circle in the plane, or in a sphere in space,
is to go to infinity as the square of the radius, or the cube of the
radius, respectively.

2. Any finite region is to contain only a finite number of points
of a regular system.

3. Each point of a regular point system is to have the same position
relative to the remaining points as has any other point of the system.

The first two defining properties are clear without further ex-
planation. The third can be elaborated on as follows. Let us draw
the lines connecting some fixed point of a regular system with all
the other points of the system and then do the same for a second
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fixed point; then the third defining property states that the two
configurations of straight-line segments obtained in this way are
congruent, i.e. that there is a well-defined motion of the plane that
brings one of these two figures into coincidence with the other.
Thus a person situated at some particular point of the system could
not determine by any measurements which point of the system he
is at, since the position of every point relative to the other points
is the same. However, to satisfy the third condition it is not neces-
sary to refer to the lines connecting points of the system; all that
is required is that it be possible to bring any point of the system
into coincidence with any other point of the system by some definite
motion of the plane, or of space, which is such that every position
occupied by a point of the system before the motion is also occupied
after the motion by a point of the system, and vice versa. Such a
motion is said to leave the point system unchanged, or invariant,
and is called a symmetry operation of the system. Using this con-
cept, we may express the third defining property for regular point
systems in the following form:

3. It is possible to move any point of the regular system to any of
the other points of the system by a symmetry operation of the system.

From our definition it follows that the lattices, which we had
defined by generating them from a parallelogram or a parallelepiped
in plane and space respectively, are regular systems of points. The
introduction of the new concept of regular systems, which gene-
ralizes that of lattices, is justified by the existence of regular systems
of points, such as the structure of the diamond, that are not lattices.

Let us now construct the totality of all possible regular point
systems. We shall find that the only regular point systems there
are, besides the lattices, are those that consist of several congruent
lattices interlocking in parallel positions, like the structure of the
diamond. At first sight it might appear that the notion of regular
point systems as defined by our three conditions is so general as to
rule out the possibility of obtaining a complete geometrical classi-
fication of these systems. Nevertheless such a classification can
actually be made; it will be based on a study of the symmetry
operations of the systems.

The totality of all symmetry operations of a system of points is
characterized by two properties that substantially simplify the
study of such systems. First, the resultant of two consecutive
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symmetry operations is always another symmetry operation, and
second, the motion that reverses any symmetry operation of the
system is always another symmetry operation. In mathematics,
any set of transformations satisfying these two conditions is called
a group of transformations. For the sake of easy algebraic manipu-
lation we shall denote each transformation by a letter, such as a, b,
ete.; the transformation resulting when a is carried out first and
b second, will always be denoted by the symbol ab. The transforma-
tion that reverses a is denoted by a—?, and is called the inverse
transformation of a. Using the two defining properties of a group
in combination, we are led to the transformation aa—1. This opera-
tion evidently leaves all points unchanged. But it is convenient
nevertheless to consider it as a special case of a transformation;
we shall call it the identity transformation, or identity, and denote
it by the letter e. The role of e in the symbolic combination of trans-
formations is the same as that of the number one in the multiplica-
tion of numbers. ae — ea — a always holds.

If a point of a regular system is subjected to all the symmetry
operations of the system, it follows from the third defining prop-
erty of regular systems that all the other points of the system are
obtained from this one point. On the other hand, it follows from
the definition of a symmetry operation that none of the points of
the system can be transformed into a point not belonging to the
system, since the motion would otherwise not leave the system
invariant. In general, two points are called equivalent under a given
group of transformations if one of the points can be obtained from
the other by a transformation belonging to the group. The regular
system of points accordingly consists of all the points that are
equivalent to a given fixed point under the group of symmetry
operations. Hence, by the second defining property of regular
systems, there is only a finite number of equivalent points in any
finite region. Any group of transformations having the property
that in a finite region only finitely many points are equivalent to
any given point under these transformations, is called discontinuous.
Thus the symmetry operations of a system of points always form
a discontinuous group. It is, to be sure, conceivable that there is a
point not belonging to the system that has, in a finite region, in-
finitely many points equivalent to it under a group leaving the
system invariant. However, it is intuitively clear, and easy to
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prove rigorously, that this would also imply the existence in a finite
region of infinitely many points equivalent to a point of the regular
system and would thus involve a contradiction.

All the groups of symmetry operations of a point system are thus to
be found among the discontinuous groups of motions of the plane and
space, and all the regular systems of points are to be found in turn
among the sets of points equivalent to some point under such a group.

This apparent detour actually provides the easiest approach to
the study of point systems. For, it is found that there are only
finitely many discontinuous groups of motions in the plane and in
space that are essentially distinct.

Consideration of the sets of points equivalent to a given point
under any group from this finite class of groups shows that the
second and third defining conditions for point systems are always
satisfied. But there are groups giving rise to point sets that do
not satisfy the first condition ; we shall have to exclude such groups.
The remaining groups give rise to the regular point systems, and
no other groups do so. These groups are called the crystallographic
groups of motions because of the important role played by regular
point systems in crystallography.

We shall now proceed to construct the discontinuous groups of
motions. But we shall confine our attention to the case of the plane,
as the corresponding problem for space would involve too lengthy
a study to fit into the framework of this book. Even the study
of discontinuous groups of motions in the plane involves rather
lengthy considerations. Nevertheless, we shall carry it out in full,
because the methods it will teach us are typical for the three-
dimensional case also.

§ 10. Plane Motions and their Composition; Classification of the
Discontinuous Groups of Motions in the Plane

A mapping of the plane onto itself will be called a plane motion
if the final position can be obtained from the initial position by a
continuous motion in which the plane is considered rigid and in
which each of its points describes a path which is in the plane.
Henceforth, however, we shall characterize any motion of the plane
by the initial and final positions only, without regard to the way in
which the transition actually takes place in any particular case;
of course, we can get from the initial to the final position in any
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number of entirely different ways, and some of these involve the
leaving of the plane or distortions that ultimately cancel out. All
that is required is the possibility of making the transition in the
manner described at the beginning of the paragraph. It will be
one of our first tasks to find the simplest possible way of effecting
any given motion.

The simplest motions in the plane are the parallel motions or
translations, in which every point of the plane moves through the
same distance in the same direction and every straight line remains
parallel to its initial position.

Another well-known type of motion are the rotations of the plane
through a given angle about any given point. Here the direction
of every straight line is changed by the given angle,! and the center
of the rotation is the only point of the plane that remains fixed.

Also, for any motion other than the identity, there is at most
one point that remains fixed. For if we keep two points of the
plane fixed, then, apart from the identity, there is only one trans-
formation of the plane onto itself that can be obtained by a rigid
motion. This is the transformation that results when the plane
is rotated through 180° about the line connecting the two fixed
points, a motion that is not included in the class of motions described
above. Moreover, we cannot obtain this transformation by motions
of the above class, since it transforms a circle with a clockwise rota-
tional sense into a circle with the reverse sense, whereas it follows
from considerations of continuity that a proper motion never
reverses a rotational sense. From this discussion we see that a
plane motion is completely determined by the initial and final posi-
tions of two points. For if any two plane motions map two points
in the same way, they can only differ by a plane motion that leaves
two points fixed, i.e. they can not differ at all.

We shall prove that every motion of the plane can be carried out
in one single translation or one single rotation, a fact that very
considerably simplifies the study of plane motions. In order to
prove this, let us consider any given motion b. Leaving aside the
trivial case where b is the identity, we can choose a point A that is

! For straight lines through the center of the rotation, this is obvious. For all
other straight lines it follows from the fact that there are lines parallel to them
through the center of rotation and that any motion transforms parallels into
parallels.
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transformed into a different point A’. If B is the midpoint of the
segment AA’, then the motion either leaves B fixed or transforms
it into another point B’. In the former case (Fig. 58) the truth of
our assertion is obvious. For, in this case we need only consider
the rotation b’ through the angle n around B and note that it moves
the points A and B into the same images A’ and B into which they
are moved by b, and since we have seen that a plane motion is com-
pletely determined by the initial and final positions of two points,
it follows that b and b’ are identical. If, on the other hand, B moves
into a different point B’, we have to distinguish between the special
case where B’ is on the straight line A4’

and the general case where the straight 4 /;[\“ 4
lines AA’ and BB’ are distinct. In the first FIc. 58

case B’ is uniquely determined, because the
distance between A and B must be left unchanged by the motion b.
But since B was defined so that AB — A’B, we must have A’B’ =
A’B, and this, together with the condition B’ &= B, determines the
position of B’ uniquely (see Fig. 59). Now b is seen to be identical
with the translation that moves A to A’, for, this translation also
moves B to the same image point B’. This leaves us with only the
last case to consider, in which B’ is not on AA’. In this case we
erect the perpendicular to AB at B and 4 Y YL Vd
the perpendicular to A’B’ at B’ (Fig. — -
60). It follows from our assumptions
and the construction that the two per-
pendiculars are distinct and not parallel and consequently have a
point of intersection M. We shall see that the motion b is identical
with the rotation about M that moves A to A’. To prove this, we
have to show that this rotation moves B to B’,
which amounts to the same as saying that the ”‘m
triangles AMB and A’M B’ a're congruel'{t. We ’//////// x
know that AMB = A’ M B’, since both triangles /4 \\\\
have right angles at B and have equal legs. But ‘\\\\ o
in addition A’B’M = A’BM, because these tri-
angles have right angles at B and at B’ and have
the common hypotenuse A’ M, and because, as we have seen before,
A’B’ = AB = A’B. This completes the proof.

We can make our result appear even simpler, at least from a
formal point of view, if we agree to consider translations as rota-
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tions through the angle zero about an infinitely distant point.
Heuristically, this convention can easily be justified as follows: If
we consider a sequence of rotations about a point that moves out in-
definitely in a fixed direction while the angle of rotation approaches
zero, we can arrange, by a proper choice of such a sequence, that
the rotations differ less and less—at least as regards their effect
on any given finite region—from any pre-assigned translation.

If we adopt this point of view, we may regard any rigid motion
of the plane as a rotation through some definite angle, which is
zero in the case of translations. Thus it must always be possible
to represent the resultant motion obtained when two rotations are
carried out successively, by a single rotation through some definite
angle. In this connection we have the following simple theorem on
additivity of angles of rotation:

The resultant of a rotation through an angle a and a rotation
through an angle g must be a rotation through the angle o + 8.

To prove this, let us recall the fact mentioned at the beginning,
that the angle of rotation is given by the change in the direction
of any straight line chosen arbitrarily. With our new convention,
this theorem also applies to translations, since these leave direc-
tions unchanged. With this, the theorem is obvious. As an example
of the theorem, we note that two rotations about different centers
and through equal and opposite angles always produce a transla-
tion. For, the composite motion has the angle zero, but cannot be
the identity since neither of the two centers of rotation remains fixed.

With this preparation we can return to the discontinuous groups
of motions in the plane. We are now in a position to set up a simple
classification of these motions. For, we need only indicate what
translations are present and what the angles and centers of the
rotations are. It will be found most convenient to consider the
translations first, distinguishing between the following cases:

I. The directions of all translations present in the group are
parallel.

II. There are in the group two translations having different
directions.

Case I is understood to include the groups containing no trans-
lations at all.

Now we subdivide the two classes of groups by considering the
rotations. Thus we shall distinguish between the following:
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1. Groups that do not contain rotations, and 2. Groups that do
contain rotations.

Instead of identifying a group by the rotations and translations
it has, we can also characterize it by a simple geometrical figure
known as the unit cell. By the unit cell of a group we mean any
connected region that does not contain a pair of equivalent points
in its interior but that cannot be enlarged without losing this
property. Such unit cells are important not only in the theory of
groups of rigid motions but indeed in the study of all discontinuous
groups of transformations. In the general case, it is quite difficult
to determine a unit cell for a given group or even just to prove the
existence of unit cells for a class of groups. In the case of discon-
tinuous groups of plane rigid motions, however, we can always
construct unit cells quite easily.

For groups of type I it is found that every unit cell extends to
infinity, while in case II, the unit cells are always finite.

Before we proceed to examine the unit cells of the plane groups,
we shall mention some relations that always exist between the rota-
tions and the translations of a group. Since we shall have occasion to
refer repeatedly to these relations, they will be numbered as lemmas.

FIRST LEMMA. If a rotation through an angle a about a point P
is an element of a group and if Q is equivalent to P, then the group
also contains the rotation through the same angle o about Q.

Proof. By assumption, the group contains a motion b under which
P goes into Q, and it also contains the rotation d through the angle a
about P. From the defining properties of a group it follows, in
terms of the symbolism explained in the last section, that the group
must also contain the motion b—1db. This last must be a rotation
through o, for, if § denotes the angle of rotation of b, the additivity
theorem for angles of rotation tells us that the angle of b—1db is
— B+ a + 8 = a. And the center of the rotation must c
be Q, because b—! transforms Q into P, d leaves P fixed,
and b transforms P back into Q.

SECOND LEMMA. If a group contains a rotation 4 g
through angle a and a translation ¢, it also contains the Fie. 61
translation ¢’ whose magnitude is the same as that of ¢ and whose
direction forms an angle a with the direction of ¢.

Proof. Let d, a rotation through angle a contained in the group,
have the center A. Let ¢ transform A into B and let d transform
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B into C (Fig. 61). Then ¢’ is simply given by ¢’ — d—td. Indeed,
this motion must be an element of the group, and it must be a
translation, its angle, by the additivity theorem, being zero. All
that remains to be proved is that it moves A into C, and this is true
because d—* leaves A fixed, ¢ moves it to B, and d moves B to C.
One consequence of this lemma is that any group of type I that
contains any translations at all can not contain rotations through
any angle except n. For, if there were other rotations in the group,
the presence of any translation would entail the presence of another
translation in a direction not parallel to that of the first.

§ 11. The Discontinuous Groups of Plane Motions
with Infinite Unit Cells

To begin with, we shall deal with the case I, which gives rise to
the simplest groups. First of all, let us take the subclass I, 1,

a! comprising groups that do not

A, A, A A A A A contain any rotations. Starting
— O .

— from any point A, we note that

Fic. 62 there are only finitely many
points equivalent to it within a finite distance of A, so that among
these points there is a point A, having the smallest possible distance
from A (Fig. 62). Of course, there may be several equivalent points
having this minimal distance from A4, in which case we may choose
one such point. The motion a of the group that brings A into coin-
cidence with A, must be a translation, since we have assumed that
there are no rotations in the group. If we extend the segment A4,
by its own length to A,, this point must also be equivalent to A,
since it is obtained from A by the translation aa. By the same
argument we see that there are further points A;, A,, ... equally
spaced on the straight line AA,, all of which are equivalent to A4

4 4 Au Aner and are obtained from A by repeated
o —°—¢% °— application of the motion a. And, by
the same argument, the same straight
line contains infinitely many equi-
distant points A_,, A_,,...on the other side of A that are also equi-
valent to A and are obtained by applying a— one or more times to A.
Now it will be seen that the row of points we have constructed on
AA, exhausts the totality of points equivalent to A. For, by assump-
tion, all the translations of the group are parallel to AA,, and

F1G. 63
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therefore all points equivalent to A lie on AA,. Suppose now that
there were such a point A’ which is not a point of division of our
scale; then A’ would have to be in the interior of an interval 4,4, ,
(Fig. 63). Then the distance A,A’ would be shorter than AA,.
But there is a translation in the group that moves A4, to A; this
would move A’ to a point A” whose distance from A is less than
that of A,. This contradicts the initial choice of 4, as an equivalent
point having the smallest possible distance from A.

This completes the discussion of the groups of type I, 1; for, we
have now found all the points equivalent to any given point, and
we have thus described all the motions of the group—they are the
translations @ and a—* applied once or several times. Thus all the
groups of type I, 1 are essentially identical.

FIG. 64 FIG. 65

To construct a unit cell, we may simply start with a straight line
that is not parallel to AA4,, say with a perpendicular to AA,.
a transforms this straight line into a parallel straight line. Now
the strip of the plane cut off by the two parallel lines cannot contain
two equivalent points in its interior. On the other hand, since the two
bounding straight lines are equivalent, it is impossible to add to the
strip without having the enlarged region contain a pair of equivalent
points. Thus the strip is a unit cell (Fig. 64).* However, we can
change it as much as we like without destroying its property of
being a unit cell, by adding a patch on one side and omitting an
equivalent piece on the other side (see Fig. 65). This type of
alteration is also admissible in the case of unit cells for all the other

! The points of one of the bounding straight lines, say the left one, must be
considered as belonging to the unit cell but not the points of the other line;
otherwise the region would either contain equivalent points or be incomplete
as a unit cell.
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groups we shall consider and indeed for all transformation groups.
Out of the variety of possible unit cells, we shall in each case choose
one that has the simplest possible form.

If the translation a is applied to the whole unit cell, the result is a
congruent adjacent strip of the plane. In this way the whole plane
can be covered simply by unit cells of the group. The same property is
shared by the unit cells of all the groups we shall consider ; indeed, it
can be proved that the unit cells of any discontinuous transformation
group can be fitted together without overlapping or leaving gaps.
There are cases, however, where they do not fill the whole plane;
we shall encounter an example of this in a later chapter (p. 259).

The group I, 1 does not generate a regular system of points, since
the points that are equivalent to any given point only form a row, so
that the first defining condition for systems of points is not satisfied.

Nevertheless our discussion of these groups is not altogether with-
out significance for the study of regular point systems. Consider
any discontinuous group of motions whose structure may be of any
degree of complexity and examine the totality of translations of this
group that are parallel to a fixed one of them. This set of transla-
tions itself forms a group because it satisfies both group axioms.
Any group that is contained in another group is called a subgroup
of the group that contains it. Now it is clear that every subgroup of
a discontinuous group must itself be discontinuous. Hence we con-
clude that the set of translations that we selected constitutes a group
of type I, 1 and therefore has the structure described above, regard-
&b less of the structure of the parent group. Reason-

4" ing of this and similar type will be applied
Xjﬂ repeatedly in what follows.

5 We now come to the groups I, 2 containing
rotations but no two translations in non-parallel
directions. Here we have to distinguish between
groups of this type that contain translations and those which do not.
Let us begin with the simpler case, which we shall classify as I, 2, q,
where there are no translations in the group. We shall show that all
the rotations of such a group have the same center. For if there
were two rotations a, b with distinct centers A and B, the motion
a—1b~'ab of the group would, by the additivity theorem for angles
of rotation, have to be either a translation or the identity. Now if
B’ were the image of B under a (Fig. 66), then B’ could not coincide

ox
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with B since B was assumed to be distinct from A and since a rota-
tion leaves no point fixed except the center. Then the image B” of B’
under the rotation b would also have to be distinct from B’. But it
is easy to see that a—'b—'ab transforms B’
into just the point B”. Hence a—'b~'ab would
be not the identity but a proper translation,
contrary to the assumption that there are no
translations in the group.

Let A be the (one and only) center of rota-
tion of the group and let Q be any other point.
Then all the points equivalent to @ lie on the
circle with center at A that passes through Q. Because of the dis-
continuity of the group, it follows that there is only a finite number
of points equivalent to @, and since every rotation about A that is
in the group transforms the set of all equivalent points into itself,
these points must be equally spaced on the circumference of the
circle (see Fig. 67). Let Q, be one of the two neighbors of @ in
this set of equivalent points, and
let the total number of equivalent
points (including @ itself) be =.
Then /QAQ, is the smallest angle
of rotation there is in the group, and
it must be equal to 2n/n. All the
transformations are rotations about
A through positive and negative
multiples of the angle 2a/n, and
only a finite number of these are
geometrically distinct. This con-
cludes the discussion of case I, 2, a.
A suitable unit cell in this case consists of a plane sector with the
vertex at A and the angle of aperture 2n/n (Fig. 68). Once again,
the unit cell is infinite. The group does not generate a regular system
of points, since every point has only a finite number of equivalent
points, so that the first condition of page 56 is violated.

This group has much the same significance for the study of the
remaining discontinuous groups of motions as the group considered
before. If any discontinuous group of motions contains a rotation
ebout a point A4, then the set of all rotations about A contained in
the group is a subgroup that is discontinuous and that is, accord-

Fia. 67
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ingly, of type I, 2, a. It follows that the angles of all these rota-
tions are multiples of an angle of the form 2a2/n. We may thus
consider the integer n as characteristic of the point A4, and call 4
an n-fold center of rotation.

The only case among the groups
of type I that remains to be studied
is I, 2, 8, where there is a rotation
d and a translation ¢ in the group
and where all additional transla-
tions are parallel to £. By the
second lemma of page 63, the angle
of d must be 7, i.e., in the notation
introduced above, there can only be
2-fold centers of rotation. Let A,
be such a point (Fig. 69). The totality of translations of the group
form a group of type I,1. Let us consider the row A4,, 4., ... of
points that are equivalent to A, under the motions of this subgroup.
By the first lemma (p. 63) all these points are 2-fold centers of
rotation. We shall prove that all the midpoints B,, B,, ... of the

I, segments A, A, ;, are 2-fold centers of rotation as well.

Let ¢ be the translation that moves A, to 4., and let a.
be the rotation about A, with angle n. Then ta, trans-
°C C |, forms the pair of points A,A, into the pair A4,A,;
8 for, t transforms A, A4, into A,A4,, and a, transforms
A,A; into A,A,. The rotation about B, with angle n

“C A also transforms A, A, into A,A,; therefore ta, is iden-
tical with this rotation, and B, is consequently a 2-fold
center of rotation. Similarly all the points of the row
generated by B,, i.e. all the points B,, must be 2-fold
centers of rotation. On the other hand, there are no centers of rota-
tion other than the points A, and B,. For, if A is any one of the
points A, and if C is any other center of rotation of the group (see
Fig. 70), then C has to be 2-fold. Let ¢ be the rotation through =
about C and a the rotation through n about A, and consider the
motion ac. If A’ is the image of A under ¢, then C is the midpoint
of AA’, and therefore ac also transforms A into A’. But by the
additivity theorem for angles of rotation, ac is a translation. Hence
A’ is one of the points that are the images of A under the transla-
tions of the group, i.e. A’ is one of the points 4,, A,,..., and C,

L]
75 Ve

FI1G. 69

F16. 70



§ 11, DISCONTINUOUS GROUPS WITH INFINITE UNIT CELLS 69

being half way between A and A’, must be one of the points A, or B,.

Thus we have a complete description of the groups I, 2, 3. Fig. 69
shows the two classes of centers of rotation, along with a suitable
unit cell. Note that none of the points A, can be equivalent to
one of the points B,, since every rotation and every translation of
the group transforms each of the two rows into itself.

Fig. 69 also shows some mutually equivalent points other than the
centers of rotation. They are arranged / / /
in zig-zag order. Since they are con- a
tained in a strip of finite width, the
number of these points in the interior /" / /)
of a circle of radius » increases only as __7%%1__0
the first power of »; thus the points do Fre. 71
not satisfy the first defining condition ’
for regular point systems. As in the first two cases we considered,
the unit cells for the groups of type I, 2, § are infinite.

Any set of equivalent points that are not centers of rotation
for the group can be visualized as two congruent parallel rows.
Similarly, the more complicated groups will lead to systems of con-
gruent parallel lattices. It is clear that the existence of several
different rows or lattices of points all of which are equivalent to
one point depends on the presence of rotations in the group. Thus,
in particular, we see in our case that every rotation of the group
changes one row into the other, the rows consisting of the centers
of rotation themselves being the only exceptions.

Since a point is a configuration having no asymmetries, it does not
lend itself to a satisfactory graphic representation of rotations.
Thus it is better to illustrate rotations by drawing the set of all
figures equivalent to some figure other than a point. The simplest
figure that is not symmetrical in all directions consists of a “pointer,”
i.e. a point with an associated direction. Figs. 71 a and b exhibit
sets of equivalent pointers for the group I, 2, §; two different types
of figure are obtained depending on whether we begin with a pointer
attached to a general point or one attached to a center of rotation.
The first case, in particular, demonstrates the advantage of introduc-
ing pointers; the points of the two different rows are distinguished
by the fact that their pointers have opposite directions, while all the
pointers of the same row have like directions.
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§ 12. The Crystallographic Groups of Motions in the Plane.
Regular Systems of Points and Pointers. Division of the
Plane into Congruent Cells

We now turn to the groups of type II, i.e. to groups containing
two non-parallel translations. Unlike the groups of type I, all the
groups of type II will be seen to generate regular systems of points;
thus they may be called, in accordance with page 59, crystallographic
groups. The fact that all these groups have finite unit cells is con-
nected with this property. The study of these groups again leads
to the plane lattices. As was already pointed out, the systems of
equivalent points or pointers always form either a lattice or a figure
composed of several congruent
lattices in parallel positions.

On page 62 we subdivided the
groups of type II into two classes.
We shall treat first the simpler
subclass I1, 1, of groups containing
two non-parallel translations but
no rotations. We shall see that in
this case the points equivalent to
any given point always form a
plane lattice.

To prove this, we start with any
point P and choose a translation ¢ of the group that moves P to an
equivalent point Q having as small a distance as possible from P
(Fig. 72). Then the translations whose directions are parallel to ¢
generate a row of points equivalent to P on the straight line PQ.
By assumption, there are other translations in the group that are
not parallel to PQ. Hence there are additional points equivalent
to P and not on PQ; let us pick such a point R as close to P as
possible, and let ¢’ be the translation in our group that moves p to R.
Then we know that PR = PQ. If S is the image of @ under ¢,
then PQRS is a parallelogram. Clearly, all the points of the lattice
generated by this parallelogram are equivalent, since each of them
can be obtained from P by applying first the translation ¢ (or £—?)
and then ¢’ (or t’—*) each a certain number of times. On the other
hand, we shall see that this lattice exhausts all the points equivalent
to P, i.e. that all the translations of the group can be obtained as

s
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combinations of ¢ and ¢’. For otherwise, if this were not the case,
the group would contain a translation % that transforms P into a
point U not belonging to the lattice. Then there would be some
parallelogram P’Q’R’S’ of the lattice congruent to PQRS and con-
taining U (see Fig. 72). Then one of the two congruent triangles
P/Q'R’ and S’Q’R’, say the former, would have to contain U. Now
the group would have to contain the translation P’— U, Lecause
this is the resultant of the translation P’— P, which is contained
in the group, and ». But this leads to a contradiction, as follows:
We have seen that PR = PQ; consequently the vertex R’ is the point
of the triangle P’Q’R’ farthest from P’. Therefore the translation
P’— U would be shorter than the translation ¢’ that moves P to R
and therefore P’ to R’. Consequently the translation P’— U would
have to have the same direction as ¢, and U would have to be on the
segment P’Q’. But then the translation P’— U would also have to
be shorter than ¢, contrary to the choice of ¢ as a shortest translation
of the group. The proof is analogous if U is supposed to lie in the
triangle S’Q’R’, in which case we would have to consider the trans-
lation S’— U instead of P’— U, reaching a contradiction as before.

We have shown that the points that are equivalent under the
motions of a group of type II, 1 always form a point lattice. If the
motions of such a group are applied to a pointer instead of a point,
we obtain a lattice of parallel pointers (see Fig. 73).

Turning now to the last remaining category II, 2, where rota-
tions are admitted along with translations, we shall find it necessary
in every case to refer back to the result just obtained. For, like
the groups of type 11, 1, those of type II, 2 also contain two trans-
lations in different directions, and therefore the totality of trans-
lations in a group of type II, 2 necessarily forms a subgroup of
type II, 1. Hence of the points equivalent to any point P under a
group of type II, 2, all those that are obtained from P by transla-
tions of the group, form a lattice. The rotations of the group either
transform the lattice into itself or move some lattice point into a
point @ that does not belong to the lattice. But under the trans-
lations of the group, @ generates another lattice congruent and
parallel to that generated by P, and all the points of the new lattice
are equivalent to Q and to P. This process can be repeated as long
as there are points equivalent to P that have not yet been used up;
but only a finite number of distinct lattices can be obtained in this
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way, since the group otherwise could not be discontinuous. Hence
we see that there can only be a relatively small number of groups
of type II, 2 and that the point systems corresponding to them
always consist of parallel congruent lattices.
We shall classify the groups II, 2 according to the angles of the
rotations in the group. All these angles must be of the form 2x/xn,
where n is an integer, because
x( \L the rotations about a single center
that are contained in the group
form a discontinuous subgroup of
type 1,2, . Now we shall prove
that the only values different from
1 that can be assumed by n are 2, 3,
4, and 6. Choose a translation ¢ of
the smallest possible magnitude belonging to the group, let A be
an n-fold center of rotation of the group (Fig. 74), and let ¢ move
A to B. The rotation through 2n/n about A brings B to some
point B’. By the second lemma on page 63, it follows that the group
also contains the translation ¢’ that moves A to B’. The motion t—¢#
evidently transforms B into B’. By the additivity theorem for angles
of rotation, t—'¢’ is a translation, and since the magnitude of the
translation ¢t was chosen to be as small as possible, it follows that

U BB 'z AB. Hence (BAB'=""=1
so that » = 6. It only remains to show
\, that the case n =175 is ruled out, which
‘\ we shall do by an indirect proof. Assume
—% that A is a 5-fold center of rotation

(Fig. 74). Let the rotation through

2 2Tﬂ about A transform B into B”.

Then the group would have to contain the translation ¢” that takes
A into B”. But then the translation t”¢ would obviously move A
to the point marked C in the figure, and since the distance AC is
shorter than A B, the group would contain a translation shorter
than ¢, in contradiction to our definition of ¢.

Thus we see that the groups of type II, 2 can contain only 2-, 8-,
4-, and 6-fold centers of rotation. If ¢ denotes the smallest angle
of rotation for such a group, we have the following four possibilities
to consider:

)4 )4
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11,2, a: p=a,

11, 2, g ¢ =2n/3,
11, 2, y: @ =a/2,
11,2, 6: ¢ = n/3.

We shall see that to each of these four possibilities there corres-
ponds exactly one group.

II, 2, a. There is at least one 2-fold center of rotation in the
group. The subgroup of translations contained in the group trans-
forms A into the points of a latice; all these points, then, are equiva-
lent to A and are 2-fold centers of rotation. Let ABCD be one of
the generating parallelograms of the lattice (see Fig. 75). Now
we can refer back to the discussion of the groups I, 2, § (see p. 68),
according to which the midpoint of every segment joining two of
the lattice points is also a 2-fold center of rotation and every 2-fold
center of rotation is the midpoint of such a segment. Let us con-
sider the midpoint Q of AB, the midpoint P of AC, and the mid-
point T of BC and AD. No two of these points are equivalent.
Also, we have just seen that each of them is a 2-fold center of
rotation and that their lattices and the original lattice together
make up all the 2-fold centers of rotation of the group. Thus there
are four distinct classes of 2-fold centers of rotation The rota-
tions about these points and
the translations that leave the
lattice ABCD invariant ex-
haust all the transformations
of the group, since we assumed
that there were none other
than 2-fold centers of rotation.
Obviously the triangle ABC
can be used as a unit cell.

Fig. 76 exhibits the set of equivalent pointers obtained by start-
ing with a pointer attached to a general point. Fig. 77 exhibits
the same in the case where the initial pointer is attached to a
center of rotation. In the former case, we have two interlocking
lattices distinguished by the fact that their pointers have opposite
directions. In the latter case, the two lattices coincide, since there
are two pointers attached to every center of rotation. If instead
of the pointers we only consider the points, each of the figures
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represents a regular system of points. But then the system of
Fig. 77 is no longer distinguishable from that corresponding to
Fig. 72, which is the general plane lattice. Conversely, we may
look for the group of symmetry operations of the general plane
lattice and find that it is not II, 1 but, in every case, II, 2, a, for,
the parallelogram ABCD in Fig. 75 may be chosen at will, and
the lattice generated by it will always be transformed into itself
by the motions of the group. Here we can distinguish the various
cases more clearly by considering pointers instead of points.
IL, 2, 3. Here we stipulate that 2s/3 is the smallest angle of
rotation occuring in the group.
Y VA Y Y- We assert that there are in this
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case no angles of rotation other than -+ —23—" . For, n would be the

only other angle that might be admissible; but by the additivity
theorem, a rotation through n together with a rotation through
— 27/3 would result in a rotation through n/8, which is inadmis-
sible in the group. Thus we see that there are in fact only 3-fold
centers of rotation in these groups.

Let A be a 3-fold center of rotation (Fig. 78), and let A—> B
be a translation of the smallest possible magnitude belonging to
the group. If the rotation through 2a/3 about A moves B to C, it
follows from the second lemma that the translation 4 — C also
belongs to the group. The lattice corresponding to the subgroup
of translations can be generated from the parallelogram ABCD,
since, by construction, the parallelogram contains no other lattice
points in its interior. The diagonal AD divides ABCD into two
equilateral triangles. Hence the translations of the group have to
generate the lattice corresponding to the closest packing of circles,
not just any lattice as in the case 11, 2, a. (Similarly, we shall see
in the two remaining cases as well that the lattices generated by
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translations must be of a special form.) Now dt, the resultant of
the rotation d defined by AB — AC and the translation ¢ defined
by A — B, transforms AB into BD (Fig. 78). Thus dt must be
a rotation d’ through the angle 2a/3 and its center must be at the
center M of the triangle ABD, showing that M is also a 3-fold
center of rotation of the group. Furthermore d”= td’ transforms
AC via BD into DA, so that d” is the rotation
through — 25/3 about the center N of triangle
ACD, showing that N is also a 3-fold center of
rotation. Like A, the points M and N also give
rise to lattices all of whose points are 3-fold
centers of rotation. We shall prove that this
accounts for the entire set of rotations belonging to our group.
To this end, all that we need show is that the distance between two
3-fold centers of rotation E and F' cannot be less than the distance
AM. Clearly, the resultant d—'d’ of the rotations d—* and d’ is ¢t.
By the same token the resultant of two equal and opposite rotations
about E' and F respectively is a translation, and the ratio of the
magnitude of the translation to the distance E'F equals the ratio
of the magnitude of ¢ to the dis-
tance AM. Since it was assumed
that the group does not contain a
translation smaller than ¢, it fol-
lows that EF cannot be smaller
than AM. We have therefore
proved the assertion that there are
no centers of rotation other than
the points of the three lattices
generated by A, M, and N. Now,
since the rotations about A transform each of these lattices into
itself rather than one into the other, no two of the points A, M, N
are equivalent. Accordingly, a group of type II, 2, § has three dis-
tinct classes of centers of rotation (see Fig. 79). The points of
any one of these classes may be seen to be the centers of a system of
regular hexagons that covers the plane simply, where the vertices
of the hexagons coincide alternately with centers of rotation of the
other two classes. In this way we obtain three regular hexagonal
coverings for the plane which are superimposed in a definite way.
This figure, incidentally, can be interpreted as an orthogonal pro-
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jection of three adjacent layers of the spatial structure representing
graphite (see Fig. 56, p. 54).

In Fig. 79, the rhombus AMND is chosen as a unit cell.! Also
indicated in the figure are two translations that generate the lattice
of translations.

A system of equivalent pointers which are not attached to centers
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of rotation consists of three interlocking lattices, each char-
acterized by a definite direction of its pointers (see Fig. 80).
Generating parallelograms for these lattices are not indicated in
the figure, as this would make it too confusing.

& 4 If we start with a pointer
attached to a center of rotation
(see Fig. 81), the three lat-
tices coincide, since each point
must carry three pointers.

IL, 2, y. The smallest rota-
tion of the group has the
angle n/2. Thus there are
2-fold and 4-fold centers of
rotation. There cannot be any
other angles of rotation; for
if there were, we could apply the additivity theorem to obtain a
rotation through n/3 by combining a rotation through 22/3 with
a rotation through =, and this would contradict our condition
that no rotation through an angle smaller than n/2 be present.

Our procedure here will be similar to that followed in the pre-
ceding case. Let A be any 4-fold center of rotation, and let A - B

Fic. 82

! The same system of adjacent rhombuses occurs in the structure of honey-
combs.
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be a translation of the group having as small a magnitude as pos-
sible (Fig. 82). If the rotation about A through n/2 moves B to C,
then the translation A — C is also contained in the group. Hence
the lattice of translations of the group can be generated from the
square ABCD, since the four vertices, but no other points of this
square, are lattice points. As in the previous case, we note that
the translation lattice can not be chosen freely but has to be of
a special symmetrical form. If we take the translations and the
rotations through n but not those through n/2, we obtain a sub-
group, and this subgroup must be of type II, 2, a. The centers
of the squares, such as M, together with the midpoints of the sides,
e.g. N, and the vertices of the squares, together make up the
complete set of centers of rotation of the subgroup. But the same
points necessarily include as well the complete set of 2-fold and
4-fold centers of rotation of the full group, since all these points
are the centers of rotation through =» and as such have to be
counted in with the 2-fold centers of rotation of the subgroup.
If d is the rotation AB — AC and ¢ is the translation A — B, then
d’ = dt must transform A B into BD and is therefore the rotation
through n/2 about M. Accordingly, the centers of all the squares
are not merely 2-fold but 4-fold centers of rotation. Now we can
argue by the same reasoning as in the preceding case that there
are no further 4-fold centers of rotation; d—'d’ is the same as t,
which is the shortest translation of the group; therefore the dis-
tance between two 4-fold centers of rotation cannot be less taan
AM, and there are therefore no 4-fold centers of rotation besides
the points of the lattices generated by A and M. Since every
motion we have considered so far transforms these two lattices
into themselves and not into each other, A and M can not be
equivalent. On the other hand, it is seen that all 2-fold centers
of rotation are equivalent. Thus there is a single class of 2-fold
centers of rotation consisting of two interlocking square lattices,
and there are two classes of 4-fold centers of rotation consisting
of one square lattice each. We may choose the triangle AMB as
unit cell.

The system of pointers generated by a general point con-
sists of four square lattices, each characterized by the common
direction of all its pointers (see Fig. 83). A 2-fold center of
rotation gives rise to two lattices whose pointers have different
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directions (Fig. 84). A 4-fold center of rotation gives rise to a
single lattice (Fig. 85). If, as in Fig. 85, the arrows are directed
towards each other in pairs, the figure can be interpreted as a
regular arrangement of equivalent
tetravalent atoms in the plane.

II,2,6. In this case the variety
of different rotations is the greatest.
For, since 6-fold centers of rotation
are admitted, 2-fold and 3-fold ones
can also occur. On the other hand,
4-fold centers of rotation are ruled
out; for, a group containing a rota-
tion through a/2 and one through
n/3 would also have to contain a rota-
tion through =/6, and this cannot
occur in any crystallographic group
of motions in the plane.

Let A be a 6-fold center of rotation
of the group (Fig. 86). First of all,
we shall examine the subgroup con-
sisting of translations and rotations
through 25/3. The structure of this
subgroup is known to us from II, 2, §;
we know also that A is a 3-fold center
of rotation for this subgroup. The
lattice of the translations of this sub-
group is the lattice of equilateral
triangles, and not only do the vertices
of the triangles, for example A4, B,
and C, appear as 3-fold centers of
rotation, but the centers of the tri-
angles, M for example, do so also.
Since the subgroup takes into account
all the translations of the parent
group, the latter has the same trans-
lation lattice as the subgroup. But in the parent group, 4 is a
6-fold rather than a 3-fold center of rotation, and consequently all
the points of the lattice generated by A must also be 6-fold centers
of rotation. Should any further 6-fold centers of rotation occur
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in the group, they would have to be the centers of some of the
triangles, since all 6-fold centers of rotation have been counted in
as 3-fold centers of rotation for the subgroup. But the resultant
of the rotation through n/3 about A and the rotation through
— /3 about B is the translation A — B; and since there is no
smaller translation in the group, the distance between two 6-fold
centers of rotation cannot be less than AC, so that there are no
6-fold centers of rotation apart from the points of the lattice of A.
Thus the centers of the triangles are only 3-fold centers of rota-
tion. There are no further 3-fold centers of rotation in the group,

for we have taken them all into account in the subgroup. Unlike
the centers of rotation of the groups II, 2, 8, all the 8-fold centers
of rotation of our group are
equivalent; M, for example, can
tion about B. ﬂNﬂNﬂN

To find any 2-fold centers of ”//// i -A
rotation that may be in the group,
we use an analogous procedure: _A
we examine the subgroup consist-
ing of the translations and the F1c. 86
rotations through n. From the dis-
the following points are admissible: the vertices of the lattice
parallelograms, their centers, and the midpoints of their sides,
i.e. the midpoints of the sides of all the equilateral triangles. The
vertices of the triangles have already been taken into account as
6-fold centers of rotation. This leaves us with the midpoints of
the sides as the set of all 2-fold centers of rotation. We note that
all of them are equivalent. Thus there is just one class each of
is a unit cell for the group.

The system of pointers generated by a pointer in general posi-
tion consists of six interlocking lattices, each characterized by the
common direction of all its pointers. In Fig. 87, each of these
lattices is represented by three parallel pointers attached to points
that form an equilateral triangle. If we start with a pointer
attached to a 2-fold center of rotation (as in Fig. 88), the lattices

be transformed into N by a rota-

NAAY
cussion of the case II, 2, « we know that rotations through n about
2-fold, 3-fold, and 6-fold centers of rotation, respectively. AMB
coincide in pairs, so that we are left with three lattices. This figure
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represents a possible regular arrangement in the plane for a
complex of two types of atoms having the valences 6 and 2 respec-
tively. By rotating all the pointers through n/2, we arrive at an
arrangement linking atoms of valences 2 and 3. The system of
pointers generated by a 3-fold center of rotation consists of two
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distinct lattices (see Fig. 89). When the directions of the pointers
are as shown, the figure represents an arrangement of atoms with
valences 3 and 6. A 6-fold center of rotation generates a system
of pointers that forms a single lattice (see Fig. 90) ; when the
pointers are directed as in the figure, the lattice may be interpreted
as a regular plane arrangement of equivalent hexavalent atoms.

F1c. 89 Fi16. 90

We have now completely solved the problem posed in §9. We
have constructed all the crystallographic groups of motions that
can possibly exist in the plane, and in so doing we have found
that there are only five such groups. The most general regular
systems of points and pointers are obtained by applying each of
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these groups to a general point. For, the systems of points con-
sisting of centers of rotation in the case of the more complicated
groups also occur as systems consisting of general points when a
simpler group is applied. On the other hand, the systems of
pointers attached to centers of rotation yield new configurations.

Simultaneously with the above problem, we have solved another
problem related to it, namely the problem of finding the different
ways in which the plane can be divided into congruent finite pieces
subject to the conditions that the whole structure can be brought
into self-coincidence by a symmetry operation and that there is a
symmetry operation that brings any given piece into coincidence
with any other piece. The group of these symmetry operations
must be discontinuous and must furthermore be a crystallographic
group, because the number of pieces inside a circle goes to infinity
as the square of the radius. Hence there are only two possibilities.
Either there is no symmetry operation other than the identity
that leaves one of the pieces invariant, in which case the piece
must be a unit cell, or else there are pieces that are brought into
self-coincidence by a symmetry operation; in this case, the set of
all symmetry operations of this kind forms a discontinuous sub-
group, and it is clear that the subgroup cannot contain any trans-
lations and therefore consists of rotations about a single point
(so that the subgroup is of type I, 2, a). In this case, the pieces
into which the plane is divided have rotational symmetry, and each
of them is composed of unit cells. One example of this case is the
division of the plane into congruent regular hexagons or squares,
an arrangement often used in tiled floors.

Another problem, which is more difficult, is that of finding all
possible “tilings’ ; this problem stipulates that the plane be covered
by finite congruent tiles, but the construction need not be invariant
under any symmetry operations.

§ 13. The Crystallographic Classes and Groups of Motions in Space.
Groups and Systems of Points with Bilateral Symmetry

In space, as in the plane, there is only a finite number of crystallo-
graphic groups of motions. However, their number is much greater
in space than in the plane. In order to determine what groups can
be constructed in space, we start, as before, by characterizing the
individual motions geometrically. In space it is also possible to
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replace any given rigid motion by a motion of a certain simple
type. To begin with, it can be proved that every motion in space
that leaves a point fixed also leaves fixed all the points of a straight
line passing through the point and is identical with a rotation,
through a definite angle, about this line as axis. An example of
a motion in space that does not leave a point fixed is a translation.

Now it can be proved that any given rigid motion in space is
the resultant of a uniquely defined rotation and a uniquely defined
translation along the axis of the rotation; the rotations and trans-
lations themselves may be regarded as special cases in which
one of the component motions reduces to the identity. If in the
general case we think of the two component motions, the rotation
and the translation, as being performed simultaneously and each
at constant speed, the result is a screw-like motion of space. For
this reason, the general rigid motion of space is called a screw,
rotations and translations being regarded as limiting cases. It is
also found expedient to consider the translations, in analogy with
translations in the plane, as rotations through a vanishing angle
about an infinitely distant axis.

The combining of two screws in space is not subject to a simple
law analogous to the additivity theorem for the combining of two
rotations in the plane. But there are two theorems of a more
specialized nature that are sufficient for the study of crystallography
in space; first, the resultant of any two translations is another
translation, and second, two screws with parallel axes and equal
angles of rotation differ only by a translation. Here “angle of
rotation” of a screw refers to the angle of the rotation forming
one of the components of the screw.

From the first of these theorems it follows that the translations
of a group of motions in space always form a subgroup. As in the
plane, the structure of this subgroup determines whether or not a
discontinuous group of motions in space is crystallographic, i.e.
whether or not it generates a three-dimensional system of points.
For, if all the translations of the group are parallel to a fixed
plane, the group is bound to have infinite unit cells and therefore
can not give rise to a system of points. On the other hand, a
group containing three translations whose directions are not all
parallel to a fixed plane, is crystallographic. In this case, the points
equivalent to a point P under the subgroup of translations always
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form a space lattice. If, in addition, the group contains a screw
that moves P to a point @ that is not a lattice point, the subgroup
of translations transforms Q into another lattice of points equiva-
lent to P and Q. Since the group is discontinuous, the number of
lattices obtained in this way is finite; as in the plane, this restric-
tion enables us to obtain a classification of all the possible cases.
At the same time, we see that every regular point system in space
is composed of a finite number of interlocking congruent space
lattices in parallel positions. We have already encountered an
example of this, namely the system formed by the centers of
spheres arranged in the tetrahedral packing.

The second of the above theorems, the one concerning screws
with parallel axes, leads to an important geometrical procedure for
classifying the motions of a group that are not translations. To
this end, we single out any point M of space. For every axis a of
a screw belonging to the group we draw a line a, through M parallel
to a. With every screw s belonging to the group we then associate
the rotation s, about a, having the same angle as s. Then s and
8, can differ only by a translation. We have set up a correspondence
in which every motion of the group G that is not a translation is
associated with a motion that leaves M fixed. We shall make the
correspondence complete by letting the identity correspond to every
translation of G. In this way, the group G is associated with a set
G of transformations all of which leave M fixed. G, is a group.
To prove this, let s, and ¢, be the rotations of G, corresponding to
the screws s and ¢ of G, and note that s,¢, is none other than the
rotation in Gy that corresponds to st, as is easily deduced from the
rule regarding screws with parallel axes. Thus the set G, does in
fact satisfy the following two group axioms: If it contains s, and ¢,
then it also contains s,¢, and s,~*.

The structure of the group Gy by no means uniquely defines G;
it tells us nothing about the translations of G. For example, all
the groups G consisting exclusively of translations are represented
by one and the same group G, consisting only of the identity. Thus
Gy represents a whole family of groups which differ among them-
selves only in their translations. We shall refer to the set of all
groups of motions in space that lead to the same group Gy, as a
class of groups of motions in space. If a class contains a crystallo-
graphic group we call it a erystallographic class. This concept is
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of great importance both in practical crystallography and for the
geometrical classification of space groups. Thus it is much easier
to construct all the possible crystallographic classes first and then
find out for each class separately what groups it contains.

Since all the motions of Gy leave the point M fixed, they also
transform into itself the surface of a sphere with center at M, so
that the “reduced” groups G, may be regarded as groups of
motions of the surface of the sphere. Now it is a theorem
that the reduced group Gy must be a discontinuous group when-
ever G is a discontinuous group, a fact that will simplify our dis-
cussion considerably. Since the discontinuity of G means some-
thing entirely different from that of Gy, this theorem is by no
means trivial. But in the case of crystallographic groups it is
easily proved by considering their translation lattices. We shall
omit the proof here.

According to the above result, we can find all the crystallographic
classes of groups of space motions by examining only the discon-
tinuous groups of motions on the sphere. There is yet another
simplification: as in the plane, it may also be proved for the crys-
tallographic groups of motions in space that there cannot be any
rotations through angles other than multiples of =, 22/3, n/2, and
n/3. Just as there were only 2-, 8-, 4-, and 6-fold centers of rotation
in the plane groups, we may say (using analogous terminology)
that the three-dimensional crystallographic groups of motion have
only 2-, 8-, 4-, and 6-fold axes. Now the same must be true for
the groups Gy of crystallographic classes, and this restriction leaves
us with only eleven classes of crystal. We proceed to list the
classes.

First of all, we take the cases in which there is only one axis in
Gy, say an n-fold one. The corresponding classes are called C,;
there are five of them
(Fig. 91) :

1. C, (Identity, the

) ) ) ), class of translation
- groups.)

2. C,,

3. Cs,
[; 4. C4,
5. Ce.

O
N
N
Y
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Next, we assume that there are several axes, of which at most
one is more than 2-fold. We refer to this n-fold axis (n > 2) as the
“principal axis,” and to the 2-fold axes as the “secondary axes.”
Then it is readily deduced from the group axioms that there are
exactly » secondary axes, all perpendicular to the principal axis
and forming equal angles with
each other. The correspond-
ing groups and classes are
labelled D, (dihedral groups ~_/ L/ %
or classes) ; there are four of /™ §T %
them (Fig. 92):

6. D,, (3 equivalent axes.)

7. Ds, 2, Y Z, Y/
8. D,,

9. D,.

It is easy to see, moreover, that all the secondary axes are equiva-
lent in the case n — 3, whereas they alternately belong to one or
the other of two classes of equivalent axes in the remaining cases.

One possibility remains, viz. that there are several axes that are
more than 2-fold. In this case, a
closer scrutiny reveals that the
equivalent points on the sphere
must be at the vert ces either of
a regular tetrahedr. \ (T) or of
a regular octahedror (O). The
arrangement of the axes follows
automatically from the proper-
ties of symmetry of these poly-
hedra; we obtain all the axes by
connecting the center of the
sphere with the vertices, the mid-
points of the edges, and the centers of the faces. Thus the tetra-
hedron gives rise to the class

10. T (Fig. 93).

The line connecting the center of the sphere with a vertex of
the tetrahedron also passes through the center of the opposite face.
Since the opposite face is an equilateral triangle, while there are
three faces meeting at each vertex, we obtain four 3-fold axes. In
addition, we draw the lines connecting the midpoints of the six
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edges with the center of the sphere; this gives not six but three
straight lines, since the midpoints of the edges are diametrically
opposite in pairs. For it to be possible for the tetrahedron to be
brought into self-coincidence by a rotation about these lines as axes,
they must be 2-fold axes. Thus the class T has three 2-fold axes,
and these axes, furthermore, are mutually perpendicular.

In order to construct a unit cell on the sphere, we may begin
with a spherical triangle corresponding to one of the faces of the
tetrahedron. Since such a triangle is brought into self-coincidence
by a rotation about a 3-fold axis, it is not itself a unit cell. On the
other hand, it is obvious that the
triangle can be divided into three
unit cells (see Fig. 93).

The last class,

11. O (Fig. 94),
can be treated analogously. The
six vertices of the octahedron are
diametrically opposite in pairs, and
four faces meet at every vertex, so
that we have three 4-fold axes.
Similarly the eight faces of the
octahedron are opposite in pairs,
and are equilateral triangles, so
that they give rise to four 3-fold
axes. Finally, the octahedron has
twelve edges, and they are oppo-
site in pairs; thus the class O has F1c. 94
stz 2-fold axes. Once again, a third part of a spherical triangle
corresponding to one of the faces of the octahedron will serve as
unit cell (Fig. 94).

The eleven classes we have constructed lead to a total of sixty-five
crystallographic groups in space. The study of this multiplicity of
groups is thus very much simplified by the division into classes.
As a matter of fact, the concept of classes could have been intro-
duced in the same way for crystallographic motions in the plane.
This leads to discontinuous groups of motions on the circumference
of a circle, and these consist of the identity and the rotations through
multiples of =, 2n/3, n/2, and n/3. Thus there are only five classes,
and each of them contains only one crystallographic group of
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motions; accordingly, there is nothing to be gained by dividing
the plane crystallographic groups into classes.

As in the plane case, the crystallographic groups of motions in
space generate systems of points, and they are also connected with
the problem of dividing space into congruent finite pieces in such
a way that there are symmetry operations by which any given
piece can be brought into coincidence with any other piece. This
problem has not yet been solved.

For the purposes of crystal chemistry it is expedient to consider
not only systems of points but systems of pointers as well. But in
space a single pointer associated with a point will not suffice, since
this figure could be rotated about the direction of the pointer.
A figure with fully defined orientation is obtained from a point by
attaching to it two arrows of unequal length pointing in different
directions.

A comparison of the various crystal structures observed in
nature with all the systems of pointers that can be constructed
geometrically leads to the following surprising observation. Not
only does nature use up the supply of geometrically constructed
systems of peinters, but there is even a large number of crystal
structures that are not provided for in our concept of regular
systems of points, although all their elements are equivalent. The
reason for this is that the equivalence of all the points, as postulated
in the third defining condition for regular systems of points, was
defined to mean that every .point can be transformed into every
other point of the system by a‘symmetry operation of the system.
We can obtain a generalization of the concept of point systems by
admitting reflections as well—i.e. reflections of the plane in a
straight line of the plane and reflections of space in a plane. These
more general transformations leave all distances and angles in-
variant. But they interchange left and right, and the reflections
in space cannot be effected by a continuous motion. If the term
symmetry transformations is used to cover all transformations of
space that leave distances and angles unchanged, then the dis-
continuous groups of symmetry transformations form a totality
that not only includes the discontinuous groups but also contains
numerous other groups. These more general groups have also been
determined completely. Their study is simplified by the fact that
the proper rigid motions contained in any one of them (i.e. those
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of its transformations that do not use reflections) form a subgroup,
and this subgroup is of a type we can identify by the methods
we used before. The division of the two-dimensional and three-
dimensional crystallographic groups of motions into classes can
also be extended to groups containing reflections. For, just like
screws with parallel axes and equal angles, two reflections in
parallel planes or parallel lines can only differ by a translation.
A summary of all the classes and groups obtained in this way is
given in the following table.

Plane Space
Crystallo-} Crystallo-|{ Crystallo-{ Crystallo-
graphic graphic graphic raphic
Groups Classes Groups lasses
Proper Rigid Motions . . . .o 5 5 65 11
Added by Inclusion of Reﬁectlons .o 12 5 165 21
Total . . . . . . . . . . . . 17 10 230 32

Only by supplementing the proper motions with reflections do
we get all the various crystal structures found in nature. In the
construction of systems of pointers either in the plane or in space
it is necessary in each case to add one extra pointer; for, in the
plane a single pointer is invariant under reflection in the straight
line containing the pointer; and similarly in space, the figure con-
sisting of two unequal pointers is unchanged by a reflection in the
plane of the pointers. In space, then, we have to use a point carry-
ing three pointers of unequal length that do not all lie in one plane.

Instead of using geometric methods, we may also find the dis-
continuous groups of symmetry transformations by using algebraic
methods. In the plane case, this leads to remarkable relationships
among complex numbers; in space, the method is based on hyper-
complex number systems.

It would be an interesting problem to generalize the present dis-
cussion to spaces of higher dimensionality. Some results relating to
the discontinuous groups of symmetry transformations of higher-
dimensional spheres have been found, the analogues of the regular
polyhedra being known for spaces of any number of dimensions.
We shall have more to say about these higher-dimensional figures
in the next chapter. Moreover, Bieberbach has proved that there
is only a finite number of n-dimensional crystallographic groups for
every n, and that each of these groups contains n linearly indepen-
dent translations,
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§ 14. The Regular Polyhedra

The construction of the crystallographic classes led us to the reg-
ular tetrahedron and the regular octahedron. We shall now define
regular polyhedra in general and find out what regular polyhedra
are possible besides the tetrahedron and the octahedron.

We shall require that all the vertices of a regular polyhedron
be equivalent and that the same be true for all the edges and all
the faces. Furthermore, we require that all the faces be regular
polygons.

First of all, a polyhedron satisfying these conditions cannot have
any re-entrant vertices or edges. For, it is clear that the vertices
cannot all be re-entrant, and therefore the presence of any re-
entrant vertices would imply that not all the vertices are equiva-
lent; the same argument holds for edges. It follows that the sum
of the face angles at a vertex is always less than 2a. For otherwise
all the faces meeting at the vertex would have to lie in one plane,
or some of the edges ending at the vertex would have to be re-
entrant. Furthermore, since at least three faces must meet at every
vertex and the regularity conditions imply the equality of all the
face angles, the magnitude of all of these angles must be less than
2n/3. But the angle of the regular hexagon is exactly 2x2/8, and
the angle of a regular n-sided polygon increases with n. There-
fore the only polygons that can occur as faces of a regular poly-
hedron are the regular polygons having three, four, and five sides.
Now the angles of the regular 4-sided polygon, i.e. the square,
are right angles, so that no more than three squares can meet at a
vertex without the sum of the angles at the vertex being equal to
at least 2n; by the same token, more than three pentagons can
certainly not meet at a vertex of a regular polyhedron. Now the
shape of a regular polyhedron is completely determined by the
number of faces meeting at a vertex and the number of sides of
each polygon forming a face. There can be, accordingly, at most
one regular polyhedron bounded by squares and one bounded by
regular pentagons. On the other hand, three, four, or five equi-
lateral triangles can meet at a vertex D, since it takes six of them
to make the sum of the angles at the vertex equal to 2z. Therefore
equilateral triangles can form the faces of three different regular
polyhedra, bringing the total number of possible regular polyhedra
up to five. Now all five of these possible forms actually exist.



90 II. REGULAR SYSTEMS OF POINTS

They were well known as early as Plato, and he gave them a very
important place in his Theory of Ideas, which is why they are often
known as the “Platonic Solids.” The most important data on the
regular polyhedra are tabulated below. Figs. 95-99 show parallel
projections of the regular polyhedra.

Number of
Polygons
Name of the Polyhedron Forming Faces Meeting
the Faces Vertices} Edges| Faces ata
Vertex

Tetrahedron (Fig.956) . . .] Triangles 4 6 4 3
Octahedron (Fig.96) . . . “ 6 12 8 4
Icosahedron (Fig.97) . . . “ 12 30 20 5
Cube (Hexahedron) (Fig. 98) Squares 8 12 6 6
Dodecahedron (Fig. 99) . . Pentagonsl 20 30 12 3

All the regular polyhedra have a relation to the sphere much
the same as that we have already described for the tetrahedron
and octahedron in the last section. All of them can be inscribed in
a sphere, and each of them generates a discontinuous group of
motions of the sphere under which the vertices form a system of
equivalent points. Now the planes that are tangent to the sphere
at the vertices of such a polyhedron must bound another polyhedron
which is also brought into self-coincidence by the motions of the
group. It is to be expected that the new polyhedron is regular too;
and thus the construction sets up a pairwise correspondence between
the five polyhedra. If the construction is applied to the octahedron
it does indeed lead to a regular polyhedron, namely, the cube;
Fig. 100 illustrates the two polyhedra in the positions indicated.
Thus the reduced group O could have been defined just as well by
means of the cube as the octahedron. In the table, the relation
between the two polyhedra is expressed by the fact that each has
as many vertices as the other has faces, that both have the same
number of edges, and finally, that the number of faces meeting at
every vertex of either of them equals the number of vertices on
each face of the other. Hence the octahedron can also be circum-
scribed about the cube (see Fig. 101).

The table shows that the dodecahedron and the icosahedron are
related in the same way. Therefore both figures give rise to the
same group, which is usually called the icosahedral group. Our
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crystallographic studies could not reveal this group, because the
number five plays a part in it, whereas crystallographic classes

ZAN
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cannot contain any 5-fold axes.
When the construction is ap-
plied to the tetrahedron, it gene-
rates not a different figure but
another regular tetrahedron.
The principle of duality in
space, which will be introduced
in the next chapter, furnishes a
more general method for setting
up a correspondence between the
points, straight lines, and planes
of one figure and the planes,
straight lines, and points, re-

spectively, of another figure. According to this point of view, the
cube corresponds ‘“dually” to the octahedron, the icosahedron to

I 3
|
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the dodecahedron, and the
tetrahedron to itself.

We learn, on examining
the matter further, that the
tetrahedral group is a sub-
group of the octahedral
group; we had similarly
recognized some of the
discontinuous groups of
motions of the plane as
subgroups of others. The re-
lation between the groups T
and O has the consequence,
manifest to the eye, that a
regular tetrahedron can be
inscribed in a cube in such
a way that the vertices of

the tetrahedron are at vertices of the cube and its edges are
diagonals of the faces of the cube. Two distinct tetrahedra can be
inscribed in the cube in this way (see Fig. 102).

Similarly, it turns out that the octahedral group is a subgroup
of the icosahedral group. This is the reason why a cube can be
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inscribed in a dodecahedron in the same way as the tetrahedron
was inscribed in a cube (Fig. 103). A closer inspection reveals
that five cubes of this kind can be found in every dodecahedron.

’

F16. 102 F16. 108

On every face of the dodecahedron there is one edge of each of the
cubes, and two cubes meet at each vertex of the dodecahedron.



CHAPTER III

PROJECTIVE CONFIGURATIONS

In this chapter we shall learn about geometrical facts that can
be formulated and proved without any measurement or comparison
of distances or of angles. It might be imagined that no significant
properties of a figure could be found if we do without measurement
of distances and angles and that only vague statements could be
made. And indeed research was confined to the metrical side of
geometry for a long time, and questions of the kind we shall discuss
in this chapter arose only later, when the phenomena underlying
perspective painting were being studied scientifically. Thus, if a
plane figure is projected from a point onto another plane, distances
and angles are changed, and in addition, parallel lines may be
changed into lines that are not parallel; but certain essential
properties must nevertheless remain intact, since we could not
otherwise recognize the projection as being a true picture of
the original figure.

In this way, the process of projecting led to a new theory, which
was called projective geometry because of its origin. Since the
19th century, projective geometry has occupied a central position in
geometric research. With the introduction of homogeneous co-
ordinates, it became possible to reduce the theorems of projective
geometry to algebraic equations in much the same way that
Cartesian coordinates allow this to be done for the theorems of
metric geometry. But projective analytic geometry is distinguished
by the fact that it is far more symmetrical and general than metric
analytic geometry, and when one wishes, conversely, to interpret
higher algebraic relations geometrically, one often transforms the
relations into homogeneous form and interprets the variables as
homogeneous coordinates, because the metric interpretation in
Cartesian coordinates would be too unwieldy.

The elementary figures of projective geometry are points, straight
lines, and planes. The elementary results of projective geometry

94
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deal with the simplest possible relations between these entities,
namely their incidence. The word incidence covers all the follow-
ing relations: A point lying on a straight line, a point lying in a
plane, a straight line lying in a plane. Clearly, the three statements
that a straight line passes through a point, that a plane passes
through a point, that a plane passes through a straight line, are
respectively equivalent to the first three. The term incidence was
introduced to give these three pairs of statements symmetrical
form: a straight line is incident with a point, a plane is incident
with a point, a plane is incident with a straight line.

The theorems relating to incidence are by far the most important
theorems of projective geometry. However, we use two other
fundamental concepts, which can not be derived from the concept
of incidence. First, we have to distinguish between two different
ways in which four collinear points may be arranged; second, we
need the concept of continuity, which relates the set of all points
on a straight line to the set of all numbers. This completes the list
of the basic concepts of projective geometry.

We shall study a particularly instructive part of projective
geometry—the configurations. This will also reveal certain aspects
of various other geometrical problems. It might be mentioned
here that there was a time when the study of configurations was
considered the most important branch of all geometry.!

§ 15. Preliminary Remarks About Plane Configurations

We define a plane configuration as a system of » points and !
straight lines arranged in a plane in such a way that every point
of the system is incident with a fixed number 1 of straight lines of
the system and every straight line of the system is incident with
a fixed number n of points of the system. We characterize such a
configuration by the symbol (p,1,). The four numbers p, I, =,
and 1 may not be chosen quite arbitrarily. For, by the conditions
we have stipulated, Ap straight lines of the system, in all, pass
through the p points; however, every straight line is counted =
times because it passes through = points; thus the number of
straight lines [ is equal to Ap/n. It is seen, then, that the following

* A comprehensive treatment of the subject is given in the book Geometrische
Konfigurationen by F. Levi (Leipzig, 1929).
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relation must be true for every configuration:
pAi==1lan.

The simplest configuration consists of a point and a straight line
passing through it; it has the symbol (1,1,). The triangle forms
the configuration next in order of simplicity, (8.3.). Four straight
lines in the plane, no two of which are parallel and no three of
which have a common point, give us six points of intersection
A,B,C, D, E, and F (see Fig. 104). The figure thus obtained,
which is the well-known figure of the complete quadrilateral, is a
configuration with the symbol (6.4;). (Note that the equation
6.2 — 3.4 confirms our general formula.) In this case, as opposed
to the first two trivial cases, not all the straight lines joining points
of the configuration are lines of the configuration; similarly, in the
general case the points at which the straight lines of a configuration
intersect need not all belong to the configuration.

In order to obtain all the straight lines connecting points of
the configuration of Fig. 104, we need to adjoin the diagonals
AD,BE,CF. This also gives us the vertices P, Q, R of the triangle
formed by the diagonals as
additional points of intersec-
tion. One might think that
the continued process of con-
necting points and adjoining
new points of intersection of
straight lines might ultimately
lead to a configuration that
shares the property of the tri-
angle that the straight line con-
necting any two points of the configuration is itself a line belonging
to the configuration and the point of intersection of any two straight
lines of the configuration is itself a point belonging to the configura-
tion. However, it may be proved that, except for the triangle, no
configuration with this property exists. If, starting with a quadri-
lateral, we keep connecting points by straight lines and adjoining
new points of intersection, it can even be shown that there will ulti-
mately be such points of intersection lying as close as we please to
every point of the plane. The figure obtained in this way is called a
Moebius net; it may be used for defining projective coordinates.

F1G. 104
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For the sake of subsequent application, we remind the reader of
the significance of the quadrilateral for the construction of harmonic
sets of points. Four points C, P, F, Q on a straight line are called
a harmonic set—or Q is called the fourth harmonic of P with
respect to C and F—if a quadrilateral can be constructed in which
these points are determined by the same incidence relations as in
Fig. 104. A theorem that is fundamental for projective geometry
says that any three points on a straight line have exactly one fourth
harmonic. According to this theorem,®? we may use the points
C, P, F as starting points for the construction of two different
quadrilaterals but we will come out both times with the same
point Q (see Fig. 105).

In the following pages we shall discuss principally those con-
figurations in which the number of points is equal to the number

Y/
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of lines, i.e. for which p=1. Then it follows from the relation
pi=nl that A==, so that the symbol for such a configuration
is always of the form (p,p,). We shall introduce the more concise
notation (p,) for such a configuration. Furthermore, we shall
make the reasonable stipulation that the configuration be connected
and be not decomposable into separate figures.

The cases 1=1 and 1= 2 are unimportant. i1=1 yields only
the trivial configuration consisting of a point and a straight line
passing through it. For, if a configuration with 1 =1 had several

®Thig theorem is an immediate consequence of the theorem of Desargues
discussed in § 19.
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points, it would necessarily consist of separate parts, since no
straight line of the configuration may contain more than one point.
The case 4 = 2 is realized by ‘the closed polygons in the plane;-and
conversely, the conditions that each point of a configuration (p.)
be incident with two straight lines and each straight line with two
points may be seen to imply that every configuration of the form
(p.) consists of the vertices and sides of a p-sided polygon.

On the other hand, the case 1 = 8 gives rise to many interesting
configurations. In this case the number of points (and straight
lines), p, must be at least seven. For through any given point of
the configuration there pass three lines, on each of which there
must be two further points of the configuration. We shall go into
detail only for the cases where 7 < p < 10.

§ 16. The Configurations (7;) and (8;)

In constructing a configuration with the symbol (p,), the follow-
ing method will be found the simplest: We label the p points with
the numbers 1 through » and label the p straight lines, similarly,
with the numbers (1) through (p). Then we set up a rectangular
scheme of pi points in which the 1 points incident with any given
straight line are arranged in a column; there will be p columns
corresponding to the p straight lines.

In this way, the scheme corresponding to the configuration (7;)
is as follows:

1 @ G @ 6) 6) (1)

In filling in the spaces, the following three conditions must be
satisfied. First, the numbers written in any one column must all
be different to ensure that no less than three points are on any
given straight line. Second, two different columns cannot have two
numbers in common, as this would make the straight lines corres-
ponding to the columns coincide. And third, every number must
occur three times in all, since three straight lines are supposed to
pass through every point. These three conditions are certainly
necessary if a geometrical counterpart for the schematic tdble is
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to exist. On the other hand, they are not sufficient, as we shall
soon. see by some examples. The reason for this is that the geo-
metrical realization of a table also depends on seme geometric or
algebraic considerations which cannot be directly expressed in terms
of the arithmetic scheme. But if a table does represent a configura-
tion, then it admits several alterations that do not affect the con-
figuration in any way. Thus the vertical order of the numbers in
any column may be changed. Also, the order of the columns them-
selves may be changed, as this only corresponds to a renumbering
of the straight lines. And finally, the numbering of the points may
also be changed at will. Since all these alterations in the schematic
representation leave the configuration unchanged, we shall consider
all tables differing only by such transformations as identical.
With this understanding, we may construct one, but only one,
table having the symbol (7;). To begin with, we denote the points
on the first straight line by 1, 2, and 8. Then two more straight
lines pass through the point 1, and they cannot contain the points
2 and 3. Let us denote the points of the second straight line by
4 and 5, and those of the third straight line by 6 and 7. Now all the
points are numbered and the table is partly filled in, as follows:

1 1

[VCR S

5 7

In the remaining columns, each of the numbers 2 and 3 has to
appear two more times, subject to the condition that they be not
both in one column. Hence we complete the first row as follows:

1 1 1 2 2 8 3

[3]

The numbers 1, 2, and 3 are used up, and only 4, 5, 6, and 7 are
available for filling in the remaining eight places. The number 4
has to appear two more times and may not be written under the
same number both times. Thus we may place the 4’s as follows:



100 III. PROJECTIVE CONFIGURATIONS

All the other possible arrangements are not essentially different
from this one. Again, 5 has to occur twice, but may no longer
occur under a 4. Thus we may write

The first two of the four remaining places have to be occupied by
6 and 7 because they are the only numbers left and because we
can not use the same one of them in both columns containing a 2.
Interchanging the numbers 6 and 7 would not constitute an essen-
tial modification, and so we may write

The remaining places are necessarily filled in the order 7, 6. Thus
we have indeed obtained just one possibility for the configura-
tion (7;), namely

We have already mentioned earlier that the existence of this
table does not imply the exist-
ence of an actual configura-
tion (7;). Now it will turn
out that such a configuration
is indeed impossible. This may
be seen by trying to find the
equations of the straight lines
of the table by the methods
of analytic geometry, which
leads to an incompatible sys-
tem of equations. We can also demonstrate the non-existence of the
configuration by means of a diagram. To begin with, we draw the
straight lines (1) and (2) of Fig. 106, denote their point of inter-
section by 1 as indicated in the table, and let 2, 3 and 4, 5 be

F1G. 106
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arbitrary pairs of points on the lines (1) and (2) respectively.
Then we draw the straight lines (4) and (7) whose positions are
fixed by the pairs of points 2, 4 and 8, 5 and whose point of inter-
section, according to the table, has to be labeled 6. Similarly, the
pairs of points 2, 5 and 8, 4 determine the lines (5) and (6) and
their point of intersection 7. All the points of the configuration
are now determined. But the three points 1, 6, and 7, which are
supposed to be on the remaining straight line (8), are not collinear,
so that the intersection of the lines (17) and (7) gives us an addi-
tional point 6’. It might be imagined that this is due to an un-
fortunate choice of the points 2, 8, 4, and 5. But such is not the
case. For, our figure is a reproduction of the harmonic construc-
tion of Fig. 104; consequently, 6’ is the fourth harmonic of the
point 6 with respect to 8 and 5, and it follows by an elementary
theorem of projective geometry that 6’ cannot coincide with any
of these three points.

We turn to the configuration (8;). By the same method as before,
it can be shown that there is essentially only one possible table,
namely

(1) (2) 3) (4) (5) (6) (7) (8)
1 1 1 2 2 3 3 4
2 4 6 3 7 4 5 5
5 8 7 6 8 7 8 6

The configuration may be interpreted as consisting of two quadri-
laterals 1234 and 5678 each of which is in- 2
scribed in and at the same time circumscribed
about the other (see Fig. 107; see also the
footnote on p. 110). For, the line 12 passes
through the point 5, the line 23 through the
point 6, the line 34 through the point 7, and
the line 41 through the point 8, and at the
same time the sides 56, 67, 78, and 85 are
incident with the points 4, 1, 2, and 3, respec-
tively. Obviously, it is not possible to draw a
configuration of this kind. Applying analytic
methods, we find that the table gives rise to a system of equa-
tions which—while it does not contain a contradiction, as in the

Fic. 107
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case of (7;)—has, however, complex solutions only, and never
any real solutions.

The configuration is nevertheless not without geometric interest
and has an important role in the theory of third-order plane curves
without double points. These curves have nine points of inflection,
but at most three of them can be real. Furthermore, it can be
demonstrated algebraically that every straight line connecting any
two of these points of inflection must pass through a third point of
inflection. No four points of inflection, on the other hand, can ever
be collinear, because a third-order curve cannot meet a straight
line in more than three points. Now, the straight lines connecting
points of inflection form a configuration, and we have for this
configuration p =9, a=38. Also, i=4, which can be seen as
follows: If any point of inflection is selected, the remaining eight
of them are collinear with it in pairs, so that each point is in fact
incident with four straight lines. The formula [l = pi/a gives the
value 12 for I. Thus the configuration is of the type (9.12;). For
the table of such a configuration there is essentially only one
possibility, namely
1)y (2) (3) (4) (5) (7 (8) 9) (@10) (@(11) (@12)
1 2 5 6
3 4 T 8
9 9 9 9

00 i = N
PO SN
A W N
00 -3 o Ot
—_~
S I e
N
0 o e
D N

If the point 9 and the lines passing through it, viz. (9), (10), (11),
and (12), are omitted from this table, what remains is precisely
the same as our table (8;). The configuration (8;) is also obtained
on the omission of any other one of the nine points together with
the four straight lines passing through it. For it is found that all
the points of the configuration (9,12;) are equivalent.

§ 17. The Configurations (9;)

While the cases » = 7 and p = 8 gave rise to only one table each,
neither of which could be realized geometrically, the case p =9
gives rise to three essentially different tables, and all of them repre-
sent configurations of real points and lines.

By far the most important of these configurations, and indeed
the most important configuration of all geometry, is the one known
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as the Brianchon-Pascal configuration. For the sake of brevity
we shall give it the symbol (9;), and use the symbols (9;). and
(9;) ; for the other two configurations of type (9;).

The table for the configuration (9;), may be written as follows:

) (6) (7) (8) (9)

8
4
6
9

W -3 N O
[o I~ I VU )
W Wt W
0 -3

In drawing such a configuration, we begin with the points 8 and
9, which may be chosen arbitrarily (see Fig. 108), and draw the
arbitrary straight lines (4), (6), and (9) through 8, and (5), (7),
and (8) through 9. Six of
the nine resulting points of
intersection belong to the
configuration; in accord-
ance with the table, we
shall designate them by 2,
3, 4,5, 6, and 7. These six
points fix the positions of
the remaining straight lines
(1), (2),and (3). First of & 5 —S
all, we draw the line ‘(1) Fre. 108
through 2 and 8, and the line (2) through 4 and 5. Their point of
intersection has to be labeled 1. The straight line (8) is determined
by the points 6 and 7. According to the table, this line must pass
through 1. Now it is found that this condition is automatically
satisfied despite the arbitrary choice of the points 8 and 9 and of
the three straight lines through each of these points.

The geometric reason for this surprising phenomenon lies in the
theorems of Brianchon, which we shall now study.

Our point of departure is the hyperboloid of one sheet. As we
have seen in Chapter I, the surface contains two families of
straight lines such that every straight line of one family inter-
sects every straight line of the other, while two lines of the same
family never meet. Let us pick three straight lines of one family
(drawn as double lines in Fig. 109) and three of the other (drawn
as heavy single lines in the figure), from which we obtain the
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hexagon ABCDEFA in space, as follows: On a straight line of
the first family we move from A to B; a definite line of the second
family passes through B, and along this we move to a point C; from
C we follow the straight line of the first family passing through
that point to another point D; thence we move to E along a line
of the second family, and finally follow a line of the first family to
that point F' where it intersects the line of the second family that
goes through A. Thus the sides of the hexagon belong alternately
to the first family and the second.

We shall now prove that all three diagonals AD, BE, and CF of
the hexagon have a point in common. We begin with AD and BE.
The sides AB and DE of the hexagon have a common point because
A B belongs to one and DE to the other family of straight lines on

F the hyperboloid. Therefore the four points
A, B, D, E lie in one plane, and so AD and
BE also have a point in common. In exactly
the same way it can be shown that each of the
8 \r other two pairs of diagonals also intersects

/ at a point. But three straight lines that inter-
sect each other in pairs are coplanar, or, if
not, must all pass through a common point.
Now if the three diagonals of the hexagon
ABCDEF were all in one plane, the hexagon
itself would also have to lie in this plane, and any two of its sides
would have a point in common ; this is ruled out, since AB and CD
(to give one example) are straight lines of the same family and
therefore cannot intersect each other. All three diagonals do,
accordingly, pass through one point.

This theorem of the geometry of space leads to the Brianchon
theorems of plane geometry. To obtain them, we look at the hyper-
boloid of one sheet from a point P, which for the time being we shall
assume not to lie on the surface. The contour of the hyperboloid as
seen from this point is a conic section which may be either a hyper-
bola (Fig. 110) or an ellipse (Fig. 111). The area on one side of the
contour appears empty, while the region on the other side appears
doubly covered, what appear to be two layers in the picture being
connected along the conic forming the contour. The straight lines
of the surface are partly visible in the picture, and partly covered.
Thus, they extend from one layer into the other and must therefore

v
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meet the contour. On the other hand, they can not intersect that
curve, since one side of it is empty. Hence our hexagon in space has
become a plane hexagon whose sides are tangent to a conic; this
gives us the following theorem of plane geometry:

The diagonals of a hexagon that is circumscribed about a conic
intersect at one point.

So far we have not proved the theorem except for those conics
that can be obtained as the outline of a hyperboloid of one sheet,
that is, only for certain ellipses and hyperbolas. But we shall
immediately see that the outline can also be a parabola. For, the
lines of sight which give rise to the outline—or, more technically,

F1G. 110 Fic. 111

a central projection—form the tangent cone of the surface with
the vertex P, i.e. a second-order cone (see p. 12) ; but the outline,
or central projection, is the curve in which this cone intersects the
image plane, and this is a parabola if we choose as the image plane a
plane parallel to one of the generators of the cone (see pp. 12, 13, 8).

We shall now go over to the case where the surface is observed
from a point P (the center of projection) that is on the surface
itself. Here, the two straight lines of the surface that pass through
P are seen as two points, while the other straight lines are still
seen as straight lines. And since every line of one family intersects
the line of the other family that passes through the center of pro-
jection, the first family is seen as a pencil of lines whose vertex is
the image of the straight line g of the other family that passes
through P. Similarly, the other family is also seen as a pencil of
lines. The vertices of the twé pencils are distinct, being the images
of two different straight lines passing through P. The following
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theorem is accordingly a consequence of the theorem about the
space hexagon:

The diagonals of a plane hexagon whose sides pass alternately
through two fixed pointls, meet at a point.

These theorems about the tangent hexagons. of one of the three
types of conics or of a
degenerate conic consist-
ing of a pair of points
are called Brianchon’s
theorems, after their
discoverer. The point at
which the three diagonals
meet is called the Brian-
chon point.

Our space construction
does not, to be sure, com-
plete the proof of Brianchon’s theorems, as it might be possible
that not every Brianchon hexagon can be obtained as a projection
of a space hexagon of the type we have considered. It can be proved,
however, that it is indeed possible to start with any hexagon that
satisfies the Brianchon assumptions and construct from it a spatial
figure of the sort we have
been considering.

Now the last of the
Brianchon theorems is
closely connected with the
configuration (9;), and
explains the fact that the
last incidence condition is
automatically satisfied in
the construction of this
Fie. 113 configuration. Indeed we
see that, in the notation of Figs. 112 and 108, the points 2, 4, 6,
8, 5, 7 form a hexagon whose sides pass alternately through the
points 8 and 9, and the straight lines (1), (2), and (8) are the
diagonals 23, 45, and 67 of this hexagon. So (3) must pass through
the point of intersection 1 of the straight lines (1) and (2), and
1 is the Brianchon point of the hexagon:

In our censtruction, the points of the configuration (9;), do not

F16. 112
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all play the same roles: the points 2, 4, 6, 3, 5, 7 form the hexagon;
8 and 9 are the points through which the sides pass; and 1 is the
Brianchon point. But this lack of symmetry is not inherent in
the configuration but is due 4
to an arbitrary choice on
our part. For we may
also assign the role of the
Brianchon point to 8 or 9.
It is sufficient to make this
clear as regards the point 8
(see Fig. 113), since we see
from Fig. 112 that 8 and
9 are alike. Similarly, we
may choose any one of the Fic. 114
points 2, 4, 6, 3, 5, 7 for the role of Brianchon point. Again, it is
sufficient to show this for the point 2 (see Fig. 114), since all the
points 2, 4, 6, 3, 5, 7 are alike in their relation to the rest of the figure.
Owing to this inherent symmetry, (9;), is called a regular con-
figuration. In much the same way as in the study of point systems
and polyhedra, we arrive at the concept of regularity by the study

5
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Jf certain mappings of a configuration into itself which are called
“automorphisms” and are analogous to the symmetry transforma-
tions in the case of point systems and polyhedra. We obtain an
automorphism of a configuration if we can permute its points and
its lines in such a way that no incidence is lost and no new incid-
ence added. It is easy to see that the automorphisms form a group.
‘Now.a configuration is called regular if the group of its automor-
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phisms is ‘“transitive,” i.e. if it contains enough transformations
so that every point of the configuration can be transformed into
every other point of the configuration by one of them.

For the study of the automorphisms of a configuration it suffices
to consider its abstract scheme. In this way it may be shown that

¢ the tables for (7;) and
(8;) are regular. The
same is true for (9.12;)
(see p. 102).

Let us now turn to the
other two configurations
(9;). They are shown in
Figs. 115 and 116. In
order to see what it is that
differentiates the three
configurations of the type
(9;), we may proceed as
follows. Since every point in a configuration (p;) is connected
with exactly six others by lines of the configuration, it follows in
the case p = 9 that for every point of the configuration there are
exactly two others not connected with it. For example, in (9;),
the points 8 and 9 are not connected with 1. Also there is no line
connecting 8 with 9. Hence 1, 8, and 9 form a triangle of uncon-
nected points. Similarly 2, 5, 6 and 3, 4, 7 form such triangles
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(Fig. 117). Let us use the same procedure for (9;). and (9;)s,
combining the paths between unconnected points to form polygons.
In the case (9;). we get a nonagon (Fig. 118), and in (9;); a
hexagon and a triangle (Fig. 119). This tells us, first, that the
three figures 108, 115, and 116 do not merely differ in the positions
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of their points but are essentially different configurations. Further-
more, we may conclude that the configuration (9;); cannot possibly
be regular. For, an automorphism can transform points of the
hexagon only into points of the hexagon, and never into points of
the triangle. In the case (9;);, on the other hand, the regular
arrangement of the unconnected
points leads us to conjecture that
the configuration is regular.
This is confirmed by further
inspection of the table.

We may try to construct the
other two configurations step by 7 6 ¢

. F1c. 120

step in much the same way as

we constructed (9;),. But we then find that the last incidence
condition is no longer satisfied automatically but is satisfied only
if special provisions have been made in the preceding steps. This is
the reason why (9;). and (9,), are not of such fundamental import-
ance as (9;),; they do not express a general theorem of projective
geometry. Fig. 120 illustrates a case in which the last straight
line of (9;). cannot be drawn.

The auxiliary constructions that are necessary to make possible
the construction of (9;).
and (9;); are, however,
distinguished by a special
property: they can be
carried out by means of a
ruler alone, so that all
three of the configurations
(9;) can be constructed
without any instruments
except a ruler This is
expressed analytically by
the fact that all the ele-
ments of the configuration can be determined by the successive
solution of linear equations in which the coefficients of each equa-
tion are rational functions of the characteristic quantities of the
configuration that have already been determined from the preced-
ing equations. It is quite true, of course, that the equations of
straight lines are always linear. But in obtaining the system of

F1c. 121
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equations of a configuration, the coefficients of some of the equa-
tions have to be computed from other equations by elimination,
since some of the straight lines are fixed by the straight lines that
have been constructed before. In the general case, this elimination

7
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gives rise to equations of higher degree; this must be the case
in (8;) since we could not otherwise get any complex elements.
Now the special property of the configurations (9;) is that all the
auxiliary equations are linear, with the result that all three con-

; figurations can be con-
structed in the real plane
and with the sole use of a
ruler.

The arrangement of the
elements in the configura-
tions (9;) may be in-
terpreted in a variety of
different ways. For ex-
9 5 > ample, each of the config-
urations can be considered
as forming three triangles of which the first is inscribed in the
second, the second in the third, and the third in the first.!

! The word “inscribed” is used here in a generalized sense; thus in Fig. 121,
the triangle 468 is said to be inscribed in triangle 157 because 4 is on the straight
line 1B, 6 on the straight line 17, and 8 on the straight line 75, although 4 and 8
are not on the segments 15 and 75 but on their continuations. “Circumscribed”
is used in the corresponding general sense, triangle A being “circumscribed”
about triangle B if triangle B is “inscribed” in triangle A. The same remarks
apply to the use below of “inscribed” and “circumscribed” in reference to general
polygons. [Trans.]



§ 17. THE CONFIGURATIONS (9:;) 111

The triangles 157, 239, 468 of Fig. 121, the triangles 258,
369, 147 of Fig. 122, and the triangles 147, 258, and 369 of
Fig. 123 are examples of such systems of triangles. Similarly
we interpreted (8;) as a pair of mutually inscribed and cir-
cumscribed quadrilaterals (see Fig. 107, p. 101). The three con-
figurations (9;) can also be interpreted as nonagons inscribed in
and circumscribed about themselves; examples of such nonagons
are 2361594872 of Fig. 124, 1627384951 of Fig. 125, and
1473695281 of Fig. 126. In the configuration (9;), we can find
several additional nonagons with the same properties, by applying
suitable automorphisms.

The construction of p-sided polygons that are inscribed in and
circumscribed about themselves necessarily leads to configurations
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of the type (ps;). For, every side of the polygon contains one vertex
of the polygon in addition to the vertices it connects, and every
vertex, likewise, must be incident with three sides of the polygon.
The only assumption needed in this argument was that all the
sides and all the vertices of the polygon play the same role. If this
assumption were not made, one side could centain two or more
extra vertices; but then some other side of the polygon would have
to be empty.

(75) and (8;) may also be interpreted as being p-sided polygons
of this type. In the notation of the configuration tables, the
heptagon 12457361 and the octagon 126584871 are inscribed
in and circumscribed about themselves.

In order to understand another important property of configura-
tions, we must study the principle of duality. It is this prineiple
that confers upon projective geometry its special clarity and
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symmetry. It may be derived in visual terms from the method of
projecting, which we have already used in arriving at Brianchon’s
theorems.

§ 18. Perspective, Ideal Elements, and the Principle of
Duality in the Plane

If we draw the picture of a flat landscape on the blackboard, the
landscape being a horizontal plane and the blackboard a vertical
plane, then the image of the horizontal plane appears to be bounded
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by a straight line h, the horizon (see Fig. 127). Two parallel
straight lines in the horizontal plane which are not parallel to the
plane of the blackboard appear in the picture as straight lines that
meet on the horizon. In painting, the point of intersection of the two
lines in the image is called the vanishing point of the parallel lines.

We see, then, that the images of parallel lines under central per-
spective are not usually parallel. We see furthermore that the
mapping effected is not one-to-one. The points of the horizon on
the image plane do not represent any points of the original plane.
Conversely, there are points of the plane which do not have an
image. These are the points of the straight line f that is vertically
below the observer R and parallel to the image plane (Fig. 127).

The description of this phenomenon can be simplified by replac-
ing each point of the plane by the line of sight passing through
the point. Thus we replace every point P of the plane e (Fig. 128)
by the straight line AP = p connecting P with A, the point where
the observer’s eye is located. Then the image of P on an arbitrarily
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placed board ¢ is the point P’ at which the straight line p meets the
board; thus the mapping is determined once P is given. If P
describes a curve in e, then p sweeps out a cone with A as vertex.
The image of the curve on ¢t is the intersection of ¢ and the cone.
In particular, if P moves along a straight line g in e, the cone
becomes the plane y that contains A and g. Thus, while the points
of e become straight lines through A, the straight lines of e give
rise to planes through A. The image on ¢t of the straight line ¢
is the intersection of ¢ and y, i.e. another straight line g’. This
property of transforming straight lines into straight lines is the
most important property of a central perspective.

We have expressed the perspective mapping as the resultant of

A
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two transformations that are of types that may be considered as
the inverses of each other. First the points (P) and straight lines
(g) of a plane are replaced by the straight lines (p) and the planes
(7) passing through A, and then the straight lines and planes
through A are transformed into the points (P’) and straight lines
(9’) of another plane. For reasons of symmetry, it therefore suffices
to study only the first step.

This transformation e > A is fully defined only in the given
direction, not in the reverse direction A — e¢. The transformation
assigns a special role to those straight lines through A that are
parallel to e; they do not correspond to any point of e, while each
of the remaining straight lines through A belongs to a definite
point of e, namely the point at which it intersects e. The straight
lines p, through A parallel to the plane e fill out a plane y,, the
plane through A that is parallel to e (see Fig. 129). Of all the
planes containing A, y, is also the one that plays an anomalous
role in the transformation A —» e¢. For, each of the other planes
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through A is associated with a definite straight line g of e, the
line in which it cuts e, but no such straight line corresponds to the
plane y,, since it does not meet e.

Now it is expedient to eliminate these exceptions conceptually by
assigning additional points P, to the plane e, as “infinitely distant”
or “ideal” points. These “points” are defined by the stipulation that
they shall be the images of the rays p, in the transformation 4 — e.
They are regarded as constituting, in their totality, the image of
the plane y,. In order to divest this plane of its anomalous position
in relation to the other planes passing through A, we have to call
its image a straight line. We therefore say that the infinitely
distant points of e form a straight line g,, the so-called infinitely
distant? or “ideal” line of e. Clearly the mapping of the points and
straight lines of e¢ into the straight lines and planes through A4 is
fully defined and one-to-one once we have supplemented the plane e
in the manner described.

The suitability of the definitions we have introduced becomes
apparent on examining the central perspective of e onto any other
plane £. The plane ¢t must also be supplemented by ideal points
constituting the ideal line of this plane. But unless e and ¢ happen
to be parallel, the plane that goes into the ideal line I, of ¢ under
the transformation A — ¢ is not v, but some other plane 1 through A.
4 meets e in a straight line /. Hence the perspective mapping e > ¢
associates the points of the infinitely distant line of the second
plane with the points of an ordinary straight line in the first plane.
It is only the introduction of the ideal points that makes the central
perspective a one-to-one mapping of the points and straight lines
of one plane into the points and straight lines of another plane. In
this mapping, the infinitely distant points are on a par with the
finite points.

We shall now look into the question of how the concept of in-
cidence between points and straight lines must be extended to
accommodate the ideal elements we have added. As before, we begin
with the transformation e—> A. An ordinary point P and an
ordinary straight line g of e are incident if and only if the cor-
responding p and y are incident. Let us generalize this to cover

! The term “infinitely distant” stems from the fact that the ray from a point
of e to the eye approaches one of the straight lines p. if the point of e recedes
indefinitely in a fixed direction.
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arbitrary points and straight lines of e. An infinitely distant point
P, and a straight line g shall be called incident if the ray p, is
incident with y. If y coincides with y,, i.e. if g is the ideal line of e,
this does not tell us anything new. But if g is an ordinary straight
line, then y and y, intersect in a definite straight line p,. Hence
every ordinary straight line has
exactly one infinitely distant
point, its point of intersection
with g,. If ¢’ and g are parallel,
this means that the plane y’ be-
longing to ¢’ passes through p,
(see Fig.129). Accordingly, two
straight lines are parallel if and
only if they have the same in-
finitely distant point; this is the
meaning of the occasionally used mode of expression ‘“parallels
meet at infinity,” which in itself, and when stated without further
explanation, would be meaningless. At the same time we recognize
the reason for the fact mentioned at the beginning of this section,
that two parallel straight lines
appear to meet at their vanish+ - /
ing point on the horizon. T‘”
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As an example of the way
geometrical notions are simpli-
fied by the introduction of the N
ideal elements, we may cite e \%/

72N
the conics. Since, as we have 4,7
proved in Chapter I, they can P N
be obtained as the plane sec- s \
tions of a circular cone, they N\

may all be regarded as perspec- \z

tive images of a circle. Accord-
ing to whether no projecting
ray, one ray, or two rays are parallel to the image plane, we obtained
an ellipse, a parabola, or a hyperbola, respectively. We may now
formulate this as follows: A conic section is an ellipse, a parabola,
or a hyperbola according to whether it meets the ideal line in no
point, in one point, or in two points, respectively. A central projec-
tion onto another plane transforms the conic under consideration

F1c. 130
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into another conic that either does not meet the horizon, or touches
it, or intersects it in two points, as the case may be. What type of
conic the image will be depends on the position of the image plane.

In other cases too, central projection is an important tool for
getting much more general figures from special figures. For ex-
ample, the complete quadrilateral (p. 96) can always be derived
from the simple construction of the adjoining figure (Fig. 130).

The importance of the ideal elements, however, lies mainly in
the fact that they enable us to modify and considerably simplify
the axiomatic foundation of plane geometry. If we confine our-
selves to the finite points of the plane, the incidence of points and
straight lines is subject to the following axioms:

1. Two distinct points define a straight line with which they
are incident.

2. Two distinct points define only one straight line with which
they are incident.

From the second axiom it follows that two straight lines in a
plane either have one point or no point in common. For if they
had two or more common points, they would necessarily be one and
the same straight line.

The case where two straight lines have no point in common is
elucidated by and subject to the Euclidean axiom of parallels:

If there is given in a plane any straight line ¢ and any point A4,
where a and A are not incident, there is in the plane one and only
one straight line b that passes through A and does not intersect a;
the straight line b is called the parallel to @ through A.

Now if we no longer consider only finite points but enlarge the
plane into the “projective plane” by adding the ideal line, then we
are in a position to use the two following axioms as a basis instead
of the three axioms above.

1. Two distinct points determine one and only one straight line.

2. Two distinct straight lines determine one and only one point.

These two axioms determine the incidence of points and straight
lines in the projective plane. Ideal points and the ideal straight line
are in no way distinguished here from other points and straight
lines. If it is desired to represent the projective plane by a real
structure where the equivalence of all points and of all straight
lines can be recognized visually, we may refer back to the bundle
of straight lines and planes through a fixed point, regarding the
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straight lines as “points” and the planes as “straight lines.” In this
model the validity of the two axioms last mentioned is easily verified.

Now this pair of axioms has the purely formal property of
remaining unchanged if the word ‘“straight line” is replaced by
“point” and the word “point” by “straight line.” On closer inspec-
tion we see that the remaining axioms of plane projective geometry
are also left unchanged when these two words are interchanged.
But the two words must then also be interchangeable in all the
theorems deduced from these axioms. The interchangeability of
points and lines is called the principle of duality in the projective
plane. According to this principle, there belongs to every theorem
a second theorem that corresponds to it dually, and to every figure
a second figure that corresponds to it dually. Under this dual corres-
pondence, the points of a curve correspond to a collection of straight
lines that in general envelop a second curve as tangents. A more
detailed study reveals that the family of straight lines correspond-
ing dually to the points of a conic always envelops another conic.

By the principle of duality we can deduce a number of other
theorems from Brianchon’s theorems. They are called Pascal’s
theorems, after their discoverer. In order to bring out the duality
of the two groups of theorems more clearly, we shall write them
side by side in exactly corresponding forms.

Brianchon Theorems

1, 2, 3. Let there be given a
hexagon formed by six straight
lines that are tangent to a conic
(hexagon circumscribed about a
conic). Then the three lines
joining opposite vertices inter-
sect at one point.

4. Let there be given six
straight lines of which three are
incident with a point A and
three are incident with a point B.
Choose six points of intersection,
which together with the appro-
priate connecting lines form a
hexagon whose sides pass alter-

Pascal Theorems

1, 2, 3. Let there be given a
hexagon formed by six points
that lie on a conic (hexagon in-
scribed ina conic). Then thethree
points of intersection of opposite
sides lie on one straight line.

4. Let there be given six
points of which three are inci-
dent with a straight line @ and
three are incident with a straight
line b. Choose six connecting
lines, which together with the
appropriate points of intersec-
tion form a hexagon whose ver-
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nately through A and B. Then tices lie alternately on @ and b.
the straight lines connecting Then the points of intersection
opposite vertices intersect at one of opposite sides lie on one
point (the Brianchon point of straight line (the Pascal line of
the hexagon). the hexagon).

Evidently the figure corresponding to the last theorem of Pascal
must be the dual of the configuration (9;),. Now the dual figure
of a configuration (p,l.) is always another configuration, and its
symbol is (l.p,). The special configurations we have denoted by
the symbol (p,), and they only, have as duals configurations with
the same symbol. It is conceivable that the configuration of Pascal’s
theorem, i.e. the dual of (9;),, might be one of the other two con-

a
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figurations (9;). It is found, however, that Pascal’s theorem is also
represented by the symbol (9;), (see Fig. 131). This is the reason
why we have called the configuration the Brianchon-Pascal con-
figuration from the very beginning. Thus (9,), is “dually invariant”
or “self-dual.” Just as the Brianchon point could be chosen arbi-
trarily, so we can also choose an arbitrary straight line of the
configuration to serve as the Pascal line.

By using the ideal elements we can arrive at a special case of
the last Pascal theorem which would not otherwise seem to have
any connection with the original theorem. For, by moving the
Pascal line to infinity we get the following theorem (Fig. 132):
If the vertices of a hexagon lie alternately on two straight lines,
and if two pairs of opposite sides are respectively parallel, then the
third pair of opposite sides is also parallel.
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This special case of Pascal’s theorem is called Pappus’ theorem.?
Having seen that (9;), is self-dual, it is easy for us to conclude
that (9;). and (9;); must also be self-dual. For, the only other
possibility would be that the figure obtained from (9;). by applying
the duality principle is (9;);. But since (9;). is a regular con-
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figuration and (9;); is not, neither of these figures can be the dual
of the other.

We shall now take up the configurations (10;). In order to
understand the most important one of these, Desargues’ config-
uration, it is necessary to extend the method of introducing ideal
elements, and the principle of duality, from the plane to three-
dimensional space.

§ 19. Ideal Elements and the Principle of Duality in Space.
Desargues’ Theorem and the Desargues Configuration (10;)

We have arrived at the concept of the projective plane by study-
ing projection in space. Now projective geometry also changes the
space as a whole, by the addition of ideal elements, into “projective
space,” an entity that is in many ways simpler. Only, it is not
possible in this case to justify the procedure in visual terms; it is
purely abstract. To begin with, we introduce the ideal elements
in all the planes of ordinary space according to the principle dis-
cussed earlier. Then it appears reasonable to interpret the entity
formed by all the ideal points and straight lines as a plane, the
“infinitely distant” or “ideal” plane of the space. For, this entity
shares with the ordinary planes in space the property that any
given plane intersects it in a straight line, the ideal straight line

? Frequently the more general theorem, which is called here the fourth Pascal
theorem, is also referred to as Pappus’ theorem. [Trans.]
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of the given plane. Every ordinary straight line has only one point,
its ideal point, in common with the ideal plane, just as it has only
one point in common with any other plane that does not contain
the line. Moreover two planes are parallel if and only if they have
the same ideal line.?

A great many phenomena of the geometry of space are simplified
by this point of view. Thus parallel projection can be regarded as a
special case of central projection in which the center of projection is
an infinitely distant point. Furthermore, to give another example,
the difference between the hyperboloid of one sheet and the hyper-
bolic paraboloid may be characterized by the property that the
hyperboloid intersects the ideal plane in a non-degenerate conic
whereas the paraboloid intersects it in a pair of generating straight
lines of the surface; this distinction amounts to the same thing as
the fact explained on page 15, that three skew straight lines lie on a
paraboloid rather than on a hyperboloid if and only if they are
parallel to a fixed plane; for, this is equivalent to the condition that
the three straight lines meet one ideal line, which consequently lies
on the surface since it has three points in common with it.

It is clear that all planes of projective space must be regarded
as projective planes, so that the principle of duality in the plane
is true for them. But the space as a whole is also governed by a
different principle of duality as well.

To arrive at this, we proceed as in the plane, compiling the list of
axioms by which the incidence of points, straight lines, and planes
in space must be regulated if finite and infinitely distant elements
are treated alike. The axioms may be formulated as follows:

1. Two planes determine one and only one straight line; three
planes that do not pass through a common straight line determine
one and only one point.

2. Two intersecting straight lines determine one and only one
point and one and only one plane.

3. Two points determine one and only one straight line; three
points not on one straight line determine one and only one plane.

This system of axioms remains unaltered if the words “point”
and ‘“plane” are interchanged. (The first axiom is interchanged

! For, the property of two planes being parallel, and also the property of their
having the same ideal line, are each equivalent to the property that parallels to
every straight line of one plane can be drawn in the other.
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with the third, and the second is unchanged.) The set of remaining
axioms of the projective geometry of space is also left unaltered
by this interchange. Thus the point and the plane correspond to each
other dually, and the straight line corresponds to itself. The set
of all points of a surface corresponds dually to the set of all tangent
planes to another surface. As was the case with the conics in the
plane, the second-order surfaces in space are self-dual.

The simplest and at the same time most important theorem of
three-dimensional projective geometry is named after Desargues.
Desargues’ theorem may be stated as follows (see Fig. 133):

Two triangles ABC and A’B’C’ in space being given, let them
be so placed that the lines connecting corresponding vertices pass

N g
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through a single point O. Then the three pairs of corresponding
sides have points of intersection, R, S, and T, and these points of
intersection are, moreover, collinear.

The first part of the theorem is easy to prove. By the second
axiom for space, the two intersecting straight lines AA’ and BB’
define a common plane. The straight lines AB and A’B’ also lie
in this plane, whence it follows, by the second axiom for incidence
in the plane, that these two straight lines have a point of inter-
section R. (R may be a finite or an ideal point.) The existence of
the two other points of intersection, S and T, is proved analogously.

The truth of the second part of the theorem is easy to see in the
case where the triangles are in different planes. In this case the
planes of the triangles determine a common—ordinary or ideal—
straight line of intersection (by Axiom 1 for space). Of every
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pair of corresponding sides of the triangles one lies in one of these
planes and the other lies in the other plane. Since we have seen
that the sides of such a pair intersect, their point of intersection
must be on the straight line that the two planes have in common.
This proves Desargues’ theorem for the general case.

But it is precisely the special case where the triangles are
coplanar that is of particular importance. Here we may apply a
method of proof similar to the proof for Brianchon’s theorem, in
which we project a spatial figure onto the plane. We only need
show that every plane Desargues figure is a projection: of a three-
dimensional Desargues figure. To this end, we connect all the points
and straight lines of the plane Desargues figure with a point S out-
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side the plane of the figure (see Fig. 134). We then pass a plane
through the straight line A C intersecting BS at a point B, distinct
from S, and draw OB,. The straight lines OB, and B’S are co-
planar and therefore have a point of intersection B,’. But now the
triangles AB,C and A’B,/C’ form a three-dimensional Desargues
figure, since all the straight lines connecting corresponding vertices
pass through O. Projecting the line in which the planes of these
triangles intersect from S onto the original plane, we get a straight
line on which the pairs of corresponding sides of the original tri-
angles ABC and A’B’C’ must intersect. This completes the proof
of Desargues’ theorem.

The principle of duality for the plane and the one for space both
lead to interesting consequences of Desargues’ theorem. To begin
with, it is readily seen that the converse of the theorem is also true;
i.e. the existence of a Desargues line containing the points of inter-
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section of pairs of corresponding sides of the two triangles implies
the existence of the Desargues point through which the lines con-
necting corresponding vertices pass. In the case where the triangles
are coplanar, the converse of Desargues’ theorem proves to be the
same as the theorem we obtain from Desargues’ theorem by apply-
ing the principle of duality in the plane. We can elucidate this by
writing the two theorems side by side, as follows:

Let three pairs of points A A’,
BB’, CC’ be given, such that the
three lines determined by the
pairs pass throuygh a common
point. Then the three points
of intersection of the pairs of
straight lines AB and A’B’, BC
and B'C’, CA and C’A’, lie on

Let three pairs of straight
lines aa’, bb’, cc¢’ be given, such
that the points of intersection of
the pairs lie on one straight line.
Then the lines joining the pairs
of points (ab) and (&’'d’), (be)
and (b'c¢’), (ca) and (c’a’), pass
through a common point.

one straight line.

Let us examine the figure (Fig. 135) consisting of the vertices
and sides of two coplanar Desargues triangles together with the
lines joining pairs of corresponding vertices, the points where
pairs of corresponding sides meet, the Desargues point O, and the

0
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Desargues line g. It is a simple matter of counting to see that the
figure is a configuration of type (10;). It is called the Desargues
configuration. This configuration shares with Pascal’s configuration
the property that the last incidence condition is automatically satis-
fied when the figure is constructed step by step from its table.
Furthermore, the Desargues configuration, like Pascal’s, is self-
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dual. This is seen to be true because the configuration represents
both Desargues’ theorem and its converse, and the latter is the

dual of the former.

We next consider the result obtained from the three-dimensional
case of Desargues’ theorem on applying the principle of duality in
space. We get the following juxtaposition:

Let three pairs of points AA’,
BB’, CC’, be given such that the
three lines determined by the
pairs pass through a common
point. Then the three points
of intersection of the pairs of
straight lines AB and A’B’, BC
and B’C’, CA and C’A’, lie on
one straight line.

Let three pairs of planes ad/,
B8, yy', be given such that the
three lines of intersection deter-
mined by the pairs lie in one
plane. Then the three planes con-
taining the pairs of straight lines
(apB) and (o'f), (By) and (§'y’),
(ya) and (y'a’), pass through
one straight line.

Fig. 136 illustrates the theorem that appears in the right-hand
column. In this theorem the two triangles are replaced by two
trihedral angles formed by the
planes a, 8, ¥ and o, §, ¥, re-
spectively. Paralleling what we
have done in the case of the plane
, Desargues figure, we shall now
examine the three-dimensional
figure consisting of the two
Desargues trihedra together with
the planes determined by pairs of
corresponding edges, the lines of
intersection of corresponding

F1c. 136
pairs of faces, the ‘“Desargues plane” (ad’, 88/, yy’ in Fig. 186),

and the “Desargues line” (VW in the figure). The intersection
of this three-dimensional figure with any plane that does not
contain any of the points V, W, X, Y, Z is a plane Desargues
configuration, since the Desargues trihedra intersect the plane in
Desargues triangles. To the planes and straight lines of the space
figure there correspond the straight lines and points of the plane
configuration. However, the three-dimensional figure has an in-
trinsic symmetry that is not reflected in the plane figure. The space
figure consists of all the connecting straight lines and plane of the
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five points V, W, X, Y, Z, and the roles of the five points are com-
pletely equivalent. Conversely, every complete five-point in space
becomes a three-dimensional Desargues figure if two of the vertices
are arbitrarily chosen as vertices of the Desargues trihedra.? From
the fact that all the straight lines and all the planes of the spatial
figure play the same role, it follows that the same is true for the
points and the straight lines of the plane Desargues configuration.
This proves that the Desargues configuration is regular, so that the
choice of the Desargues point or the Desargues line in the con-
figuration can be made quite arbitrarily.?

We shall now represent the Desargues configuration as a pair of
mutually inscribed and circumscribed pentagons. To this end, we
first look for any pentagons at all in the configuration, where it is
required that all the vertices and sides of the polygon be ele-
ments of the configuration and no three consecutive vertices be
collinear. The problem is considerably simplified by going back
to the five-point in space. The vertices of the plane polygon are
associated with the corresponding edges of the five-point in space.
Since it is required that any two consecutive vertices of the plane
polygon lie on a straight line of the configuration, the corresponding
edges must be in one plane and must therefore intersect. To ensure
that no three consecutive vertices are collinear, we need only see to
it that the corresponding edges are not coplanar; this would happen
if and only if three consecutive edges formed a triangle. By passing
through the vertices V, W, X, Y, Z of the three-dimensional five-
point in any order, say in the order in which they are written, we
obtain a closed polygonal path of the kind we need; in the plane

*The only condition the five points must satisfy is that they be in general
position, i.e. that no four of them be coplanar and hence no three of them
collinear.

® By a complete n-point in space we mean the set of all the straight lines and
planes connecting » points in general position in space. As in the case n =35,
the section of the complete n-point, for any value of n, by a plane that does not
pass through any of the vertices is a configuration. These configurations are
=n(n—1)’ y—n—2, g= nin —1) (n —2)

2 ’ 6

It follows that a configuration of the special type where p =1 is only obtained
in the case n = 5. Other regular configurations can be obtained by using n-points

in general position in higher-dimensional spaces. All these configurations are
called “polyhedral.”

regular and of type 2

, #=3.
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configuration it furnishes a pentagon of the required type. But the
edges of the three-dimensional five-point that were not used in this
path constitute a second three-dimensional polygon of the same
kind. For, two unused edges pass through every vertex of the five-
point in space, since every vertex is incident with four edges in all,

F16.137a F1G.137b

two of which were used up for the first path. This second poly-
gonal path corresponds to a second pentagon in the configuration,
and a simple enumeration reveals that this must be inscribed in the
first pentagon. Because of symmetry, the first pentagon is also
inscribed in the second pentagon. Figs. 137a and 137b illustrate

w

Z /4
Fi1c. 138 F1c. 139

the way in which the three-dimensional arrangement and the plane
pair of pentagons are related.

We can also find other types of systems of five edges of the five-
point in space corresponding to pentagons contained in the plane
configuration. An example is given in Fig. 138. But it can be verified
that it is then impossible to arrange the five remaining edges
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cyclically in such a way that any two consecutive edges have a
common point and no three consecutive edges form a triangle.
Hence the construction given in the beginning exhausts all the possi-
bilities. Since an automorphism of the configuration corresponds to
every permutation of the vertices and since the decomposition of the
five-point in space into two polygonal paths is completely determined
by the order of the vertices in the first path, we see that, leaving
aside automorphisms, there is only one possible decomposition of
the Desargues configuration into two mutually inscribed pentagons.

The question of whether, and in how many ways, the Desargues
configuration can be considered as a self-inscribed and self-
circumscribed decagon, can be settled by the same method. It is

¢
F1c. 140

found that the arrangement of edges in space corresponding to
such a decagon can always be chosen as indicated in Fig. 139.
Accordingly there is one way, and except for automorphisms only
one way, of interpreting the Desargues configuration as a ten-sided
polygon inscribed in and circumscribed about itself (Fig. 140).
The figure exhibits a certain regularity ; if we move along the sides
of the decagon from the point 1 to the point 2, from 2 to 3, etc.,
in order, then one vertex is omitted on each side, and the numbers
of the omitted vertices form a sequence in which pairs of successive
numbers differ alternately by 1 and 3 (the vertex 5 is omitted
on side 23, 8 on 34, 7 on 45, 10 on 56, etc.). Another feature of the
decagon revealed by the three-dimensional arrangement is that the
sides belong alternately to two mutually inscribed pentagons.
Desargues’ configuration is nut the only configuration with the
symbol (10;). In fact, there are nine other possibilities for the
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schematic table of such a configuration. One of these tables has
the same property as the table for (7:;), namely that its con-
figuration cannot be realized either in the real plane or in terms
of complex coordinates, because its equations are incompatible. On
the other hand, the remaining eight configurations of the form
(10;), like the configurations (9;), can all be constructed with a
ruler alone. But they are differentiated from the Desargues con-
figuration by the fact that the last incidence condition is not auto-
matically satisfied in their construction. Thus they do not express
a geometrical theorem and are therefore not as important as the
configuration of Desargues. One of these configurations is drawn
in Fig. 141. It also represents a self-inscribed and self-circumscribed
5 s decagon if the points are
taken in the numerical
order given in the figure,
but here the numbers of
the vertices successively
omitted on the sides of
the polygon always differ
by 1. In this arrangement
all the vertices play the
same role, and the sides are
interchangeable with the
vertices. It follows that the configuration is regular and self-
dual.

70 K]
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§ 20. Comparison of Pascal’s and Desargues’ Theorems

We have found Desargues’ theorem and the last of Pascal’s
theorems to be analogous in many ways. Both theorems were
proved by the projection of three-dimensional figures. Both theo-
rems gave rise to configurations, and quite similar configurations
at that, both configurations were regular and self-dual, both could
be constructed with a ruler alone, the last incidence in both
occurred automatically, and both could be regarded as self-
inscribed and self-circumscribed polygons.

Nevertheless there is a fundamental difference between the two
theorems. The space figure used in the proof of Desargues’ theorem
can be constructed on the basis of the given axioms for incidence
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in space, without the assumption of any additional axioms. The
Pascal-Brianchon configuration, on the other hand, was obtained
by studying a second-order surface. To be sure, the core of the
proof appears to be purely a consideration of the incidence rela-
tions between the points, straight lines, and planes of a hexagon
in space, but on closer examination it is found that the construction
of such hexagons in space is essentially equivalent to the con-
struction of a ruled surface of the second order and that the
possibility of such a construction cannot be proved from the axioms
of incidence alone.

In the first chapter we introduced the conic sections and
quadric surfaces on the basis of metric considerations. It might
therefore be thought that Pascal’s theorem could not be proved
without comparisons of lengths and angles. But the curves and
ruled surfaces of the second order can also be generated without
the help of metric methods, by using the method of projection. By
this method, the points of a given straight line can be mapped into
the points of any other straight line in such a way that any three
pre-assigned points on the first line go into three pre-assigned
points on the second line and all harmonic sets of points on the
first line become harmonic sets on the second. The first straight
line is then said to be mapped projectively onto the second straight
line. The construction of such a mapping (or “projectivity”)
requires only the axioms of incidence in the plane and in space.
But the proof that the mapping is uniquely determined for all the
points of the straight lines by the two given conditions—that har-
monic sets become harmonic sets and that the mapping of three
points is given—requires more than just these axioms. We need for
this purpose an axiom of continuity which we shall formulate
presently. But once the uniqueness of the projectivity in the given
sense is proved, we can define the most general ruled surface of
the second order as the surface swept out by a variable straight
line that always connects corresponding points in a projectivity of
two fixed skew straight lines. It then follows from the uniqueness
property of the projectivity that a second family of straight lines
also lies on the surface defined in this way. If the straight lines
related by the projectivity are not skew but intersecting, then the
straight line connecting pairs of corresponding points moves in a
plane and envelops a curve of the second order. All the properties
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of the second-order curves that matter in projective geometry can
be derived from this definition.

For the complete comprehension of the concept of continuity,
two different axioms are needed. But only one of these, the
Archimedean axiom, is used in the proof of the uniqueness of the
projective mapping. In arithmetical terms, this axiom is formu-
lated as follows: Let a and A be any two positive numbers; then—
no matter how small ¢ may be and no matter how large A may
be—if we add a to itself a sufficient number of times we can always
reach a point after a finite number of steps where the sum exceeds 4 ;

at+a+a+...+a>A.

This axiom is necessary if it is required to measure one length in
terms of another length; the axiom in this form thus constitutes
an essential part of the foundation of metric geometry. Independ-
ently of metric concepts, we can formulate the axiom as follows:
5 4 Let two parallel straight lines be
_/\\ / \ / \ / \ / \ given (as in Fig. 142) and let
;i P y O and A be two different points
on one of them. Draw the line
connecting O with an arbitrary
point B, on the other straight line, and the line connecting B, with
a point C, lying between O and A on the first straight line. Now
draw the line parallel to OB, through C,, cutting the other line at
a point B;; then draw the line parallel to B,C, through B,, cutting
the first line at a point C,, and in this way continue drawing lines
parallel to OB; and B;C,. The Archimedean axiom then states that
after a finite number of steps a point C, on the straight line OA
will be reached that does not lie between O and A. In this formula-
tion of the Archimedean axiom we have made use of the notion of
a point on a straight line lying between two other points of the
straight line. For statements of this sort to be made more precise
we need another set of axioms, the axioms of order, which we
shall not discuss in detail here. The notion of parallels, on the
other hand, was only used to make possible a more concise and
readily understood formulation of the axiom. For the purposes of
projective geometry it is sufficient that a construction of the kind
indicated by Fig. 143 be possible. The figure is obtained from
Fig. 142 by a central projection onto another plane.

2 o

r

F1c. 142
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The axioms of incidence in the plane and in space, together with
the axioms of order and the Archimedean axiom, are sufficient to
prove the uniqueness of the projectivity that maps three specified
points into specified images, albeit the proof is exceedingly lengthy
and tedious. From the uniqueness of the projective mapping in
the plane we can then prove the last of the theorems of Pascal and
Brianchon listed earlier (and the proof proceeds without the aid
of any constructions in space).

Desargues’ theorem can be proved in space by using only the
axioms of incidence. But in order to prove the two-dimensional

FIG. 143

form of the theorem without three-dimensional constructions, even
the axioms of incidence combined with the Archimedean axiom and
the axioms of order will not suffice. On the other hand, the axioms
of incidence in the plane together with the axioms of order and the
axioms of congruence will do, and we can dispense with the
Archimedean axiom.

Omitting the axioms of incidence in space affects Pascal’s theorem
in the same way as it does Desargues’, making the plane axioms of
incidence, order, and congruence necessary for the proof. Never-
theless a significant difference between the two theorems can also
be observed in the plane without the aid of spatial constructions.
Pascal’s theorem can not be proved from the axioms of incidence
together with the validity of Desargues’ theorem in the plane.
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But Desargues’ theorem can be proved from the axioms of incidence
in the plane together with Pascal’s theorem. We shall prove this
for the special case where the Desargues line is the ideal line of
the plane. As in the statement of the Archimedean axiom, this
additional assumption only serves to make the formulation of the
proof shorter and more readily comprehended. Thus we assume
the following (see Fig. 144) :

The three straight lines AA’, BB’, CC’ pass through a single
point O. Furthermore AB||A’B’ and AC||A’C’. 1t is to be proved
by means of Pascal’s last theorem that BC||B’C’ follows.

In proof, let us draw the parallel to OB through A, intersecting
A’C’ at a point L and OC at a point M. Let the straight lines LB’
and A B intersect at N. We shall apply Pascal’s theorem three times

; to this figure, always using the special
form referred to as Pappus’ theorem on
page 119. First of all, ONALA'B’ is a
- Pascal hexagon since the six points lie
alternately on two straight lines. Also
NA||A’B’ by assumption, and AL||B’O
by construction. Hence it follows from
Pappus’ theorem that the third pair of
Frc. 144 opposite sides of the hexagon is also

) parallel, i.e. that ON||AC. Next we

(From Grundlagen der Geometrie by .
D Hilbert, 7th ed., & . English consider the Pascal hexagon ONMACB.
€.

translation in prep. (Chelsea Publish-

ing Company).) Here ON||AC as we have just proved,
and MA|| OB by assumption. It follows by Pappus’ theorem that
NM||CB. Finally, we consider the Pascal hexagon ONMLC’B’.
In this hexagon, ON||LC’ and ML||B’'O, and it follows as before
that NM||C’'B’. And since we have just proved in the previous
step that NM||CB, the proof of our assertion that BC||B'C’ is
complete.

Any theorems concerned solely with incidence relations in the
plane can be derived from the theorems of Desargues and Pascal.
And we have now seen that Desargues’ theorem is a consequence
of Pascal’s. Therefore we may say that Pascal’s theorem is the
only significant theorem on incidence in the plane and that the
configuration (9;), thus represents the most important figure in
plane geometry.

0 Y A Iz
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§ 21. Preliminary Remarks on Configurations in Space

The concept of a configuration can be generalized from the plane
to three-dimensional space. A set of points and planes is called a
configuration in space if every point is incident with the same num-
ber of planes, and every plane with the same number of points.
A simple example of such a configuration is furnished by the three-
dimensional Desargues theorem. Here we use the same ten points
as we did in the corresponding plane configuration. As planes of
the configuration we use the two planes of the triangles and the
three planes containing the Desargues point and pairs of corres-
ponding sides of the triangles. Then three planes pass through
each point, and six points lie on each plane. For the same reason
as for plane configurations, the four characteristic numbers for this
configuration satisfy the equation 5 X 6 =10 X 3.

Apart from configurations of points and planes, we can also
consider configurations in space which, like plane configurations,
consist of points and straight lines, each point being incident with
the same number of lines and each line with the same number of
points. These two different points of view are often applicable to
the same figure. Thus the three-dimensional Desargues figure we
have just been considering gives rise to a combination of points and
straight lines in space that is essentially identical with the plane
Desargues configuration. Analogously, many of the more compli-
cated configurations of points and planes give rise to configurations
of points and straight lines consisting of some of the lines in which
the planes intersect, together with the points of the original con-
figuration ; conversely, a configuration of points and straight lines
can often be converted into a configuration of points and planes by
adding to it some of the planes common to the intersecting straight
lines of the configuration.

In analogy to what we did in the plane, we shall at first confine
our attention to configurations in which the number of points equals
the number of planes, so that we are dealing with a configuration
of p points and p planes. If every point is incident with » planes
it follows for the same reason as before that every plane of the
configuration must also be incident with » points. We shall denote
such a configuration by the symbol (p.).

In order to exclude the trivial cases, we must take n to be at
least 4. For p =17, a configuration (p,) cannot exist. But for
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p =8, five different tables can be set up, and all of them can be
realized geometrically. One of these configurations (8.), the so-
called Moebius configuration, is geometrically important because
it satisfies the last incidence condition automatically and thus ex-
presses a geometric theorem. This configuration consists of two
mutually inscribed and circumscribed tetrahedra.

Going on to higher configurations, the number of possibilities
keeps growing, and it soon becomes impossible to get an over-all
view of them. Thus there are no less than 26 configurations of the
type (9,) that can be realized geometrically. Accordingly, we shall
examine in greater detail only two three-dimensional configurations
that are particularly important and play a role in other parts of
mathematics as well. These are Reye’s configuration and Schaefli’s
double six.

§ 22. Reye’s Configuration
y g

Reye’s configuration consists of twelve points and twelve planes.
It embodies a theorem of projective geometry, so that the last in-
cidence always follows automatically, regardless of the positions
of the points and planes. For the time being, however, we shall
arrange the points in a special symmetrical order, so as to facilitate
the visualization of the configuration.

We shall use as points of the configuration the eight vertices of
a cube together with the center of the cube and each of the three
ideal points where four parallel edges of the cube meet (Fig. 145).
As planes of the configuration we shall use the planes of the six
faces and each of the six diagonal planes passing through a pair
of opposite edges. In the figure defined in this way, there are six
points lying on each plane: four vertices and two ideal points on
each of the planes containing a face of the cube, and four vertices,
the center of the cube, and an ideal point on each of the diagonal
planes. There are six planes through each point: the six diagonal
planes pass through the center of the cube, three face planes and
three diagonal planes through each vertex, and four face planes and
two diagonal planes through each of the ideal points. Thus we
have indeed constructed a configuration of points and planes, and
its symbol is (12;).

But the construction may also be interpreted as being a configura-
tion of points and straight lines. To this end, we select some of the
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straight lines of intersection of the planes, namely the twelve edges
and the four diagonals of the cube. There are three points of the
configuration on each of these straight lines: two vertices and one
ideal point on each edge, two vertices and the center on each
diagonal. Furthermore, there are four straight lines through each
point: three edges and one diagonal through each vertex, four
diagonals through the center of the cube, and four edges through
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each ideal point. Hence the points and straight lines of Reye’s
configuration form a configuration of the type (12,16.).

We can also see, if we count them, that three planes pass through
each of the lines and that four lines lie on each plane. The straight
lines on any one of the planes together with the six points of the
configuration lying in the plane constitute a complete quadrilateral.

Reye’s configuration appears in various geometrical contexts. An
example is the system of centers of similitude of four spheres,
which we shall now study.
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The term centers of similitude of two circles or spheres denotes
the two points that divide the line joining the centers of the circles
or spheres in the ratio of their radii. The point on the segment
that lies between the centers is called the internal center, the one

on the extension of

the segment the

external center of

similitude. If we

o are dealing with
@ circles, and each of

. them lies outside
the other, the inter-
nal center of simili-
tude is the point of
intersection of the two straight lines tangent to the circles on oppo-
site sides, and the external center of similitude is the point of inter-
section of the straight lines tangent to the circles on the same side

F1G. 146

F16. 147

(see Fig. 146). By rotating this figure about the straight line con-
taining the centers we get an analogous property relating the
centers of similitude of two spheres with common tangents to the
spheres. (But in addition the spheres have many common tangents
that do not pass through a center of similitude.) We shall use the
symbols (ik) and (k") respectively for the external and internal
centers of similitude of two circles or spheres ¢ and k.

Let us now consider three circles or spheres, 1, 2, and 3. They
have three internal centers of similitude and three external centers
of similitude, making six in all. We shall assume that the centers
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of the circles or spheres are not collinear but form a triangle; no
two of the centers of similitude can then coincide, and the six can
not all be collinear. By a theorem of Monge, the three external
centers of similitude, (12), (28), and (31), are collinear, and each
external center of similitude is collinear with the two internal
centers of similitude that belong to different pairs of circles or
spheres, e.g. (81) with (12)’ and (23)’ (see Fig. 147).! Accord-
ingly, all the centers of similitude lie on four straight lines, which
are called the axes of similitude of 1, 2, and 3. Monge’s theorem
may be summarized by saying that the centers of similitude and
axes of similitude constitute the six points and four lines of a com-
plete quadrilateral in which the centers of 1, 2, and 3 form the
diagonal triangle. We shall denote the axes of similitude by the
following symbols: (128) for the straight line containing the ex-
ternal centers of similitude, (1’23) for the straight line on which
(23), (12)’, and (13)’ lie, etc.

With this preparation we turn to the consideration of four
spheres 1, 2, 8, 4 whose centers are not all in one plane, so that,
moreover, no three of the centers can be on one straight line
(cf. Fig. 148, p. 140). We shall see that all the centers of simili-
tude and axes of similitude of these spheres collectively constitute
the points and straight lines of a Reye configuration. Since six
different pairs can be selected from the spheres 1, 2, 3, 4, and since
each pair gives rise to an external and an internal center of simili-
tude, there are twelve centers of similitude in all. Also we have the
right number, 16, of axes of similitude, for there are four different
ways we can select three out of the four spheres, and each set of
three spheres gives rise to four different axes of similitude, e.g.
(1238), (1’28), (12’8), and (1238’). Each axis is incident with
three points, e.g. (123) is incident with (12), (23), and (13).
Similarly, every point is incident with four different axes, e.g. (12)

* Proof: Let the radii of 1, 2, and 8 be equal to 7., 7., and 7, respectively.
Then the external centers of similitude divide the sides of the triangle formed
4 7. 4
by the centers in the ratios — ;: —’—:» —;: . The product of these ratios
is — 1, and it follows by a theorem of Menelaus that the external centers of
similitude are collinear. If two of the external centers of similitude are replaced
by the corresponding internal centers of similitude, two of the ratios change
their sign. The product is therefore still — 1, so that we once more have three

collinear points.
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is incident with (123), (128’), (124), and (124’), and (12)’ with
(1’28), (12'8), (1’24), and (12'4).

We thus see that the centers and axes of similitude do indeed
form a configuration and that its type is (12,, 16,). To see that
it is identical with Reye’s configuration, we need to find twelve suit-
able planes. First we take the four planes containing the centers
of three spheres each. The points and axes lying on any one of
these planes form a complete quadrilateral, as in Reye’s configura-
tion. To get eight more planes with this property, we simply take
all the remaining planes spanned by any two axes that intersect at
a point of the configuration. Two axes of this kind must certainly
belong to different number triples, for, any two axes associated with
the same set of three numbers, e.g. (128) and (1’23), define the
plane containing the centers of three spheres (1, 2, and 3 in our
case), so that nothing new is obtained. Let us begin with two axes
containing only external centers of similitude, e.g. (123) and
(124). They span a plane that contains (12). In addition, this
plane contains the other four points of those axes, i.e. (13), (23),
(14), and (24). But (23) and (24) also lie on the axis (234)
which contains as well the remaining external center of similitude
(384). Hence all six external centers of similitude lie on the single
plane we have been considering. This plane also contains the
remaining “external” axes (134) and (234); thus it is incident
with six points and four straight lines, as it should be. We proceed
to the case of two intersecting axes one of which is “external” and
one “internal” and which are associated with two different number
triples. Since their point of intersection must be an external center
and since all the numbers play the same role, we may pick the axes
(123) and (124’) as a representative pair. Apart from their point
intersection, (12), these axes contain the points (13), (23),
(14)’, and (24)’. By the same reasoning as before, we see that
the axes (134’) and (234’) and the point (34)’ are also in the
plane of (128) and (124’). Thus the three internal centers of
similitude defined by the sphere 4 together with the three other
spheres are in a single plane with the three external centers of simili-
tude of the spheres 1, 2, and 3. There must be altogether four
planes of this kind. Only the case based on two intersecting internal
axes of similitude remains to be considered. Of course the last plane
considered above contains three internal axes which intersect in



§ 22. REYE’S CONFIGURATION 139

pairs; but the points of intersection are always internal centers of
similitude, so that the case of two axes intersecting at an external
center of similitude is still open. Let us begin, then, with two
internal axes, say (128’) and (124’), which intersect at an ex-
ternal center of similitude—(12) in this case. Apart from the
point of intersection, the plane of these axes contains the points
(13)’, (28)’, (14)’, and (24)’. Hence this plane also contains the
axes (1’34) and (2’34) and the point (34). Thus there are four
internal axes of similitude in this plane, and it meets the opposite
edges 1, 2 and 3, 4 of the tetrahedron 1, 2, 3, 4 at the external centers
of similitude and the remaining edges at the internal centers of
similitude. There are three planes of this type, since a tetrahedron
has three pairs of opposite edges. Thus we have obtained altogether
1+ 4 + 3 = 8 planes.

For the sake of clarity, we shall set up the two tables that give
the incidence relations between the points and the planes and
between the points and the lines, respectively. The faces of the
tetrahedron are labelled I, II, III, and IV, where I is the face oppo-
site the point 1. The plane of the external centers of similitude is
called e,, the four planes containing three external and three in-
ternal centers are called e, e,, e, e, respectively, according to the
number of the exceptional sphere, and the three remaining planes
are denoted by (12,34), (13,24), and (14, 23) respectively,
according to the exceptional pair of opposite edges of the tetra-
hedron. For the sake of brevity, parentheses are omitted in the
notation for points and straight lines.

Planes

rlunlm|w|eal|lal|lal|al|ea |o230us2eue2

23 {13 |12 112 |12 |23 |13 |12 |12 | 12 | 13 | 14
24 |14 |14 |13 | 13 |24 |14 |14 |13 | 34 | 24 | 23
34 |34 (24 (23 |14 |34 |34 (24 |23 | 13" | 12" | 12’
2371137 | 127 |12 | 23 | 12" [ 12" | 13" [ 14" | 14" | 14" | 13
24" | 14" | 147 | 13" | 24 |13 | 23" |23 | 24" | 23" | 23" | 24’
347|347 | 247 | 23" | 34 | 147 | 247 | 34" | 34" | 24" | 34" | 34

Points

Planes

I I nr | I eq e e e e |(12,34))(13,24)((14,23)

234 |134 (124 [123 | 123234134 |124 |123 |123"[12"3]|1’23
27341734124 (1723124 1/23[12/3 (123 [124"| 124" | 1724 12"4
23’4(13’4|12°4|12"3| 134 1724|12°4(13’4|134"|1734|134’| 134
234'(134":124’{123"|234|1734(2"34(2374(234"| 234 |23'4| 234"

Lines
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The configuration is depicted in Fig. 148.2 That this configura-
tion is identical with that of Fig. 145 becomes manifest on moving
the three points (12), (12)’, and (34) to infinity in mutually perpen-

dicular directions; the three points then assume the positions of the
1

FiG. 148

ideal points of the configuration given in Fig. 145. The eight points
(13), (14), (23), (24), (138)’, (14)", (23)’, and (24)’ become
the vertices of the cube, and (34)’ becomes the center of the cube.
But the points 1 and 2 also move to infinity. In order to find the
four spheres belonging to

m /-\ Fig. 145 it is consequently

? V3G j S Decessary to extend the
w U definition of center of simi-
Frc. 149 litude by the addition of

’ limiting cases. First, the
external center of similitude of two equal circles or spheres must

be defined as the ideal point on the line connecting the centers (see
Fig. 149). Furthermore, the centers of similitude of a sphere k

*Viewed as a plane figure, Fig. 148 represents a plane configuration of type
(12,16;) consisting of the centers and axes of similitude of four coplanar circles.
The centers of the circles are also at 1, 2, 3, and 4, and the radii may be chosen
to be the same as in the three-dimensional case.
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and a plane e (Fig. 150) must be defined as the extremities (ke)
and (ke)’ of the diameter of % that is perpendicular to e. For, if
e is replaced by a family of spheres K tangent to e¢ at the point P
where the extension of the diameter meets ¢, it is seen that the
centers of similitude of k¥ and K approach (ke) and (ke)’ as the
diameter of K increases to infinity. Finally we consider the case
of two planes ¢ and f intersect-

ing in a straight line g (Fig.

151). The centers of similitude

must be defined in this case as

the ideal points having direc- R

tions that are perpendicular to (ke) - )’
g and bisect the two angles

formed by e and f. This defini- # ¢
tion too may be justified by a
limiting process, as follows:
Replace g by the circle of inter-
section of two congruent spheres tangent at a fixed point of g to e
and f respectively, and then let the radius of the spheres increase
to infinity.

With these definitions, we are in a position to interpret Reye’s
configuration in its original version also, as a system of centers of
similitude. Let the spheres 3 and 4 have
their centers at the midpoints of the front 1
and back faces of the cube in Fig. 145. e
Let the radii-be equal and of such length
that each sphere goes through the four
corners of the face on which its center lies.
Let 1 and 2 be any two planes that are
respectively perpendicular to the two
diagonals of the faces under consideration.
Then the points of the configuration are the centers of similitude
of 1, 2, 3, and 4, arranged in the same order as in Fig. 148.

Instead of this limiting case, we may consider the configuration
based on four equal spheres with their centers at the vertices of a
regular tetrahedron. Here the external centers of similitude must
be at the ideal points of the six edges of the tetrahedron, so that the
ideal plane belongs to the configuration and constitutes, in our nota-
tion, the plane ¢,. The internal centers of similitude are the mid-

F16. 150

@
4

F16. 151
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points of the edges; they form the six vertices of a regular octa-
hedron (see Fig. 152). All the face-planes of the octahedron belong
to the configuration, being the face-planes I, II, III, and IV, of the
tetrahedron and the planes called e,, e., e;, and e, in our notation.
The three remaining planes of the configuration are the three planes
of symmetry of the octahedron. The straight lines of the configura-
tion are the four ideal lines of the face-planes of the tetrahedron

(external axes of similitude) and the twelve edges of the octahedron
(internal axes of similitude).

In the second chapter we have already pointed out how the cube
and the octahedron are related. In accordance with § 19, we may
say that the cube and the octahedron correspond dually to each
other. Similarly, it can be shown more generally that the points
and planes of Fig. 1562 correspond dually to the planes and points
ofi Fig. 145; the vertices and faces of the cube correspond to the
faces and vertices respectively of the octahedron, the center of the
cube and the six planes through it correspond to the ideal plane
and the six points on it in Fig. 152, and the three ideal points
associated with the cube correspond to the three planes of symmetry
of the octahedron.® It follows that Reye’s configuration of points

* This correspondence is produced by a polarity with respect to the inscribed
sphere of the cube.
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and planes is self-dual. Of course the two dual Reye configurations
obtained from the cube and octahedron look quite different, but for
the purposes of projective geometry, all Reye configurations must
be considered as identical.*

We shall now show that Reye’s configuration also has the other
important property of symmetry that we observed in some plane
configurations, viz., that it is regular. This is by no means evident
from the foregoing discussion. Indeed, the planes belong to four
different classes relative to the system of centers of similitude, and
in the realization of the configuration either by a cube or an octa-
hedron, both the points and the planes play different sorts of roles.
In the following section, we shall obtain Reye’s configuration by a
method that reveals the equivalence of all the elements. To this
end, we need to learn more about the regular polyhdra of three-
dimensional and four-dimensional space. For, the figures of four-
dimensional space can be projected into three-dimensional space in
the same way that the figures of three-dimensional space can be
projected into a plane, and a suitable projection of one of the four-
dimensional figures gives us Reye’s configuration.

§ 23. Regular Polyhedra in Three and Four Dimensions,
and their Projections

In Chap. II we listed the five regular polyhedra of three-
dimensional space. Among these, the tetrahedron plays an anoma-
lous role in that it is self-dual, whereas the four remaining polyhedra
are mutually dual in pairs—the octahedron with the cube, and the
dodecahedron with the icosahedron. Possibly this singularity of
the tetrahedron is connected with a second phenomenon that dis-
tinguishes it from the other polyhedra; the others are symmetrical
with respect to a point, which means that the vertices come in pairs
that are symmetrical about the center, and the same is true for the
edges and the faces (e.g. the straight line connecting any vertex
of a cube with the center meets the cube at a second vertex). The
tetrahedron, however, is not symmetrical with respect to a point,
(does not have “central symmetry”) ; the straight line connecting

*We obtain a projective generalization of the octahedron by starting with
any system of projective coordinates in space; in every case the unit points on
the six coordinate axes and the six points of intersection of these axes with the
unit plane are the points of a Reye configuration.



144 III. PROJECTIVE CONFIGURATIONS

a vertex with the center cuts the tetrahedron at the midpoint of
one of its faces.

A study similar to the one made at the end of the second chapter
proves that the number of regular polytopes! that are possible in
four-dimensional space is also finite and is equal to six.? Of course
the boundary of such a polytope comprises three-dimensional
regions (called cells) in addition to points, edges, and plane faces.
Just as we stipulated for regular polyhedra that the faces be
regular polygons, so we must stipulate for the regular polytopes
in four dimensions that the boundary cells be regular polyhedra.
The polytope is called an n-cell if it is bounded by n polyhedra. The
essential data for the regular polytopes of four-space are given
in the following table:

4-Dimensional Space

Bomtes Foly e Nt Duality
1. 5-cell 5 Tetrahedra 5 self-dual
2. 8-cell 8 Cubes 16
3. 16-cell 16 Tetrahedra 8 } mutually dual
4. 24-cell 24 Octahedra 24 self-dual
5. 120-cell 120 Dodecahedra 600
6. 600-cell 600 Tetrahedra 120 } mutually dual

The duality relations listed in the last column can be readily
deduced from the table. For in four-space, points correspond dually
to three-dimensional spaces and straight lines to planes.

We see from the table that the 5-cell is analogous to the tetra-
hedron, while the 8-cell, 16-cell, 120-cell, and 600-cell take the place
of the cube, octahedron, dodecahedron, and icosahedron, respec-
tively. The 24-cell has a singular role; it is not only self-dual but
also centrally symmetric, while the other self-dual polytope, the
regular 5-cell, shares the property of its analogue, the regular tetra-
hedron, of having no symmetry about a point.

* The polyhedra of n-dimensional space for n = 4 are called polytopes (or, in
the earlier literature, polyhedroids). [Trans.]

2 Cf. the book Die Vierte Dimension by H. de Vries (Leipzig and Berlin, 1926).

Cf., also, Regular Polytopes by H. S. M. Coxeter (Methuen & Co. Ltd., London,
1947) and the last chapter of Geometry of Four Dimensions by H. P. Manning
(MacMillan, New York, 1914). [Trans.]
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Analogous studies have also been made for spaces of higher
dimensionalities. Here we find a greater simplicity and regularity,
as only three regular polytopes can be found in any such space.
We again give the most important data in the form of a table.

n-Dimensional Space, n = 5

Number and T f Bound: Number of .
=15 Dimensional Cells a Vertices Duality
1. (n+41)-cell n+1 n-cells n+1 self-dual
2. 2n-cell 2n (2n—2)-cells 2n
3. 2n-cell 2n n-cells 2n mutually dual

The three-dimensional polyhedra corresponding to these three
types of polytopes are the tetrahedron, the cube, and the octahedron
(n+1=4, 2n =26, 2» = 8). The four-dimensional analogues are
the 5-cell, the 8-cell, and the 16-cell. Thus the dodecahedron and
the icosahedron of three-space as well as the 24-cell, 120-cell, and
600-cell of four-space have no analogues in spaces of higher
dimensionality.

We shall now study the projections of the regular polyhedra and
polytopes into spaces whose dimensionality is smaller by one than
that of the spaces in which the polyhedra and polytopes lie. We
begin with the projections of the regular polyhedra into a plane.
Of course, the appearance of these projections will vary greatly
with the choice of the center of projection and of the image plane.
In Figs. 95 through 99 of page 91 we used parallel projections,
i.e. projections with the center at an ideal point. This has the
advantage of representing parallel lines by parallel lines. But it
has the disadvantage of making pieces of faces overlap. The
disadvantage can be eliminated by moving the center of projection
to a point very close to one of the faces. For the sake of symmetry
we move it to a point at a small distance from the center of one
of the faces and project into the plane of that face. In this way
the five regular polyhedra give us the projections drawn in Figs.
153 through 157. This is the way we see the polyhedra when we
remove one of the faces and look at the interior through the hole.

If the center of projection is located on the surface of the poly-
hedron, the faces passing through it appear as straight lines, so
that the image becomes quite unsymmetrical.
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If the center of projection is located inside the polyhedron, the
image is significantly altered; then it must extend to infinity irre-
spective of the choice of the image plane. This is so because every
plane through the center of projection intersects the polyhedron.
This applies, in particular, to the plane going through the center

Fi16.153 TETRAHEDRON

F1G. 156 DODECAHEDRON

F1G6.154 CUBE

F1G6. 155 OCTAHEDRON F16.157 ICOSAHEDRON

which is parallel to the image plane and which therefore gives rise
to the ideal points of the projection (cf. p. 114). Nevertheless, this
type of projection leads to a phenomenon of geometric interest in
the special case where the center of projection is at the center of the
polyhedron. For, in this case—and in this case only—the bundle
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of rays through the center is arranged symmetrically. As was
already noted on page 116, the bundle of rays can be looked on as a
model of the projective plane by interpreting the straight lines of
the bundle as “points” and the planes of the bundle as ‘“straight
lines.” Thus the regular polyhedra induce regular partitions of the
projective plane. But only in the /

case of centrally symmetric poly- /
hedra can this partition cover the ¢z

projective plane simply ; in the case
of the tetrahedron, every straight
line through the center yields two
different image points correspond-
ing to the two points where it meets
the surface of the polyhedron. so
that the projective plane is covered
twice. But on all other regular
polyhedra every pair of diametric-
ally opposite elements produces
one single piece of the projective
plane. If we consider the intersec-
tion of the bundle of rays with a /
plane, i.e. if a projection in the
proper sense is under consideration, we cannot preserve all the
symmetry. The image is particularly simple, however, if its plane
is chosen so as to contain a vertex of the polyhedron and to be per-
pendicular at that vertex to the line con-
necting the vertex with the center (see
Fig. 158 for the octahedron). Figs. 159
through 163 show the five projections
obtained in this way. One of the regions
extending to infinity is shaded in each
diagram. In the projection of the tetra-
hedron, the image plane is covered twice.
In the remaining figures, every polygon in  FIG. 169 TETRAHEDRON
the image plane represents exactly two diametrically opposite
faces of the polyhedron.

Another series of simple figures is obtained from the symmetrical
polyhedra by using a face plane as image plane, as shown in Fig.
164 for the cube. (For the tetrahedron this does not give us a new

F1G. 158
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figure.) The projections are shown in Figs. 165 through 168.2
Using analogous methods of projection, we can depict the regular
polytopes of four-space by figures in three-space. Parallel projec-

FI1G6. 160 OCTAHEDRON FI1G. 162 DODECAHEDRON

F1G6. 161 CuUBE l F1G6. 163 ICOSAHEDRON

tion is not found to be suitable, as it represents the boundary poly-
hedra of the polytopes by polyhedra in space which partly overlap
and intersect each other. On the other hand, the procedure followed
in obtaining Figs. 153 through 157 can be used to give us clear

® In this case, the projection of the octahedron is equivalent to the division of
the plane into four triangles by a projective coordinate system.
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pictures of the four-dimensional polytopes. The boundary poly-
hedra of the polytope are represented by a set of polyhedra in space

(NI

¢
I

FI16. 165 OCTAHEDRON

F16. 167 DODECAHEDRON
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of which one plays a special role and is filled up simply by the
others. If these models are in turn projected into the plane, we get

F1G. 168 ICOSAHEDRON

four pictures as shown in Figs. 169 through 172. In Fig. 172 it
may be ascertained, though somewhat laboriously, that the large
octahedron is filled by 23 smaller octahedra (which are of four
different forms) making 24 poly-
hedra in all. The figures for the
120-cell and the 600-cell would get
too confusing.

/
1
\

I

A
7 S

B3

D

/

F16. 169 5-CELL F1c. 170 8-CeELL

If the center of projection is moved to the center of the polytope,
the result has to be a regular partition of the projective space.
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We cannot produce a model for the projective space that is as sym-
metrical as the bundle of lines representing the projective plane;
for, this would involve consideration of a four-dimensional figure.
It is necessary, therefore, to single out a particular three-space as
image space, and some of the symmetry is lost in the process. But
in order to preserve part, at any rate, of the symmetry, we let the
image space assume positions analogous to those of the image plane
in the case where the dimensionality is one less: either we use one
of the boundary spaces, in analogy to the arrangement of Fig. 164,

F16.171 16-CELL

or we choose a space passing through one of the vertices of the
polytope and having the position corresponding to that of the image
plane in Fig. 158. In the first case, the boundary polyhedron we select
will be reproduced without any distortion, because it is in the image
space to begin with ; in the second case, the projection is symmetrical
with respect to the chosen vertex, which is its own image. First
we shall consider the pictures of the 16-cell and the 8-cell obtained
by these two methods of projection (Figs. 173 and 174).* Here
the space is partitioned into eight and four parts respectively,
and each part corresponds to two diametrically opposite bound-
ary cells of the polytope. In Fig. 173a, the three-dimensional seg-

* This method of projection is not suitable for the 5-cell, as this polytope does
not have central symmetry.
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ments that extend to infinity are of two different forms. Four of
them have one boundary face (e.g. 1, 8, 4) that is wholly confined
to the finite part of space and from which they extend across the
ideal plane to the opposite vertex (e.g.2). On the other hand, three

F16.172 24-CELL

of the regions have a pair of opposite edges that are finite (e.g. 1, 2,
and 3, 4), but no faces that do not extend across infinitely distant
elements. In Fig. 173b, the ideal plane itself is a boundary plane.
We note that the 16-cell leads to familiar partitions of space—the
division into octants by a projective or a Cartesian coordinate
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system. In the representation of the 8-cell shown in Fig. 174a, all
the regions that extend to infinity are of the same form. In Fig.

Fi6.173a 16-CELL

]

y

%/‘#én%m

F1G6.178b 16-CELL

174b, arrows marks off the edges of the region that corresponds to
the finite cube of Fig. 174a; the edges of this region include the
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finite edges containing the point 1 with the exception of the edge 1, 6.

We next apply the same two methods of projection to the 24-cell.
The results are shown in Figs. 175 and 176. We thus get a partition
of the space into twelve octahedra, all of which, with the exception

F16.174b 8-CELL

of the octahedron in the center of Fig. 175, extend to infinity. It is
seen that Figs. 175 and 176 reproduce the two symmetrical forms
of Reye’s configuration that we studied in the preceding sec-
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tion.> We see from the finite octahedron in Fig. 175 that the planes
of the configuration serve both as the boundary planes and as the
planes of symmetr of the twelve octahedra. A closer study reveals
the underlying reason for this; a complete quadrilateral divides the
projective plane into three
quadrangles and four tri-
anges (in Fig. 177, the
quadrangles 1, 2, 3 and the
triangles I, 11, III, IV). In
Reye’s configuration the
straight lines partition each
of the planes in this way;
4 and since the faces of the
octahedra are triangles,

I
/ . \ N while the planes of sym-
2 3

metry intersect the octa-
hedra in quadrangles, it is
seen that each plane of
the configuration serves
as symmetry plane in three octahedra and as common boundary in
2+4 octahedra, while one of the twelve octahedra is not incident
with it; thus the ideal plane is a configuration plane in Fig. 175,
and one of the octahedra is located in the finite part of the space.®

F16. 177

* We had seen there that the two figures are related by a polarity with respect
to a sphere. Now we see them as projections of one and the same four-

/\ dimensional figure each of which can be
changed into the other by moving the
/ \ three-dimensional image space.

®In analogy to the three planes of
symmetry of the octahedron which pass
through the center and intersect the
boundary in a square, the 24-cell has
twelve three-dimensional spaces of sym-
metry that pass through its center and
intersect it in a cubo-octahedron. (The
cubo-octahedron is illustrated in Fig.
178; a cubo-octahedron is also marked
out in Fig, 172.) In the projection we
Fic. 178 are studying, the spaces of symmetry,
like all spaces containing the center of the polytope, become planes. And these
planes are precisely the planes of the Reye configuration. The three diametrically
opposite pairs of squares and the four diametrically opposite pairs of equilateral
triangles of the cubo-octahedron correspond to the three quadrilaterals and four
triangles in each plane of Reye’s configuration.
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Fig. 176 is simpler than Fig. 175 in that only two different kinds
of octahedra occur in Fig. 176 (where six octahedra are congruent
with the octahedron 1, 2, 3, 4, 5, 10 and the other six with 2, 5, 6,
9, 10, 11) while three different kinds of octahedra are present in
Fig. 175—here one of the octahedra is regular, in three of them
the ideal plane is a plane of symmetry (e.g., 1, 6, 7, 8, 9, 10), and
in eight of them the ideal plane belongs to the boundary (e.g.,
3,4,17, 8,10, 11).

From this approach to the configuration the assertion made at
the end of the last section follows immediately: Reye’s configuration
s regular.

The foregoing discussion suggests the idea of projecting the
n-dimensional regular polytopes onto a space of the lowest possible
dimensionality, i.e. onto a straight line. Let us study the projection
of the n-dimensional cube onto one of its principal diagonals by the
method of orthogonal parallel projection. The extremities A and B
of such a diagonal are projected into themselves. Let us call the
images of the other vertices of the cube V,, V,, ... in the order of
their positions on A B beginning with the point nearest to A. From
A there emanate n edges, all forming the same angle with AB;
hence all their endpoints must be projected into the point V, on
AB. Furthermore, every edge of the cube is parallel to one of the
edges through A, and it follows that the distance V;V;,, between
consecutive points is always equal to the distance AV, and is thus
constant. Accordingly, the principal diagonal is divided into equal
segments. It can be shown that there are exactly n of these seg-
ments and that the point V, is the image of ,C; vertices for all &
between 1 and n — 1, where ,C; is the well-known symbol denoting
the binomial coefficients. For, V, is the image of all those vertices,
and only those, that can be connected with A by k, but not by less

—than k, edges of the cube, and we see, by counting, that there are
exactly ,C; such vertices. In the case of the square and of the ordi-
nary (three-dimensional) cube, these facts can be readily verified.

§ 24. Enumerative Methods of Geometry

The last three-dimensional configuration that we shall consider
is Schléfli’s double-six. The study of this configuration leads us to
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a special geometrical method called enumerative geometry. We
shall discuss the method first, because we wish to avoid interrupting
the study of the double-six and also because the enumerative
methods are of great intrinsic interest.

The plane contains infinitely many straight lines and infinitely
many circles. In order to characterize the multiplicity of all straight
lines in the plane, we begin by fixing a Cartesian coordinate system
in the plane. Then a straight line is in general completely deter-
mined by the sign and magnitude of its two intercepts with the
coordinate axes. Hence any straight line—with exceptions we shall
mention presently—can be analytically defined by two numbers.
The straight lines that are parallel to one of the axes can also be
included in this scheme by assigning the value infinity to the
appropriate intercept. On the other hand, all the straight lines
through the origin, and they only, are not defined by the intercepts;
all of them give us the same data, namely zero, for both intercepts.

The straight lines that do not pass through the origin are said
to form a two-parameter family; this means that every member
of the family is determined by two numbers (the ‘“parameters” of
the family) and that a continuous change in the parameters is
accompanied by a continuous change in the entity defined by them.
According to this definition, the straight lines through the origin
form a one-parameter family, as they can be determined by the
angle that they form with one of the axes. Now it is usual to think
of a two-parameter family as being, roughly speaking, not signi-
ficantly enlarged by the addition of a one-parameter family which
can be continuously imbedded into the first family. In this sense
the set of all straight lines in the plane is also called a two-parameter
family. We shall soon recognize the usefulness of this point of view.

The straight lines in the plane can also be determined in a variety
of other ways, e.g., by a point through which they pass and the
angle they make with an arbitrary fixed straight line. Since it
takes two coordinates to define a point in the plane, we need alto-
gether three parameters to characterize a straight line in this
manner. However, the defining point may be picked arbitrarily on
the straight line, and the points of a straight line obviously form
a one-parameter family. We find much the same phenomenon when
we define a straight line by two of its points. We need four para-
meters in this case, but a two-parameter family of pairs of points
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defines one and the same straight line. To get the correct number
of parameters it will therefore be necessary to subtract two para-
meters in the latter example, or one parameter in the former ; then
we find, as we did by the first method, that the straight lines of the
plane form a two-parameter family. This procedure, which is only
sketched here, can be given a precise analytic formulation, and it
can then be proved that the number of parameters associated with
a family of geometrical figures is independent of the way in which
the parameters are chosen. By using the symbol « we can write
this kind of argument more concisely. We shall say that there
are «oZ straight lines in the plane, «* points on a straight line, and
«? pairs of points on a straight line. In this way, enumeration
becomes analogous to dividing one power of a number by another;
to get the correct ‘“number” «? of straight lines in the plane, we
must “divide” the “number” «* of pairs of points in the plane by
the “number” «?2 of pairs of points on a straight line.

Let us apply the procedure to the characterization of the size of
the family of all circles in the plane. A circle is defined by its
center and radius, i.e. by three numbers, and at the same time
only one such number-triple is associated with every circle. The
plane thus contain «3 circles. Since the family of all straight lines
in the plane has only two parameters and every straight line may
be considered as a limiting case of a circle, the family of all circles
and straight lines also has three parameters. This is in accord
with the fact that through any three points of the plane one circle
or one straight line can be drawn, as there are «* triples of points,
and any one curve contains «? of them. Similarly, it can be shown
that in any n-parameter family there is always a curve that passes
through an arbitrarily chosen n-tuple of points of the plane but,
in general, none that passes through n + 1 arbitrary points of the
plane. This is only true, however, if all the limiting cases are
included in the family, just as a unique correspondence between
circles and number-triples becomes possible only on including
straight lines as limiting cases in the family of circles. To make a
rigorous formulation of these statements possible, analytic and
algebraic methods are necessary, and in particular it is necessary
to consider the imaginary elements along with the real ones.

Let us find the “number,” in the above sense, of all the conics.
An ellipse is defined by its two foci (four parameters) along with
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the constant sum of the distances from these points, i.e. by five
parameters, and every ellipse is associated with only one such set
of five numbers. Hence there are «? ellipses in the plane. Similarly
it is shown that there are «? hyperbolas in the plane. The ellipses
can also be fixed by the lengths of the two axes along with the
position of their center and the direction of the major axis; this
makes five parameters again, consonant with the general theory.
It follows that the family of all parabolas in a plane has four para-
meters, for, by the construction given on page 4, we get the parabolas
from the ellipses by a limiting process in which a one-parameter
family of ellipses always determines a single parabola and each
ellipse belongs to finitely many—two, to be specific—of the families.

If the values given for the lengths of the two axes of an ellipse
are equal, we get a circle. At this point it would be easy to come to
the erroneous conclusion that there are «* circles, rather than o3,
for if the axes are to be equal, we are still left with the choice of
four numbers. The contradiction is resolved on noting that the
equality of the axes makes it unnecessary to know the directions
of the axes, since any given pair of perpendicular diameters of a
circle can be regarded as constituting the limiting case of the axes
of ellipses.

The above discussion does not entitle us to expect that we can
always draw an ellipse through an arbitrary set of five points in
the plane. At best, this might be the case if the ellipses are supple-
mented by inclusion of their limiting cases, the parabolas and the
circles. It is found, however, that the hyperbolas must be included
as well. The totality of all the conics in the plane, i.e. the set of all
hyperbolas, parabolas, ellipses, circles, pairs of straight lines, and
doubly-counted straight lines, constitutes a single family in the
sense of enumerative geometry. In accordance with the above, this
must be a five-parameter family; for, each of the different types
of conics belongs to a family with five parameters or less. For the
totality of conics it is indeed true that a member of this family
passes through any set we may choose of five points of the plane.
A closer study by methods outside the realm of enumerative
geometry reveals that the conic is uniquely determined by the five
given points except when four of them are on a straight line. In
this exceptional case it is clear that the conic is not uniquely defined ;
through four points lying on one straight line ! and a fifth point P
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we can draw <! special conics consisting of the pair of straight
lines I and m where m is an arbitrary straight line passing through P.
If, in addition, P is also on I we can even draw o«? pairs of straight
lines, since the choice of the straight line m is then completely
arbitrary.

We proceed to the application of enumerative methods to three-
dimensional figures. By characterizing a plane by its three inter-
cepts in a fixed coordinate system in space, we see that the space
contains «? planes; for, the only planes that can not be defined by
their intercepts are the planes that pass through the origin, and
these latter are only a two-parameter family. By the method of
enumeration we verify the elementary theorem that a plane ca
be found which passes through any three given points in space;
indeed, there are «°® triples of points in space and «°® such triples
on every plane, so that the triples of points in space define “«?/«¢,”
i.e. «3, planes.

In determining a straight line by means of two points, we find
that in space there are «* straight lines; for, there are «¢ pairs
of points in space and «? on a straight line.

The spheres can be characterized by their center and radius. It
follows thst there are «* spheres in space. Adding the planes as
limiting cases to the family of spheres, we can use enumeration
to verify the well-known fact that a sphere or plane can be drawn
through any four points in space. Just as in the case of the conics,
the determination of the sphere is not always unique although it
is unique if—and only if—the four points are not on a common
straight line or circle. Analogous conditions govern the general
case. If an n-parameter family of surfaces is defined so as to be
sufficiently inclusive (like the family of all conics as opposed to the
family of ellipses, in the plane), then there is a surface of the
family through every set of » points in space. The surface is not
always uniquely defined by the » points. It is, however, uniquely
defined if the points are “in general position,” i.e. if they do not
satisfy certain geometrical relations whose nature depends on the
given family of surfaces.

A ruled surface of the second order is defined by three skew
straight lines. Space contains «¢'3 —= w2 triples of straight lines.
But since every straight line on a ruled quadric is a member of a
one-parameter family, «? triples of straight lines define the same
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surface. Hence there are «* ruled quadrics.

Likewise there are «® general ellipsoids. This follows from the
fact that we get every ellipsoid once, and only once, by varying the
choice of the center (three parameters), the lengths of the axes
(three parameters), the direction of the major axis (two para-
meters), and—the minor axis lying in the plane through the center
perpendicular to the major axis—the direction of the minor axis
within that plane (one parameter).

From analytic considerations we learn that there are «? quadrics
altogether. We have, for this family, the theorem that every set of
nine arbitrary points in space lies on a surface belonging to the
family. In order that the definition of a quadric by nine points be
unique, i.e. that the position of the points be sufficiently general
for the family of quadrics, it is necessary to stipulate that the points
shall not lie on certain space curves of the fourth order; for, these
can be obtained as the curves of intersection of pairs of quadrics,
so that naturally it would be impossible that any number of points
on such a curve could define a quadric uniquely.

We shall now establish the plausibility of the fact that there are
infinitely many straight lines on every second-order surface. To
this end we begin with the fact, immediately deducible from the
analytic definition of second-order surfaces, that every straight
line having three points in common with such a surface is wholly
embedded in it. Evidently there are «¢ triples of points on a quadric
(and, for that matter, on any surface). Let us select only those
triples of points that are collinear. Enumerative geometry yields
the result that there are «* of them, i.e. that two parameters are
lost. For, it takes two analytic relations to express the incidence
of one of the points with the straight line defined by the other two;
and there is a general theorem that the number of parameters
associated with a family is diminished by n if we select only the
members satisfying a certain set of n independent relations (where
n relations are called independent if they cannot be replaced by less
than » equivalent relations). Hence it is true that «* triples of
collinear points lie on any given quadric. And it was pointed out
before that every straight line that is incident with such a triple
of points must lie on the surface. But there are «3 triples of points
on a straight line. Hence the triples of collinear points on a second-
order surface lie on «! straight lines belonging to the surface.
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On the ellipsoid, the elliptic paraboloid, and the hyperboloid of two
sheets, these straight lines are imaginary.

In conclusion, we add a few remarks on the third-order surfaces,
since these surfaces are intimately connected with the properties
of Schléfli’s double-six to be studied in the next section. Analytically,
the third-order surfaces are characterized by the property of having
an equation of the third degree in Cartesian coordinates. Now, the
general third degree equation in three unknowns has twenty co-
efficients, and they are determined up to a common factor by the
surface associated with the equation. It follows that there are «®
third-order surfaces and that through any set of 19 points arbitrarily
chosen in space there passes a surface of the family. It is necessary
here, however, to include certain degenerate cases in the family of
third-order surfaces, e.g. a second-order surface and a plane, taken
together.

In general, a straight line has three points in common with a
third-order surface, and a straight line having four points in com-
mon with such a surface must lie on the surface. This is easily
deduced from the fact that the surface has an equation of third
degree. We shall show by enumeration that the most general third-
order surface can only contain a finite number of straight lines.
On every surface there are «? quadruples of points. It takes four
conditions to insure that such a quadruple of points be collinear—
two conditions for the third point and two for the fourth point to
lie on the straight line common to the first two points. Hence there
are «* collinear quadruples of points on a general third-order
surface. Every straight line containing such a quadruple lies on
the surface and contains «* other such quadruples. The existence
of an infinity of straight lines on the surface would imply that
more than «¢ quadruples of collinear points could be found on it.

But the third-order surfaces also include a great many ruled
surfaces. These surfaces, then, contain «® or even more quad-
ruples of collinear points. Accordingly, the equation of a ruled
surface of the third order must have the special property that this
equation together with the four conditions for the collinearity of
four points can be replaced by an equivalent system of fewer equa-
tions. It may be shown that such a reduction is possible only if
the twenty coefficients of the third-degree equation satisfy certain
special relations. This also shows the truth of the statement that



164 III. PROJECTIVE CONFIGURATIONS

the general third-order surface contains at most a finite number
of straight lines.!

An enumeration similar to the above shows that the general sur-
faces of order higher than the third do not in general contain any
straight lines.

§ 25. Schlafli’s Double-Six

We begin with some simple considerations concerning the possible
positions of straight lines in space. Three skew straight lines a,
b, and ¢ define a hyperboloid H. In general, an arbitrary fourth
straight line d intersects H at two points, although it may also be
tangent to H or lie on H. In the general case, each of the points at
which d and H intersect is incident with a straight line lying on H
that does not belong to the same family as a, b, ¢ and therefore
intersects a, b, and ¢. Conversely, every straight line that intersects
a, b, ¢, and d, is on H and is incident with one of the points at
which d intersects H. Hence there are in general two, and not more
than two, straight lines that intersect four given straight lines.
In the case where d is tangent to H there is only one (double)
straight line that intersects a, b, ¢, and d. If, on the other hand,
there are more than two straight lines that intersect a, b, ¢, and d,
then d must lie on H, and then there are infinitely many straight
lines intersecting @, b, ¢, and d. In this case we say that the four
straight lines are in a hyperboloidal position.

In the construction of Schlidfli’s double-six we start with any

7.2 3 4 5 ¢ straightlinelanddraw , , ; , ; ,

three mutually skew _ p

T~ 2’ gtraight lines intersect- _| »
# ing 1, which we shall ¥
1 # call 2/, 8/, and 4’, for »
5 reasons that will be- 5
-—6¢ come apparent later —
! (see Fig. 179). Then we '
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draw another straight
line 5’ through 1, which is to have the most general possible posi-
tion relative to 2/, 8’, and 4’: 5’ will not intersect any of the straight

* E.g., there is no straight line on the surface xyz =1 which passes through
a finite point of the surface.
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lines 2’, 8", and 4’, and there will be besides 1 just one straight line—
we shall call it 6—that intersects 2, 8’, 4’, and 5. Finally we draw
a straight line 6’ through 1 which must not intersect 6, 2, 3’, 4/,
or 5/, and which must furthermore be such as to make the positions
of the quadruples 2’8'4’6’, 2’3’5’6, 2’4’5’6, and 3’4’5’6’ as general
as possible. Then there is exactly one straight line 5 in addition

O

Fic. 181

to 1 which intersects 2’, 8’, 4/, and 6, and the straight lines 4, 3,
and 2 are defined analogously (e.g. 4 is distinct from 1 and inter-
sects 2, 8, 5, and 6/, etc.). In this way we obtain the system of
intersections represented schematically in Fig. 179. It is easily
seen that our choice of the straight lines 2’, 8’, 4/, 5/, 6’ precludes
the possibility of additional intersections. Turning now to the four
straight lines 2, 3, 4, and 5, we shall show that they cannot be in a
hyperboloidal position. For if they were, every straight line that
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intersects three of them would also intersect the fourth, and in
particular, this would apply to each of the straight lines 2’, 3, 4/,
and 5/, according to our scheme. Then these four straight lines
would also be in a hyperboloidal position, contradicting the condi-
tions of our construction. Thus there are at most two straight lines
that meet 2, 3, 4, and 5. But according to our construction, 2, 3, 4,
and 5 all intersect 6’. Let us denote the second straight line that
intersects 2, 3, 4, and 5, by 1’; we assert that 1’ does not coincide
with 6’ and that it cuts 6. Pending the proof of this assertion (to
be given below), we may supplement the arrangement represented
by Fig. 179, changing it into that of Fig. 180. The latter scheme
represents the double-six. It is immediately seen that we are dealing
with a regular configuration of points and straight lines whose
symbol is (30,12;). A particularly clear and symmetrical form of
the double-six can be constructed by suitably choosing one of the
straight lines of each set of six on each face of a cube. The arrange-
ment should be apparent from Fig. 181 (cf. also Fig. 102, p. 93).

We must now prove the assertion made above that there is a
straight line 1’ distinct from 6’ which meets 2, 3, 4, and 5, and that
this 1’ must meet 6. Let us tentatively assume that the first part
is already proved and prove on the basis of this assumption that
1’ intersects 6. To this end, we select four points on the straight
line 1 and three points on each of the straight lines 2’ to 6’, making
sure that none of the points of intersection of the lines under
consideration are included among the nineteen points thus chosen.
According to the argument of the last section, a third-order surface
F; can be drawn through these nineteen points. Now F;, having
four points in common with the straight line 1, must contain the
entire straight line. Furthermore, F'; has four points in common
with each of the straight lines 2’ to 6’—the three points chosen in
the beginning and the point (distinct from these) where the line
meets 1; thus F; contains 2’ to 6’ as well. From this it follows
in turn that F, also contains the straight lines 2 to 6, as each of
them intersects four straight lines lying on the surface. And finally,
F; contains 1’ for the same reason. Supposing now that 1’ did not
intersect 6, let us consider the straight line I which, like 5’, inter-
sects 2, 3, 4, and 6. As in the construction of 1/, we shall rule out
for the time being the case where [ coinicides with 5’. I cannot co-
incide with 1/, since it was assumed that 1’ does not meet 6. Since [
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meets four straight lines lying on F;, namely 2, 3, 4, and 6, [ itself
lies on F;. By our construction, each of the four straight lines
l, 1, 5, 6" meets 2, 3, and 4. Hence the four straight lines are in
a hyperboloidal position. Then the entire associated hyperboloid
must be a part of F';; this follows directly from the fact that every
straight line that intersects [, 1/, 5%, and 6’, lies on F';, while the set
of all such straight lines covers the hyperboloid.

Now, it is easy to prove algebraically that a third-order surface
that contains all the points of a second-order surface must consist
of the second-order surface and a plane: If G=0 and H =0 are
the equations of the third-order and second-order surface respec-
tively, the polynomial G of the third degree must be divisible by
the polynomial H of the second degree, and this can only be the
case if G is the product of H and a linear expression. From the
conclusion that the surface F; defined by our nineteen points must
be a degenerate case of this sort, we can easily deduce a contra-
diction. For, no four of the straight lines 2’, 8’, 4/, 5/, 6’ have a
hyperboloidal position; hence at most three of them could be on
the hyperboloid that forms a part of F,. Hence at least two would
have to be on the plane that constitutes the other component of F,
and these two would therefore have a point of intersection, in
contradiction to our construction.

If we admit the possibility, previously excluded, that 1’(2345)
may coincide with 6’ or 1(2846) with 5’, the proof is not essentially
changed. In this case, too, we can conclude that the hyperboloid
defined by 2, 3, and 4 would have to be a part of F,. But the limit-
ing process by which this case is derived from the general case can
not be justified without the use of algebraic methods.

In the proof of the last incidence relation (1’6) of the double-six
we used the fact, interesting in itself, that there is always a third-
order surface F'; that contains this configuration. It is easy to
supplement the configuration with several additional straight lines
which also lie on F;. Consider, for instance, the plane spanned by
the intersecting straight lines 1 and 2’ and the plane spanned by
1’ and 2 and let (12) denote the line in which the two planes inter-
sect. Then (12) meets the four straight lines 1, 1/, 2, and 2’, all
of which lie on F;; hence (12) also lies on F;. In all there are
fifteen straight lines that bear the same relation to the double-six
as (12) and therefore lie on F'; as well. For, fifteen different pairs
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can be chosen from the numbers from 1 to 6. We have thus found
2 X6 + 15 =27 straight lines all lying on F;.

Among the straight lines of the enlarged configuration that we
have obtained in this way there are further incidence relations.
In fact, it may be shown that all those pairs of the straight lines
denoted by two numbers whose symbols have no number in com-
mon, and those only, will have a point of intersection. The proof
can be based on the same idea as our proof that 1’ and 6 intersect,
and we shall only give an indication of it. For reasons of symmetry
it suffices to show that (12) meets (84). To this end, we consider
the three straight lines 1, 2, (84), and note that 3’ and 4’ intersect
them. If (12) did not intersect (34), there would be a straight
line a that would meet the four lines 1, 2, 1/, and (34), and a straight
line b that would meet 1, 2, 2/, and (34). b would necessarily be
distinct from a, for if they were one and the same straight line,
this would meet the four lines 1, 2, 1/, 2/, and would therefore be
identical with (12) and yet meet (34), whereas we are assuming
for the time being that (84) does not meet (12). Similarly a and b
would have to be distinet from 8’ and 4’; for if, say, a coincided
with 8’, then 8’ would intersect 1/, in contradiction to our construc-
tion. Now a and b, like 3’ and 4’, would have to lie on F, and
because all of them meet the triple 1, 2, (84), the four straight
lines would be hyperboloidal. But we have already seen that it is
impossible for F'; to contain a set of four straight lines in the hyper-
boloidal position. It follows that (12) does meet (34). For the
same reasons it must meet (35), (836), (45), (46), and (56). Since
(12) also meets 1, 2, 1/, and 2/, it follows that (12) intersects ten
straight lines of the enlarged configuration, and does every one of
the straight lines we denoted by two numbers. The same is true
for the straight lines of the double-six itself; 1, for example, inter-
sects the five lines 2’ to 6’ and the five lines (12), (13), (14), (15),
(16). Accordingly, the configuration consisting of the 27 straight
lines on F'; together with their points of intersection has the symbol
(185,27,,). The fact that there are exactly 135 points follows
from the equation 135 X 2 =27 X 10. It can be shown, moreover,
that the configuration is regular, and that many different double-
sixes can therefore be found in it. Considering in addition the
planes spanned by intersecting pairs of lines of the configuration,
we can verify by referring to the incidence table that every such
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plane contains a third line of the configuration. This can also be
seen by the following simple algebraic argument. Every plane
necessarily intersects F', in a third-order curve. If the plane con-
tains two straight lines of the configuration, this curve is bound
to contain them, and 1t can be deduced algebraically that the curve
must then consist of these two straight lines and a third straight
line. It is easy to check by counting that five of our planes pass
through each of the twenty-seven straight lines and that the planes
number forty-five in all. Thus we see that the configuration is not
self-dual, although the double-six, being built up on the self-dual
relation of the incidence of two straight lines, is self-dual. The
double-six can easily be extended to a configuration that is the dual
of the configuration we have just constructed. To this end, we
need to add a different set of straight lines [7k] instead of the
straight lines (ik), where, for example, [12] passes through the
points at which 1 intersects 2’ and 1’ intersects 2. The configura-
tion obtained in this way has the symbol (45,27;).

Let us return to the original configuration of twenty-seven
straight lines. We shall show by enumerative methods that there
is such a configuration K on every third-order surface F,. Here,
as in all enumerative considerations, the cases where K is partly
imaginary or degenerate must also be taken into account. The proof
begins with the enumeration of the family of all double-sixes.
According to our construction, the choice of the straight line 1 is
completely free, and thus involves four parameters; the points
where 1 intersects the straight lines 2’ to 6’ depend on another five
parameters, and each of the lines 2’ to 6’ can assume «? positions
once its point of intersection with 1 is fixed (thus accounting for
ten more parameters). Since the straight lines 1, 2/, 3/, 4/, 5/, and 6’,
uniquely define the double-six, we see that there are «!? double-sixes
(19=4 + 5+ 10). The family of configurations K has the same
number of parameters; for, each configuration of this type is defined
by one of the double-sixes in it, and obviously there is only a finite
number of double-sixes in any one configuration K. Now we have
given a construction for passing an F; through any given K; it
follows either that the family of the surfaces F', constructed in this
way comprises «!° surfaces or, should there be fewer surfaces, that
at least «! configurations K lie on the same F';, i.e. that F; would
have to be a ruled surface of the third order. It can be shown, how-
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ever, that there are less than «® ruled surfaces of the third order;
hence the F'; we constructed would have to contain at least « 2 double-
sixes. But since it was already demonstrated that the F, do not
contain a hyperboloid and since any ruled surface of order higher
than the second contains only one family of straight lines, such an
F'; cannot possibly carry «2? double-sixes. Therefore our surfaces
cannot in general be ruled surfaces, and it follows that our con-
struction accounts for not less than «* surfaces. On the other
hand, as we have mentioned in the last section, there are only «®
third-order surfaces. From this, the algebraic nature of the figures
under consideration being borne in mind, the truth of our assertion
that every third-order surface contains a configuration of the type K
can be rigorously deduced.



CHAPTER IV

DIFFERENTIAL GEOMETRY

So far we have examined geometrical figures with regard to their
overall structure. Differential geometry represents a fundamentally
different method of approach. Specifically we will, to start with, in-
vestigate curves and surfaces only in the immediate vicinity of any
one of their points. For that purpose we compare the vicinity, or
“neighborhood,” of such a point with a figure which is as simple
as possible, such as a straight line, a plane, a circle, or a sphere,
and which approximates the curve as closely as possible in the
neighborhood under consideration; in this way one obtains, for
example, the familiar concept of the tangent to a curve at one of
its points.

This approach, known as local differential geometry, or differential
geometry in the small, is supplemented by another important point
of view, differential geometry in the large: if a continuous geo-
metrical figure is known to have a certain property in the neighbor-
hood of every one of its points, then it is possible, as a rule, to
deduce certain essential facts relating to the total structure of the
figure. If, for example, we are given a plane curve of which it is
known that at no point of the curve does a neighboring portion
lie entirely on one side of the tangent at the point, then it may be
proved that the curve must of necessity be a straight line.

Besides dealing with continuous sets of points, differential geom-
etry also deals with manifolds composed of other elements, e.g.
manifolds of straight lines. Problems of this kind arise, for example,
in the field of geometrical optics, which is concerned with the study
of continuous systems of light rays.

And finally, differential geometry leads to the problem, first posed
by Gauss and Riemann, of building up a complete geometrical
system on the basis of concepts and axioms that only affect the
immediate neighborhood of each point. This gave rise to an abund-
ance of possibilities, not exhausted to this day, of building more

17
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general geometries, of which ‘“non-Euclidean” geometry is an
important, but very special, example. From the general theory of
relativity we have learned than an effective description of physical
reality must be based not on ordinary Euclidean Geometry, but on
a more general Riemannian Geometry.

§ 26. Plane Curves

We shall begin with the simplest topic, that of plane curves. Our
attention will be confined to a small piece of the curve on which
it does not intersect itself.

A straight line that intersects the curve in two points is called a
secant of the curve. If a secant s is rotated about one of its points
of intersection in such a way that the other point of intersection

¢ approaches the first one (see Fig.

182), then the secant approaches a

s  definite position t. The straight line

that has this position is called a

tangent to the curve, the fixed point

is called its point of contact (or point

of tangency). Of all the straight lines

passing through the point of contact,

the tangent evidently provides the closest approximation to the

course of the curve at that point; for this reason, the direction of

the tangent at that point is also called the direction of the curve

at the point. Two curves are said to intersect at an angle a at a

common point if their tangents at the point intersect at angle a;

if the tangents coincide, the curves are said to be tangential to each

other at the common point. A straight line perpendicular to a
tangent at its point of contact is called a normal to the curve.

At any point of a curve, the tangent and the normal constitute
the axes of a system of rectangular coordinates. This particular
coordinate system is especially well suited to the study of the
behavior of the curve at the point under consideration. Let us fix
one of the directions along the curve as the direction of traversal.
Then let us number the four quadrants into which the plane is
divided by the coordinate axes, assigning the number 1 to the
quadrant in which we would find a point of the curve close to the
origin and traveling toward the origin in the direction of traversal
specified (Fig. 183), and assigning the numbers 2, 3, and 4 to the
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other quadrants in such a way that the tangent separates the quad-
rants 1, 2 from the quadrants 3, 4 and the normal separates 1, 4
from 2, 3. Then we may distinguish four different cases (I to IV
in Fig. 183) according to whether the location of the moving point
just after passing through the origin is in the second, third, fourth,
or first quadrant. The point at which we are examining the curve
is called regular only in the first case; in the three remaining cases
it is called singular. Practically all the points of a curve are regular,
and singularities can occur only at isolated points.t In the case II,
the curve is said to have a point of inflection. In the two remaining
cases, the curve is said to have a cusp of the first kind and a cusp
of the second kind, respectively. It may be seen that the classification
is independent of the direction

in which the curve is traversed. 2 /// 2 7
We shall now form a picture

of the way in which the tangent 3 ¢ J ¢

changes its direction as the 7 7

curve passes through each of

these four types of points. To P p 2 ,

this end, we shall use a method

due to Gauss that is of funda- 3 \ 3 4

mental importance, particu- I ) e
larly in the study of surfaces.
As before, we choose a sense
of traversal on the curve. In the plane of the curve we draw a unit
circle. Then we represent every tangent to the curve by the radius
of the circle parallel to the tangent and having the same sense as
the curve at the point under consideration (Fig. 184). To every
point P of the curve this construction assigns a point Q of the circle,
viz. the point where the radius meets the circle. The points of the
circle occurring in this representation constitute what is called the
“tangential image” or “tangent indicatrix” or “Gaussian image’’ of
the curve. Since the radius of the circle is always perpendicular
to the corresponding tangent of the circle, the tangent to the curve
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* The straight line is the only curve for which this statement is not true. In the
case of the straight line, the procedure outlined above is not applicable at all.
Considered from a higher point of view, the case I may also assume a singular
character, namely when the circle of curvature at the point degenerates into a
straight line or a point (cf. p. 177).
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and the corresponding normal to the tangent indicatrix are always
parallel, while the tangents to the tangent indicatrix are parallel
to the normals of the curve.

We know that this Gaussian representation assigns exactly one
point of the circle to each point of the curve. On the other hand,
a single point of the circle does not as a rule correspond to one point
of the curve but to several, in fact, to all the points of the curve
at which the tangents have the same direction (e.g. the points P,
and P; in Fig. 184).

Consider a point that moves along a curve on which there are
points of the various types illustrated in Fig. 183. The direction
of motion is reversed at points of type III and IV but is left
unchanged in the cases I and II.
How does the corresponding
point of the Gaussian image
behave? In the cases I and III
its direction of motion is un-
changed, and in the cases IT and
IV, reversed. For in the neigh-
borhood of a point of type II or
IV there are parallel tangents,
but not so in the other two cases.
Since the direction in which the
point of the Gaussian image moves reproduces the change in direc-
tion of the tangent to the curve, we may characterize the four types
of points on the curve as follows:

I. Regular point: The point on the curve and its tangential image
both continue in their old directions.

II. Point of inflection: The point on the curve continues in the
old direction while the image reverses its direction.

III. Cusp of the first kind: The point on the curves reverses its
direction, while the image continues in the old direction.

IV. Cusp of the second kind: The point on the curve and the
tangential image both reverse their directions.

This classification does not exhaust all the possibilities. Even if
we limit ourselves to arcs that admit a simple analytic representa-
tion, there are three additional cases; there may be “double points”
where the curve intersects itself, there may be points where the
curve suddenly ends, and finally, the curve may have “isolated

F1G. 184
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points,” i.e. points that are completely separated from all the other
points of the curve (cf. pp. 198-199). Strangely enough, there are
other phenomena which are simple graphically, but relatively com-
plicated in their analytic representation, e.g. corners with angles
different from zero.

We proceed to introduce curvature, a concept of fundamental
importance throughout the theory of curves and surfaces. As we
shall see in the sequel, it is intimately connected with Gauss’s tan-
gential representation. Let ¢, and ¢, be the tangents, n, and n, the
normals, at two neighboring points P, and P, on a curve. Let
the point of intersection of the
two normals be at M (Fig. 185).
Clearly, the angle between the tan-
gents is equal to the angle between
the normals:

2 (tt) = £ (mm,).

Let P, approach P, along the
curve, and consider the ratio be-
tween the angle n,7n, and the distance between the two points of
the curve. In general, this ratio approaches a limit,

lim £0m) _
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This limiting value k is called the curvature of the curve at the
point P,.

k is equal to the reciprocal of the length » of the line-segment
that is the common limit of the two segments M P, and M P, of the
normals. This is a consequence of the following transformation,
whose analytic justification we shall omit:

. L (mymy) . sin (n,7,) . P, P,
= lim =3%+% = lim —(—2% = lim 53—
P,P,—>0 P1Pe pPy—>0 F1P2 p,P—>0 M Py PPy
. 1 1
= lim

P,Pz—>oMP1 v

The quantity » is also obtained in another way, as follows. We
draw a circle through P; and two neighboring points of the curve.
If the two neighboring points approach P,, the circle approaches
a limiting position. From the construction we should expect that
the center of the limiting circle is at the limiting position of the
point of intersection M of the normals, and that its radius is there-
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fore equal to ». A study by analytic methods confirms this. This

circle is called the circle of curvature of the curve at P,, its center

is called the center of curvature, and its radius r, the radius of

curvature. Because of the above construction, it is usual to say that

the circle of curvature has three coincident points in common with

P the curve. Similarly, we may say that
the tangent has two coincident points in
common with the curve.

There is another method for obtaining
the circle of curvature. Consider all the
circles through a point P of the curve
(Fig. 186) which are tangent to the
curve at P, so that their centers lie on
the normal to the curve at P. In the

neighborhood of P the curve divides the plane into two parts, which
we shall call the two sides of that piece of the curve. Of the circles
we are considering, there are some that lie entirely on one side of
the curve in the neighborhood of P, others that lie entirely on the
other side. Now the circle of curvature generally has the property
that it separates these two kinds of circle, which it does in the
following manner: If » is the radius of the circle of curvature, all
the circles with radius greater than » lie on one side of the curve
in the neighborhood of P
and all the circles with
radius smaller than » on
the other. The circle of
curvature itself in gen-
eral occupies opposite
sides of the curve on the
two sides of the normal;
in other words, it crosses
the curve at the point of contact. Like the singular points of a curve,
the points at which the circle of curvature does not cross the curve
can occur only as isolated points of the curve except if the curve
itself is a circle. The four vertices of an ellipse furnish an example
of this (see Fig. 187) ; it is evident from considerations of sym-
metry that the circle of curvature cannot cross the curve at these
points. More generally, the same is true at all points where a curve
is met by an axis of symmetry.

Fic. 186
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The fact that the circle of curvature usually crosses the curve is
made plausible by the way the circle was obtained in the first place.
For in general a circle passing through a point of a curve crosses
the curve at this point. Hence a circle passing through three con-
secutive points on a curve crosses from side A to side B at the
first point, from B to A at the second, and from A4 to B at the third;
and if the three points move into coincidence this behavior of the
circle is not in general changed in the process, whence it is seen
that the circle of curvature does indeed have to cross from one side
of the curve to the other.2

We have already mentioned that there is a connection between
curvature and the tangential image of a curve. Let Q, and Q; be the
tangential images of the two points P, and P, of the curve (Fig.
188). Then

L (tit) = £ (Q:10Q2) = Q:1Q;.

Hence the radius of curvature is the limit of the ratio between
the length of a short arc
of the curve and that of
its tangential image.

7
At individual points the
radius of curvature may ;
become infinite; at such

points the circle of curva-
ture degenerates into a
straight line and is thus
identical with the tangent. At such a point the tangent usually
crosses the curve, so that the point is a point of inflection. There
are exceptional cases however, in which the curvature vanishes
but the tangent does not cross the curve; this is analogous to the
behavior of the circle of curvature at the vertices of an ellipse
(cf. footnote, p. 173).

From the relation between the curvature of a curve and the tan-
gential image we can deduce, moreover, that the curvature generally
becomes infinite at a cusp of the first kind, i.e. that the circle of curva-
ture at such a point shrinks down to its point of contact. In the case
of a cusp of the second kind, we cannot make any general statement.
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? For analogous reasons, the tangent does not as a rule cross the curve at its
point of contact.
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There are a number of important questions arising in connection
with the concepts we have introduced. For example, we may try
to define a curve by expressing its curvature as a function of arc
length. It is plausible, and may be proved analytically, that this
function determines the form of a curve uniquely and that, con-
versely, every function of this type actually yields a curve (pro-
vided certain continuity conditions are satisfied by the function).
This method of defining a curve has the advantage that it does
not make reference to a particular system of coordinates. For this
reason, arc length and curvature are called the ‘“natural” or
“intrinsic” coordinates of the curve. The simplest case is that in
which the curvature k& is everywhere constant. This is the case for
circles of radius 1/k and, by the foregoing remarks, for them only.
For k = 0, we get the straight lines; thus straight lines and circles
are the only plane curves of constant curvature.

Furthermore, there is a variety of ways in which we can derive
one curve from another. For example, the set of all the centers of
curvature of a given curve forms a new curve, called the evolute
of the given curve. Conversely, the first curve is called the involute
of the second. The involutes of a curve can always be obtained by
a thread construction: a thread attached to the curve at one end
is stretched along the curve; as we unwind the thread, keeping it
taut all the time, the free end describes a section of the involute.
The involutes of the circle were already constructed in this way
on page 6. The underlying reason for this peculiar relation between
the involute and the evolute will be explained in the next chapter
(pp. 276, 277).

§ 27. Space Curves

Most of the discussion of the last section can be adapted to apply
to curves in space (sometimes called twisted curves).

To start with, we again get the tangent as the limiting position
of the secant when one point of intersection moves into coincidence
with the other. But the three-dimensional case differs from the
case of plane curves by the fact that there are infinitely many
perpendiculars to the tangent at the point of contact; these per-
pendiculars fill out a plane which is called the normal plane at the
point of the curve.

We shall try to find a plane lying as close to the curve as possible
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in the neighborhood of the point under consideration. To this end,
we draw the plane passing through the tangent at the given point
and through a neighboring point of the curve and let the second
point move along the curve toward the point of contact of the
tangent, which we hold fixed. In this process the plane approaches
a limiting position. The limiting plane satisfies our requirement;
it is called the osculating plane of the curve at the point under
consideration. Using a mode of expression introduced earlier, we
say that the osculating plane has three coincident points in com-
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mon with the curve. For this reason, the curve generally crosses its
osculating plane at the point of contact, although it lies on one side
of any other plane containing the tangent.

Since it contains the tangent, the osculating plane is perpendicular
to the normal plane. Finally, let us consider that plane through the
given point of the curve which is perpendicular both to the normal
plane and to the osculating plane. It is called the rectifying plane.

The three planes just considered may be interpreted as coordi-
nate planes in a three-dimensional Cartesian coordinate system
which proves to be particularly well suited for describing the course
of the curve at the point under consideration. One of the coordi-
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nate axes in this system is the tangent; the other two axes, which
must lie in the normal plane, are called the principal normal and
the binormal. The principal normal lies in the osculating plane,
the binormal in the rectifying plane (see Fig. 18%). This coordinate
system, depending as it does on the point of the curve, is called the
moving trihedron of the curve. It is the analogue of the coordinate
system formed by the tangent and normal in the case of plane
curves. In space, a coordinate system defines eight regions, called
octants, as against four quadrants in the case of the plane. Thus
the moving trihedron serves to distinguish eight types of points
on a curve in much the same way as four types of points were dis-
tinguished, on page 174, for plane curves. Once again, only one of
the cases is regular, and the others can occur only at isolated points
(provided our curve is really a space curve, i.e. provided it does not
lie wholly in a plane). At a regular point the curve intersects the
osculating plane and the normal plane and remains on one side of
the rectifying plane. We shall not discuss the other cases here.
It may be mentioned, incidentally, that the twisted curves having
a simple analytic structure, may, just like the plane curves, exhibit
three additional types of singularities, namely double points, ter-
minal points, and isolated points.

Let us generalize the Gaussian representation of plane curves to
the case of three-dimensional curves. For this purpose, we use a
sphere of unit radius. To every tangent of the curve (which we
assume to be oriented, i.e., to have a definite sense of traversal),
we draw the radius of the sphere parallel to the tangent and pointing
in the same direction. Its extremity on the surface of the sphere
is called the tangential image of the point on the curve. In this
way the entire curve is represented by a definite curve on the sphere.
If the principal normal or the binormal is used instead of the tan-
gent, we get two more curves on the sphere. Referred to their
respective moving trihedra, these three “spherical images” are con-
nected with each other and with the original curve by certain simple
relations. For example, the tangential indicatrix and the binormal
indicatrix together characterize the eight above-mentioned types of
point of a curve: the point on the original curve, the tangent, and
the binormal may each either move on continuously or reverse its
course, and the combination of the various possibilities give us just
those eight cases.
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We shall next extend the concept of curvature to space curves.
Let ¢, and £, be the tangents at two neighboring points P, and P, of
the curve. Consider the quotient / (t,t,) /P, P, as P, approaches P, .
The quotient in general approaches a limiting value, which is called
the curvature (or first curvature) of the curve at P,. We saw how
the curvature of plane curves is related to the limiting position of
the point of intersection of two normals. The analogous argument
for space curves yields not a point, but a straight line—the limiting
position of the line of intersection of two normal planes. This line
is called the polar axis of the curve at the point under consideration.
It is in the normal plane, and, as may be seen from the limiting
process, parallel to the binormal (see Fig. 189). The point of inter-
section of the polar axis and the principal normal is called the
center of (first) curvature. The distance » between this point and
the corresponding point of the curve is called the radius of (first)
curvature; as in the plane, » is the reciprocal of the curvature. The
circle through three neighboring points of the curve approaches a
limiting position when the points move into coincidence. The limit-
ing circle lies in the osculating plane, and its center and radius are
the center and radius of curvature.

The Gaussian tangential indicatrix is related to the curvature
in the same way as in the plane: the radius of curvature is the limit
of the ratio between the length of a short arc of the curve and that
of its tangential image. The proof is the same as in the plane.

In place of the angle between two tangents, we may start with
the angle between two osculating planes, or, what amounts to the
same, the angle between the binormals at two points of the curve.
This leads to another concept of fundamental importance in the
theory of space curves. We divide the angle by the distance between
the corresponding points of the curve and then let the points move
into coincidence. The limit ¢ of the quotient is called the torsion,
or sometimes the second curvature, of the curve at the given point
of the curve. Evidently the reciprocal of the torsion is the limit
of the ratio between a small arc of the curve and its binormal image.

We were able to obtain the first curvature by a limiting proc-
ess involving three neighboring points on the curve. To obtain
an analogous interpretation for the second curvature, we need to
start with four neighboring points. Four points in general define
a sphere. We may now consider the limiting position of the sphere
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passing through four neighboring points of the curve as they
move into coincidence. The sphere that assumes this limiting
position is called the osculating sphere. We see from the limiting
process that the tangent to the curve is also tangent to the
osculating sphere at the point of contact and that the center
of the osculating sphere lies on the polar axis (see Fig. 189). For
the distance of this center from the center of curvature, a calcula-

tion gives us the value 17 . g—: , where ds and dr are the differentials

of arc length and of radius of curvature, respectively. Furthermore,
we may infer from the construction that the curve of intersection
of the osculating sphere with the osculating plane is identical .with
the circle of curvature. By Pythagoras’ theorem we therefore get

the value
i

for the radius of the osculating sphere.

Like the quantities s and » in the plane, the quantities s, », and ¢
in space are called the intrinsic, or natural, parameters of a space
curve. In analogy with the plane case, we have the following im-
portant theorem: We can always find one, and only one, shape for
a curve in space in order that » and ¢ be given functions of s on that
curve. If 1/r is identically zero, we get the straight lines. The plane
curves are characterized by the identical vanishing of ¢. If » and ¢
are constants different from zero, we get the circular helices.

The curves on a sphere are characterized by a slightly more
complicated condition. Evidently the sphere that carries the curve
has to coincide with the osculating sphere at all the points of the
curve. Hence the radius of the osculating sphere, as computed
above, has to be constant:

ar\2 1
2 LI
7 +( s) 7 = const.

It can be proved analytically that this condition is also sufficient.
Some further questions relating to twisted curves will be con-
sidered later in connection with the theory of surfaces.
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§ 28. Curvature of Surfaces. Elliptic, Hyperbolic, and Parabolic
Points. Lines of Curvature and Asymptotic Lines; Umbilical Points,
Minimal Surfaces, Monkey Saddles

In beginning our study of surfaces, we shall confine our attention
to a small portion of a smooth surface on which the surface does
not intersect itself, and leave the boundary points out of considera-
tion. Consider a point P of the surface together with all the curves
through P that lie on the surface. It is a remarkable fact that in
general the tangents to these curves at the point P all lie in a com-
mon plane, which is therefore called the tangent plane to the surface
at P. The points of the surface at which the tangent plane exists
are called regular, the other points, singular. The singular points
of a surface can not fill up more than some individual curves on
the surface.

The perpendicular to the tangent plane at a regular point P of
a surface is called the normal to the surface at P. The term normal
sections is used to denote the curves in which the planes containing
the normal intersect the surface. The normal sections at a regular
point P are either regular at P or have points of inflection at P.

Our next task is to adapt the concept of curvature to surfaces.
In the case of curves, curvature was an index of the deviation of a
curve from its tangent in the immediate vicinity of the point of
tangency. Analogously, we are now interested in the behavior of a
surface relative to its tangent planes. If we look at actual examples
of surfaces, we are led to distinguish between two essentially dif-
ferent cases, viz., points at which the surface is cup-shaped, and
points at which it is saddle-shaped.

A point of the first type is characterized by the property that its
tangent plane does not intersect the surface (in the immediate
vicinity of the point under consideration) but remains on one side
of the surface. It is thus possible to rest the surface on a flat table
top at such a point. We have met examples—yviz., spheres and ellip-
soids—of surfaces that are cup-shaped at every one of their points.
An alternative name for a point of this type is elliptic point.

The behavior of a surface at a point of the second type, or saddle
point is best illustrated by a surface that looks like a mountain
pass (Fig. 190). At the highest point P of the pass, the tangent
plane is horizontal. To the right and to the left of P the terrain
rises, whereas in front of P and in back of P it falls off. Accordingly,
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the tangent plane at P meets the surface in a curve consisting of
two branches that intersect at P (in other words, there are two
horizontal paths that cross at the highest point of the pass). This
behavior is characteristic of saddle points; thus at such a point a
surface can not be placed on a plane table top. Examples of surfaces
that are saddle-shaped at all their points are the hyperboloid of one
sheet and the hyperbolic paraboloid. An alternative name for a
saddle point is hyperbolic point.

Between the cases of elliptic points and hyperbolic points there is
a transitional case, the parabolic points. One way of obtaining such
points is as follows: Let F and G be two surfaces that are mutually
tangent at a point P (by which we mean that they have the same
tangent plane at P), such that F is
elliptic and G hyperbolic at P. If F
is transformed into G by a con-
tinuous deformation in the process
of which P and the tangent plane
at P are not moved, then there is
one stage in the course of the trans-
formation at which the surface is
parabolic at P. For example, we
may begin with Fig. 190 and lower
the mountains on both sides of the
pass P until the ridge of the mountain chain just touches the hori-
zontal tangent plane everywhere; at this stage P is a parabolic
point, for, a continued lowering of the terrain to the right and left
will transform the former pass into a peak, i.e. into an elliptic point
of the surface. However, this example does not give us all the
possible types of parabolic points. On the contrary, there are
several types of parabolic points that look quite different; we shall
treat them in some detail later on (pp. 197, 198, 200). They include
types that can not be so readily construed as transitional cases
between elliptic and hyperbolic points.

In order to describe curvature in numerical terms, we may begin
with the curvatures of the normal sections at a point P of the sur-
face. The center of curvature of such a normal section at the point
P is bound to lie on the normal to the surface passing through P,
because this is the normal to all the curves that are normal sections
at P. By rotating a plane passing through the normal about this

F1c. 190



§ 28. CURVATURE OF SURFACES 185

normal, we get all the normal sections. In the course of the rotation,
the center of curvature performs a definite motion along the normal,
which provides a description of the way in which the surface is
curved at the point P.

At an elliptic point (see Fig. 191) the center of curvature always
remains on one of the two halves into which the
surface divides the normal. In general the radius
of curvature will change in the course of the rota-
tion of the normal plane and will assume a maxi-
mum value 7, for a definite normal section s, and
a minimum 7, for another normal section s,.
7, and r, are called the principal radii of normal
curvature of the surface at P; the reciprocals
ky=1/r, and k,=1/r, are called the principal
(normal) curvatures; and the directions of the
tangents to s, and s, at P are called the principal
directions of the surface at P. It can be shown that the principal
directions at a regular point are always mutually perpendicular and
that, furthermore, the curvature of every normal section is com-
pletely determined by the principal
curvatures and the angle which the
normal section makes with the prin-
cipal directions.

At a hyperbolic point (Fig. 192),
the locus of the center of curvature
is not confined to the normal ray on
one side of the surface. For if the
normal section passes through the
two mountains of the surface (which
we again interpret as a mountain
range with a pass at P), the center of
curvature is located above the point
P, while a section passing through the
two low parts has a center of curva-
ture lying below P. Among the normal sections with centers of
curvature lying above P there is one whose curvature k, exceeds
that of all the other normal sections of this kind. As the normal
plane is rotated out of this position, the curvature decreases, and
the length of the radius of curvature increases continuously. When
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the normal plane has finally moved into the direction of one of the
horizontal paths through P marked out in Fig. 190, the value of the
curvature becomes zero, and the center of curvature recedes to
infinity in the upward direction. If the rotation is then continued,
the center of curvature jumps over to the lower half of the normal
and begins to move upward, approaching P from infinity; thus the
radius of curvature decreases and the curvature increases. Finally,
the curvature attains a value k, that exceeds all the other values of
the curvature for normal sections having a center of curvature
below P. As in the elliptic case, k, and k, are called the principal
curvatures, and the directions of the corresponding normal sections
are called the principal directions. Here again, the principal direc-
tions are mutually perpendicular. Further-
more, they bisect the supplementary angles
formed by the two branches of the curve in
which the surface intersects its tangent
plane. The directions of these two branches
are called the asymptotic directions of the

surface at P.
At a parabolic point there are also, in
general, two mutually perpendicular prin-
° cipal directions such that the values %, and
l k, of the curvature of the corresponding
normal sections are respectively greater
than and less than the values for all the
other normal sections. The parabolic points are characterized by
the property that one of these two principal values of the curvature
is equal to zero. The other value is in general different from zero,
in which case the center of curvature recedes from the position
corrsponding to the non-zero principal curvature to infinity along
a normal half-line (see Fig. 193). In general, there is thus exactly
one normal section with vanishing curvature at a parabolic point.
The direction of this section is one of the principal directions but
must be regarded at the same time as an asymptotic direction.
Let any surface be given. By analytic methods it is possible to
find every curve on the surface that lies along one of the principal
directions at all the points of the curve. In this way we obtain a
“net” of curves on the surface, i.e. a system of two families of
curves such that each family covers the surface simply and com-

Fic. 193
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pletely. These curves are called the lines of curvature of the sur-
face. From the foregoing discussion it follows that the two lines of
curvature through any given point P of the surface are mutually per-
pendicular at P, so that an orthogonal net is formed on the surface.

There are points, however, to which our whole discussion does
not apply. This is due to the following fact. Our argument was
based on the assumption that the curvature of a normal section
undergoes change in the course of a rotation of the normal plane
in which the normal section lies. Yet it may happen that the curva-
ture has the same value for all normal sections at a point. In this
case the principal directions are indeterminate, and we speak of
an umbilical point (or umbilic). An obvious example of a surface
consisting entirely of umbilical points is the sphere. As a matter
of fact, the spheres and the planes are the only surfaces all of whose
points are umbilics. In general, the umbilical points of a surface
are isolated points. The net of lines of curvature may have singular
properties at umbilical points, and at them only.

Concerning the lines of curvature, there is a remarkable theorem,
due to Dupin. On page 5 we introduced the concept of orthogonal
families of curves in the plane. The three-dimensional analogue is
the concept of families of surfaces such that the tangent planes of
the surfaces passing through any given point in space are mutually
perpendicular. Through any point in the plane we can draw only
two mutually perpendicular straight lines. But at any point in space
we can draw three mutually perpendicular planes, and we shall
therefore be concerned with orthogonal families of surfaces with
three representatives, one from each family, passing through every
point of space. The confocal quadrics mentioned in the first chapter
are an example of such an orthogonal system.

Given any family of curves in the plane (or on any curved surface
for that matter), we can find a family that is orthogonal to it. By
analogy, we might be led to think that we can always find a third
family of surfaces orthogonal to any two given orthogonal families
in space. As a result of Dupin’s theorem, however, this conjecture
is seen to be false. The theorem asserts that the surfaces of any
triply orthogonal system must intersect along their lines of curva-
ture. Consequently a necessary condition for the existence of a
third family of surfaces orthogonal to two given orthogonal families
is that the two families intersect along their lines of curvature.
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Incidentally, the condition is also sufficient. According to Dupin’s

theorem, the lines of curvature on the ellipsoid are the curves in

which it intersects the confocal hyperboloids of one sheet and of

two sheets (see Fig. 194). The net of curves thus determined (Fig.

195) is singular at the points of intersection of the focal hyperbola

with the ellipsoid. And in fact, these four points are the umbilical
points of the ellipsoid.

The pattern formed by the lines of curvature around the umbilical

points of the ellipsoid resembles a plane system of confocal ellipses

and hyperbolas around

their common foci (cf.

/( Fig. 7, p. 6). This re-

semblance is not acci-

dental but expresses

an intrinsic relation

between the two fami-

lies of curves. For,

the lines of curvature

/ ' on the ellipsoid can be

generated by the same

thread construction as

could the ellipses in
/ the plane, by the use
of two umbilical points
\ in place of the foci.
The four umbilical

points of the ellipsoid
come in pairs of dia-
metrically opposite
points. Hence there
are two different rela-
tive positions in which a pair of umbilical points not diametrically
opposite can be chosen (see Fig. 196). Choosing such a pair F,
and F,, we attach the ends of a thread of sufficient length to them
and pull it taut at a point P on the ellipsoid. Then the entire length
of the thread will automatically lie snug on the ellipsoid. The
various positions that P can assume on the ellipsoid trace out a line
of curvature. By changing the length of the thread we can get all
the lines of curvature of one family. The other family is obtained
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in the same way by using the other pair of umbilical points. In a
plane system of confocal conics we had one family of ellipses and
one family of hyperbolas; on the ellipsoid, on the other hand, both
families may be regarded as generalized ellipses.

The thread itself forms certain curves on the ellipsoid analogous
to the pairs of straight
lines that are the focal
radii of the ellipse. Like
a straight line in the
plane, such a curve is
characterized by the
property that of all the
paths on the surface con-
necting any two points
of the curve, the short-
est is the curve itself.
Such curves are called
geodesic curves, or geo-
desics, of a surface. They will be discussed later (pp. 220-224).

At hyperbolic points we distinguished two other exceptional
directions besides the principal directions, namely the asymptotic
directions. In much the same way as we defined the lines of
curvature, we may define a net of curves whose directions at every
point are the asymptotic directions. These curves are called the

asymptotic lines of the surface. T~ —
It may happen at hyperbolic \
points also that the principal \ \\ \
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curvatures are equal in magni- 7
tude. The points where this \E’

happens have certain proper- Fic. 196

ties in common with umbilical points. A surface consisting
entirely of such points is called a minimal surface. A minimal
surface is also characterized by the property that its asymp-
totic lines form an orthogonal net. While the class of all surfaces
consisting entirely of umbilical points contains only spheres, the
class of minimal surfaces is much more inclusive. This follows
from the fact that the soap film which results when a closed wire
of whatever shape is dipped in soap solution assumes the form of a
minimal surface (cf. Figs. 220 a and b, p. 210). The law of surface
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tension governing the soap film tends to minimize the surface area
of the film. Accordingly, we can characterize a minimal surface in
purely mathematical terms as the surface of smallest area among
all the surfaces bounded by a given closed curve in space. Here it is
noteworthy that this characterization by a property defined in terms
of the entire surface (a property in the large) gives us the same
surfaces as the first property, which is concerned only with the
immediate neighborhood of each point (a property in the small).
This interconnection can be made plausible as follows. Let a mini-
mal surface be given that is bounded by the closed curve S. We
choose a small closed curve s on the minimal surface and restrict
our attention to the region in the interior of s. This region has an
area smaller than that of any other surface bounded by s. For other-
wise we could alter the part of our surface lying inside s in such
a way as to diminish its area; but this would entail a diminution
of the total area bounded by S, in contradiction to the definition of
a minimal surface. If the little curve s is now shrunk until it be-
comes a point of the minimal surface, it is fair to expect that the
limiting process will yield some properties of the minimal surface
that refer only to the immediate vicinity of a point.

The problems concerned with the characterization of a surface
by minimal properties are called variational problems. An argu-
ment like the one we have just stated for minimal surfaces shows
that the minimal property may be replaced by a local property in
all other variational problems also. The limiting processes that this
involves form the subject matter of the calculus of variations. Thus
differential geometry and the calculus of variations proceed in oppo-
site directions: In differential geometry we begin with properties
affecting the vicinity of a point on a surface and deduce properties
governing the overall structure of the figure under consideration;
in the calculus of variations we deduce local properties from
properties relating to the overall structure.

The calculus of variations is of fundamental importance in the
field of theoretical physics, since all the states of equilibrium and
motion occuring in nature are distinguished by certain minimal
properties.

By means of soap films we may also generate minimal surfaces
that are defined by more than one boundary curve. For example,
we may start with two closed wires having the form of circles,
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bring them into superposition inside the solution, and then, after
taking them out, separate them while keeping them perpendicular to
the line joining their centers. The resulting soap film connecting
the two circles resembles a hyperboloid (see
Fig. 197, and Fig. 220b, p. 210). For reasons
of symmetry we should expect that it is a sur-
face of revolution. It may be verified by a
calculation that this is so and that the meri-
dian of this minimal surface of revolution is
a catenary, i.e. has the shape assumed under
the influence of gravity by a chain suspended
from two fixed points. For this reason, the
surface is called a catenoid.

The points that are simultaneously endowed
with the defining properties of umbilical points
and those of the points of a minimal surface F1e. 197
are the parabolic points at which both principal curvatures vanish.
At such a point the curvature of all the normal sections vanishes.
Clearly, all the points of a plane fit this description; conversely,
the planes are the only surfaces
consisting entirely of parabolic
umbilics. An example of an iso-
lated parabolic umbilic is easily
obtained by a construction analo-
gous to that of the ordinary saddle
(Fig. 190, p. 184) but in which
we form three mountains and
three valleys instead of two, so
that the surface can be brought
into self-coincidence by a rotation
through the angle 27/3 (see Fig.
198). Obviously each mountain
lies diametrically opposite a val-
ley. As a result of this, every
normal section has a point of in-
flection, which means that the
curvature of every normal section is zero. The surface is called a
monkey saddle, a term which stems from the fact that a human rider
needs two depressions but a monkey requires a third for his tail.

Fic. 198
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We may characterize the difference in the form of a surface at
elliptic points and at hyperbolic points in yet another way, which
will at the same time justify the terms “elliptic”” and “hyperbolic.”
Let us draw a plane close to the tangent plane and parallel to it and
examine its intersection with the surface. At an elliptic point, only
the planes on one side of the tangent plane have a curve of inter-
section with the surface. If the distance of the parallel plane from
the tangent plane is made to approach zero, the curve will shrink
down to the point of contact. If the distance
approaches zero but the curve is suitably
magnified on an ever-increasing scale, it is
found that the magnified curve of intersec-
tion approaches an ellipse lying in the tan-
gent plane and having the point of contact as center and the
principal directions as axes. The ratio between the lengths of the
axes is equal to the square root of the ratio between the principal
radii of curvature.

If the same limiting process is applied to a plane lying on one
side of the tangent plane at a hyperbolic point and parallel to the
tangent plane, the result is a hyperbola, the direc-
tions and relative lengths of whose axes are the
same functions of the principal directions and
principal curvature as in the elliptic case (Fig.
199). Applied to the parallel planes on the other
side of the tangent plane, the process gives rise to
a second hyperbola having the same axes and same
asymptotes as the first. The directions of the asymptotes are, in both
cases, identical with the asymptotic directions of the surface at the
point under consideration. At any elliptic or hyperbolic point of a
surface the ellipse or the pair of conjugate hyperbolas constructed
in this manner is called the Dupin indicatriz. At a parabolic point
the corresponding process may lead to any one of several types of
curves. At an umbilical point the Dupin indicatrix is a circle, as
may be verified without difficulty in the case of the sphere and the
ellipsoid. At a monkey saddle the Dupin indicatrix has a form like
that in Fig. 200.

Fic. 199
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§ 29. The Spherical Image and Gaussian Curvature

So far we have characterized the curvature of a surface by two
numbers, the principal curvatures. Gauss originated a method of
representing the curvature at a point of a surface by a single num-
ber, which is analagous to what we have done for curves in space.
This number, of course, will depend on the principal curvatures at
the point of the surface.

Through the center of a unit sphere we draw the diameters that
are parallel to the various normals of the surface we are studying.
At one point of the surface we choose one of the two directions on
the normal arbitrarily and then extend this choice of a normal
direction continuously to all the neighboring points of the surface,
thus obtaining a definite sense on all the normals. By choosing the
same sense on the corresponding diameter of the sphere, we assign
a definite point on the sphere—the end-point of the directed diam-
eter—to every point of our surface. Thus we have a mapping of
the surface onto the sphere. This process, due to Gauss, is called
the spherical representation of the surface. Since the diameter of
the sphere is perpendicular to the tangent plane at its extremities,
the normal direction at every point is parallel, under Gauss’s
mapping, to the normal at its spherical image, and in addition the
two tangent planes are parallel. For this reason, the spherical repre-
sentation is occasionally referred to as the mapping by parallel
normals, or as the mapping by parallel tangent planes. A surface
may be mapped by parallel tangent planes not only onto the sphere,
but onto any other closed surface. These generalized mappings find
application in modern differential geometry.

In the spherical representation of a surface, a single point of
the sphere corresponds to several points of the surface if and only
if there exist on the surface distinct parallel normals having the
same sense. As is readily apparent to the intuition, and as we shall
see when we go into the matter more thoroughly later, there do not
exist distinct parallel normals in the neighborhood of an elliptic
or a hyperbolic point on a surface (cf. Figs. 202, 203, p. 196),
whence it follows that the spherical mapping of such a neighbor-
hood is one-to-one.

Any closed curve k on the original surface is represented by a
closed curve ¥’ on the sphere. We divide the area G enclosed by ¥’
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on the sphere by the area F enclosed by ¥ on the surface and then
shrink the curve k down to a point P of the surface. F and G then
approach zero and their quotient approaches a definite limit K:
.. G

lim - =K.

Foo F
The number K defined in this way is called the Gaussian curvature
(or total curvature or second curvature) of the surface at P. It is
found by analytical methods that the Gaussian curvature equals
the product of the two principal curvatures at the point:

K= klkz.

The Gaussian curvature has the highly important property of
remaining invariant if the surface is subjected to an arbitrary
bending. A bending is defined as any deformation for which the
arc lengths and angles of all curves drawn on the surface are left
invariant. We may illustrate what a bending is by using a surface
made of a material, such as paper or tin foil, that is approximately
unstretchable.! Being an invariant under bending, the Gaussian
curvature must be intimately connected with those properties of a
surface that depend only on the arc lengths and angles of the curves
lying on it. For this reason, the Gaussian curvature and its higher-
dimensional analogue is of fundamental importance in the theory
of relativity, since this theory is concerned with just such
“intrinsic” properties of higher-dimensional curved manifolds.

Since the definition of Gaussian curvature makes essential use
of the position of the surface in space, the fact that it is an invariant
under bending is rather surprising. The following argument is to
give an indication of why it is nevertheless true. Let several flat
triangular plates of rigid material be put together in space in such
a way that any two adjacent plates can be rotated relative to each
other about their common edge. Fig. 201 shows the setup with
four triangles a, b, ¢, and d. Provided there are more than three
sides, the three-dimensional corner constituted by the triangles
allows of certain changes in its shape. All the possible changes

! Two surfaces that can be transformed into each other by bending are called
“applicable” (they can be “applied”) to each other. Thus the invariance under
bending of Gaussian curvature may be expressed by the statement that any
two applicable surfaces have the same Gaussian curvature at any two corres-
ponding points. [Trans.]
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leave the lengths and angles of all the curves drawn on the surface
of the corner unaltered, and may therefore be regarded as bendings.
By drawing the normals (I, m, n, etc.) to the faces of the corner
and choosing the normal pointing to the outside in each case, we
get a spherical image of the corner consisting of individual points
', m', v, etc.) of the sphere. In order to relate this to the spherical
representation of surfaces, we connect the points that represent
adjacent faces of the corner by arcs of great circles, thus obtaining
a spherical polygon on the sphere. We shall see that the area of
this spherical polygon is unchanged by the bendings just defined,
a fact that is obviously analogous to the invariance under bending
of the Gaussian curva-
ture of a surface.

The truth of our con-
tention follows from
elementary theorems of
spherical trigonometry.
It is a well-known theo-
rem that the area of a
spherical triangle, and
likewise the area of any
polygon composed of
great circles, depends
only on the sum of its angles. Hence all we need to show is that
the angles of the spherical polygon representing the corner are
unchanged by the above bendings of the corner. But from Fig. 201
it is clear that each of the angles is the supplement of an angle
between two adjacent edges of the corner, and by our assumption,
these angles cannot be changed.

The discussion just given may be supplemented by a limiting
process to yield the invariance of Gaussian curvature, at any rate
in the case of convex surfaces. In preparation for this passage to
the limit we have to approximate the surface by inscribed polyhedra
with small triangular faces and then apply the above argument to
each vertex of the polyhedron.

Let us see how the classification of points of a surface into elliptic,
hyperbolic, and parabolic points may be expressed in terms of
spherical representation and Gaussian curvature. If we move
around an elliptic point along a small closed curve that lies on the

Fi1c. 201
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surface, its spherical image—assuming that the curve has no
double points—will also be a closed curve without double points
(see Fig. 202), and this curve is traversed in the same sense as the
original curve. A small curve without double points about a hyper-
bolic point is also mapped into a curve without double points on the
sphere, but in this case the sense is reversed (see Fig. 203). It is
customary in analytic geometry to attach the same sign or opposite
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signs to the areas of two regions according to whether they are
enclosed by curves having the same sense or opposite senses. In
conformity with this convention, the Gaussian curvature is called
positive at convex parts of a surface, megative at saddle-shaped
parts. These are the same signs as we obtain by expressing the
Gaussian curvature in terms of the two principal curvatures. For,
the two principal centers of curvature lie on the same normal half-
line at an elliptic point and on opposite normal half-lines at a hyper-
bolic point; and if one ray is regarded as positive and the other as
negative, it follows that the product of the two principal radii of
curvature—and therefore also the product of the principal curva-
tures, i.e. the Gaussian curvature—is positive at elliptic points and
negative at hyperbolic points. Since the image of a sufficiently small
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closed curve without double points is also free from double points,
the spherical representation of sufficiently small regions that are

everywhere cup-shaped
(called surfaces of posi-
tive curvature), or every-
where saddle-shaped
(called surfaces of nega-
tive curvature), must be
one-to-one.

The parabolic points
assume a role intermediate
between that of the elliptic
and the hyperbolic points.
We should therefore ex-
pect that the Gaussian
curvature at parabolic
points is equal to zero.
This is readily verified by
referring to the definition
of parabolic points; at
these points one of the
principal curvatures van-

ishes and therefore the Fie. 204

product of the principal curvatures, which is to say, the Gaussian

curvature, vanishes as well.

The plane consists entirely of parabolic points.
Because the Gaussian curvature is an invariant
under bending, it follows that a plane sheet of
paper can never be applied to a surface having
positive or negative curvature. Indeed, it is intui-
tively clear that the paper would have to wrinkle
in the first case and tear in the second.

Let us consider a given surface that does not
consist entirely of parabolic points and that more-
over contains points of positive as well as points
of negative Gaussian curvature. Since the vari-
ation of the Gaussian curvature on the surface is

Fi16. 2056

continuous, there must be points on the surface at which the Gaussian
curvature vanishes, and these points have to form continuous curves
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separating the regions of positive Gaussian curvature from the
regions of negative Gaussian curvature. These curves, consisting
of parabolic points, are called the parabolic curves of the surface.?
Of course the presence of parabolic curves is inevitable only on
those surfaces on which the Gaussian curvature assumes both signs.
This does not happen on any of the surfaces we have thus far
studied: on any second-order surface the curvature is either posi-
tive everywhere, as on the ellipsoid, or negative everywhere, as on
the hyperboloid of one sheet, or everywhere zero, as on the cylinder
and the cone, which can, after all, be formed from a plane sheet
of paper. On the minimal surfaces, moreover, the curvature is
nowhere positive.

We shall now give some examples of surfaces having parabolic
curves and examine their spherical images. A particularly simple
surface of this type is the surface of a bell. It is obtained by rotating
a plane curve having a point of inflection, about an axis in its plane
(Fig. 205). Let us use a vertical axis. In the case illustrated in
Fig. 205, the part of the curve above the point of inflection generates
a surface all of whose points are elliptic, while the lower part of
the curve generates a surface all of whose points are hyperbolic.
Accordingly, the circle (parallel) of latitude on this surface of
revolution traced out by the point of inflection of the curve is the
parabolic curve of the bell surface. This can also be seen from the
behavior of the tangent planes. The tangent planes at the hyperbolic
point intersect the bell in a curve that has the form of a loop with
two branches passing through the point of contact (see Fig. 206).
As the point of contact approaches the parabolic curve from below,
the closed part of the loop becomes smaller and the angle between
the two branches intersecting at the point of contact becomes more
acute. Finally, when the point of contact lies on the parabolic curve
(Fig. 207), the loop is contracted into the point of contact, and the
intersection has a cusp at this point. If the point of contact moves
on into the elliptic part of the surface (Fig. 208), the intersection

? F. Klein used the parabolic curves for a peculiar investigation. To test his
hypothesis that the artistic beauty of a face was based on certain mathematical
relations, he had all the parabolic curves marked out on the Apollo Belvidere,
a statue renowned for the high degree of classical beauty portrayed in its
features. But the curves did not possess a particularly simple form, nor did
they follow any general law that could be discerned (see Fig. 204).
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becomes a curve consisting of an isolated point at the point of
tangency together with a curve that has continuous curvature and
is confined to the hyperbolic part of the surface. As a byproduct,
this discussion has provided us with examples of the types of
singular points of plane curves listed on page 174.

Let us examine the spherical image of the bell surface in the

)

F1G. 206 F1G. 207 F16. 208

vicinity of the circle of latitude consisting of parabolic points (see
Fig. 209). We shall pick an arbitrary point on the parabolic curve
and draw a small closed curve 123456781 around it. Let the points
1 and 5 be respectively the highest and the lowest point of the
region F' of the surface enclosed by the curve. Let 3 and 7 be points
of intersection of the curve with the circle of latitude forming the
parabolic curve. The merid-
ian, whose rotation gene-
rates the bell surface, has
parallel tangents in the
neighborhood of its point
of inflection (cf. p. 174).
Clearly, the bell-surface has
parallel normals at the cor-
responding points, so that
these points have the same
spherical image. Hence
every circle of latitude im-
mediately above the parabolic curve is matched by a circle immedi-
ately below the parabolic curve which has the same spherical image.
Thus it is clear that the spherical mapping of the region F cannot
be one-to-one. To get a picture of this, we do the following. Choose
the points 2, 4, 6, 8 in such a way that the normals at 2 and 4 are

Fi1c. 209
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parallel and the normals at 6 and 8 are parallel. The parabolic curve
divides F into two regions F, and F, whose interior consists entirely
of elliptic points and of hyperbolic points respectively and which
are therefore mapped one-to-one into two regions of the sphere.
Both of these regions border on the image of the parabolic curve,
and this image, on the unit sphere, is obviously itself a circle in a
horizontal plane. But whereas F, and F, lie on opposite sides of the
parabolic curve, their image regions on the sphere both border
on the image circle from above and must therefore overlap. The
boundary of F is represented by a curve 1'2°8’4’5’6’7’8'1’ which
intersects itself at the points
2’—4’ and 6’'=28'.

We thus see that the spheri-
cal image of the bell must be
folded over on itself along the
image of the parabolic curve.
As a general rule, this folding
over occurs along the images
of any parabolic curves that
may exist on any given sur-
face. However, there is a

Fic. 210 characteristic exception,
which we shall explain by means of a second example.

In a vertical plane we draw a circle and a vertical axis that does
not intersect the circle. Rotation of the circle about the axis pro-
duces a surface of revolution called a torus (see Fig. 210). The
highest point A and the lowest point B of the circle divide it into
two semicircles I and II. Clearly, the part of the torus generated
by I has positive Gaussian curvature and the part generated by 11,
negative Gaussian curvature. The two parts are separated by the
two parallel circles traced by A and B. These circles are the para-
bolic curves of the surface. Any plane tangent to the torus at a
point lying on one of these circles meets the torus in a curve con-
sisting of a single branch through the point of contact, for evidently
it is tangent to the torus along the entire length of the circle and
does not meet the surface anywhere else. Thus we have found an
example of parabolic points the intersection of whose tangent plane
with the surface does not have a cusp. Fig. 211 exhibits the curve
in which the tangent plane at a hyperbolic point near the parabolic
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curve intersects the torus. The tangent plane at an elliptic point
has only its point of contact in common with the torus.

Let us study the spherical image of the torus. We shall choose
a direction, say the direction pointing to the outside, on all the
normals. All the normals to
either one of the two parabolic
circles are parallel ; hence each
of the parabolic circles is
mapped into a single point of
the sphere, in fact the images
are the highest and the lowest
point of the sphere respec-
tively. The part of the torus
where the curvature is posi-
tive has no two parallel nor-
mals, and it is easy to see that
its image covers all of the
sphere, except for the highest
and the lowest points, exactly
once. The same is true for the
part of the torus where the curvature is negative. Hence the spher-
ical image of the torus covers the whole sphere, with the exception
of the highest and lowest points, exactly twice, and the two layers
are connected at these two exceptional points. In order to visualize
the way in which the layers
are connected, we proceed as
in the previous example.
Around a parabolic point we
draw a small closed curve
12341 without double points.
Fig. 212, in which the torus
and the sphere are viewed
obliquely from above, should
make the choice of the points
on the curve and the shape of its image clear without the need
of detailed explanation. That the spherical image is a figure eight
is in agreement with the fact that the sense is preserved on
curves in the elliptic part of the torus and reversed on curves in
the hyperbolic part.

F16. 211

Fic. 212
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Our example is typical for the case of a surface that is tangent
to the same plane along the entire length of a (necessarily parabolic)
curve. The example of the bell surface, on the other hand, illustrates
the case where the tangent plane changes as we move along the
parabolic curve. In both examples the parabolic curve separates a
region of positive Gaussian curvature on the surface from a region
of negative Gaussian curvature.

As a final example, we shall consider a surface that has an
isolated parabolic point surrounded by a region of negative curva-
ture (Fig. 2138). This is the monkey saddle, described on page 191.

FI1G. 213

Evidently the points of the surface where the normals are parallel
are the points which have diametrically opposite positions with
respect to the parabolic point. Hence the spherical image of a
closed curve without double points enclosing the parabolic point is
a closed curve that goes two times around the image of the parabolic
point.* Similarly, it is obvious that we may also construct an iso-
lated parabolic point with saddle-shaped neighborhood such that a
closed curve surrounding it once is mapped into a curve making
three, four, or any arbitrary number of turns around its image.
On the other hand, the Gaussian representation of a parabolic point
surrounded by a region of positive curvature behaves as if the

*Thus the representation by parallel normals of the monkey saddle is a
Riemann surface with a branch point at the point representing the parabolic
point (see p. 271). Notice also that the sense is reversed in Fig. 213.
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curvature on the original surface were positive throughout and the
parabolic point did not exist.

In conclusion, we shall describe the behavior of the lines of curva-
ture and of the asymptotic lines of a surface under the spherical
mapping of the surface. The principal directions are completely
characterized as being the only directions that are parallel to their
image directions. Only at the umbilical points does this criterion
break down; here every direction is parallel to its image direction.
Furthermore, we may observe, in the case of an elliptic point, that
either both principal directions have the same sense as their images
or both have the opposite sense, depending on the initial choice of
the sense of the normals. At a hyperbolic point, on the other hand,

Fic. 215 Fi1c. 216

one of the principal directions has the same sense as its image and
the other has the opposite sense.

This criterion gives us a very easy way to find all the lines of
curvature on any surface of revolution. In fact, it tells us that the
lines of curvature of any such surface are the parallels of latitude
and the meridians, for it is clear that these curves are represented
by a system of parallels of latitude and meridians on the sphere,
and that the direction of any such curve, furthermore, is parallel
at every point to the direction of its image at the corresponding
point. It follows that the two poles of a convex closed surface of
revolution are umbilical points.

The asymptotic directions have a different characterization: they
are perpendicular to their spherical images, and furthermore they
are the only directions with this property. The sense in which the
asymptotic line has to be rotated in the tangent plane to get the
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direction of its image is always clockwise for one asymptotic direc-
tion and counterclockwise for the other. This.is connected with the
fact that the spherical representation invariably reverses the sense
for surfaces of negative curvature.

Since the asymptotic lines cover only the hyperbolic part of a
surface, their behavior in the vicinity of a parabolic curve must be
singular. If the parabolic curve has a variable tangent plane, as
in the case of the bell surface, then the asymptotic lines have cusps
along the parabolic curve (Fig. 214). If, on the other hand, all
the points of a parabolic curve have a common tangent plane, as
they do on the torus, then the curve envelops the asymptotic lines,
i.e. it is tangent to one of them at each point (Fig. 215). Fig. 216
shows what the asymptotic lines look like in the neighborhood of a
monkey saddle. The number of asymptotic lines passing through
such a point is exactly =, if the spherical image of a single closed
curve about the point makes n—1 turns about the image of the point.

§ 30. Developable Surfaces. Ruled Surfaces

In the foregoing examination of the parabolic points of a surface
we have omitted the case of a surface consisting of nothing but
parabolic points. Because of its special importance we shall now
discuss this case in full detail.

We have encountered examples of such surfaces already, to wit,
the surfaces that result from bending a plane region. Now there
is a general theorem which states that a surface of constant Gaussian
curvature can be transformed, by bending, into any other surface
of the same constant Gaussian curvature.!

It follows from this theorem that every surface whose curva-
ture vanishes at every point, can be constructed by bending some
plane region. This is why these surfaces are also called developable
surfaces.

There are two other ways, entirely different from the first, of
obtaining the developable surfaces. First, every surface enveloped

*In the case of surfaces of variable Gaussian curvature we do not have such
a simple sufficiency condition for two surfaces to be applicable. A necessary
condition is that it be possible td map the surfaces onto each other in such a way
that their Gaussian curvatures are equal at corresponding points. But this condi-
tion is not sufficient, as may readily be seen by using some surfaces of revolution
as counter-examples.
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by a one-parameter family of planes is a developable surface. The
variable plane is tangent to such a surface along an entire straight
line that is obtained as the limiting position of the line in which
two neighboring planes intersect. Since the surface has one and
the same tangent plane at all the points of this straight line, the
straight line is composed of parabolic points of the surface. And
since the totality of these straight lines covers the entire surface
(for this reason we call them generators of the surface), it follows
that all the points of the surface are parabolic. It is a remarkable
fact that the converse theorem—that every developable surface can
be obtained in this way—is also true. Consequently all the develop-
able surfaces are ruled surfaces.?

Because three planes always have a point of intersection,? it is
plausible that any two neighboring generators of a developable
surface should have a common point, a conjecture that can be
proved analytically. This fact leads us to the third method of con-
structing the developable surfaces. The points of intersection of
consecutive straight lines describe a curve. Intuitively, we are
inclined to suspect that the generators do not intersect this space
curve but meet it tangentially, and this can be confirmed. Thus we
may also define a developable surface as the surface swept out by
the tangents of an arbitrary twisted curve. (Considered in this
light, the developable surface is known as the tangential developable
of the curve.) At the same time, the surface is also enveloped by the
osculating planes of the curve. Only for the cones and cylinders ¢oes
this representation fail, while the preceding method of generation
obviously applies to them as well as to the other developable surfaces.

From the second method of representation we can immediately
find the spherical images of all the developable surfaces with the
exception of the plane. For, the enveloping planes constitute the
totality of planes tangent to the surfaces; hence all the tangent
planes, and likewise all the normals, constitute a family depending
on only one variable parameter. Hence the spherical indicatrix of
a developable surface is always a curve; more specifically, it is the
binormal indicatrix of the space curve whose tangents sweep out
the surface. The fact that the spherical image of a surface of

*In four-space, however, there are developable surfaces that are not ruled
surfaces. (Cf. the second appendix to Chap. VI).
* Provided that parallel planes are regarded as planes that intersect at infinity.
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vanishing curvature degenerates into a curve was to be expected
from the original definition of Gaussian curvature, since this implies
that the spherical image of every region of such a surface has
zZero area.

Let us develop the tangential developable of any space curve
upon the plane. The space curve becomes a plane curve, the gener-
ators of the surface become the tangents to the plane curve, and to
every portion of the space curve there corresponds a portion of
equal length on the plane curve. But over and above this, it may
also be shown that at corresponding points of the two curves the
curvature is the same.*

If we proceed the other way around, starting with a convex arc s
in the plane, and removing the portion of the plane lying on the
concave side of the arc, then we can bend the remaining part of
the plane in such a way that the curvature at every point of the
space curve into which s is transformed is the same as the curvature
at the corresponding point of s. As can be proved analytically, we
can, at the same time, give the space curve any torsion we wish.
This type of deformation of a space curve, in which arc length
and first curvature are preserved while torsion is changed, will
be referred to simply as a twisting of the curve in question.

In the course of the above bending of the plane region, all the
straight lines tangent to s obviously remain straight, while all the
other straight lines become curved.* It is found, however, that the
surface that results from the bending of the plane region is by no
means all of the tangential developable of the twisted curve ¢
obtained from s. For, the surface we have thus constructed con-
tains of every tangent to ¢ only one of the two rays emanating from
the point of contact. If we produce the tangent rays so as to com-
plete the tangent lines, we get a second surface. The two surfaces
together constitute the tangential developable of ¢. They meet in
in a sharp edge called cuspidal edge or edge of regression (Fig.217)

' Intuitively, this is evident from the fact that the bending leaves the angle
between neighboring tangents unchanged, and that curvature is defined as the
limit of the ratio between this angle and the corresponding arec.

* Of course a completely arbitrary bending of a plane region may also change
the curvature of s. For the curvature of s to be preserved, it is not only necessary,
but also sufficient, that the tangents to s remain straight lines. Hence we can
get a usable model by cutting the plane region out of a piece of paper and
reinforcing some tangent rays of s by means of rods pasted to the paper.
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of the surface. If ¢ is changed back into the curve s by a continuous
twisting, the two parts move continually closer to each other until
they finally unite to form the plane of s. The whole tangential
developable of ¢ can be obtained by tacking together along s two
sheets having the form of a part of the plane outside s, and then
pulling the sheets apart in the course of the twisting of s. In this
process it is essential that the curva-
ture of s be everywhere different from
zero. If, on the other hand, the initial
curve 8 has a point of inflection, then
the tangential developable consists in
general of four sheets that meet at
the point of inflection, two of which
are connected along the tangent to s
at the point of inflection.

Let us now turn to the study of the
ruled surfaces that are not develop-
able. From the foregoing discussion, it follows that they are the
ruled surfaces on which two neighboring rulings are mutually
skew ; for, as we have seen, the surface is developable if and only if
neighboring generators meet.

We have associated with every developable surface a space curve
lying on it that we called the edge of regression. We may generalize
this idea so as to define a correspond-
ing curve, the line of striction, for
the other ruled surfaces. To this end,
we select two generators a and b from
the family of generators on the sur-
face and draw their common per-
pendicular (see Fig. 218). As is
well known, this perpendicular is the
shortest line connecting ¢ and b. Let A be the point where the
perpendicular meets a. If b approaches a through lines of the
family of generators, A approaches a limiting position which is
called the central point, or point of striction of a. The eentral point
corresponds to the point of a developable where a generator inter-
sects the neighboring generator and the edge of regression.

The line of striction is defined as the locus of the central point
as a varies over all the generators of the surface. It would be

Fic. 217

F1c. 218
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erroneous to conclude that the line of striction has to intersect all
the generators at right angles. For if a, b, and ¢ are three neigh-
boring generators (see Fig. 218), then the common perpendicular
of b and ¢ does not in general intersect b at the same point as does
the common perpendicular of @ and b. Hence the line through the
central points need not have the same direction as the common
perpendiculars, and therefore it need not meet the generators at
right angles. On the hyperboloid of rotation of one sheet, for
example, the line of striction is the equatorial circle, and obviously
this does not meet any of the rulings at right angles.

The ruled surfaces are one-parameter manifolds of straight lines.
For this reason, there are certain analogies between the ruled sur-
faces and the space curves, the latter being one-parameter mani-
folds of points. Thus, for example, it is possible to introduce a
concept for the ruled surfaces that corresponds to the concept of
curvature; this is the so-called pitch, or striction. We divide the
angle between two generators by the shortest distance between them
and call the limit of this quotient as the generators approach a
common position, the pitch of the surface. (The reciprocal of the
pitch is called the parameter of distribution of the ruled surface.)

The pitch is a measure of the variation of the tangent plane along
a ruling. If the point of contact moves along a ruling, the tangent
plane can obviously only change by a rotation about the ruling,
since it always has to contain this straight line. It may be demon-
strated analytically that the position of the tangent plane at a
point P of the generator a is uniquely determined by the following
three things: The position of the tangent plane at the central point
A of a, the distance PA, and the pitch of the ruled surface on the
ruling a. The distribution of the tangent planes may be described
as follows: If P travels along @, moving in one direction from A to
infinity, then the angle between the tangent plane at P and the
tangent plane at A increases continuously and in the limit becomes
a right angle. On the other side of A. the behavior of the tangent
planes is analogous and is symmetrical with respect to the central
point A ; if the points P and @ on opposite sides of A have the same
distance from A, the tangent plane at A bisects the angle between
the tangent planes at P and Q.

This leads us to the following result. Suppose we are given two
ruled surfaces having the property that there is a certain generator
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on one of them at which the pitch has the same value as on a certain
generator of the other. Then we can put the surfaces together in
such a way that the two generators in question are coincident and
that furthermore the surfaces are mutually tangential along this
line. All that is necessary in order to accomplish this, is to make
sure that the tangent planes at the respective central points coin-
cide, with the two central points themselves coinciding, after which
we may still have to rotate one of the surfaces relative to the other
through two right angles, keeping the central points and their tan-
gent planes together. The fact that the
two surfaces can be put together in this
way is of importance in the field of _—
kinematics (cf. p. 286).

The developable surfaces may be
characterized in various ways by their
pitch. The cylinders are obviously the
same as the surfaces of vanishing
pitch, since the angle between neigh-
boring generators is zero. The cones
and the tangential developables of {
space curves, on the other hand, have
infinite pitch, since neighboring gen-
erators have distance zero.

We have already found the spherical
image of the developable surfaces. For
ruled surfaces of finite pitch, as well,
the spherical images have a simple property. The normals at all
the points of a given ruling are parallel to a fixed plane, the normal
plane of the straight line. We see, therefore, that first of all, the
spherical image of a ruling has to be an arc of a great circle.
Furthermore, the normal at a point that moves along a ruling rotates
continuously through a right angle each time the point travels from
the central point to infinity in either direction, whence it follows that
the spherical image of the straight line is a semicircle. The extremi-
ties of the semicircle correspond to the ideal points of the straight
line, and the image of the central point bisects the semicircle.

In conclusion, we shall construct a particularly simple ruled sur-
face of constant pitch (Fig. 219). Here the obvious choice for the
line of striction is a straight line that meets all the generators of

AN

F16. 219
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the surface at right angles. Let d be the (constant) pitch of the
surface. If a and b are two generators making an angle a with
each other, and if A and B are the points where they intersect the

line of striction, then
a = AB . d.

Hence the surface, which is called a helicoid, is transformed into
itself by a screw motion of pitch d with the line of striction as axis.
The most general helicoid is the surface swept out by an arbitrary
space curve performing a uni-
form screw motion about a
fixed axis. Thus our particular
ruled helicoid is obtained
when the generating curve is a
straight line intersecting the
axis at right angles. This sur-
face is called a right helicoid.

F1G. 220a F1G. 220b

An examination by analytic methods reveals that the right heli-
coid is a minimal surface (Fig. 220a). On page 191 we have already
seen an example of a minimal surface, the catenoid. There is an
intimate connection between the catenoid and the right helicoid,
for, the latter can be transformed into the catenoid by bending.
This is accomplished by wrapping the helicoid infinitely many times
around the surface of revolution in the same way as a plane can be
wrapped around a circular cylinder; the line of striction has to
cover the equator (i.e. the smallest circular section) of the catenoid,
and the rulings are transformed into the meridians.®

¢ Note that the axis of the helicoid, far from being transformed into the axis
of revolution, becomes a circle perpendicular to it. This is why Figs. 220a and
220b show the axis of the helicoid in a vertical position but that of the catenoid
in a horizontal posiion.
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A general discussion of the helicoids and the way in which they
are related to the surfaces of revolution will be given later.

§ 31. The Twisting of Space Curves

The theory of developable surfaces has given us access to a
method of deforming a space curve in such a way as to leave its
arc length and curvature unchanged and to vary only its torsion.
We called such a transformation of space curves a twisting. In
particular, every space curve t can be transformed into a plane
curve s by a twisting; the shape of s is uniquely determined by ¢,
since the curvature of s is a given function of its arc length, and,
by §26, this completely determines the shape of s. There is a
peculiar relation between s and ¢, as we shall see presently.

From the theory of geodesic curvature—a concept we shall not

F1c. 221a F16. 221b

discuss here—we can get the following simple inequality, which we
shall need in the sequel (see Figs. 221a and 221b) : If £ lies on a
developable surface and is transformed into a plane curve ¢’ by
unrolling the surface on the plane, then the curvature &’ of ¢’ can
never be greater than the curvature k at the corresponding point
of t, and in general it is actually smaller. For if a denotes the
angle between the osculating plane of ¢ and the corresponding
tangent plane of the developable surface, then

K =1Fkcosa.

From this lemma we can deduce the following peculiar theorem:
Whenever a convex plane arc is subjected to twisting, all the chords
become longer.

In order to prove this, we consider the convex plane arc s with
the end-points A, B (see Fig. 222a). Let a twisting of s yield the
arc t of a space curve, with end-points C and D. Then we have to
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prove that the straight-line segment C D is longer than the segment
AB. To this end, we construct a conical surface with C as vertex
which contains the arc ¢t (Fig. 222b) and develop this cone in the
plane of s. Then ¢ becomes a plane curve ¢’ with end-points E and F
(Fig. 222¢). The straight-line segment CD is on a generator of

the cone; therefore it remains a

straight line under the above de-

4 g velopment and is mapped without
@ change in length onto the segment
= EF. Hence the straight-line seg-

ments EF and CD are equal, and

F1c. 222a it only remains to be proved that

EF is longer than AB. Now, the curves s and ¢’ are equal in
length, and by our lemma, the curvature at every point of ¢ is
smaller than the curvature at the corresponding point of ¢{ and

F16G. 222b F1G. 222¢

therefore of s also. Hence s can be transformed into ¢’ by keeping
the point A fixed and diminishing the curvature at all the points
of s without changing the arc lengths. As a result of the convexity
of g it is intuitively evident that our deforma-
tion keeps moving B further away from a,
which may also be confirmed analytically
without difficulty. This completes the proof
of the inequality EF > AB, and hence of
our theorem.

We shall apply the result to the simple case
of the curves obtained by twisting a circular
arc, that is, to the curves of constant curva-
ture. By magnification or reduction of the figure, we can always
ensure that the value of the curvature shall be 1; hence we may
confine our attention to the case of curvature unity. Consider all
the space curves of curvature unity that connect two fixed points
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A and B. In order to ensure the presence of circular arcs in this
set, we shall assume that the distance A B is less than 2. Then it is
indeed possible to pass a circle of unit radius through A and B.
The two points divide the circle into two unequal arcs; let us call
them I and I, where I denotes the shorter arc (see Fig. 223). Now
we have the following paradoxical fact: The shorter arc I is longer
than all the neighboring arcs of our family; the longer arc II is
shorter than all neighboring arcs of the family; the only exceptions
are the arcs obtained from I and I/ by rotation about A B, as their
lengths are obviously equal to those of I and yys

II respectively. We are concerned, then, with

the curves that are obtained from I and II by

twisting.

We shall prove the above fact in the follow-
ing more general form: If a twisted arc ¢ of
constant curvature unity connects the points
A and B and if it is not longer than II, then it Fic. 224
is shorter than I. Let us transform ¢ into a circular arc s by a twist-
ing and superimpose s on the circle through 4 and B in such a way
that one of the extremities of s falls on A (see Fig. 224). Then the
other extremity of s is a point B’ on the circle. By the theorem we
proved earlier in this section, the chord A B’ is shorter than the
chord AB. But the length of the arc ¢ has to be equal to the length
of one of the arcs into which A and B’ divide the
circle. One of these arcs is longer than II and is there-

F—
fore excluded by our assumption; hence ¢ is equal to (Q
the other arc of the circle and is therefore shorter b
than I. <<D
We have thus proved that no curve of curvature ,:.
unity connecting A and B has a length between those of [—
I and II. Let us now inquire whether there are any | ==
further limitations on the length of such a curve. y

To begin with, it is easy to see that the arc may be
arbitrarily long. For, the curves of constant curvature Fig. 225
include, in particular, the circular helices (cf. p. 182). The pitch of
such a helix may be chosen arbitrarily small. Therefore the number
of turns on a helix between two points of distance A B, may be made
arbitrarily large. But for sufficiently small pitch, the length of
every turn of the helix of curvature unity is approximately equal
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to that of the circumference of the unit circle. Hence it is clear
that the curve connecting A and B may indeed be arbitrary long
(see Fig. 225).

On the other hand, our curve can not be arbitrarily short, since
its length necessarily exceeds that of the straight-line segment AB.
It is possible, however, to get arbitrarily close to this lower bound.
For if we take a helix of curvature unity whose pitch is very large,
then the tangent to the helix is nearly parallel to the axis and the
distance of this helix from the axis can be made arbitrarily small.
Thus an arc of such a helix can be made to differ arbitrarily little

4. from its chord (see Fig. 226), and this proves our result.

We thus see that the problem of connecting two fixed points
] by a curve of curvature unity having the smallest possible
I/ arc length, has no solution. An apparently similar minimal
condition was seen earlier to characterize minimal surfaces.
Similarly, Riemann showed that certain important theorems
A of the theory of functions were reducible to minimal proper-
I\ ties. The present example shows that the assumption that
every minimal problem has a solution, though apparently
self-evident, is false in some cases and must therefore be
checked in each individual case. To date, these existence
proofs rank with the most laborious problems in the whole field of
analysis (cf. §§ 38, 39).

There is a very simple example of a minimal problem without a
solution. It is the problem of connecting two points A and B by
the shortest possible curve subject to the condition that the curve
makes a right angle with the straight line AB at A. Here, too, we
can get arbitrarily close to the straight-line segment A B but cannot

reach it because the segment itself does not

};; satisfy our condition (see Fig. 227).

In conclusion, we mention a minimal prob-
lem for which the question of whether or not
a solution exists had long been the subject of controversy. It is
required to move a rod A B in the plane in such a way that the final
effect is that of a rotation through two right angles and that the
area swept out in the course of the motion is as small as possible.
Only quite recently, Besicovitch proved that this problem has no
solution (see Math. Zeitschrift, Vol. 27, 1928). By using a zig-zag
motion we can make the area swept out arbitrary small (cf. p. 280).

4
F1c. 226

Fi1c. 227
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§ 32. Eleven Properties of the Sphere

We have already become acquainted with the surfaces of vanish-
ing Gaussian curvature. We shall now look for the surfaces of con-
stant positive or negative curvature. By far the simplest and most
important surface of this type is the sphere. A thorough study of
the sphere would in itself provide sufficient material for a whole
book. We shall here present only eleven properties that have a par-
ticularly strong appeal to the visual intuition. We shall at the same
time become acquainted with several properties that are of import-
ance not only for the geometry of the sphere but also for the general
theory of surfaces. With regard to each property to be described
we shall inquire whether it defines the sphere uniquely or whether
there are other surfaces having the given property.

1. The points of a sphere are equidistant from a fixed point.
Also, the ratio of the distances of its points from two fixed points
is constant.

The first of these two properties constitutes the elem:ntary defini-
tion of the sphere and consequently defines the sphere uniquely. The
fact that the sphere has the second property as well, can be ascer-
tained very easily by analytical methods. On the other hand, the
second property defines not only the sphere but the plane as well.
For, a plane is obtained if, and only if, the constant ratio is equal
to unity. The plane obtained in this case is the plane of symmetry
of the two fixed points.

2. The contours and the plane sections of the sphere are circles.

In the discussion of the second-order surfaces we mentioned the
theorem that all the plane sections and contours of such surfaces
are conics. In the case of a sphere, all these conics are circles. This
property defines the sphere uniquely. From the observation that
the shadow of the earth at a lunar eclipse is always a circle we may
therefore infer that the earth is spherical.

8. The sphere has constant width and constant girth.

The term constant width denotes the property, of a solid, that
the distance between any pair of parallel tangent planes is constant.
Thus a sphere can be rolled arbitrarily between two parallel tangent
planes. It would seem plausible that the sphere is uniquely defined by
this property. In actual fact, however, there are numerous other
closed convex surfaces, some of them without any singularities, whose
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width is also constant and which therefore can also be rotated be-
tween two fixed parallel platesto which they remain tangent through-
out. Fig. 228 illustrates two different positions of such a surface.

The concept of constant width can also be applied to curves.
A closed convex curve in the plane is said to have this property if
the distance between two parallel tangents is always the same. The
circle is a curve with this property, but is by no means the only one.
Indeed, one of the two arcs into which the points of contact of a
parallel pair of tangents divide a closed convex curve of constant
width can be given quite arbitrarily, and then the other arc can
always be (uniquely) determined in such a way that the condition of

F16. 228a Fic. 228b

constant width is satisfied for the resulting curve. This can be easily
made plausible. For, the tangents of the given arc uniquely define
the tangents of the second arc, since the latter are obtained by draw-
ing the parallels to the given tangents at a fixed distance on the
appropriate side. The second arc is then simply the envelope of this
set of straight lines.

Obviously, the solids of constant width w are characterized by
the property that all their contours obtained by parallel orthogonal
projection are curves of the constant width w. Now there is a
theorem to the effect that all curves sharing the same constant width
are equal in circumference. And since a girth of a solid is defined
as being the perimeter of one of its orthogonal parallel projections,
it follows from the above theorem that the solids of constant width
have constant girth as well. Consequently any surface of constant
width. around wkich a paper cylinder has been firmly wrapped, is
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free to turn in all directions inside the cylinder without becoming
loose or tearing the cylinder.

Conversely, it has been proved by Minkowski that all convex sur-
faces of constant girth also have constant width, so that each of
these two properties implies the other.?

4. All the points of a sphere are umbilics.

We have mentioned this property earlier, pointing out at the
same time that the plane is the only other surface sharing this
property with the sphere (see p. 187). One of the ways in which
we can recognize that all the points of a sphere are umbilics is from
the fact that all plane sections of a sphere are circles. Let a plane
that intersects the sphere be moved, keeping it parallel to its original
position until it is tangent to the sphere at a point P; then we see
that the Dupin indicatrix at the point P is a circle (see p. 192).
Hence P is an umbilical point.

5. The sphere does not have a surface of centers.

We have seen earlier (p. 184 ff.) that the centers of curvature
of all the normal sections at a point on a surface in gcneral fill out
a segment of the normal at this point. The extremities of this seg-
ment are the centers of curvature belonging to the principal direc-
tions. These two points are sometimes called the foci of the normal.
They coincide if and only if the point of the surface is an umbilic.
A focus is at infinity if and only if the Gaussian curvature vanishes
at the point of the surface.

If the point of the surface assumes all the positions possible on
the surface, then the two foci on its normal in general take on all
possible positions on a certain pair of surfaces which are jointly
called the evolute or surface of centers (or focal surface) of the
original surface. In the case of a sphere, the evolute, or surface of
centers, consists of the center of the sphere alone, since all the foci
are at this point. The sphere is the only surface for which one
sheet of the surface of centers degenerates into a point. Let us now
find out what surfaces have the property that both sheets of their
surface of centers degenerate into curves. It is found that the only

' If we had set the condition that all the projections of a solid have the same
area instead of the same circumference, we would have obtained a different class
of surfaces, the so-called surfaces of constant brightness. The sphere is one of
these surfaces, but by no means the only one. (Cf. W. Blaschke, Kreis und Kugel,
p. 151, New York, Chelsea Publishing Company.)
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surfaces with this property are the surfaces called Dupin’s cyclides,
after their discoverer (some of them are shown in Fig. 229). These
surfaces may also be defined as the envelopes of the family of spheres
tangent to three fixed spheres. Furthermore, the Dupin cyclides

F16. 229a Fic. 229b

are the only surfaces all of whose lines of curvature are circles.
Some of the lines of curvature are marked out on the five plaster
models whose photographs appear in Fig. 229. Incidentally, each
sphere of the family of spheres that envelops a cyclide is tangent
to the latter along a line of curvature, and every line of curvature

F1G. 229¢ F1c. 229d

on a cyclide can be obtained in this way. An example of a cyclide
with which we are already familiar is the torus. Its surface of
centers consists of the axis of rotation together with the circle
traced out by the center of the generating circle during the rotation.
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Furthermore, all the cones and cylinders of revolution are cyclides;
one part of the surface of centers is the axis of rotation, and the other
part is at infinity. In the case of all the other cyclides, the surface of
centers consists of two conics, which are in general an ellipse and
a hyperbola having the same relative positions as the focal curves
of a quadric surface.?

If we require only one sheet of the surface of centers to degenerate
into a curve, we get a much more inclusive class of surfaces. Every
surface of revolution has this property; one part of its surface of
centers always consists of the axis. The most general class of sur-
faces satisfying our condition is the class of canal surfaces. A canal
surface is defined as the envelope
of a family of spheres of variable
radius with centers lying on a fixed
curve. The fixed curve itself always
forms one of the two parts of the
surface of centers of the canal sur-
face. In the special case where this
curve is a straight line, the result is
a surface of revolution; thus the
surfaces of revolution are a special
case of canal surfaces. As in the
case of surfaces of revolution, one of the two families of lines of
curvature on every canal surface consists of circles. These circles
occupy the limiting positions of the circles of intersection of neigh-
boring spheres. (They are called the characteristics of the spheres
of the family.)

For all other curved surfaces, the surface of centers consists of a
pair of two-dimensional sheets. It can be proved that, at its foci, a
normal never cuts these two sheets, but is always tangent to them.
Thus if the two sheets of the surface of centers of a surface are
given, the normals of the surface are characterized as being the
common tangents of the two sheets. This raises the question of

F16. 229¢

? The surfaces illustrated in Figs. 229a and 229b are obtained from the torus
by inversion in a sphere (see p. 268). In Fig. 229b the center of the inversion
lies on the torus; in Fig. 229a it does not. The surfaces of Figs. 229¢ and 229d
are obtained by inversion from a circular cone, the center of inversion lying on
the cone in the case of Fig. 229d. Fig. 229e illustrates a surface obtained by
inversion from a circular cylinder, where the center of inversion does not lie
on the cylinder.
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under what circumstances it is possible to reverse the order of
derivation. We begin with two arbitrary surfaces and consider
the family S of all straight lines tangent to both. Then the question
is whether there is a surface (the involute) whose normals consist
of the straight lines of the family S, i.e. whether the two given
surfaces constitute the surface of centers, or evolute, of another
surface. For this to be the case there is a single condition that is
both necessary and sufficient: the tangent planes to the two sur-
faces at the two points where any given straight line of the family
S touches the surfaces, have to be mutually perpendicular. A system
of confocal quadrics gives us an example of such surfaces, for it
may be shown that every pair of confocal quadrics of unlike type
satisfies our condition.

6. All the geodesics of the sphere are closed curves.

The geodesic lines, or geodesics, of a surface are a generalization
of the straight lines of the plane. Like the straight lines, they are
endowed with several important properties distinguishing them
from all other curves on the surface. Hence they may be defined in
various ways. We shall discuss the three definitions of geodesics
as shortest lines, as frontal lines, and as straightest lines.

The first property signifies that every sufficiently small portion
of a geodesic curve is the shortest path on the surface connecting
the end-points of the portion. It follows that the geodesic lines of
a surface continue to be geodesic if the surface is subjected to
bending. Hence the geodesics are of fundamental significance for
the intrinsic properties of a surface (cf. p. 194), and all the intrinsic
properties of a surface (such as its Gaussian curvature) can be
determined by drawing geodesics and measuring their arc lengths.
This is analogous to the fact that the geometry of the plane can be
fully characterized by the drawing of straight lines and the measur-
ing of linear distances. Analogous to the fact that there is one and
only one straight line through any two points in the plane, is the
fact that one and only one gecdesic arc can be drawn through any
two points of a surface if they are not too far apart. Obviously, the
geodesic arc is obtained by pulling taut a thread that passes through
the two points on the surface.?

*On the outside of a convex surface the thread will automatically lie on the
surface. For other surfaces, it is necessary to ensure that the thread does not
leave the surface.
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The second property of geodesic lines, that they are frontal, is
also an intrinsic property of the surface. Here the geodesics are
defined by the condition that they always move an infinitesimal arc
of the surface “straight ahead.” Let a small finite arc A B be moved
along the surface in such a way that the paths of A and B are equal
in length and that both paths are perpendicular to A B throughout;
then the locus of the midpoint of A B can be made to approximate
a geodesic with any degree of accuracy desired, by choosing the
arc AB to be sufficiently short. In the light of this definition of
geodesics, it is plausible that there should be exactly one geodesic
issuing in each direction at every point of a surface. Furthermore,
the definition tells us that we can obtain an approximation to the
geodesic lines by moving a very small buggy along the surface on
two wheels, the wheels being rigidly fastened to their common axis
so that their speeds of rotation are equal. Since the driver of an
automobile does not want to drive only along the geodesic lines of
the earth, and since it is desirable (for the preservation of the tires
and for other reasons) to avoid skidding, the automokile has to be
constructed in such a way that the back wheels are free to turn at
different speeds.

The third definition of geodesics, as the straightest lines, is not
an absolute property of the surface but depends on the way the
surface is imbedded in space; at each of its points a geodesic line
has the smallest curvature among all the curves through the point
that lie on the surface and that have the same tangent at the point as
the geodesic. The entire course of a geodesic is fully determined by
this property if one of its points and its direction at this point are
given. The geodesic line can be obtained by attaching a flexible
straight knitting needle at the given point in such a way that it
points in the given direction, and then bending it onto the surface
so that it can only move along the surface. Then the needle will
assume the form of a geodesic line because its elastic resistance will
always cause it to resist further bending.

The straightest lines may also be characterized by the geometric
requirement that the osculating plane of the curve is to contain the
normal to the surface at every point of the curve. If this condition
is satisfied, it is easy to see intuitively that the angle between the
tangents at neighboring points on the curve will be as small as it
can be if the curve is to remain on the surface. But this is tanta-
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mount to the condition of minimum curvature. It is to the char-
acterization by their osculating planes that the geodesics owe their
name. This is the criterion used in staking out the shortest lines
on the surface of the earth in a geodetic survey.

The geodesics of the sphere are its great circles. For, the planes
of the great circles intersect the sphere at right angles, and from
every point on the sphere there emanates a great circle in every
direction. Thus all the geodesics on the sphere are closed curves.
This, however, is by no means a unique characterization of the
sphere; there are a great many other closed convex surfaces all of
whose geodesics also are closed curves.*

It is now natural to try to find closed geodesic lines on any sur-
face. This is particularly simple in the case of the surfaces of
revolution. On these surfaces all the meridians are geodesics,
because their planes contain the axis and therefore cut the surface
at right angles. (We proved earlier that the meridians are lines
of curvature as well.) Thus every closed surface of revolution has
a one-parameter family of closed geodesic lines. On other types of
surfaces there are only isolated lines of this kind. It may be demon-
strated, for example, that the only closed geodesics on the general
ellipsoid are the ellipses in which the surface intersects its three
planes of symmetry.

On the other hand, there are at least three closed geodesics on every
closed convex surface. This theorem had been conjectured for a long
time, but was proved only recently by Lusternik and Schnirelmann.

The geodesics play a very important role in physics. Any mass
point that is not acted on by any forces but is constrained to remain
on a fixed surface moves on a geodesic line of the surface. Each of
our definitions of a geodesic line gives us an approach to the laws
of the mechanics of points. Thus the definition of geodesics as the
shortest lines is embodied in Jacobi’s principle in mechanics. As
the straightest lines they appear in the Gauss-Hertz principle of
least constraint. The relation of the osculating plane to geodesics
plays a role in the Lagrange equations of the first kind.

There is a peculiar relation between the geodesic lines on the one
hand and the theory of surfaces of centers and lines of curvature

‘* Here and in the following we call a geodesic curve closed if it returns to its
starting point without having a corner and without intersecting itself before
it reaches the starting point.
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on the other. We have mentioned before that the normals of every
surface are tangent to its surface of centers. Thus a certain direc-
tion on the surface of centers is assigned to each of its points,
namely the direction of that normal of the original surface that is
tangent to the surface of centers at the particular point under con-
sideration. Like the principal directions and asymptotic directions,
this field of directions on the surface of centers can be integrated,
that is, a family of curves can be found having the given direction
at every point. It is found that the curves of this family are geo-
desic lines. Of course, the tangential developables of these geodesics
are generated by normals of the original surface. But in addition,
the curves in which the developables intersect the original surface
are identical with its lines of curvature; moreover, each of the two
sheets of the surface of centers corresponds to one of the two
families of lines of curvature.

We mentioned earlier that any pair of confocal quadrics of dif-
ferent types can be interpreted as the surface
of centers of some surface. This fact furnishes
a method for finding all the geodesic lines of
the general ellipsoid. Let E be the given ellip-
soid. Choose some hyperboloid H confocal

F1c. 230 with E. The straight lines that are tangent
to E and H at the same time define a field of directions on E, and
by the theorem we have just mentioned, all the integral curves of
this field are geodesics. But this by no means exhausts all the
geodesics on E'; through every point of the surface, geodesic lines
run in all directions, and we have only found those geodesics that
lie in certain preassigned directions. It is easy to characterize the
family of the geodesic lines thus far found on E; for, it may be
proved that they are all those geodesics of E, and only those, that
are tangent to the curve in which E and H intersect (see Fig. 230).
They cover the ellipsoid in much the same way as the tangents of
an ellipse cover the plane. The curve of intersection of £ and H
(which, incidentally, is a line of curvature of E, as we have already
mentioned), divides the ellipsoid into two parts. One part has no
curves of the family on it, while two curves of the family pass
through every point of the other part.

The totality of the geodesic lines of E can be obtained by simply

letting H run through all the hyperboloids of one sheet and two
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sheets of the confocal system defined by E. In this process, it is
necessary to include the focal hyperbola as a limiting case of a
hyperboloid and to count all the straight lines meeting the hyperbola
as tangents to this degenerate surface. The focal hyperbola inter-
sects £ in the four umbilical points. A limiting process applied to
the above argument shows that the family of geodesic lines of E
belonging to the focal hyperbola consists of all those geodesics that
pass through an umbilical point of E, and only of those.®* Further-
more, it is found that every geodesic line through an umbilical point
also passes through the diametrically opposite umbilical point.

On the sphere, all the geodesics through a given point P also pass
through a second fixed point, the point diametrically opposite P.
The behavior of the geodesic lines passing through an umbilical
point of the ellipsoid is analogous to this property. On the other
hand, it can be proved that the geodesics through any other fixed
point of the ellipsoid do not all have a second point in common.

It is natural to ask whether the sphere is the only surface on
which all the geodesic lines emanating from an arbitrary fixed
point have a second point in common. The answer to this question
has not yet been found.

7. Of all solids having a given volume, the sphere is the one
having the smallest surface area; of all solids having a given
surface area, the sphere is the one having the greatest volume.

These two properties (each of which implies the other) define
the sphere uniquely. The proof of this fact leads to a problem of
the calculus of variations and is extremely laborious. But a simple
experimental proof is implicit in every freely floating soap bubble.
As was mentioned earlier in connection with the minimal surfaces,
the soap bubble, by virtue of its surface tension, seeks to reduce its
surface area to a minimum; and since the bubble encloses a fixed
volume of air, it follows that the bubble assumes the minimum
surface area for a fixed volume. But it is found by observation
that freely floating soap bubbles are always spherical unless they
are appreciably subjected to the influence of gravity because of
adhering drops of liquid.

8. The sphere has the smallest total mean curvature among all
convex solids with a given surface area.

®* The thread construction described on p. 188 is intimately connected with
this fact.
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The mean curvature H at a point on a surface is defined as the
arithmetic mean of the principal curvatures at the point:

H= (k. + k) /2.

In this formula, the principal curvatures must be assigned like
signs at elliptic points and unlike signs at saddle points. In con-
trast with the Gaussian curvature, the mean curvature does not
in general remain invariant under bending of the surface. Thus
the mean curvature tells us something primarily of the way the
surface is imbedded in space.

The minimal surfaces have already given us an idea of the sig-
nificance of this concept of curvature. The minimal surfaces were
defined by the property that the principal curvatures at any point
of such a surface are equal in magnitude and opposite in sign; and
this means that the mean curvature is everywhere zero.

In order to get the fotal mean curvature of a surface, we proceed
as follows. We think of the surface as having mass distributed
upon it, the mass density at each point being equal to the mean
curvature at that point. Then the total mass spread out over the
surface in this way is called the total mean curvature of the surface.

The problem of finding the closed surfaces with minimum total
mean curvature for a given surface area leads, like the problem
connected with the preceding property of the sphere, to a problem
of the calculus of variations, and here again, we find that the sphere
is the only surface satisfying the given condition.

The two last-named properties of the sphere are derived from
certain inequalities in the general theory of convex bodies. Let us
at least indicate the principle involved. A sphere of radius » has
surface area S =4nar? and volume V =4ar*/3. In order to deal
with like dimensions, we have to compare the third power of the
surface area with the square of the volume. This gives us the
equation

S3=386aV?,

which applies to every sphere no matter what its radius. Since
of all surfaces of the same area, the sphere has the greatest volume,
we must have

St =36nV?

for all the other surfaces. Now if M denotes the total mean curva-
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ture of a surface, the following important inequalities can be proved
to hold for all convex bodies:

1. S*—3VM =0,
2. M*—4aS=0.

In the second formula, the equality holds only in the case of the
sphere. But this implies that among all convex bodies having given
surface area, the sphere, and the sphere only, yields the minimum
value of M. By eliminating M from formulas 1. and 2., we get the
above relation between surface area and volume and see that the
equality sign applies only in the case of the sphere. The argument
we have outlined takes into consideration only convex bodies,
whereas the inequality involving the volume and surface area is
in fact also true for bodies that are not everywhere convex.

9. The sphere has constant mean curvature.

This follows from the fact that all normal sections have the same
radius of curvature, namely the radius of the sphere. But the sphere
is by no means the only surface of constant mean curvature. Every
minimal surface, for example, has mean curvature zero at every
point, and hence constant mean curvature. Like the sphere and the
minimal surfaces, all the other surfaces of constant mean curvature
can also be realized by soap bubbles. Let an arbitrary closed curve
in space be given. Take a fixed surface bounded by the curve and
in addition stretch a soap film over the curve. This may be accom-
plished in practice, for example, by giving the rim of the head of a
pipe the shape of the desired curve, making a soap bubble with this
pipe, and then plugging up the stem so that it is airtight. Then
the soap film and the interior wall of the pipe enclose a fixed quantity
of air. Under the influence of surface tension, the soap film assumes
the shape that makes its surface area a minimum under the given
conditions. By use of the calculus of variations it can be shown that
every surface determined in this way is a surface of constant mean
curvature. The particular value of this constant mean curvature
depends on the pressure of the air enclosed (which in turn is con-
trolled by the amount of air blown into the pipe). In the particular
case where the pressure of the enclosed air equals, rather than
exceeds, the atmospheric pressure, we are back to the case of
minimal surfaces.

Thus our soap films furnish us with a multitude of surfaces of the
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kind we were trying to find. But all these surfaces have the prop-
erty of ending abruptly at the space curve, that is, they have a
boundary. This raises the question of whether there are any sur-
faces of constant mean curvature other than the sphere that have
neither a boundary nor any other singular points. It is found that
the answer is in the negative, so that the sphere is defined uniquely
by our additional condition. This fact can be made plausible by
reference to soap bubbles. We already know that a soap bubble
suspended freely in the air always assumes the form of a sphere.
If we produce soap bubbles of constant size bounded by smaller
and smaller curves, then it is to be expected—and may be verified
experimentally—that the shape of the boundary curve has less and
less influence on the shape of the bubble, and that the shape assumed
by the bubble in the limit is always that of a bubble not having a
boundary, i.e. that of a sphere.®

10. The sphere has constant positive Gaussian curvature.

The answer to the question of whether the sphere can be uniquely
characterized by this property is the same as in the case of mean
curvature. By itself, the property of constant Gaussian curvature
certainly does not characterize the sphere. For, all the surfaces
derived from a portion of the sphere by bending share this prop-
erty, since the Gaussian curvature is unaltered by bending. Let us
once again add the condition that the surface have no boundary and
no other singularities and then ask whether there are any surfaces
of constant positive Gaussian curvature other than the sphere which
satisfy this additional condition. It is found that the answer is in

¢ It would be easy to fall into the error of thinking that the mean curvature
of the soap bubble keeps on increasing as we blow into the pipe. In the beginning,
the mean curvature does in fact increase, starting from the value zero which
it has for the minimal surface. But if we blow quite hard, it follows from the
argument given in the text that the soap bubble (assuming that it does not
burst) will take on the approximate shape of a sphere of steadily increasing
radius; hence the mean curvature, which is the reciprocal of the radius of the
sphere, will steadily decrease, approaching the value zero. Given a definite bound-
ary curve and any sufficiently small number ¢, we therefore know that there are
at least two surfaces bounded by the given curve and having the constant mean
curvature c. This phenomenon contrasts remarkably with many other variational
problems which invariably lead to only one extremal surface bounded by a given
closed curve. If the sign of the mean curvature is disregarded, then we can get
two more surfaces of the same constant mean curvature bounded by the same
curve; they can be realized in the form of soap bubbles by inflating the original
minimal surface from the other side.
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the negative, one immediate consequence of which is that the sphere
as a whole cannot be bent. To begin with, it can be proved that a
surface of constant positive Gaussian curvature having no singulari-
ties and no boundary curve can not extend to infinity, like the plane,
but must necessarily be a closed surface, like the sphere. An easy
calculation reveals, furthermore, that there are no other surfaces
besides the sphere and the plane on which both principal curvatures
are constant. Hence we shall only have to consider the case of a
closed surface on which both principal curvatures vary, but vary
in such a way that their product has the given constant value of
the Gaussian curvature. On such a surface there would have to be
at least one regular point at which one of the principal curvatures
assumes a maximum. But it can be proved analytically that no
such point can exist on a surface of constant positive Gaussian
curvature. In other words: On a bounded region, not spherical in
shape, of a surface of constant positive curvature, all the points at
which the principal curvatures have maxima are on the boundary.
And since the sphere does not have a boundary, it follows that the
sphere as a whole cannot be bent, and that there are, other than
the sphere, no closed surfaces at all that are free from singularities
and have constant positive Gaussian curvature.

Since there are, on the other hand, pieces of the sphere which can
be bent, there arises the question of how big a hole we must cut out of
the sphere in order to be able to bend the remaining part. It is con-
ceivable that the hole would have to be at least of a certain minimum
size, the size of a hemisphere, for example. It can be proved, however,
that the contrary is the case: the spherical surface can be bent as soon
as any arbitrarily small portion is removed ; it is in fact sufficient even
to slit the sphere open along an arbitrarily small segment of a great
circle. On the other hand, it is not yet known whether the sphere can
be bent after the removal of nothing but one or more isolated points.

A remarkable relation exists between the fact that the sphere
can be bent once an arbitrarily small hole is cut out of it, and the
behavior of soap bubbles. It rests on the following fact, which is
readily proved by analytic means. Let F' be a surface of constant
mean curvature c¢; on the normals on a certain definite side of F' we
mark off the points lying at a distance of 1/2¢ from the surface.
These points constitute a surface G. To be sure, G does not have
constant mean curvature; but it does have the constant Gaussian
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curvature 4¢2. G is called the surface parallel to F' at the distance
1/2¢. If F is part of a sphere, then G is part of a sphere concentric
with F. And conversely, G cannot be part of a sphere unless F is
part of a sphere. For, it can be shown that the normals to F are
also normal to G at the corresponding points of G. The side of F
on which we measure off the normal distances cannot be chosen
arbitrarily but has to be determined by a definite rule. It is easy
to give a precise statement of this rule if F' is visualized as a soap
bubble blown up on a pipe: The normals have to be directed towards
the interior of the enclosed space.

Consider a sphere of radius 1/¢, whose mean curvature is thus ¢,
and a small closed curve R lying on the sphere. Let us subject the
curve to a continuous deformation which is such that the resulting
curves can no longer lie on any sphere. It is plausible that, as long
as the deformation is not too great, we can find soap bubbles of
constant mean curvature ¢ passing through each of the resulting
curves. For if a soap film is stretched across the original curve R,
the proper amount of blowing will certainly bring it into the form
of a surface of mean curvature c¢; this is so because the sphere on
which R lay originally is such a surface, and at a certain stage dur-
ing the process of blowing up the bubble (from the proper side), we
obtain the larger of the two parts into which R divides the sphere.
From considerations of continuity it follows that we can ensure,
by suitably increasing the amount of air in the pipe in the course
of the deformation of R, that the form of the soap bubble—which
had originally been spherical-—vary continuously in such a way as
to keep the value of the mean curvature fixed; but the deformed
soap bubbles can no longer be spherical in shape, since by construc-
tion the deformed boundary curves do not lie on any sphere. We
now construct the interior parallel surfaces to all these soap bubbles
at the distance 1/2¢. This gives us a continuous family of surfaces,
and, by the theorem cited above, they all have the constant Gaussian
curvature 4c2. The first of these surfaces is a sphere of radius 1/2¢
with a small hole bounded by a curve similar to R and similarly posi-
tioned in space. All the other surfaces of the family can be trans-
formed into the first one by a continuous bending ; but they cannot be
spherical in shape, since, as we have mentioned above, this would
imply that the soap bubbles themselves also are spherical in shape.
Thus a sphere with an arbitrarily small hole can indeed be bent.
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The question of whether a surface can be bent has been investi-
gated in much more general cases of both bounded and closed sur-
faces. Bending is impossible in the case of all closed convex surfaces,
such as, for example, the ellipsoids. It is likewise impossible to
bend any convex surface having boundary curves, provided each
boundary curve has the property that at all of its points the tangent
plane is the same. An example of such a surface (with two boundary
curves) is the convex part of the torus (see Fig. 210, p. 200).

If an arbitrarily small hole is cut out of a convex surface, the
surface becomes bendable. It is not yet known whether it is sufficient
merely to slit the surface open or even to remove merely some
isolated points.

11. The sphere is transformed into itself by a three-parameter
family of rigid motions.

Obviously the totality of rigid motions that bring the sphere into
self-coincidence are the rotations about the center. And the totality
of these rotations is indeed dependent on three parameters. For,
two parameters are necessary to define the position of the axis of
rotation (a straight line that has to pass through the center but
that is otherwise arbitrary), and a third parameter is needed to
determine the angle of rotation. This enumeration may also be
based on other considerations, as follows. An arbitrary point on
the sphere can-evidently be carried to any other point of the sphere
by a rotation belonging to the family, and in addition, a direction
on the sphere through the initial point can be transformed into
any direction through the image point. This uniquely determines
a transformation of the family. And it involves exactly three
parameters ; for, the freely chosen image of the given point depends
on two parameters, and the directions on the sphere at this image
point constitute another one-parameter family.

The latter of these enumerations can be applied not only to the
sphere but also to the plane; hence the plane as well has a three-
parameter family of rigid motions into itself. On the other hand,
there are no further surfaces of this kind, so that the property
characterizes the spheres and the plane.

Let us now look into the question of what other surfaces admit
any family at all of rigid motions into themselves. In each case
the family is necessarily a two-parameter or one-parameter family.
The only surfaces admitting a family of motions with exactly two
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parameters are the circular cylinders. A circular cylinder is brought
into self-coincidence by an arbitrary rotation about its axis or by an
arbitrary translation along the axis. The rigid motions of this type
form a two-parameter family, and there are no further rigid motions
that will bring the circular cylinder into self-coincidence. By a
motion of this kind we can map any given point on the cylinder
into any other point on the cylinder. But directions can no longer
be mapped arbitrarily, because the straight lines which are gener-
ators of the cylinder are always mapped into each other by the
above rigid motions.

The surfaces of revolution suggest themselves as obvious ex-
amples of ‘surfaces that admit just a one-parameter family of rigid
motions. All of these surfaces are transformed into themselves by
all the rotations about the axis of rotation and (leaving aside the
sphere, the plane, and the circular cylinder) by no other rigid
motions. Thus any given point can be moved into any other point
on the same circle of latitude, and once such a displacement of one
point is given, the mapping is fully determined.

But the totality of surfaces having a one-parameter family of
rigid motions is by no means exhausted by the surfaces of revolu-
tion. Indeed, the surfaces characterized by this property comprise
all the helicoids; these include as limiting cases the surfaces of
revolution on the one hand and the cylinders on the other. As was
already pointed out on page 210, every helicoid can be generated as
follows: An arbitrary space curve is subjected simultaneously to
a rotation at some constant rate about any fixed straight line
and a translation at constant speed in the direction of this straight
line. It follows from this definition that every helicoid has a one-
parameter family of motions into itself, namely the same family
of motions by which the surface is generated from the space curve.
The limiting cases mentioned above are obtained by setting either
the angular velocity or the translational velocity equal to zero. In
the first case the screw motion becomes a translation, and the curve
sweeps out a cylinder; in the second case we get a rotation, and
the curve sweeps out a surface of revolution.’

"That the helicoids are the only surfaces with one-parameter families of
rigid motions, follows from the fact that the rigid motions of a surface into
itself form a group. The screws with fixed ‘-axis and fixed pitch constitute the
most general one-parameter groups of motions in space, if the rotations about
the axis and the translations along the axis are again counted in as limiting cases.
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Leaving aside the limiting cases, an individual point of the generat-
ing curve traces out a helix. Thus the motions of the one-parameter
family of the helicoid move every point of the helicoid into an
arbitrary point of its helix. In the limiting cases, the helices reduce
to the generators of the cylinder and the circles of latitude of the
surface of revolution, respectively.

§ 33. Bendings Leaving a Surface Invariant

The eleventh property of the sphere led us to the question of what
surfaces are transformed into themselves by rigid motions. We
shall now generalize this question and consider the surfaces that
can be transformed into themselves by some bending. Let us suppose
that we have a model of such a surface and a perfectly flexible but
unstretchable piece of brass foil of such shape that it can be placed
snug against some part of the model in some position. Then it must
be possible to push the piece of foil along the model in some suitable
manner so as to keep it snug against the surface without tearing,
although it may change its shape.

While the possibility of transforming a surface into itself by a
rigid motion depends on the way it is imbedded in space, the prop-
erty of being bendable into itself is an intrinsic property, which
can neither be destroyed nor created by bending the surface.

Since the rigid motions are special cases of bending, the class of
surfaces with which we are now concerned certainly includes the
surfaces listed in the last section. Now it turns out that the surfaces
of the last section and those derived from them by bending already
constitute the most general surfaces that admit bending into them-
selves; in other words, our generalization of the condition does not
yield any essentially new class of surfaces. But the types of sur-
faces previously set up now acquire a different meaning. Thus we
must obviously adopt the point of view that the cylinders are not
essentially different from the plane, since every cylinder can be
obtained from the plane by bending. Similarly, the second limiting
case of helicoids, the case of surfaces of revolution, also loses its
special character. For, a portion of any helicoid can always be
bent into the form of a portion of a surface of revolution; this can
be achieved by simply bending the helicoid in such a way that one
of the helices on it becomes a circle—of course the helix, being
infinite in length, has to make infinitely many turns on the circle.
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Then the other helices also go over automatically into circles, and
all these circles have the same axis, so that the resulting surface
is indeed a surface of revolution whose circles of latitude are the
images of the helices on the original surface. An example of this
phenomenon is the way in which the right helicoid can be wrapped
around a catenoid, as described on page 210.

Leaving aside the analytic proof, we can easily give a heuristic
indication of why all the surfaces admitting a one-parameter
family of bendings into themselves can be brought into the form
of helicoids or surfaces of revolution, and why the helices and the
circles of latitude correspond to each other.

The intuitive argument runs as follows. Through every point of
a surface admitting a one-parameter family of bendings, there
must be a curve that consists of the totality of the images of the
point under all the bendings of the family. Hence the surface is
covered simply and completely by a definite family of curves that
are transformed into themselves by the bendings in question. If any
two of these curves are chosen at random, all the points on one of
these curves must have the same geodesic distance from the other
curve, since geodesic distance is not changed by bending. It follows
that every geodesic line perpendicular to one curve of the family
must also meet all the other curves of the family at right angles,
because the shortest distance measured along the surface from a
point of the surface to a curve on the surface is the geodesic that
passes through the point and meets the curve at right angles. Hence
every surface of the type under consideration contains an orthog-
onal net of curves of which one family is the family of curves
described above while the other consists of geodesics. Moreover,
along each curve of the first family the Gaussian curvature must
remain constant, because every point of the curve can be moved
to every other point of the same curve by the bending, and all bend-
ings leave Gaussian curvature invariant. In order to describe the
distribution of the Gaussian curvature over the whole of our sur-
face it is therefore sufficient to describe it as a function of arc
length along one of the geodesic curves of the second family.

But it is easy to construct surfaces of revolution for which the
Gaussian curvature is a prescribed function of the arc length of a
meridian. Since the meridians of the surfaces of revolution are
geodesics intersecting the circles of latitude at right angles, it is
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plausible, and is verified by computation, that the given surface
we have been studying can be transformed into all those surfaces
of revolution by bending and that the orthogonal net on the surface
constructed above goes over into the net of meridians and circles
of latitude in the process.

On the helicoids, the helices obviously have the same property
as do the circles of latitude on the surfaces of revolution: each helix
is the path traveled by a point when a length-preserving (isometric)
transformation of the surface into itself is carried out. If, there-
fore, a given helicoid and a given surface of revolution are mutually
applicable at all, the helices on the helicoid must necessarily corres-
pond to the circles of latitude on the surface of revolution.

A calculation shows that from any given helicoid we can obtain,
by bending, a two-parameter family of other helicoids and a one-
parameter family of surfaces of revolution.

Let us now consider the surfaces that are invariant under a
family of bendings with two or more parameters. The stipulation
that the family of bendings have at least two parameters is equi-
valent with the condition that every point of the surface be move-
able to every neighboring point of the surface. As a result, the
Gaussian curvature of such a surface must be constant. But all
the surfaces of constant positive Gaussian curvature (provided we
confine our attention to a sufficiently small portion of the surface),
can be applied to the sphere (cf. p. 204). Like the sphere, they
must therefore be invariant under a family of bendings with not
just two, but three, parameters. The same is true for the surfaces
of vanishing Gaussian curvature, since they can be developed into
the plane. It can be proved analytically that the surfaces of con-
stant negative Gaussian curvature also admit of three-parameter
families of bendings into themselves.

Thus all surfaces of constant Gaussian curvature have an impor-
tant intrinsic property in common with the plane. We shall devote a
detailed study to this in the sequel. The geometry of the plane can be
developed in such a way that its foundations and its most general
theorems apply not only to the plane but to all surfaces of constant
curvature. Then the distinction between the plane and the surfaces of
constant positive or negative Gaussian curvature only makes its ap-
pearance at a later stage of the development, at which geometry di-
vides into Euclidean geometry and the two non-Euclidean geometries.
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§ 34. Elliptic Geometry

The geodesic lines of the curved surfaces must be regarded as
the analogue of the straight lines of the plane. We proceed to ex-
amine this analogy more closely. The simplest constructions of
plane geometry are based on the drawing of straight lines and the
marking off of lengths and angles. But in attempting to adapt such
constructions to curved surfaces, we encounter a basic difference
at the very outset: In the plane constructions we used the plane
as a whole; but on the general curved surface we always considered
only small regions, in accordance with the point of view of differen-
tial geometry. Accordingly, we have to limit ourselves to construc-
tions which do not extend beyond the boundaries of the region of
the surface and which are thus analogous to constructions confined
to a small region of the plane.

On a sufficiently small portion of a curved surface, two points
not too close to the boundary can be connected by one and only one
geodesic line; this is analogous to the fact that in any region of the
plane, two points not too close to the boundary can be connected
by exactly one straight line lying in the region.!

Angles having geodesic lines as sides can be drawn and laid off
on any portion of a curved surface in the same way that angles
with straight lines as sides can be laid off in a plane region.

The marking off of geodesic segments of given lengths is also
subject to the same laws as that of straight-line segments in a
plane region.

But even in one of the simplest constructions consisting of all
three of these operations (the connecting of two points, the marking
off of angles, and the laying off of distances)—namely the construc-
tion of congruent triangles—the analogy in general breaks down.
Two plane triangles are called congruent if the vertices of one of
them can be paired off with those of the other in such a way that
corresponding angles and sides are equal. This concept can clearly
be applied to geodesic triangles in a region of a curved surface.
Suppose, now, that we are given a triangle A,B,C, in a region of
the plane as well as a point A, and that we construct two

* Except for regions whose boundary is everywhere concave toward the inside,
part of the segment connecting two points sufficiently close to the boundary may
lie outside the region.
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points B and C which are such that AB=A,B,, AC = A,C,, and
LBAC= / B,A,C,; then by the appropriate (side-angle-side)
theorem on congruent triangles, the triangle A BC is congruent to the
triangle A,B,C,; the only assumption we need to make here is that
the point A is far enough from the boundary of the region to make
it possible for all the constructions to be effected inside the region.

But if the analogous construction is made on a region of a
curved surface, then the geodesic arc BC will in general have a
length different from that of B,C,, so that the triangles ABC and
A,B,C, cannot possibly be congruent.

There is one case, however, in which the above theorem on con-
gruent triangles can be applied to geodesic constructions; this is
the case where the surface is of constant Gaussian curvature.
In this case the portion of the surface can be bent in such a way
that A, coincides with A and that the geodesic sides of the angle
B,A,C, coincide with the corresponding sides of the angle BAC.?
Owing to the invariance under bending of lengths and angles,
B, then coincides with B, and C, with C. Hence the triangles
A,B,C, and A BC must be congruent.

Now the axiomatic analysis of the geometrical constructions in
the plane reveals that all the theorems dealing with congruence of
figures are logical consequences of the above congruence theorem.
Therefore as far as the constructions referred to at the beginning
of this section are concerned, the geometry of surfaces of constant
curvature is completely analogous to the geometry of a region of
the plane.

In proving that the above congruence theorem remains true on
any surface of constant curvature, we made use of the three-
parameter group of bendings of these surfaces. But the logical
connection may also be reversed. If the side-angle-side congruence
theorem is true for the geodesic triangles of a given surface, it
follows that this surface admits of a three-parameter family of
isometric (length-preserving) maps into itself and hence that its
Gaussian curvature must be constant. To show this, we proceed as

? This can not always be accomplished by a continuous transformation, either
on curved surfaces or in the plane. We know that in the plane the mappings
that transform figures into congruent figures include the reflections. On the
surfaces of constant curvature different from zero, also, there are isometric
(length-preserving) mappings corresponding to the reflections (see the foot-
note on p. 257).
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follows. By virtue of the construction of triangles given above, we
can construct «3 triangles congruent to any given geodesic triangle
of sufficiently small dimensions. But if one triangle is given, all
measurements on the surface can be completely determined by the
marking off of lengths and angles and repeated application of the
side-angle-side congruence theorem, in accordance with the same
principles surveyors use in measuring the earth. To every congruent
displacement of the fundamental triangle there corresponds, there-
fore, a length-preserving mapping of the surface under consideration.

This proves that the surfaces of constant Gaussian curvature are
the only ones on which the above congruence theorem applies to all
the geodesic triangles.

In order to pursue this analogy with the
plane a step further, we shall try to do away
with the restriction to small portions of the
surface. We begin with surfaces of (con-
stant) positive Gaussian curvature. The
most obvious choice for such a surface is the
sphere. But by considering the sphere in its
entirety we destroy the analogy with the
plane at a decisive point. We recall that the
geodesics of the sphere are the great circles; now through two dia-
metrically opposite points there are infinitely many great circles,
whereas any two points in the plane have just one straight line con-
necting them. Furthermore, while two straight lines in the plane
have at most one point of intersection, two great circles of the sphere
always intersect in two (diametrically opposite) points. Yet no sur-
face of constant positive curvature other than the sphere can be
taken as an analogue of the plane—if only because all the other
surfaces of constant positive curvature have boundaries or singular
points (cf. pp. 227-228).

However, a simple abstraction enables us to eliminate this dis-
turbing property of the sphere. We limit ourselves to the surface
of a hemisphere on which we regard every diametrically opposite
pair of points of the boundary circle as a single point. In dealing
with a spherical figure that extends beyond the boundary circle
we shall, moreover, replace all the points lying outside our hemi-
spherical surface by the points diametrically opposite to them ; then
the latter points will lie on the given hemisphere (see Fig. 231).

Fiac. 231
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In this way, we get a set of points having all the desired
properties. First, every sufficiently small region can be mapped
isometrically onto a portion of the sphere. Second, the possibility
of laying off lengths and of connecting pairs of points by geodesic
lines is not limited by the existence of a boundary. Third, two
distinct points can be connected by one and only one geodesic line,
and no two geodesic lines have more than one point of intersection;
both of these last statements follow from the fact that every pair of
diametrically opposite points contained in our domain was treated
as a single point.

Our surface is referred to as a model of the elliptic plane, and
the analogue of plane geometry that governs this model is called
elliptic geometry. A second model of elliptic geometry is obviously
obtained if the whole surface of the sphere is used and every pair
of diametrically opposite points on it is treated as a single point.

We shall now study elliptic geometry. We shall refer to the great
circles simply as straight lines and to arcs of great circles as straight-
line segments (or simply segments). Then there are two conspicuous
differences between elliptic geometry and ordinary Euclidean geom-
etry. First, the straight lines of elliptic geometry are closed curves,
while the Euclidean straight lines extend to infinity. Second, two
elliptic straight lines always intersect in a common point, while
every Euclidean straight line has straight lines parallel to it, i.e.
straight lines that do not intersect it.

A complete understanding of the way in which elliptic geometry
is related to Euclidean geometry can be obtained only by beginning
with the axioms of Euclidean plane geometry and ascertaining for
each axiom whether it is valid in elliptic geometry or requires
replacement by a modified axiom. We have mentioned earlier the
axioms of incidence (pp. 114-115) and of continuity (pp. 129 and
130). Euclidean plane geometry can be built up on five groups of
axioms in all—the axioms of incidence, of order, of congruence, of
parallels, and of continuity. Underlying each group of axioms there
are certain concepts; for example, the axioms of incidence are based
on the concepts of point, straight line, and incidence. Some addi-
tional concepts are, in turn, only made possible by certain axioms;
for example, the concept of a segment or of a half-line is made
possible only by the axioms of order. The concept of a straight-line
segment forms, in turn, the basis for the axioms of congruence;
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thus the formulation of the axioms of congruence presupposes
certain of the axioms of order. We proceed to list the axioms of
Euclidean plane geometry.?

I. AXIOMS OF INCIDENCE

1. Two points have one and only one straight line in common.
2. Every straight line contains at least two points. 3. There are at
least three points not lying on the same straight line.

II. AXioMS OF ORDER

1. Of any three points on a straight line, one and only one lies
between the other two. 2. If A and B are two points, there is at
least one point C such that B lies between A and C. 3. Any straight
line intersecting a side of a triangle (i.e. containing a point lying
between two vertices) either passes through the opposite vertex or
intersects a second side.

The axioms of order enable us to define the concepts of ‘“‘segment,”
“angle,” “being on different sides of a point on a straight line,”
“half-line (ray),” and “being on different sides of a half-line in
the plane.”

III. AxioMS OoF CONGRUENCE

1. On a straight line a given segment can be laid off on either side
of a given point; the segment thus constructed is called congruent
to the given segment. 2. If two segments are congruent to a third
segment, then they are congruent to each other. 3. If AB and
A’B’ are two congruent segments and if the points C and C’ lying
on AB and A’'B’ respectively are such that one of the segments into
which AB is divided by C 13 congruent to one of the segments into
which A’B’ is divided by C’, then the other segment of AB is also
congruent to the other segment of A’B’. 4. A given angle can be
laid off in one and only one way on either side of a given half-line;
the angle thus drawn is called congruent to the given angle. 5. If
two sides of a given triangle are equal respectively to two sides of
another triangle, and if the included angles are equal, the triangles
are congruent,

* Cf. D. Hilbert, Grundlagen der Geometrie (7th ed.: Berlin, 1930). (English
translation in prep., New York, Chelsea Publishing Company.)
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IV. AXIoM OF PARALLELS

Through any point not lying a given straight line there passes
one and only one straight line that does not intersect the given line.

V. AXioMS OF CONTINUITY

The way in which these axioms are formulated varies a great
deal. We may state them, for example, as follows:

1. (Aziom of Archimedes, cf. p.130). Every straight-line segment
can be measured by any other straight-line segment. 2. (Cantor’s
axiom). Every infinite sequence of nested segments (i.e., a sequence
of segments such that each contains all the following ones) has a
common point.

In elliptic geometry, the axioms of incidence are obviously valid.
On the other hand, the axioms of order are not satisfied; for since

c the straight lines in elliptic geometry are closed

/] curves (like circles), we cannot say of three

points on a straight line that one and only one

of them lies between the other two. But in place

A of the relation of between-ness for three collinear

points, we can introduce into elliptic geometry a

relation of separation between four points, which

is subject to a group of axioms quite analogous

to the axioms of order. We cite the first of these axioms of sepa-

ration: Any four points on a straight line can be broken up in

one and only one way into two pairs that separate each other. (For

example, the points A4, B, C, D in Fig. 232 break up into the mutually
separating pairs AC and BD.)

Like the corresponding Euclidean axioms, the elliptic axioms of
separation also lead to the definition of a straight-line segment and
of the other concepts used in the axioms of congruence. But these
definitions must be based on the fact, analogous to the fact that
any circle is divided into two segments by any two points on it,
that two points A and B always define two segments rather than
just one. Only by recourse to a third point C of the straight line
AB can we distinguish between the two segments defined by A and
B; one segment consists of all those points that are separated from
C by A and B, and the other segment consists of the remaining points
of the straight line A B. Furthermore, it is necessary to stipulate

Vj
F1G. 232
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that none of the interior angles of a triangle shall exceed a straight
angle, as two sides and the included angle would otherwise deter-
mine not one triangle but two non-congruent triangles (Fig. 233),
so that the side-angle-side theorem on congruence would be violated.
If these restrictions are observed, it is found that the analogy with
a region of the Euclidean plane, which was our starting point, is
preserved on every sufficiently small portion of the elliptic plane,
and that the Euclidean axioms of congruence, and the axioms of
continuity as well, remain valid in the elliptic plane.

The parallel axiom, on the other hand, does not remain valid, but
has to be replaced by the axiom of incidence for the projective plane
that has already been mentioned on page 116: Two straight lines
have one and only one point of intersection.

With respect to ordering also, elliptic geometry behaves like pro-
jective geometry. In order to make this clear, we choose as our
model of the elliptic
plane the whole sphere
with every diametri-
cally opposite pair of
points treated as a
single point. If the
sphere is projected
from its center onto a
plane, then every point
of the plane corres-
ponds to one pair of diametrically opposite points of the sphere,
that is, to one point of the elliptic plane. To every great circle on
the sphere, that is, to every straight line of the elliptic plane, there
corresponds one straight line in the image plane. The correspond-
ence becomes one-to-one if the infinitely distant line of the image
plane is adjoined—if, in other words, the image plane is considered
as a projective plane.

Accordingly, the projective plane may be used directly as a model
for the elliptic plane, provided the equality of lengths and angles
is interpreted, not in the Euclidean sense, but in the sense indicated
above, that is, using the spherical trigonometry of an auxiliary
sphere. It follows that all the theorems of projective geometry deal-
ing with points of intersection, such as the theorems of Desargues
and Pascal, remain valid in elliptic geometry.

F1c. 233
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Let us consider the isometric mappings of the elliptic plane. As
in the Euclidean case, we may study the discontinuous groups of
these mappings. Every group of this kind is associated with a dis-
continuous group of isometric mappings of the sphere, and hence
with one of the regular polyhedra discussed in §§ 13 and 14. Con-
versely, every regular polyhedron gives rise to a discontinuous
symmetry group of the elliptic plane, and the central projections
of regular polyhedra shown in Figs. 160 to 163 and 165 to 168 pro-
vide some solutions of the problem of “tiling” connected with those
groups, which was formulated on page 81 for the Euclidean plane.

Elliptic geometry can be defined not only in the plane but also
in three-dimensional space. As a model for the points, straight
lines, and planes of the elliptic space, we may use the points, straight
lines, and planes of projective space. Comparison of lengths and
angles must again be carried out in a way different from that of
Euclidean geometry, and can only be described in analytic terms—
for example by central projection of a hypersphere in four-
dimensional space. The discontinuous symmetry groups of elliptic
space are connected with the regular polytopes in four-dimensional
space, and Figs. 173 to 176 may be interpreted as “tilings” of the
elliptic space.

§ 35. Hyperbolic Geometry, and its Relation to Euclidean and to
Elliptic Geometry

We shall now turn our attention to the surfaces of constant nega-
tive curvature. They do not include any such simple shapes as the

FiG. 234a F1c. 234b F16. 234c¢

sphere. The surfaces of revolution of constant negative curvature
can assume the three different forms illustrated in Fig. 234. We
note that all three of these surfaces have singular boundaries beyond
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which they cannot be extended continuously.? It has not been found
possible to date to give an explicit description for the totality of
surfaces of constant negative curvature, but it can be proved that
none of these surfaces can be free of singularities.

There are thus no surfaces in space which can be mapped iso-
metrically in the small onto a surface of constant negative curvature
and on which the drawing of geodesic arcs is nowhere obstructed by
boundary points. But in the plane it is possible to construct models
of such abstractly defined surfaces by these conditions in the same
way as it was possible to use the projective plane as a model of the
elliptic plane. In constructing our model, we have to introduce the
measurement of distances and angles in a way different not only
from those followed in Euclidean Geometry but also from those
followed in elliptic geometry. The surface which it is our aim to
represent by our model is called the hyper-
bolic plane, and the geometry on this surface
is called hyperbolic geometry.

We shall take as points of the hyperbolic
plane the points in the interior of a circle
in an ordinary plane, and as hyperbolic
straight lines we shall take the chords of this
circle (end-points excluded).

These definitions will serve our purpose,
since any portion of an arbitrary surface F of constant negative
curvature —1/¢? can be mapped into a plane region G in the interior
of the circle in such a way that all the geodesics of F' are mapped
into the straight-line segments lying in G. Since the curvature of
G is zero, while F" has negative curvature, the map can not, of course,
be isometric. If A, B (Fig. 285) are the images of two points
P, Q of F and if R and S are the extremities of the chord that passes
through A and B, then the geodesic distance s between the points
P and Q is given by the formula

Fi1c. 235

AR-BS

() s=—;—"logBR-AS
We shall use the right-hand side of equation (1) as the definition
of “hyperbolic distance” for all pairs of points AB in our model.

'In Fig. 234b only the lower boundary is singular. In the upward direction
the surface extends to infinity, the circles of latitude at the same time becoming
smaller and smaller.
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Similarly, the map F — G gives us a definite way of measuring
“hyperbolic angles,” which differs from the Euclidean way of meas-
uring angles. For example, the perpendicular & from a point A
of the hyperbolic plane to a straight line g is obtained by connecting
A with the auxiliary point P constructed in Fig. 236. It is clear
that the Euclidean angle between &

and g is, in general, not a right angle.

Let us check to see which of the

J axioms of Euclidean geometry remain
valid in the hyperbolic plane. First

] of all, it is evident that the axioms of
incidence hold. Furthermore, we see
that the axioms of order will also hold
if we simply define the relation of
“between-ness” for three points to be the same as in the model. We
now define as the segment A B, the points of the Euclidean straight-
line segment joining A and B in the model. Then we base the defini-
tion of congruence for segments on formula (1). Now consider the
side-angle-side axiom of congruence. We might get the impression
that the possibility of laying off segments at will would sometimes
be obstructed by the circumference of
the circle, so that the axiom would not
hold. In actual fact, however, the cir-
cumference is never reached if we lay
off segments in accordance with the defi-
nition (1) for distances. For, given a
straight-line segment A B and a half-line
h issuing from the point A’ in the in-
terior of the circle (see Fig. 285), the
point B’ on k for which A’ B’ is to be equal
Fie. 237 to AB must, by (1), satisfy the relation
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AR BS _ A'R’ B'S
BR AS ~ B'RA’S
or
2 B'S' _ A'S' AR BS
( B’R"~ A’R’ AS BR"

Since the three points A’, A, and B lie in the interior of the circle,
all three ratios on the right-hand side of (2) are negative. Hence
B’S’/B’R’ is negative too, which means that B’ is inside the circle,
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as stated. If we keep laying off the same length repeatedly along a
straight line, then we approach the circumference of the circle,
getting nearer and nearer to it without ever reaching it (see Fig.
237). In our model of hyperbolic geometry, the circumference of
the circle plays a role analogous to that of the infinitely distant line
in Euclidean geometry.

From the foregoing argument it follows that the side-angle-side
axiom of congruence holds in the hyperbolic plane. It is clear that
the second, third, and fourth axioms of congruence are also valid.

As we have mentioned in § 34, the fifth axiom of congruence is
equivalent to the existence of a sufficiently inclusive group of map-
pings that transform the interior of the circle into itself in such a
way that straight lines are mapped into straight lines and that
distances and angles are preserved. In plane projective geometry
it is proved that such a group really exists.

(Our maps are among the projective
transformations of the plane and may be

obtained graphically by a repeated appli-

cation of central projection.) Thus all the ‘ A
axioms of congruence are valid in hyper- "‘
bolic geometry. It is easy to see that the V \
axioms of continuity are satisfied as well. d

Only one axiom of Euclidean geometry
is not valid in the hyperbolic plane: The
axiom of parallels. That this axiom does
mnot hold is apparent from Fig. 238. If P is a point and g is any
straight line not incident with P, there is a whole pencil of straight
lines through P that do not intersect g. Thus while in elliptic
geometry not only the axiom of parallels but also the Euclidean
axioms of order are not valid, the only way in which hyperbolic
geometry differs from Euclidean geometry is that the axiom of
parallels is not valid.

For this reason, our model is of fundamental importance.
Throughout the middle ages and up to the beginning of the 19th
century, efforts were made in vain to prove the axiom of parallels
on the basis of the other axioms of Euclid. The discovery of a model
of hyperbolic geometry revealed the inherent impossibility of such
a proof. For in our model all the geometrical axioms with the excep-
tion of the axiom of parallels are satisfied. If the axiom of parallels

F1a. 238
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could be deduced logically from the other axioms, then it would
also have to hold true in our model, which is not the case.

Hyperbolic geometry and elliptic geometry are referred to as the
two non-Euclidean geometries. As regards the distribution of
values of the Gaussian curvature, it is found that Euclidean geom-
etry plays the role of a transitional case between elliptic and hyper-
bolic geometry, which it does in other respects as well. Thus the
hyperbolic plane was obtained from the Euclidean plane by remov-
ing the points of the circumference and exterior of a circle, whereas
the points of the ideal line had to be added to the Euclidean plane in
order to complete the elliptic plane. Furthermore, if a straight line
and a point not on the line be given, there is no line passing through
the point and parallel to the fixed line in elliptic geometry ; there is
just one in Euclidean geometry; and there are infinitely many in
hyperbolic geometry. An especially neat characterization of the
three geometries is found by considering the sum of the angles in a
triangle. In Euclidean geometry, this sum is equal to =; in elliptic
geometry, it is greater than n; this follows from certain well-known
theorems of spherical trigonometry. In the hyperbolic plane, on
the other hand, the sum of the angles is always less than n. We
shall give a heuristic proof for this last result later on.

According to this result, the theorem of Euclidean geometry that
the angles of any triangle add up to n, can not be proved without
recourse to the axiom of parallels; for otherwise the theorem would
also have to be true in the hyperbolic plane. On the other hand,
any theorem of Euclidean geometry that is true in hyperbolic
geometry as well, can certainly be proved without the Euclidean
axiom of parallels. An example of such a theorem is the theorem
that every exterior angle of a triangle is greater than each of the
two opposite interior angles. On the other hand, it is readily seen
from a consideration of spherical triangles that this theorem is not
true for elliptic geometry. It follows that the proof of this theorem
involves the Euclidean axioms of order.

An example of a theorem that is true in all three geometries is
the theorem that the base angles of an isosceles triangle are equal.
The proof of this theorem requires neither the Euclidean axioms
of order nor any assumptions about parallelism.

We have mentioned that the projective theorems on incidence,
such as Desargues’ theorem, are valid in the elliptic plane. In the
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Euclidean plane, Desargues’ theorem, like all the other theorems on
incidence, is true only if the ideal points are included. In the hyper-
bolic plane, a unified formulation of the theorems on incidence is
possible only if two kinds of ideal points are adjoined—points cor-
responding in our model to the points of the circumference of the
circle and points corresponding to the points in the exterior of the
circle. For example, it is clear that, if a Desargues configuration
in the plane is given, we can always draw the fundamental circle
of our model of the hyperbolic plane in such a way that nine points
of the configuration are interior to the circle and that the tenth
point is on the circumference of or exterior to the circle. Because
the configuration is regular, we may regard the tenth point as the
Desargues point; the figure can then be interpreted as a pair of
hyperbolic triangles with pairs of corresponding sides intersecting
at points of one hyperbolic straight line. By Desargues’ theorem,
the lines connecting pairs of corresponding points pass through a
common point, and yet we know that these straight lines do not
have an interior point of the circle in common.

If we attempt to give a direct proof of Desargues’ theorem in the
hyperbolic plane, without recourse to our model, then we are faced
with difficulties similar to those in Euclidean and projective geom-
etry. The theorem can be proved with the use of the axioms of
congruence. To prove it without them requires auxiliary three-
dimensional constructions. This rests on the fact that there is also
a hyperbolic geometry of space: A model of the “hyperbolic space”
can be obtained by using the points, straight-line segments, and
plane regions in the interior of a sphere as points, straight lines,
and planes, respectively, and defining the distance between two
points in a way analogous to what we did in the plane model.

We mentioned above that the sum of the angles of any tri-
angle in the hyperbolic plane is less than n. This theorem is not
evident from observation of our model, because the hyperbolic
angles are not the same as the Euclidean angles. In the next sec-
tion we shall remedy this weakness by constructing another model
of the hyperbolic plane from the first model in such a way that
the new model reproduces hyperbolic angles without distortion.
The construction is based on a simple technique of elementary
geometry: the theory of stereographic projection and circle-
preserving transformations.



248 1V. DIFFERENTIAL GEOMETRY

§ 36. Stereographic Projection and Circle-Preserving Transforma-
tions. Poincaré’s Model of the Hyperbolic Plane

Consider a sphere resting on a horizontal plane (Fig. 239). Let
us project the sphere onto the plane from the highest point N
(“north pole”) of the sphere. The map of the sphere (P'— P in

= —
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Fig. 239) produced in this way is called a stereographic projection.
The entire surface of the sphere with the exception of the point N
is mapped onto the entire plane. The image plane is parallel to the
plane n tangent to the sphere
at N. Furthermore, if p’ is the
plane tangent to the sphere at
P’ (Fig. 240), then it follows,
from the perfect symmetry of
the sphere, that the two planes
n and p’ form equal angles with
the straight line NP’ joining
their points of contact, and that
the line of intersection of n and
p’ is perpendicular to N P. Since
n is parallel to the image plane,
the image plane also forms the same angle as does p’ with the project-
ing ray PP’, and it intersects p’ in a straight line perpendicular to
PP’. This gives rise to several visually evident properties of stereo-
graphic projection. First, if 7’ is a tangent to the sphere at P’ (see
Fig. 241) and r is the image of 7/, then » and 7’ form equal angles

Fi1c. 240
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with PP’. For, r is obtained as the intersection of the image plane
with the plane containing +* and NP’; but if two straight lines r
and 7’ are the respective intersections of a plane e with two planes

p and p’ where e contains PP’ and where p and p’ form equal angles
with the straight line PP’ and intersect in a straight line perpen-
dicular to PP’ (see Fig. 242), then r and ' also form equal angles

with PP’. The same con-
sideration of symmetry
gives us the following addi-
tional result: If s’ is an-
other tangent to the sphere
at P’ and if s is its image,
then the angle formed by
r and s is equal to the angle
formed by 7’ and s’. Thus
stereographic projection
reproduces the angles on
the sphere without distor-

F1gG. 242

tion. For this reason, the mapping is called angle-preserving, or

isogonal ; another term is conformal.

Now let k¥’ be an arbitrary circle lying on the sphere and not
passing through N (Fig. 243). The planes tangent to the sphere
at the points of k' envelop a circular cone, whose vertex we shall
call S. Since &’ does not pass through N, NS is not tangent to the
sphere at N and is therefore not parallel to the image plane; let M
be the point at which N S intersects the image plane. We shall prove
that the curve k that is the image of ¥’, is a circle with M as center.
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The proof is apparent from Fig. 243. If P’ is an arbitrary point
of &’ and P is its image, then P’S is tangent to the sphere at P’ and
PM is the image of P’S. Hence / PP'S = / P’PM. Through S we
draw the line parallel to PM; let P” be the point at which it
intersects NP. Then either P” coincides with P’, or the triangle
P’P”S has equal angles at P’ and P” and is thus isosceles:
SP'—=SP”. But now PM/P'S=PM/P”"S=MN /SN, so that
PM=PS-MN/SN. P’S is constant, because S has the same
distance from all the points of K’. Hence it follows from the last
formula that PM is constant too. In other words, k& is a circle with
center M.

Thus the stereographic projection of the sphere onto the plane

Fic. 243

maps those circles on the sphere that do not pass through N onto
circles in the plane; and by reversing the preceding argument we
can see that every circle in the image plane is the image of a
circle on the sphere. If a circle that is free to move on the sphere
approaches a circle passing through N, then NS approaches a
tangent to the sphere at N, and thus M recedes to infinity. It follows
that the images of the circles on the sphere that pass through N
are straight lines of the image plane. This fact is obvious even
without the limiting process, since the projecting rays of a circle
that lies on the sphere and passes through N lie in the plane of the
circle, so that the straight line forming the intersection of this plane
with the image plane is the image of the circle. Thus we see that
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under stereographic projection the set of all circles on the sphere
corresponds to the set of all circles and straight lines in the plane.
Stereographic projection is circle-preserving.

Now consider any mapping a’ of the sphere onto itself that maps
all the circles of the sphere into circles; for example, a’ may be a
rotation of the sphere about any diameter (not necessarily one that
passes through N). As a result of the stereographic projection, the
mapping a’ gives rise to a mapping a of the image plane into itself
which maps the set of all circles and straight lines into itself. Any
such map of the plane into itself is called a circle-preserving
transformation.

In the Euclidean plane, the circle-preserving transformations are
not in general one-to-one, since under stereographic projection no
point of the plane corresponds to the point N of the sphere. Now,
the mapping @’ of the sphere will not in general leave the point N
fixed but will transform some other point P’, whose stereographic
image we shall call P, into N. Then the point P of the plane has
no image under the circle-preserving transformation a correspond-
ing to a’. In order to avoid having to make exceptions under the
mapping process, we proceed as in projective geometry, by making
an abstract extension of the Euclidean plane. But while the pro-
jective plane was constructed by supplementing the Euclidean plane
with a whole family of “infinitely distant” points, the extension
made in the theory of circle-preserving transformations consists in
supplementing the Euclidean plane by a single “infinitely distant”
point U which is regarded as the image of N under the stereographic
projection. As a result of this extension, the relation between the
plane and the surface of the sphere becomes one-to-one and con-
tinuous, and the circle-preserving transformations become one-to-
one mappings; in the example given above, the point P is mapped
by the circle-preserving transformation a into U. The correspond-
ing mapping @’ of the sphere into itself obviously transforms the
circles passing through P’ into the circles passing through N ; hence
a maps the circles passing through P into the straight lines of the
plane. Accordingly, it is found expedient to regard the straight lines
as “circles passing through the infinitely distant point.” The
images of parallel straight lines under a circle-preserving trans-
formation are either themselves parallel straight lines, or mutually
tangent circles.
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We have some trivial examples of circle-preserving transforma-
tions in the rigid motions, reflections, and similarity transformations
of the plane; these transformations map the Euclidean plane one-
to-one into itself ; hence if we enlarge the plane by adjoining U, we
may say that these transformations are circle-preserving trans-
formations leaving U fixed. But it may also be proved, conversely,
that the three types of plane transformation just mentioned are
the only circle-preserving transformations leaving U fixed. On the
basis of this theorem, we may readily obtain an exhaustive descrip-
tion of all the circle-preserving transformations of the plane.
Consider a given circle-preserving transformation a,. Let P be

FIG. 244a

the point of the plane whose image under a, is U, and let P be the
stereographic image of the point P’ of the sphere. We now subject
the sphere to a rotation a’ transforming P’ into N. There corres-
ponds to the rotation a’ a certain circle-preserving transformation,
and the properties of this transformation are connected with the
properties of a’ in a way that is easy to describe in graphical terms.
Like a, the given transformation a, moves P to U, so that the trans-
formations a, and a can differ only by a circle-preserving trans-
formation that leaves U fixed. It follows, by the theorem we have
just cited, that a, is identical with a except for a possible rigid
motion, reflection, or similarity transformation.

We have mentioned earlier that stereographic projection is angle-
preserving. Also, the rotation a’ is an angle-preserving transforma-
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tion of the sphere, and since a is obtained from a’ by a stereographic
projection, a must therefore be an angle-preserving transformation
of the plane. Since a, and a differ at most by an angle-preserving
transformation, it follows that all circle-preserving transformations
are angle-preserving.

Figs. 244a and b elucidate the relation between the maps a and «’
by exhibiting prominently a circle k in the plane that passes through
P and is the stereographic image of a great circle ! of the sphere.
Under «/, | is transformed into a great circle » that passes through
N and has the straight line g as its image. Thus a transforms k&
into g. From the figures it is plain, moreover, that the interior and
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the exterior of k£ are transformed respectively into the two half-
planes bounded by g, which is in any case evident from considera-
tions of continuity.

. The reflection u of the plane in g is a circle-preserving transforma-
tion. Hence the mapping 1= aua~—! is a circle-preserving trans-
formation that leaves every point of the circumference of k fixed and
interchanges the interior with the exterior of the circle. The mapiis
called an inversion in the circle k, or a reflection in the circle &, or a
plane transformation by reciprocal radii. This transformation is par-
ticularly important, and we shall therefore discuss it in some detail.

Let % be a circle intersecting & at right angles at a point R (see
Fig. 245). Then h and k have a second point S of intersection at
which they are also perpendicular. Then the tangents to 2 at R
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and S are radii of k£ intersecting at the center M of k, which is
therefore exterior to A. The inversion 7 transforms & into a circle &/,
and this circle must also pass through R and S, because R and S
remain fixed. Since the inversion is angle-preserving, &’ intersects
the circle k£ at R and S at right angles. But this is possible only if
k' is identical with h. Hence every circle k that intersects & at right
angles is transformed by ¢ into itself. Since the interior and exterior
of k are interchanged, the two arcs into which %k divides A must
also be interchanged.

Consider a straight line ! passing through M, for example the
straight line RM. Let its second point of intersection with k& be R’
(see Fig. 245). Then I must be trans-
formed into a circle or straight line I
meeting k at right angles at R and R’.
This is possible only if I’ is identical
with [. Accordingly, the inversion
transforms each diameter of % into
itself. Since the only points that these
straight lines have in common in the
enlarged plane are M and the infinitely
distant point U, it follows that the inversion interchanges M with U.
The totality of straight lines not passing through M is therefore
interchanged with the totality of circles passing through M.

Now let P be a point of & different from R and S. The image of P
under the inversion ¢ can only be at the second point @ of inter-
section of the straight line M P with h, because M P and k are each
mapped into themselves. By the elementary theorem about inter-
secting chords of a circle, we have MP-MQ = MR?. Q is called
the inverse point of P with respect to the circle k. Thus we
have found a method of determining the inverse of any point P
with respect to £ without the use of the auxiliary circle h: If r is
the radius of k, the inverse Q of the point P is that point on the
ray M P for which MP-MQ = r2.

It may be proved that every circle-preserving transformation can
be expressed as the resultant of at most three inversions. We shall
consider, in particular, the totality of circle-preserving transforma-
tions that transform a given circle & into itself and also the interior
of k into itself. Evidently these maps constitute a group, which we
shall call H. If n is a circle cutting k at right angles, the inversion

F16. 245
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in n certainly belongs to H. It can be proved that every map of the
group H can be produced by three inversions in circles perpendicular

FIG. 246

to k&, that is, by three inversions which themselves belong to H.
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We now proceed to tie this discussion in with the model of the
hyperbolic plane constructed in the previous section. Let the hyper-
bolic plane be represented by the interior of a circle m lying in a
horizontal plane. Let us place on the plane a sphere having the
same radius as m and touching the plane at the center of m (see
Fig. 246). We now project the circumference and the interior of m
by vertical parallel projection onto the lower hemisphere bounded
by the great circle I congruent to m. By virtue of this projection,
the hemisphere has become a new model of the hyperbolic plane.
Every chord g of m is projected into a semicircle v of the sphere
meeting ! at right angles, so that these semicircles now are to be
considered as images of the hyperbolic straight lines. We now map
the hemisphere back into the plane by stereographic projection.

The image of the hemisphere under this

projection covers the interior of a circle

k, which thus becomes a new model of

the hyperbolic plane. Because of the

angle-preserving and circle-preserving
S nature of the stereographic projection,
the semicircles » have in this model be-
become circular arcs » perpendicular to
the circle k. Here and in what follows
we have to include the diameters of k as
limiting cases in this class of circular arcs.

This new model is due to Poincaré. Let us examine it in a little
more detail. From our derivation it follows that there is a one-to-
one correspondence between the set of all circular arcs perpendicular
to k£ and the set of all chords of another circle m. Hence any two
points A and B in the interior of ¥ can be connected by one and
only one circular arc perpendicular to k. If R and S are the points
where this arc connecting A and B meets k (Fig. 247), the hyper-
bolic distance between A and B can be obtained from formula (1)
of page 243. For if A’, B’, R’, S’ are the points of the original model
that give rise to A, B, R, and S under the construction described
above, then it can be deduced from theorems of projective geometry
that the following relation holds:

R
Fiac. 247
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This gives us the following formula for the hyperbolic distance s of
A and B in our new model :

AR .-BS
(2) s=c‘logm’.

Now every rigid motion of the hyperbolic plane into itself must be
associated with a mapping a of the interior of k into itself transform-
ing into itself the set of circular arcs perpendicular to k. It is plaus-
ible, and it is easy to prove rigorously, that this mapping is a circle-
preserving transformation, which means that it belongs to the group
H considered above. In addition, it can be proved that the group H
is even identical with the group of all hyperbolic rigid motions.?
Being circle-preserving, the transforma-
tions belonging to H leave angles in-
variant; but at the same time they are
hyperbolic rigid motions and there-
fore leave hyperbolic angles invariant.
Consequently, the Euclidean angles in
Poincaré’s model are equal to the hyper-
bolic angles multiplied by a fixed propor-
tionality factor, and since the angle 2x
of a full rotation is obviously reproduced
in the hyperbolic plane without change,
the factor must be unity. Thus Poincaré’s model preserves angles.

By means of analytic methods, a formula can be set up by which
an angle-preserving mapping can be effected directly from a given
portion of a surface of constant negative curvature to a portion of
the plane interior to k such that the geodesic lines are mapped into
the circular arcs perpendicular to k.

We are now in a position to fill in the proof of the theorem stated
on page 246, that in hyperbolic geometry the sum of the angles of any
triangle is less than =. We begin with an arbitrary triangle ABC
in Poincaré’s model of the hyperbolic plane (Fig. 248). We know
that the axioms of congruence are valid in the hyperbolic plane.

Fi1G. 248

* Here the category of rigid motions is taken to include all maps of the
hyperbolic plane that preserve distances, even if they cannot be effected con-
tinuously. A simple rigid motion that cannot be effected continuously, is repre-
sented by any inversion contained in H; this is a “reflection’” of the hyperbolic
plane in a straight line. By the remark on page 254, every hyperbolic rigid
motion can be expressed as the resultant of at most three reflections.
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According to these, we can draw a triangle A’B’M congruent to
ABC, in which the point corresponding to C is the center M of k.
On page 253 we saw that every circle perpendicular to k that passes
through M is bound to degenerate into a diameter of k¥ and that M
is exterior to all the other circles that meet k at right angles. In our
model, therefore, the hyperbolic straight lines A’ M and B’ M are rep-
resented by Euclidean straight lines, while the hyperbolic straight
line A’B’ is represented by a circular arc to which M is exterior.
The Euclidean angles at A’ and B’ are therefore smaller in the tri-
angle A’B’M’ formed by two straight lines and a circular arc than
they are in the rectilinear triangle A’ B’ M, and it follows that the sum
of the angles in the former triangle falls short of n. Since the model
preserves angles, the same is true for the sum of the hyperbolic angles
in the hyperbolic triangle A’ B’ M and in the congruent triangle ABC.

In considering the hyperbolic rigid motions, it is natural to look for
discontinuous groups of such motions. In the case of elliptic geom-
etry we saw that the study of this problem boiled down to the study
of the regular polyhedra and that there are only a few discontinuous
groups in the elliptic plane. In Euclidean geometry it was already
more difficult to obtain all the discontinuous groups. In the hyper-
bolic plane we find that the discontinuous groups are far more
numerous than even in the Euclidean plane. All these discontinuous
groups of hyperbolic rigid motions are represented in Poincaré’s
model by groups of circle-preserving transformations contained in
H as subgroups.

These groups play a role in the theory of functions. Of special
importance among them are the groups of “hyperbolic translations.”
By hyperbolic translation is meant any hyperbolic rigid motion that
can be obtained continuously from the identity and that leaves no
point fixed. In plane elliptic geometry there are no rigid motions
analogous to this, since every rigid motion in the elliptic plane has
a fixed point. In Euclidean geometry, the analogue of the hyper-
bolic translations are the ordinary translations. But the composition
of hyperbolic translations does not follow any such simple law as
does the composition of Euclidean translations, since uniqueness of
parallels is lacking in the hyperbolic plane.

We shall limit our attention to those discontinuous groups of
hyperbolic translations that have closed unit cells. Their Euclidean
analogues are the translation groups having parallelograms as unit
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cells. In a hyperbolic translation group with closed unit cell, the
unit cell can never be a quadrangle. On the other hand, the number
of corners of the cell can be any number divisible by four, except
four itself. Fig. 249 indicates the tiling of the hyperbolic plane by
unit cells in the case where they are octagonal, the hyperbolic plane
being represented by Poincaré’s model. Of course, we cannot depict
the tiling of the whole plane, since the octagons composed of circular
arcs get more and more crowded as we approach the boundary of
the circle. In our unit cell, as in the case of the fundamental
parallelogram of a Euclidean translation group, the sides come in
pairs that are equal in length and equivalent; in Fig. 249 this divi-
gion into pairs is indi-
cated for one of the unit
cells. The vertices of all
the unit cells drawn in
the figure have been num-
bered, corresponding
vertices of different unit
cells being identified by
the same numbers. It is
seen that we come across
each of the numbers
exactly once in going
around any vertex. It
follows that the sum
of the angles of a unit
cell must be 2n. In the
representations of all the
other groups too, the arrangement of the unit cells is analogous.
Hence the sum of the angles of a unit cell is 2z in every case.
Furthermore, the sides must be equal in pairs, the arrangement
into pairs being made according to a certain rule which we shall
not discuss here; in all other respects, the fundamental region may
be formed arbitrarily. The fact that the angles always add up to 2=
is the reason why the unit cells can never be quadrangles. For, the
sum of the angles of a hyperbolic quadrangle is always less than 2x,
as is easily seen by dividing the quadrangle into two triangles.

A far greater variety yet is that of the groups of hyperbolic trans-
lations with open unit cell. One of these groups is made use of in
the theory of the elliptic modular function.
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§ 37. Methods of Mapping. Isometric, Area-Preserving, Geodesic,
Continuous, and Conformal Mappings

We have on various occasions mapped surfaces onto each other
using various types of mappings—for example, central projection
or mapping by parallel normals. It is our object in this section to
survey and compare the most important kinds of mappings.

The most faithful image of a surface is obtained by an isometric,
or length-preserving, mapping. Here the geodesic distance of any
two points is equal to the geodesic distance of their image points,
all angles remain unchanged, and geodesic
lines are mapped into geodesic lines. As
was mentioned somewhat earlier, two
arbitrary surfaces can not, as a rule, be
mapped into each other isometrically, be-
cause the Gaussian curvatures at corres-
ponding points of two surfaces related by
an isometric mapping must be equal.
Hence the only surfaces that can be mapped
isometrically into a part of the plane are
surfaces whose Gaussian curvature is
everywhere zero; this excludes, for ex-
' ample, any portion of a sphere. Every

)

geographical map, consequently, can not be
D free of distortions.

Less accurate—but also less restrictive—
are the area-preserving mappings. They
are defined by the condition that the area
enclosed by every closed curve be equal to the area enclosed by the
image of the closed curve. It is plausible, and may be proved without
difficulty, that this condition will be satisfied for all closed curves
if it is satisfied for all “infinitesimal”’ closed curves. Hence the area-
preserving maps can be easily characterized in terms of differential
geometry.

Area-preserving maps are frequently used in geography. There
is a simple method of producing area-preserving mappings of por-
tions of the sphere into portions of the plane. Around the sphere
we construct a cylinder of the same radius (Fig. 250). Then we
project the points of the sphere onto the cylinder along the normals

F1a. 250
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of the cylinder. If the cylinder is now slit open along a generator
and developed into the plane, the result is an area-preserving image
of the sphere in the plane, as may be verified by calculation. The
image is obviously more distorted the further we are from the circle
along which the cylinder touches the sphere.

Another type of mapping of importance for geography, and
especially for charts used in navigation, are the geodesic maps. In
this case it is required that the geodesics of one surface be mapped
into the geodesics of the other. Thus the isometric mappings are a
special case of geodesic mappings. Another case of a geodesic
mapping was considered in the study of elliptic geometry: If a
sphere is projected from its center onto the plane, then the great
circles are mapped into the straight lines of the plane, and the map
is therefore geodesic. At the same time, this gives us a geodesic
mapping of all surfaces of constant positive Gaussian curvature
into the plane, because all of these surfaces can be mapped iso-
metrically into spheres. All the surfaces of constant negative
Gaussian curvature can also be mapped into the plane by a geodesic
mapping. This is effected by means of the model of the hyperbolic
plane described in § 35.

It can be proved that no surface other than the surfaces of constant
Gaussian curvature can be mapped geodesically onto the plane. How-
ever, the general problem of when two curved surfaces can be mapped
geodesically onto each other involves more difficult calculations. The
generalization of this problem from surfaces to spaces of three and
more dimensions plays a certain role in modern physics, because the
trajectories of material points are regarded in the general theory of
relativity as geodesic lines of a four-dimensional continuum.

The most general mappings that are at all comprehensible to
visual intuition are the continuous mappings. The only condition
here is that the mapping be one-to-one and that neighboring points
go over into neighboring points. Thus a continuous mapping may
subject any figure to an arbitrary amount of distortion, only it is
not permitted to tear connected regions apart or to stick separate
regions together. This great generality notwithstanding, the con-
tinuous mappings do not make it possible to map any two arbitrary
surfaces into each other. An example of two surfaces that can not
be mapped into each other continuously are the circular disk and
the plane annulus bounded by two concentric circles (Fig. 251).
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Indeed, we cannot even map the boundaries of these two surfaces
onto each other continuously, since the circular disk is bounded by
one connected curve while the annulus has two separate curves as
its boundary.

The question of when two surfaces can be mapped onto each
other by a continuous mapping is one of the problems of tcpology,
a subject we shall treat of in the last chapter. Clearly, the class of
continuous mappings embraces all the types of mappings we have
been discussing. Thus a geometrical mapping will yield useful
results only to the extent that it is continuous. For example, the
mapping given in Fig. 250 maps portions of the surface of the
sphere into regions in the plane in such a way as to preserve areas.
Evidently the entire surface of the sphere is mapped onto a rect-
angular region. Here it is seen that the mapping ceases to be
meaningful visually on the boundary of the rectangle, since it is
no longer continuous there. It is true that in the modern develop-
ment of topology some even more general mappings have been
considered that are not one-to-one but are single-valued, and con-
tinuous, in one direction only; for example, mappings of a portion
of a surface into a segment of a curve.

A type of mapping that has been the subject of a more thorough
investigation than any other mapping mentioned so far, is that of
the angle-preserving (or conformal) mappings. The defining con-

dition for such mappings is that the angle at which

@ @ two curves intersect be reproduced without distor-

tion. The simplest example of conformal mapping,

apart from the isometric mappings, are stereo-

graphic projection and the circle-preserving trans-

formations. An angle-preserving transformation that maps surfaces

of negative Gaussian curvature into the plane is represented by
Poincaré’s model of the hyperbolic plane.

The angle-preserving transformations have a certain property in
common with the isometric transformations: It can be proved
analytically that very small figures suffer hardly any distortion at
all under angle-preserving transformations. Specifically, not only
are angles preserved, but the ratios of distances—although not the
distances themselves—are preserved approximately, and as the
gize of the figure under consideration decreases, the accuracy of
approximation increases. The term conformal stems from this

FiG. 251
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property. In the small, the conformal mappings are thus the nearest
thing to isometric mappings among all the types of mappings we
have been describing; for it is clear from our examples that, even
in arbitrarily small figures, area-preserving and geodesic mappings
may bring about arbitrarily great distortions.

Whereas isometric mappings are very limited in their applica-
bility, conformal mappings are highly adaptable as regards appli-
cability. And it is mainly its great applicability that has made
conformal mapping central in many fertile geometrical investiga-
tions. The simplest problem in this connection, namely the problem
of when two plane regions can be mapped conformally into each
other, leads to a geometric interpretation of the complex numbers.
This question is treated of in geometrical function theory.

§ 38. Geometrical Function Theory. Riemann’s Mapping Theorem.
Conformal Mapping in Space

Let a Cartesian coordinate system in the plane be given. With
every point P having coordinates x, ¥, we associate the complex
number z—=x + iy. This yields a one-to-one correspondence be-
tween the complex numbers and the points of the plane. It is found
expedient to complete this correspondence by adjoining to the plane
a point at infinity P. in the same way as we did in the theory of
circle-preserving transformations, and to associate the ‘“number”
o with this point. This graphical model of the complex numbers
is called the complex plane.

In this way, all mappings from one region of the plane into an-
other become correspondences between complex numbers. As a
simple example, let us consider the relation w =az + b, where
a and b are any complex constants subject only to the condition
a = 0. Given any complex number z, we consider the point asso-
ciated with w = az + b as the image of the point associated with z.
The mapping of the plane into itself obtained in this way turns out
to be nothing but a similarity transformation. Conversely, all those
similarity transformations that can be generated continuously from
the identity transformation can be obtained by assigning to the
numbers a and b all complex values except a = 0. The similarity
transformations that cannot be continuously generated from the
identity transformation in the plane itself but involve a reflec-
tion (or folding over) of the plane, correspond to the equation
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w=az + b, where Z denotes the complex conjugate x —iy of
Z=ua + iy. The proof of these theorems is elementary.

The circle-preserving transformations that do not leave P, fixed
are represented by the fractional linear transformations

(1) w=;’:j:z c+0, ad—bc+0),

provided we take only those circle-preserving transformations that
can be continuously generated in the plane from the identity trans-
formation. The remaining circle-preserving transformations are
obtained by replacing z by z in (1). For example, the inversion in
the circle k¥ with center at the origin and radius 1 is represented
by the formula w =1/z. For,

. 1
w=u+w=§=——. =

and therefore

R

If M, P, Q are the points whose coordinates are (0, 0), (x, ¥), and
(u, v), so that P and Q are the points associated with the numbers
z and w, then it follows from (2) that P and @ both lie on the
same ray emanating from M and that the distances M P and MQ
satisfy the condition MP-MQ = 1. This proves that P and @ are
indeed inverse points with respect to k.

Let us now take a more general function w = f(z), say, a frac-
tional rational function of z. Such a function also will invariably
effect a conformal mapping of the plane. We have only to limit
ourselves to regions of the plane not containing certain points
determined by the function.

Every function f(z) which is such that w = f(z) defines a con-
formal mapping of the complex plane, is called an analytic function.*
Not only are the rational functions analytic, but practically all
the functions ever encountered in practice are analytic. In work-
ing with complex analytic functions we can apply most of the
same rules that govern real functions of a real variable. This

x
(2) u = 2

! This geometrical definition is equivalent with the condition that f(z) be dif-
ferentiable, i.e. that the quotient [f(2) — f(2,) ]/[2 — %] converge to a complex
number f'(z) at every point 2, of the region as z approaches z, within the
region. The important part of this condition is that the number f’(z,) be inde-
pendent of the path along which z approaches 2, in the region of the complex
plane.
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reduces the two-dimensional problem of conformal mapping to a
one-dimensional type of investigation.

By such considerations from the theory of functions of a complex
variable, it is possible to prove the important theorem that the
circle-preserving transformations, or in other words, the integral
and fractional linear functions, represent the only conformal trans-
formations that map the interior of a circle into the interior or
exterior of another (or the same) circle. It follows that the hyper-
bolic rigid motions of the Poincaré model represent all of the con-
formal transformations of a circular disk into itself. Thus any
conformal mapping is defined to within a hyperbolic rigid motion
as soon as we know the region into which a circular disk is mapped.
Accordingly, the analytic functions can be characterized to within
an unessential transformation by
the region into which they trans-
form a circular disk. It is under-
stood in this that regions that can
be obtained from each other by a
circle-preserving transformation
are considered as not essentially
distinct. For example, a circular region may be replaced by a half-
plane. Thus, the function /Z transforms a half-plane into a quad-
rant, and the function logz transforms a half-plane into a strip
bounded by two parallel straight lines. By using linear transforma-
tions it is thus easy to construct a conformal mapping by which
the circular region of Fig. 252 is transformed into one of the other
two regions shown in this figure.

In all these examples and in the ones to be discussed later, the
mapping is conformal at all interior points of the regions, but on
the boundaries it is conformal only wherever there are no corners.
If a smooth arc of a boundary is mapped into an arc having a
corner, it is obvious that the mapping cannot be conformal along
the whole length of the arc. But at the points where it is not con-
formal it is found that the mapping preserves the proportions
between angles; in other words, all angles are multiplied by the
same factor. For example, in the mapping effected by /z, the
straight line bounding the half-plane under consideration is trans-
formed into the sides of a right angle; and in this case at the point
mapped into the vertex of the angle all angles are halved.

Fic. 252
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Riemann stated the fundamental theorem that every plane region
other than the entire Euclidean plane that can be mapped one-to-one
and continuously onto a circular disk, can also be mapped onto it
conformally. This theorem gives us an indication of how great the
variety is of analytic functions.

Riemann himself did not give a rigorous proof of his funda-
mental mapping theorem but only pointed out that it is equivalent
with a variational problem, the so-called Dirichlet problem, and
regarded it as obvious that this has a solution. That Dirichlet’s
problem has a solution was rigorously proved only much later.
But before that, Riemann’s theorem was proved by the following
simpler method.

Let G be an arbitrary region that can be deformed into a circular
disk. In order to construct a conformal transformation of G onto
a given circular disk K, we begin with any conformal transformation
a, mapping G conformally onto a subregion K, of K. For a, we may
choose, for example, a similarity transformation. We shall impose
the additional condition that a, map some given point P in the interior
of G onto the center M of the circle. Now let R, be the image of any
other interior point Q of G. Then it is possible to prove the follow-
ing: The mapping a, can be changed into a conformal mapping a,
of such a nature that the image of G under a, is a subregion K,
of K, that P is again mapped into M, and that Q is mapped into a
point R, on the radius M R, whose distance from M is greater than
that of R,. The transition from a, to a, is given, incidentally, by a
conformal transformation represented by the square root of a
fractional linear function. a, can in turn be altered in the same way,
and by continuing in this way we get a sequence of conformal map-
pings a, of the region G onto subregions K, of K, which are such that
P is always transformed into M and @ is transformed into a
sequence of points R, on the radius M R, which keep moving further
away from M. It is found that the regions K, more and more nearly
fill out the circular disk K and that the sequence of mappings a, con-
verges to a conformal mapping a. Then @ maps G conformally
onto K, as required by Riemann’s theorem.

The method we have sketched here is due to Koebe. It shows that
the mapping with which we are concerned is distinguished by an
extremal property. For evidently the point R of K into which a
maps Q is that point of M R, towards which the points R, converge,
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and hence MR > MR, for all n. The same inequality holds if in-
stead of measuring the distances in the Euclidean sense, we regard
the interior of K as a Poincaré model of the hyperbolic plane and
measure distances in the hyperbolic metric. This is true because
the hyperbolic distance of a point from the center M is measured
along the radius like the Euclidean distance, since the radii repre-
sent the hyperbolic straight lines passing through M (cf. pp. 254,
258). Besides a there are other conformal mappings b mapping
G onto K. But, by a theorem mentioned earlier, b can differ from
a only by a hyperbolic rigid motion of K. If therefore S and T are
the images of P and Q under the mapping b, then the hyperbolic
distances MR and ST are necessarily equal. Thus we have found
the extremal property we were looking for: The hyperbolic distance
between the images of two arbitrary interior points of G under
any conformal mapping of G into K exceeds the hyperbolic distance
between the two images under any conformal mapping of G into
a subregion of K.

In terms of hyperbolic geometry, we may also describe the process
as follows. Suppose we have a conformal mapping from G onto a
region K’ of the hyperbolic plane. If we now try to alter the map-
ping continuously in such a way that it remains conformal but
that the distance between two arbitrarily chosen points increases
all the time, then K’ will gradually fill up the entire hyperbolic plane.
The distance between the two points increases to a finite maximum
which is reached when K’ fills up the entire hyperbolic plane, and
not before.

It would be natural to try mapping the interior of G onto the
Euclidean plane instead of onto the hyperbolic plane. A continuous
mapping of the interior of G into the Euclidean plane obviously
exists, since it was assumed that the interior of G can be mapped
continuously onto the interior of a circle, and the interior of a circle
can obviously be mapped continuously onto the Euclidean plane (for
example, we may map the interior H of a circle stereographically
onto a hemisphere and then map the hemisphere continuously onto
the plane E by projection from the center of the sphere). But it is
impossible to find a conformal mapping of H onto E. For, by virtue
of such a mapping, every conformal mapping of H onto itself would
induce a conformal mapping of E onto itself. And the set of all
conformal mappings of H onto itself consists of the hyperbolic
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rigid motions, a three-parameter family. If a conformal mapping
H — E existed, the set of all conformal mappings of E onto itself
would therefore also form a three-parameter family. But all the
similarity transformations are conformal mappings of E, and they
alone form a four-parameter family, as can be seen from their
representation in the form w = az + b which involves two arbi-
trary complex numbers a and b, and consequently four arbitrary
real numbers. Hence there is no conformal mapping of H onto E.
Incidentally, the similarity transformations are the only conformal
mappings of E onto itself.

In three dimensions we can define the conformal mappings in
exactly the same way as in the plane. But in three dimensions the
variety of conformal mappings is very limited. For, all of these
mappings preserve spheres (i.e. transform the set of all spheres
and planes into itself). The family of all sphere-preserving trans-
formations has only ten parameters. A particularly simple type
of sphere-preserving mappings are the three-dimensional inver-
sions. Their definition is analogous to the definition of inversions
in the plane: We choose a fixed point M and a fixed number » at
pleasure and then map every point P different from M into that
point Q on the ray MP for which MP+.MQ = r*. Every sphere-
preserving transformation can be resolved into a three-dimensional
inversion and a similarity transformation.

§ 39. Conformal Mappings of Curved Surfaces. Minimal Surfaces.
Plateau’s Problem

An example of a conformal mapping of a curved surface onto
the plane is furnished by stereographic projection. Under stereo-
graphic projection every conformal mapping in the plane becomes
a conformal mapping on the sphere. If the center of the stereo-
graphic projection is at a point N, the conformal mappings of the
sphere leaving N fixed correspond to the conformal mappings of
the Euclidean plane onto itself. As we have mentioned above, tie
only conformal mappings of the Euclidean plane onto itself are
the similarity transformations. It follows that all the conformal
mappings of a sphere onto itself leaving a point fixed are circle-
preserving transformations. Any conformal mapping of the sphere
onto itself can be transformed by a rotation about a diameter into
a conformal mapping of the sphere that leaves a point fixed. Hence
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the totality of conformal mappings of the sphere onto itself must
be identical with the totality of circle-preserving mappings on the
sphere, i.e. with the transformations derived by stereographic pro-
jection from the circle-preserving transformations of the plane.
The circle-preserving transformations of the plane are represented
by formula (1) on page 264. This formula involves four complex
constants, but they are only defined to within a complex common
factor. Thus the circle-preserving transformations in the plane,
and likewise those on the sphere, form a six-parameter family.

It may be proved that every closed surface that can be mapped
continuously onto the sphere, as for example the ellipsoid, can also
be mapped onto the sphere conformally. It follows that any two
surfaces of this kind can also be mapped conformally onto each
other and that every surface of this kind admits of a family of
conformal mappings onto itself with exactly six parameters.

The surfaces, such as the hyperbolic paraboloid, that can be
mapped continuously onto the interior of a circle or onto the
Euclidean plane, certainly can not all be mapped conformally onto
each other, since the interior of a circle, for example, can not be
mapped conformally onto the whole Euclidean plane. But for these
surfaces we have the following important ‘“either-or theorem’:
Every surface of this kind can be mapped conformally either onto
the interior of a circle or onto the Euclidean plane.

For other types of surfaces too, e.g. for the torus, the problem
of the existence of conformal mappings of the surface can be solved
completely. Since the treatment of this problem requires topological
methods, we shall defer it to the chapter on topology.

A particularly interesting example of conformal mappings is
provided by the minimal surfaces. The minimal surfaces were
defined (p. 189) by the property that the principal curvatures at
every point of such a surface are equal in magnitude and opposite
in sign. It is readily deduced from this definition that the spherical
representation of a minimal surface is conformal, and, conversely,
it is readily proved that the minimal surfaces are the only sur-
faces other than the sphere whose spherical representation (by
parallel normals) is conformal. The minimal surfaces are therefore
intimately tied up with the theory of functions. Every complex
analytic function can be used to define a minimal surface.

As we have mentioned before, a soap film stretched across a
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closed wire takes on the shape of a minimal surface. This leads
to the following problem first posed by Plateau: Given any closed
twisted curve, to find a minimal surface bounded by the curve.
For a long time, all efforts to prove even the existence of such a
minimal surface for every preassigned boundary curve, were un-
successful. It was only in 1931 that the solution to the general
Plateau problem was found by Jesse Douglas.?

In order to solve Plateau’s problem, Douglas substituted a still
more inclusive problem; he set out to find not only the minimal
surface M bounded by the given space curve r but also its conformal
mapping onto a plane circular region K. To this end, he began by
considering the way in which such a mapping maps the curve r»
onto the circumference k of K. It is found that this mapping is
distinguished by an extremal property. If s is any chord of r, the
mapping of the end-points of s associates s with a chord s’ of k.
Calling the ratio s’/s the magnification of the chord s, let us take
the mean value, over all chords of », of the reciprocal of the mag-
nification squared. The desired mapping makes the value of this
mean as small as possible.? We may thus say that the desired map-
ping moves all the points of r as far apart, in the mean, as possible.
It can be proved that a mapping with this extremal property always
exists. By means of this mapping r — k, the Cartesian coordinates
of the remaining points of M may then be expressed as point func-
tions on K by well-known analytic formulas.?

If we let » be a plane curve, then M degenerates into the plane
region G bounded by ». Then Douglas’ procedure gives us a con-
formal mapping of G into K and thus a solution of Riemann’s
mapping problem. It is seen that the method leading to this solu-
tion proceeds in a direction exactly opposite to that of the method

* Trans. Amer. Math. Soc., Vol. 33 (1931). A short time before, Tibor Radd
had solved the Plateau problem under somewhat more special conditions; Math.
Zeit., Vol. 2 (1930).

? In formulas, this may be stated as follows. If two points P and @ of r are
mapped into the points P’ and Q' of k, leta and g be the amplitudes of the points
P’ and @’ respectively, and set PQ/P'Q —=wv(«, f). Then the double integral

2n 2n
S S prdadp
a=0 p=0
will take on the smallest possible value in the case of the mapping we are
looking for.
* Poisson integrals over r.
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described earlier. In the earlier construction, we began with a
pair of interior points of G; by increasing the hyperbolic distance
between images of these points, we eventually brought the boundary
of G into superposition with the boundary of K. Douglas’ pro-
cedure, on the other hand, begins by effecting a suitable mapping,
distinguished by an extremal property, of the boundary of G onto
the boundary of K, and then the mapping of the interior points is
determined automatically.

For certain special space curves r, the minimal surfaces bounded
by r can be found by much simpler methods—for example, if r is a
closed polygon composed of straight-line segments in space. While
in general the resulting minimal surface has a singular boundary
at r, it is possible by special choice of » to get a minimal surface
that can be extended beyond r without having any singularity. In
this way, Neovius* succeeded in constructing a minimal surface
that extends over the entire space without singularity or self-
intersection and has the same symmetry as the diamond lattice.

Nor can the spherical image of this surface have a boundary.
Furthermore, it can be shown that a minimal surface cannot con-
tain any parabolic curves, at which the spherical image might
return on itself. Yet the spherical image of Neovius’ surface can-
not cover the whole sphere smoothly, since it would then be possible
to map Neovius’ surface continuously onto the sphere. This apparent
contradiction is resolved by the fact that there are monkey saddles
on Neovius’ surface. A curve making one complete turn around
such a point on the surface is represented by a curve making several
turns on the spherical image (see p. 202). The spherical image of
Neovius’ minimal surface covers the sphere in infinitely many
layers that are connected at the points that are images of the monkey
saddles. In the case of many other minimal surfaces too, the course
of the spherical image is similar to this. Riemann found surfaces
that cover the sphere or the plane in this way, by studying in its
entirety the conformal mapping effected by a non-linear function,
such as w ==z2. The points analogous to the spherical images of
monkey saddles, where the sheets of a Riemann surface are
connected, are called branch points.

*E. R. Neovius, Bestimmung zweier speziellen periodischen Minimalflichen.
Akad. Abhandlung, Helsingfors, 1883.



CHAPTER V

KINEMATICS

So far we have been concerned chiefly with the study of entities
that are fixed in space, since it is such entities that must form the
starting point of geometrical investigation. But even the elements
of geometry make use of the concept of motion. Thus we have
called two figures congruent if they can be superimposed by a rigid
motion. Furthermore, we have studied movable hyperboloids (see
p. 16), we have determined ruled surfaces by means of a moving
plane (pp. 204-205), and we have subjected surfaces to bending and
distortion (Chap.IV). Kinematics is concerned with the systematic
study of motions.

We shall begin with the study of linkages, a part of kinematics
that is intimately connected with elementary metric geometry.
We shall then proceed to a more general discussion of continuous
motions, using the methods of differential geometry.

§ 40. Linkages.

The term “plane linkage” applies to every plane system of rigid
rods which are interconnected, or connected with fixed points of
the plane about which they are free to turn, in such a way that the
system is capable of certain motions in the plane. The simplest
mechanism of this kind consists of a single rod with one end
attached to a point of the plane; in effect, this is a compass. Just
as the free end of a compass traces out a circle, so the points of the
rods in all other plane linkages move on algebraic curves, i.e. curves
satisfying an algebraic equation in a system of Cartesian coordi-
nates. Conversely, it is possible to find a system of jointed rods that
is suitable for the construction (at least piecemeal) of any given
algebraic curve no matter how complicated.

The construction by means of a linkage of the simplest algebraic
curve, viz. of the straight line, has been a famous problem. We
shall study one particular model for tracing out the straight line,
Peaucellier’s inversor. We begin with the mechanism consisting

272
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of six rods illustrated in Fig. 253. The rods ¢ and b are equal in
length and so are ¢, d, ¢, and f. a and b are connected by a joint
at the fixed point O. P and Q are always collinear with O, being on
the bisector of the angle AOB. Applying to the circle with center A
and radius ¢ a well-known <
theorem about the secants O\
of a circle, we note in addi-
tion that the relation
OP.0Q =
(OA 4+ ¢) (OA —o)
= @?— ¢?

is valid for all the positions
of the mechanism. Hence P
and @ are conjugate points
with respect to the circle Fre. 253
with center O and radius y/a? —¢* (cf. p. 254). Clearly, P is
free to move through every point in the ring with center at O
having outer radius a?— ¢* and inner radius ¢« —c¢. Thus the
mechanism constructs the inverse to every point in this region
with respect to the above
circle; for this reason, it is
called an inversor. If P now
traces out a circle that passes
through O, then Q must trace
out a straight line (see p.
254). Accordingly, we attach
one end of another rod g¢
(see Fig. 254) to P and the
other end to a point M the
distance of which from O is
equal to the length g of the
rod. P isthen constrained to
travel on the circle of radius ¢ with center M. And since OM = ¢,
this circle passes through O. Hence Q traces out a straightline ¢, and
our problem is solved. Furthermore, it is readily seen that ¢ is
perpendicular to OM, so that in addition, Peaucellier’s inversor pro-
vides a means for drawing a perpendicular to a given straight line.

In space, the definition of a linkage is analogous. But now the
attachment of the rods to each other or to fixed points of space must

F1G. 254
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be done in such a way as to permit rotation in all directions in space
rather than just in a plane. Within a certain range this can be
realized in practice by the use of ball pivots. The ends of the rods
constituting a linkage in space always trace out algebraic surfaces.
On the other hand, it has not yet been proved that every algebraic
surface can be constructed by means of a linkage, although this
theorem is most probably true.

Here again, we shall consider the very simplest construction, that
is, the construction of a plane. Our starting point is the collapsible
rod model of the hyperboloid of one sheet (see pp. 16 and 29). Let
g and ¢’ be two straight lines of the same family and h a variable
straight line of the other family intersecting g and ¢’ at the vari-
able points H and H'.
Let the model be moved,
but in such a way as to
keep the rod g fixed
(see Fig. 255). Then
the distance of every
point H’ on g’ from the
point H of g which is
associated with it, re-
mains fixed. As the
model is moved, the
points of g’ therefore
move on spheres with
centers at the corresponding points of g. If the straight line 4 is
now chosen so as to intersect g at its ideal point U, then the point U’
associated with U, being the point of intersection of 2 and ¢’, must
be a finite point; for if it were not, then U U’ = h would be an ideal
straight line lying on the surface, and then the surface would have
to be a hyperbolic paraboloid instead of a hyperboloid (cf. p. 120).
As the linkage is moved, U’ therefore travels on a sphere with
infinite radius, i.e. on a plane.

This argument suggests a simple mechanism for constructing a
plane. Three rods of one family define the hyperboloid uniquely.
Hence we attach three rods a, b, and ¢ to a fixed rod g by ball joints
at A, B, and C (see Fig. 255). Then we attach the free ends of
a, b, and ¢ to ball joints at the points A’, B’, and C’ of a rod ¢'.
To ensure that a, b, and ¢ generate a hyperboloid and not a hyper-

F16. 255
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bolic paraboloid, it is sufficient to choose the points in such a way
that AB: AC+A'B’: A’C’. For, it is easy to prove that the
distances between three points on small g must be proportional to the
distances between the corresponding points on g’ if the rods lie on
a hyperbolic paraboloid.
The movable hyperbo-
loid defined by a, b, and
¢ can assume o differ-
ent shapes, and each of
these surfaces is free to
rotate about the axis g;
hence every point on
the rod ¢’ of our linkage
has two degrees of free-
dom.! We have seen
above that the points of
¢’ move on spheres hav- Fic. 256

ing ¢ as a diameter and that a certain point U’ of g’ traces out part of
a plane which is perpendicular to g’. It is seen that U’ passes through
all the points of a plane annulus whose axis is g. Thus the solution
of our problem is complete. Another possible solution is illustrated
in Fig. 256. This is obtained from the mechanism we have described
by interchanging the roles played by the two families of straight
lines on the hyperboloid.

§ 41. Continuous Rigid Motions of Plane Figures

Let a movable plane o slide over a fixed plane ¢ in any way what-
ever. It is our aim to characterize this process—which we shall call
a continuous rigid motion—as simply as possible geometrically.

In a detailed discussion earlier in the book (p. 60) we saw that
the effect of any given plane rigid motion, in transforming an initial
position into a final position, may always be achieved by a single

! The number of degrees of freedom may also be obtained as follows: If the
rod g’ were not present, then the point triple A’ B’C’ would have six degrees of
freedom, since each point separately could move on a sphere and would thus
have two degrees of freedom. Now the collinearity of A’, B’, C’ implies two rela-
tions, and the conditions that A’ B’ and A’C’ have a given length each yields one
further relation. Thus we arrive at 6 — 2 — 1 — 1 =2 degrees of freedom, by
the methods discussed in § 24.
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rotation or by a single translation. If the translations are treated
as rotations about an ideal point, we may say that every rigid
motion of the plane, without exception, can be replaced by a rotation
about a definite center.

Now let a definite motion be given. At a given time ¢, the moving
plane o has a certain position A. At a subsequent time ¢ 4 A it has
another position A,. The change of position A — A, is associated
with a center of rotation M,, and if we make h smaller and smaller,
so that the difference between A, and A also becomes smaller and
smaller, M, moves towards a limiting position M. The point M is
called the instantaneous center of the motion at the instant ¢t. If P
is any other point of the moving plane, the motion of P at the instant
t is perpendicular to PM.

By marking the instantaneous center at every moment of the
motion, we get a locus which is a curve on the fixed plane. This
curve is called the fixed centrode of the motion. But in the same
motion we may also regard the plane s, which we had considered
movable, as fixed and the plane o, which we had considered fixed,
as movable—this is how the motion appears to an observer who
accompanies the plane . Then we get a curve—called the moving
centrode—as the locus of the instantaneous centers in the plane o.
Both curves are continuous everywhere. They may extend to points
at infinity, but then they have to be closed at infinity in the sense of
projective geometry, i.e. the central projections of the curves onto
another plane must be curves that are continuous at the points
corresponding to the horizon.

A more detailed study shows that the motion is completely
determined by the form of the two centrodes together with two
points, one on each curve, which coincide at some instant of the
motion. For, if the curves are made to touch at the given pair
of points, and the moving centrode, accompanied by its own
plane, is subsequently caused to roll along the fixed centrode
without sliding, then the original motion will be generated. At
every instant during the motion the two curves are mutually
tangent at the instantaneous center. From the fact that the two
curves roll along each other without sliding it follows that the
arc bounded by any two points on the fixed centrode has the
same length as the arc bounded by the corresponding points on
the moving centrode.
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We have thus found a simple characterization for the continuous
rigid motions analogous to the one we previously found for rigid
motions: every continuous motion is generated by rolling one curve
on another. It is necessary to include the special case (rotation)
where both curves degenerate into points.

Let us consider the special case of an arbitrary curve & in the
fixed plane and a straight line g in the mov-
able plane, where it is required that a point P
of the straight line traverse k in such a way
that ¢ is always perpendicular to k (see Fig.
257). In this case it follows directly from
the definition of the center of curvature that
the instantaneous center M is always the
center of curvature, corresponding to the
point P, of the curve k. Hence the fixed cen-
trode is the evolute m of k, and, since M is
always on g, the moving centrode is the
straight line ¢ itself; thus the motion is
generated by rolling g on m. In this process the fixed point P on ¢
describes the curve k whose evolute is m. The distance between
two points of ¢ is always equal to the arc length cut off by the
corresponding points of m. This leads us to the thread construc-
tion of any curve from its evolute given
on page 178.

Of particular importance are the
curves described by the points of the
moving plane in the case where both
centrodes are circles. Different types
of such curves are obtained according
to whether the moving circle touches
the fixed circle from the inside or from
the outside. In the first case, the curves
are called hypotrochoids, in the second
case epitrochoids. If the point generating the curve is on the cir-
cumference of the rolling circle, the curve is called a hypocycloid
or epicycloid. The form of the trochoids and cycloids also depends
on the ratio between the radii of the two circles.

Let us first take a rolling circle k having a radius just half
that of the fixed circle K. Let %k be internally tangent to K.

Fic. 257

FI1G. 258
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We shall determine the path of a point P of k, that is, a hypo-
cycloid.! Let us consider first the position in which % is tangent to
the fixed circle K at the point P, and then some other position %,
of the rolling circle in which P has reached P, (see Fig. 258). Let
the centers of the circles K and k; be at M and m, and let their point
of contact be at Q. Since the circles roll on each other without slid-
ing, the length of the arc QP, of k, is equal to that of the arc QP
of K. Furthermore, since k is half the size of K, it follows that
/QmP, =2 /QMP, and in addition that M lies on k;. Hence we
have, by the well-known theorem about the angles subtended at
the circumference and at the center of a circle, that L/ QMP, =
(1/2) /Qm,P, = /QMP. Hence the straight line M P, coincides
with M P, i.e. P, travels on the straight line M P during the course of
the motion. Thus we have proved the surprising theorem that in
our particular case the hypocycloids coincide
with the diameters of the fixed circle. As a
s by-product, we get a new mechanism for
tracing out a straight line.
We proceed to find the corresponding hypo-
7 trochoids. To this end, we describe the motion
4 in another way, making use of the result
just obtained. In the process of rolling, the
F1c. 259 arc ST, where S and T are the two ends of
a diameter of k, corresponds to one quarter
of the circumference of K. Therefore S and T move on two
perpendicular diameters, s and ¢, of K (Fig. 259). An easy cal-
culation gives the following result: If a straight-line segment
ST is moved in such a way that its extremities travel on two
mutually perpendicular straight lines s and ¢, then the midpoint
of ST traces out a circle; every other point P of ST traces out an
ellipse whose axes are on s and t and are respectively equal to
SP and PT in length. Consequently all the hypotrochoids gener-
ated by the rolling circle k are ellipses. For, every point rigidly
connected to k lies on a diameter of k, and this diameter is a straight
line two points of which slide along two mutually perpendicular
straight lines.

¢,

! Which point we choose on the circumference is immaterial; because of the
symmetry of the figure, the cycloids generated by different points on the circum-
ference of k differ only by a rotation about the center of K.
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Let us now turn to the case where k rolls on the outside of K.
The resulting epicycloids are shaped like the curve e in Fig. 260.
It can be shown that, like this curve, all hypocycloids and epicycloids
have cusps. At such points, the cycloid always meets the fixed
circle at right angles. The cusps correspond to the position in
which the generating point of the cycloid is at the point of con-
tact of the circles. In our particular case, where k is half as big
K, there are exactly two cusps.

The tangents to our curve have a peculiar property, illustrated
in Fig. 261. Let the rolling
begin at the moment when
the generating point P on k
is the point of contact with
K, i.e. when it just passes
through a cusp. The figure
shows k in a second posi-
tion k,; by the time this
position is reached, P has
moved along an arc of the
cycloid to P,. We connect
M and m,, the centers of
K and k,. The straight line
Mm, passes through @,
the point of contact of K
and k,, and meets k, again
at R. Let ¢ be the tangent
to the cycloid at P,. Since Q
is the instantaneous center
of the motion in the present
position of k, the direction
of motion of P,, and hence also the straight line ¢, is perpendicular
to QP,. Hence t is concurrent with P, R, since the angle QP, R,
being in a semicircle, is a right angle. A similar property is shared
by the tangents of all the epicycloids and hypocycloids. In our
case, where k is half the size of K, the equality of the arc PQ of K
with the arc P,Q of k, leads to the equation

(PMQ=1/2 tP,m,Q= (P,RQ.
Thus, if s is the line through R parallel to M P, s and t form equal

F1aG. 260
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angles with MR. This may be formulated as a theorem of
Geometrical Optics as follows: If a beam of parallel light rays (s)
falls on a reflecting surface that is in the form of a circle with
center M and radius MR, then the reflected rays (¢) envelop an
epicycloid with two cusps
whose base circle has the
center M and radius (14)MR.
The straight line connecting
M with the cusps of the
cycloid is parallel to the direc-
tion of the beam (s). Because
of this optical property, the
curve is sometimes called the
focal line (or caustic curve)
of the circle. We may observe
them every day in cups and
tin cans when the light shines
on them.

Two of the epitrochoids
associated with this epicycloid
are shown in Fig. 260. All
the epitrochoids generated by
points inside the rolling circle
are free from singularities. On the other hand, those generated by
points outside the rolling circle have loops and double points. The
cycloids represent the transition between the two types of trochoids.

The case next in order of simplicity results when the diameters
of the fixed circle and the rolling circle are in the
ratio 8:1. The hypocycloid with three cusps is
shown in Fig. 262. The tangents to this curve
have a special property, which may be derived
analytically: the segment ST of the tangent
which is inside the curve is constant in length,
i.e. its length is independent of the point of tan-
gency with the curve. At one time this fact was believed to: be
significant in connection with a problem referred to on page 214,
the problem of moving a straight-line segment in such a way that
the net effect is that of a rotation through 180° about the center
and that the plane area swept out during the motion.is a minimum.

Fi1c. 261
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We have already mentioned that the area can be made arbitrarily
small by a suitable choice of the motion, so that there is no solution
to the problem. However, it had been conjectured earlier that there
is a solution and that it consists of the tangential motion of ST (see
Fig. 262) along the three-cusp cycloid in
which the extremities of the segment stay
on the curve throughout. There was, in
fact, some evidence in favor of the con-
jecture that the area could not be further {
diminished.
The tangent of tne hypocycloid with
four cusps (Fig. 263), generally called
the astroid, has a similar property too:
if S and T denote the points where the
tangent intersects the axes of symmetry
of the curve, the distance ST is constant. Therefore a straight-line
segment that moves with its end points on two mutually perpen-
dicular straight lines envelops an astroid. We mentioned earlier
that every point of a segment executing this motion traces out an
ellipse. From this it may be deduced that the astroid is enveloped
by a family of ellipses for
which the sum of the axes is
constant (see Fig. 264).
Going over to the general -
case, we note that there is
a fundamental difference be-
tween those cycloids for which
the radii, » and R, of the roll-
ing and the fixed circle are
commensurable and those -
cycloids for which they are
not. If »/R is a rational
number, which may then be
written as a fraction a/b in Fic. 264
lowest terms, then the cycloid has b cusps and closes up after the
moving circle has rolled a times around the fixed circle. If r/R is
irrational, the curve has infinitely many cusps and does not close
up. In the latter case it can be proved that we can get arbitrarily
close to every point of the region swept out by the rolling circle by
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following the course of the curve sufficiently long. The limiting cases
where r = o or R = « have a particularly simple meaning. If
r = 0, so that the rolling circle is replaced by a straight line, we get
the involute of the circle (Fig. 8, p. 6). If it is the fixed circle that is
replaced by a straight line, we get the “ordinary cycloid.” This is
the curve (Fig. 265) traced out by any point on the circumference
of a wheel that rolls in a fixed direction on a plane.

The continuous motions we have studied so far involve a single
moving plane. But in physics we are led to the study of more general
phenomena, the relative continuous motions. Let us consider, in
addition to the fixed plane E and the movable plane e (denoted
earlier by ¢ and o respectively), another plane f that slides over E in
a different manner than e. Then f also performs a perfectly definite
continuous motion relative to e, as seen by an observer attached

A

= O O

F1c. 265

to e. We may think of the continuous motion (fE) of f relative
to E as decomposable into the separate motions (fe) and (eE).
A complicated motion can frequently be simplified by such a decom-
position into two motions. There is, for example, a particularly
simple decomposition for the rolling of two circles K and k. Let E
be the fixed plane containing K, and f the movable plane contain-
ing k. Let M and m be the centers of K and k respectively. All that
we need do in order to describe the motion of m relative to E is to
introduce a plane e in which m is fixed and which rotates about M.
Then the motion of f relative to e can only be a rotation about m.
The angular velocities of the rotations about M and m vary in-
versely as the radii of the circles K and k. It is found, in conse-
quence, that the cycloidal motion is the resultant of two rotations.
The important role of the cycloids and trochoids in astronomy is
due to this fact. Since all the planets move in approximately circular
orbits about the sun with constant velocities and in approximately
the same plane (the ecliptic), the path of every planet as seen
from the earth appears approximately trochoidal. Thus the pre-
Copernican geocentric system of astronomy stimulated a thorough
study of these curves.
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In our example, M and m are the instantaneous centers of the
motions (e¢E) and (fe), while the instantaneous center @ of the
cycloidal motion (fE') is situated, as we have seen, at the point of
tangency of the circles k¥ and K. Thus the three instantaneous
centers are collinear. The same can be shown to be true quite
generally: If the motion (fE) is the resultant of the motions (fe)
and (eE), then the instantaneous centers of (fE), (fe), and (eFE)
at any instant are collinear (Law of Three Centers).

§ 42. An Instrument for Constructing the Ellipse and its Roulettes!

Let ¢ and ¢’ be two rods of the same length ¢. Let a, and a, be
two other rods both equal to @ > ¢ in length. Let the extremities
F,, F, of ¢ and F,’, F of ¢’ be linked to @, and a, by pin joints in
such a way as to form a self-
intersecting quadrilateral
with opposite sides equal, ¢
as shown in Fig. 266. Let
E be the point at which a,
and a, cross. Its position
on these two rods will ¢
change as the plane linkage
assumes its various possible A
positions. At E we place a
joint with two sleeves which
are free to turn about E and
in which the rods @, and a, Fi1c. 266
can slide freely. If the rod ¢ is now held fixed, the curve that the
point E is still free to trace out is an ellipse e with F',, F', as foci and
with & as the constant sum of its focal distances; this is proved as
follows. The triangles F,F,Fy’ and F,F,'F,’ are always congruent
because their corresponding sides are equal. Therefore / F1Fo'Fo—
LFYF,FY, so that the triangle F,F,’E is isosceles. From this it
follows that F,E + EF, = F,E + EF, = a, as was to be proved.

Now let two wheels Z;, and Z, be mounted at any two points of
the rods a, and a. in such a way as to be free to rotate about these
rods but not to slide along them (see Fig. 266). Let F, and F'; be

'

! This instrument was first described by R. C. Yates (The description of a
surface of constant curvature, Amer. Math. Monthly, December, 1931).
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no longer fixed. Then we can move E along any curve while the
wheels roll over the plane of the curve. The presence of the wheels
has the effect of restricting the direction of motion of the center
of each wheel to the plane of the wheel, at right angles to the rod
that carries the wheel. Then all the other points of a, and a, also
move at right angles to their respective rods; this can be rigorously
deduced from the fact that the distance between two points of the
same rod remains constant. If we now imagine the rod ¢ to be
rigidly attached during the motion to a moving plane f that remains
parallel to the plane of the curve k, then the instantaneous center
of the motion of f is always at E. For since every point of the
plane f constantly moves at right angles to the line connecting it
with the point that is the instantaneous center at any given moment
(cf. p. 276), and since
F, always moves at
right angles to a,, the
- instantaneous center
must lie on a, through-
out the motion; simi-
larly, it has to lie on
Fic. 267 a., and hence it must
be at the point of intersection of the rods a, and a.. Thus the fixed
centrode of the motion of f is the curve k. On the other hand, the
moving centrode must be the ellipse ¢, since we have shown that e
is the curve traced out by E when c is held fixed. Thus our instru-
ment moves the points of the plane f along the same curves on
which they travel when the ellipse ¢ is rolled along k. These curves
are called the roulettes of the ellipse.

Of particular importance among the roulettes of the ellipse is
the curve traced out by one of the foci when the ellipse rolls on a
straight line. Fig. 267 depicts such a curve. The vertices of the
quadrilateral in Yates’ apparatus travel on curves of this type if
the point E is moved along a straight line g. Since, as we have
already mentioned, the rod a, is simultaneously perpendicular to
the paths of all its points, these curves are all parallel, and this is
true, in particular, for the paths of F; and F,’. Thus the study of
Yates’ apparatus leads to a peculiar geometrical theorem which
may be formulated at follows: Given a roulette generated by a
focus of an ellipse, on the normals to the roulette draw the points




§ 43. CONTINUOUS MOTIONS IN SPACE 285

whose distance from the curve, measured in the direction of the
center of curvature, is equal to the constant sum of focal radii for
the ellipse; then the points thus marked out lie on another roulette
generated by a focus of an ellipse; this ellipse is congruent to the
first ellipse and rolls on the same curve as the first ellipse but on
the opposite side of that curve.

The roulette shown in Fig. 267 crops up as the meridian of the
surfaces of revolution of constant mean curvature. The curvature
is equal to the reciprocal of half the sum of the focal radii of the
generating ellipse. We have mentioned on pages 228-229 that every
surface of constant mean curvature is parallel to some surface having
constant positive Gaussian curvature. In our case, the latter surface
must be another surface of revolution, and the meridians of the
two surfaces must be parallel. Hence there is a point on the rod
a, of our apparatus which traces out a meridian of a surface of
revolution having constant Gaussian curvature. From the relation
between curvatures given on pages 228-229 it can be deduced that
this point is the midpoint of the rod a,. By assigning all possible
values to the lengths ¢ and a of the rods, we obtain the meridians
of all the surfaces of revolution having constant positive Gaussian
curvature with the exception of the sphere.

§ 43. Continuous Motions in Space

We shall adapt the discussion of the last section to apply to the
case of a three-dimensional space or three-dimensional region r
moving in a space R that is considered fixed. In space, every rigid
motion can be effected by a rotation about a definite axis combined
with a translation along that axis, i.e. by a screw motion (see p. 82).
This assigns to every rigid motion, except for pure translations, a
definite straight line that serves as axis of the screw or rotation.
The anomalous role of the translations can be eliminated by treating
every translation as a rotation about an infinitely distant axis.

By comparing neighboring positions of the moving space we can
construct the instantaneous axis of the motion at any given moment;
the procedure is analogous to the construction of the instantaneous
center in the case of plane motions. As the motion progresses, this
axis changes its position continuously, thus sweeping out a ruled
surface in R and another in . These are the analogues of the fixed
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and moving centrodes of a plane motion and are called the fixed
and the moving axode respectively of the three-dimensional motion.
A motion in space is uniquely defined by its axodes and the particular
rule on either axode that corresponds to one rule on the other. To
reconstruct the motion, we begin with the two given straight lines
in coincidence and with the surfaces tangent along this line. We
then “roll” the movable axode along the fixed axode using a certain
type of motion we shall describe below, making sure that the sur-
faces always have a line in common along which they are tangential.

This contact motion in space is analogous to the rolling of one
curve on another in the plane. Yet there is a fundamental difference
between these two forms of motion: a plane curve can be rolled along
any other plane curve in a variety of different ways, but a given ruled
surface can not be “rolled”
on every other ruled sur-
face. We have seen (pp. 208-
209) that two ruled surfaces
can be tangent along a ruling
if and only if they have the
same striction along this line.
If this condition is satisfied,
the surfaces must be put to-
gether in such a way that their
points of striction on these straight lines coincide. Throughout the
contact motion the axodes must continue to satisfy this condition and
to assume the relative positions just specified. If the angles between
the lines of striction and the rulings at corresponding points of the
two surfaces are always equal, then the contact motion is a pure roll-
ing without any sliding. If, on the other hand, the angles differ, then
the surfaces slide along their common rule during the motion.!

Fi1c. 268

! The necessary and sufficient conditions for two ruled surfaces to be axodes
of a motion in space cannot be explained without the help of analytical methods.
First of all, it is necessary that it be possible to set up a correspondence between
the lines of striction of the two surfaces in such a way that they have equal
striction at corresponding points. If, then, a and «’ are the angles between the
line of striction and the rulings at the corresponding points and if s and s’ are
corresponding arc lengths on the two lines of striction, the equation

ds’  sina
ds  sina’
has to be satisfied.
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In the first, more special, case the contact motion may be regarded
as being composed of infinitesimal rotations and the axodes are
two mutually developable surfaces.

As a particularly simple example, we shall consider the case
where the axodes are two hyperboloids of revolution of one sheet.
Here the lines of striction are the smallest circles of latitude of
these surfaces. Because of the rotational symmetry of the surfaces,
their striction is a constant that depends only on the shape and
size of the generating hyperbola.

It is easy to find an analytical characterization for the condition
that two hyperboloids be
of equal striction. Let the
equations of the generating
hyperbolas in a system of
rectangular coordinates, z,
Yy, be

xz y2

2 r=1
and

Yy

4 BT 7

the y-axis being used as axis
of rotation. Then equality
of striction between the two
hyperboloids thus gener-
ated is equivalent to the
simple equation b=B.
Fig. 268 exhibits two such
hyperbolas together with Fic. 269

their foci.

During the contact motion the relative position of the two hyper-
boloids remains unchanged. If therefore one hyperboloid is kept
in a fixed position, the axis of rotation of the second hyperboloid
performs a rotation D about the axis of rotation of the first. The
motion is simplified considerably if the first surface is subjected to
the rotation, about its own axis, that is the inverse of D. Then the
axis of the second hyperboloid remains fixed in space (and the axis
of the first hyperboloid obviously remains fixed as well). Thus
the contact motion of these two surfaces can be produced by putting
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them together in such a way that they are tangent along a straight
line and then revolving them both about their axes with velocities
having a suitable ratio.

This furnishes a practical method of cogwheel transmission of
motion between two skew axes. Since sliding is harmful to the
material of the machine, we are limited to the case of congruent
hyperboloids. Fig. 269 depicts a transmission of this type.



CHAPTER VI

TOPOLOGY

In the study of projective geometry we have already witnessed
phenomena that can be described without any comparison of
lengths and angles but that possess nonetheless a precise geo-
metrical character. In topology we are concerned with geometrical
facts that do not even involve the concepts of straight line or plane
but only the continuous connectedness between the points of a
figure. Let us imagine a figure made of a material that can be dis-
torted as much as we please but that cannot be torn or cemented.
We shall encounter properties that remain unchanged when such
a figure is distorted at will. Thus, for example, the sphere shares
all its topological properties with the ellipsoid, the cube, and the
tetrahedron. On the other hand, the sphere is topologically different
from the torus, for it is clear by looking at them that a sphere
cannot be deformed into a torus without tearing or gluing.

It is natural that topological problems should have made their
appearance still later in the development of the science of geometry
than projective problems. And topological problems were indeed
not studied until the 18th Century. More recently, the theorems of
topology have been found to be connected, despite their apparent
indefiniteness, with the most precise quantitative results in mathe-
matics, that is, with the results of the algebra of complex numbers,
the theory of functions of a complex variable, and the theory of
groups. Today topology ranks among the most fertile and successful
branches of mathematical endeavor.

We shall have to limit our discussion to a few problems from the
topology of surfaces in three-space.! We begin with those surfaces
that are the easiest to study topologically—the polyhedra.

! For a further introduction into the fundamental concepts of topology the
reader is referred to the little book Einfachste Grundbegriffe der Topologie by
Alexandroff.

289
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§ 44. Polyhedra

By a polyhedron we mean any system of polygons arranged in
such a way that (1) exactly two polygons meet (at an angle) at
every edge, and (2) it is possible to get from every polygon to
every other polygon by crossing edges of the polyhedron.

The simplest and most important polyhedra are the so-called
simple polyhedra. This term applies to all polyhedra that can be
continuously deformed into spheres. Examples of simple polyhedra
are the regular polyhedra (§ 14). We shall soon see that there are
numerous polyhedra that are not simple, i.e. that can not be con-
tinuously deformed into spheres. As we saw in § 14, the regular
polyhedra have the additional property that they have no re-entrant
edges. From this it follows that the regular polyhedra are convex,
for we apply the term “convex” to every polyhedron that is entirely
on one side of each of its faces, so that it can be set on a flat table
top with any face down. Convexity is not a topological property,
for we can change a convex polyhedron into one that is not convex
by a topologically neutral transformation. But the convexity of
a polyhedron implies a topological property, for, an easy argument
shows that every convex polyhedron is of necessity simple.!

There is an important relation between the number of vertices,
edges, and faces of a simple polyhedron. It is called Euler’s
Formula for Polyhedra, after its discoverer. Let V be the number
of vertices, E the number of edges, and F the number of faces, of
the polyhedron. Then Euler’s formula states that the number
V—FE + F is equal to 2 for all simple polyhedra:

V—FE+ F=2.
Let us test this surprising theorem on some regular polyhedra:

Tetrahedron: V—FEF +F=4— 6+ 4=2.
Cube: 8—12 +6=2.
Octahedron: 6—12 4+ 8=2.

! There is a peculiar difference between the convex and the non-convex poly-
hedra: whereas every closed convex polyhedron is rigid, there are closed non-
convex polyhedra whose faces can be moved relative to each other. The rigidity
of the convex polyhedra is analogous to the rigidity, mentioned on page 230,
of closed convex surfaces. But it has not been found possible so far to deduce
the rigidity of the closed convex surfaces directly from that of polyhedra by a
limiting process.
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To prove Euler’s formula, we construct in the plane an image
of the simple polyhedron, which we shall call the planar net of the
polyhedron. To this end, we remove any face of the polyhedron
and deform the other faces until they are in a common plane. This
can be done in such a way that the faces remain polygons bounded
by straight lines and retaining their
original number of vertices. (However,
the polygons in the plane can not of
course all be congruent to the original
polygons.) We call our system of poly-
gons in the plane the planar net of the
polyhedron. Figs. 153 to 157, page 146,
may be considered as planar nets of the
regular polyhedra.

The planar net has as many vertices
and edges as the polyhedron, but one
face less. We proceed to apply a series of transformations to the
net which simplify its structure without changing the value of
V—E + F. To begin with, if the net has a polygon with more
than three sides, we draw a diagonal. Thus we add one face and
one edge but do not change the number of vertices, and V—FE + F
remains unchanged (see Fig. 270). We continue this process until
we have a net consisting exclusively of triangular faces.

F1a. 270

F16. 271 F1G. 272

If we add another triangle to such a triangular net in such a way
that an edge of the new triangle coincides with an edge on the
boundary of the net (see Fig. 271), the number of vertices and
the number of faces are each increased by one, while the number
of edges is increased by two, and the expression V— E + F again
remains unchanged. It remains unchanged also if we add a new
triangle by connecting two vertices at a concave portion of the
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circumference by a new edge (see Fig. 272), for here we add one
edge and one face but do not change the number of vertices.

It is easy to see that any net of triangles can be obtained from
a single triangle by repeated application of the two operations just
described. Hence the value of V— E + F for every triangular net
and, therefore, for every planar net whatsover, is the same as it is
for a single triangle: V—E + F =38 —38 + 1=1. But since the
net has exactly as many vertices and edges as the simple polyhedron,
but one face less, the equation?

V—E+F=2

must hold for the simple polyhedron.

Euler’s formula furnishes a new and simple proof for the fact
that there are only five regular polyhedra (cf. pp. 89, 90). In the
regular polyhedron under consideration, let » faces, and accord-
ingly, n edges also, meet at every vertex. If V, E, and F' have the
same meaning now as before, then the number of edges emanating
from any of the vertices is nV, except that every edge is counted
twice because each edge connects two vertices. Hence

nV=2E.

Let every face of our polyhedron be bounded by r edges. Then there
are altogether r F edges, counted as boundary segments of the faces.
But here we have again counted the edges twice, since every edge
forms a boundary segment of two faces. Hence

rF=2E.

By substituting these two equations into Euler’s formula we
obtain
2 E 2 F
n —E+5=2
which may also be written
1 1 1 1
PP

* Poincaré generalized Euler’s formula to n-dimensional space. Instead of
points, edges, and faces, we then have 0-, 1-, 2-, ..., n—1-dimensional entities.
Let the number of these entities be N,, N, Nz, ..., Nn_,, respectively. Then
the equation

No—N:i4+N;—...=1—(—1)»

applies to the manifolds corresponding to the simple polyhedra. For n =23 this
reduces to Euler’s formula.
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From the meaning of n and r it is clear that each of these numbers
must be 3 at least. On the other hand, they cannot both be greater
than 3 for in that event we would have

1 1 1

1 1 1 1
= e — < — —_——— = .
E n+r 2=4+4 2 0

which is impossible. Now let n = 8. Then
1 1 1

E_ v 6

Hence, for n =3, r can have only the values 38, 4, and 5, making
E equal to 6, 12, and 30, respectively. But the equations are sym-
metrical with respect to n and . Hence we get corresponding values
of n for r = 8. We have thus found all the possible cases: there are
six of them, but two, where n =3 and r = 8, are identical. This

Fi1c. 273 Fic6. 274

leaves five different possible types of polyhedra, and they are in
fact realized in the regular polyhedra.s

What is special about this proof, as compared with the proof
given before (p. 89), is the fact that it does not use the assumption
that all the faces are regular polygons. The only assumption re-
quired here was that all the faces be bounded by the same number
of edges and that the number of edges meeting in each of the
vertices be the same. Accordingly, the number of “topologically
regular” polyhedra is no greater than the number of “metrically
regular” polyhedra, provided we consider only simple polyhedra.

We shall now turn to the non-simple polyhedra. We cite, as an
example, the prismatic block (Fig. 273). This consists of a rect-
angular parallelepiped with a hole having the form of a smaller
parallelepiped with its sides parallel to the outer faces of the block.
The two ends that are common to the parallelepipeds are bevelled

* Similarly, Poincaré’s generalization of Euler’s formula furnishes a deter-
mination of the regular polytopes in higher-dimensional spaces.
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off as illustrated in the diagram. The prismatic block is a poly-
hedron that can not be deformed into a sphere but can be deformed
into a torus.t Other types can be obtained by removing several
pieces from the inside of the block (see Fig. 274).

In order to get a general perspective of this variety of polyhedra,
we assign a definite number h, the so-called connectivity number,
to every polyhedron. Let us consider the closed, non-selfintersecting
polygons consisting of edges of the polyhedron under consideration.
If the surface of a polyhedron is divided into two separate parts by
every such closed chain of edges, we assign the connectivity h =1
to the polyhedron. Clearly, all simple polyhedra have connectivity
1, since the surface of the sphere is divided into two parts by
every closed curve lying on it. Conversely, it is readily seen that
all polyhedra with connectivity 1 can be continuously deformed
into a sphere. Hence the simple polyhedra are also called simply
connected.

On the other hand, there is a closed chain of edges (e.g. the
square @ in Fig. 273) on the prismatic block which does not divide
the block in two. We assign a connectivity greater than 1 to any
polyhedron having this property. In each case, we fix the value
of the connectivity n by considering, along with a given chain of
edges, all other (not necessarily closed) chains of edges that con-
nect two points of the given chain.

If every such pair of chains divides the surface in two, we assign
the connectivity 2 = 2 to this polyhedron. Otherwise, we continue
the process. For the general case we have the following definition:

A polyhedron is said to have connectivity h (or to be h-tuply
connected) if h — 1, but not h, chains of edges can be found on it
n a certain order that do not cut the surface in two,* where it is
stipulated that the first chain is closed and that every subsequent
chain connects two points lying on the preceding chains.”

On the prismatic block there is a set of two such chains that
do not cut the surface in two (the square a and the trapezoid b),
as can be seen from Fig. 273. Thus this polyhedron is at least

* The prismatic block is also topologically regular.

¢ I.e., it must be possible to connect every pair of points on the polyhedron by a
curve on the polyhedron that does not intersect any of the chains.

" Frequently the term connectivity is used in the literature to denote the
greatest number of chains that do not cut the surface in two, viz., h—1. [Trans.]
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triply connected. We shall presently see that its connectivity is
exactly 3.

The question arises whether Euler’s formula, which we have
proved for simply connected polyhedra, can be extended to poly-
hedra of any connectivity . We can not expect the theorem to
remain valid without modification, for we have made use, in the
proof, of the planar net, and this can evidently be constructed only
for simply connected polyhedra. But it can be shown that the

formula V—E+F—38—h

is valid in the general case. For i = 1, this gives the equation that
we proved before. Another example is furnished by the prismatic
block. It evidently has sixteen vertices, thirty-two edges, and
sixteen faces, and we get the equation

16 —32 +16=3—3=0.

It follows that the connectivity of the prismatic block is exactly 3.
Euler’s formula can be used in the same way in the general case
as a convenient means of determining the connectivity of any poly-
hedron. It is sufficient to count the vertices, edges, and faces, without
having to follow the course of the chains of edges.

§ 45. Surfaces

We have seen that the simple polyhedra can be deformed into
the sphere and that the prismatic block can be deformed into the
torus. In a similar way, the more complicated topological struc-
tures can also be replaced by figures of a type similar to polyhedra.
In this way, the theory of these topological structures is reduced
to a study of figures that can be constructed from simple compon-
ents by a process that is easy to describe. Moreover, this approach,
known as combinatorial topology, has the great advantage that it
can be immediately extended to the case of more than three dimen-
sions; for, the structure of every polyhedron can be completely
described by a schematic rule of combination without the aid of
one’s powers of visualization.

On the other hand, our intuitive understanding deals more
readily with the curved surfaces as such. Thus the sphere is a
simpler structure than the simple polyhedra, and the torus is
simpler than the prismatic block. We shall therefore proceed to
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broaden the concept of the connectivity of polyhedra to apply to
arbitrary surfaces.

We must set 2 = 1 for the sphere and h = 3 for the torus. Sur-
faces of higher connectivity can be constructed by flattening a
sphere made of a plastic material and cutting holes into it (see
Fig. 275). We shall call such surfaces pretzels. It can be proved
that a pretzel with » holes must have connectivity h =2p + 1. The
figure shows pretzels of various connectivities with systems of
curves lying on them that do not cut the surfaces in two. The curves
number 0, 2, 4, and 6 for pretzels of connectivity 1, 3, 5, and 7, re-
spectively. It is readily seen that every additional curve connect-
ing two points on such a system of curves will cut the surface in two.

: :
Fic. 275

F16G. 276

On a general surface, the curves can be chosen more freely than
on polyhedra, where we restricted the choice to chains of edges.
Hence various other definitions can be given for the connectivity
of surfaces; for example, the following:

On a closed surface of connectivity %, we can draw h — 1 closed
curves without cutting the surface in two, but every system of
k closed curves cuts the surface into at least two separate parts.

Fig. 276 exhibits such curves for h—=1, 3,5, and 7.

We may impose the further condition that all the curves pass
through some arbitrarily chosen point on the surface. Then we get
the canonical section of the surface, which is found convenient for
some purposes. Figs. 285, 286, and 287 on pages 300 and 301
illustrate three examples of such a section.

On the other hand, the result is changed if it is required that
the curves shall not intersect each other. For, the following state-
ment can be proved for surfaces whose connectivities are odd
numbers.
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On a closed surface of connectivity h = 2p + 1 there are p closed,
mutually non-intersecting, curves—and no more than p—that do
not cut the surface in two.

The reader may convince himself of the truth of this theorem
by referring to Fig. 276.

We have so far considered only finite closed surfaces. The con-
cept of connectivity can also be extended to other cases. First of
all, let us consider surfaces that are finite but have a number of
closed boundary curves. Let us assume that these boundaries do
not intersect themselves or each other. Fig. 277 illustrates some
surfaces of the class we are considering. Still other types of sur-
faces of this class can be obtained from the closed surfaces of

OO

h=1 h=2

Fic. 278
Figs. 275 and 276 if we consider them to be hollow and then imagine
any number of holes cut into them (see Fig. 278)1. On the finite
bounded surfaces we use the same definition of connectivity by
systems of curves as before, with one modification: the first curve,
instead of being closed, shall connect two points of the boundary,
and every additional curve of the system may also begin and end
on boundary points as well as points of previous curves of the
system. According to this definition, the surfaces of Fig. 278 have
connectivities 2, 3, 7, and 8, in that order.

The definition of connectivity by closed curves can not be directly
extended to surfaces having boundaries.

Let us now consider a surface—with or without boundaries—
that extends to infinity. The topological structure of such a sur-
face will depend on whether we imagine it situated in metric or in

!In contrast to the surfaces shown in Fig. 277, those of Figs. 278b, ¢, and d
can not be obtained by any amount of deformation from a sheet of paper with
holes cut into it. This difference is of significance in the geometric theory of
functions (simple and non-simple domains).



298 VI. TorPoLOGY

projective space. In the first case, our attention is confined to the
finite points of the surface; we may regard space as being, so to
speak, confined within a very large sphere, and we can replace our
surface by that portion of it that is inside the sphere. Then we
are dealing with a finite bounded surface, and the theory developed
above may be applied to it.2
In projective space, the conditions are entirely different. Here
we consider every straight line as a closed curve with a single
point at infinity where the two branches meet. Furthermore, this
point is common to all lines that are parallel to the first. With this
convention, the projective space taken as a whole is also connected
at its ideal points. A surface contains a given ideal point if there
is a path along the surface that keeps getting closer to some straight
line to which this ideal point belongs.
Here it is by no means necessary that
the surface also approach a line parallel
to the above in the opposite direction.
S If the surface does approach two parallel
\ Straight lines in opposite directions, it
oA’ Frc. 279 is considered to be connected at their
) common ideal point; if the surface
approaches a straight line along a certain path without approach-
ing a parallel line in the opposite direction, the ideal point of the
straight line is a boundary point. Furthermore, if the surface has
a boundary curve that extends to infinity, then this curve must
be closed at infinity; i.e. the curve must either approach two
parallel straight lines asymptotically in the same or opposite
directions or must contain part of the line at infinity. For,
an open curve cannot form the boundary of a surface. For
example, the part of a plane in projective space which is marked
off by one straight line and two half-lines is not separated from

E o)

* It is necessary to assume that the sphere can be chosen to be so large that
any further enlargement would leave the topological structure of the portion
of surface inside the sphere unchanged. It is easy to find examples of surfaces
that do not satisfy this condition. One example is obtained by drawing small
circles without common points about the points of a plane square latice. If we
remove the interiors of all the circles from the plane we obtain a certain surface.
The part of this surface that is inside any given sphere has a certain connectivity
which is easy to compute. But the connectivity obviously increases indefinitely
if we keep enlarging the sphere while keeping its ccnter fixed.
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the rest of the plane (see Fig. 279), for we can move, say from
A to A’, by way of infinity. In metric space, on the other hand, the
same surface would behave as though it had a closed boundary.
Corresponding remarks apply to the plane as a whole. The metric
plane has the line at infinity as a closed boundary A 8

and is thus topologically equivalent to a circular

disk. On the other hand, the projective plane is a 7 ¢
closed surface. We can also obtain a simpler topo- o
logical model for the projective plane. To this end, b

we begin with a construction that was treated in Frc. 280

an earlier chapter (pp. 237, 238, 241). There we

established a one-to-one mapping of the projective plane onto a
hemispherical surface by identifying pairs of opposite points on
the great circle that bounds the hemisphere. We could just as well
have used a circular disk in place of the hemisphere, 7
since the disk can always be continuously deformed
into the hemisphere. Let us now deform the circular “ A
disk into the plane area bounded by a square. Then '
we see that the projective plane is topologically
equivalent to a square (see Fig. 280), provided that
we identify every pair of points of the boundary
which can be connected by a straight line through the center of the
square (e.g. A= A’, etc. in Fig. 280). Corresponding to closed
curves of the projective plane, we have not only the closed curves
on the square but also =
all those curves that
in our model connect
a pair of boundary
points that are identi- ~
fied with each other Fic. 282

(e. g. the line-segment = =
AA’ in Fig. 280). & N ﬂ
We shall interrupt

our topological in- Fic. 283

vestigation of the projective plane and take it up later (pp. 309ff.).
However, we shall now consider other, similar, constructions to
which the procedure of Fig. 280 leads directly. First of all, we
shall again begin with the square or rectangle but we shall now
identify pairs of boundary points according to the scheme indicated

c 0
Fic. 281

3 ¢

|
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in Fig. 281. Once again, we obtain a model of a closed surface; but
this time it is easy to reconstruct from the model the surface it
represents. To begin with, we
bend the rectangle into the
form of a circular cylinder
(see Figs. 282 and 283) and
fasten the sides 1 and 2 to-
gether so that identified pairs
' of points on these sides are
actually brought into coin-
cidence. Meanwhile, the sides
3 and 4 have become circles,
and by bending the cylinder
(see Fig. 284), we can bring
them together as prescribed
by the identification. Finally,
we arrive at the surface of
a torus, and the boundary
of our rectangle has become
a canonical section on the
torus, with each of the curves
corresponding to two sides of
the rectangle (see Figs. 285
and 275b). Conversely, we can begin with a torus and obtain a
figure that is topologically equivalent to a rectangle with its sides
properly identified in pairs, by slitting
the torus along the curves of a canonical
section. This procedure can be general-
ized to all pretzels. For a pretzel of con-
nectivity 2p + 1, the canonical system
consists of 2p curves, and cutting along
these curves results in a 4p-sided poly-
gon with pairs of sides identified accord-
ing to a definite rule. Figs. 286 and 287
illustrate the construction for the cases
h=5andh="T (i.e.p=2and p =3),
respectively.
The mapping of pretzels into 4p-sided polygons plays an im-
portant part both in the theory of continuous maps (cf. p. 322) and

FIG. 284

F1c. 285

FIG. 286a
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F1cG. 286d

FIG. 286e

F1G. 287a F1G. 287b

“\l
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F1c. 287¢c Fi1c. 2874
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in the theory of functions (p. 333). Both applications are based
on the fact that each of the regular 4p-sided polygons generates a
regular tiling of the hyperbolic plane (or, in the special case p = 1,
of the Euclidean plane), as we have seen on page 259.

By pairing off the sides of our polygon differently, we can obtain
many other surfaces besides the pretzels. We shall consider some
of these surfaces in the sequel.

§ 46. One-Sided Surfaces

All the polyhedra and closed surfaces we have considered thus
far had odd connectivity numbers. Thus the question arises whether

F1c. 288

there are any closed surfaces at all with even connectivities, i.e.
whether there are surfaces whose topological behavior is midway
between that of a sphere and that of a torus, or between that of
two pretzels.

The answer is in the affirmative. Indeed, we shall now construct
a polyhedron, the heptahedron, whose connectivity according to
Euler’s formula is 2. To this end, we begin with the eight triangular
faces of a regular octahedron and add the three squares in the
planes spanned by the diagonals (e.g. ABCD in Fig. 288). The
eleven faces obtained in this way do not constitute a polyhedron
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as defined earlier, for the number of faces meeting at each edge is
three instead of two. We proceed to remove four triangles: from
the front half of the figure (in the
position shown in Fig. 288) we re-
move the upper left-hand triangle
and the lower right-hand triangle,
and from the part at the rear of the
figure we remove the lower left-
hand triangle and the upper right-
hand triangle. Then only the four
triangles shaded in the diagram
remain. Thus we have obtained a
figure consisting of four triangles
and three squares. Its edges and Fi1G. 289b
vertices are the edges and vertices
of the octahedron. The diagonals of
the octahedron are not edges of our
figure but are lines in which it inter-
sects itself. It is clear that exactly
two faces meet at every edge and
that we can travel from any face to
any other by crossing edges. Thus
the figure is a polyhedron ; and since
it has seven faces, it is called a
heptahedron. Like the octahedron,
the heptahedron has twelve edges
and six vertices. Thus the gen-
eralized form of Euler’s form-
ula gives the equation

V—E+F=
6—12+7=1=3—h,

F1c. 289a

whence the connectivity num-
ber for the heptahedron is
h=2. Just as the simple poly-
hedra can be continuously de-
formed into the sphere, so there
is a simple closed surface into
which the heptahedron can be F16. 289¢
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deformed. This is the Roman surface (see Fig. 289) investigated
by Steiner. Like the heptahedron, this surface intersects itself in
three mutually perpendicular straight-line segments. Its equation
in rectangular coordinates is

YR+ 22t + xty* + 2xyz=0.

Thus it is a surface of the fourth order.

In addition to its even connectivity number and its lines of self-
intersection, the heptahedron has another important property dif-
ferentiating it from the surfaces we have studied thus far. Let us

F16. 290

imagine the surface realized by means of a membrane and follow
some creature, such as a beetle, which is taking a walk on the sur-
face starting at a fixed point P. Directly opposite P, on the other
side of the thin membrane, there is a point P’ that coincides with P
if the membrane is replaced by the original surface. Now it might
easily be thought that the beetle cannot get from P to P’ without
boring a hole somewhere in the membrane. For the sphere and for
all the pretzels we have thus far studied, this is true. But it is not
true without qualification for the heptahedron. Let us start at a
point P that is on the square face in the plane of the paper on the



§ 46. ONE-SIDED SURFACES 305

side facing the observer (see Fig. 290). Consider a path on the
heptahedron which begins at P, crosses the edges 1, 2, 3, and 4, and
then continues on the original square. Clearly, the beetle who fol-
lows this path starting on the front side of the square face arrives
at the back of the same face after crossing the edge marked 4. It is
true that it is necessary to bore through the membrane that forms
the heptahedron, in three places, but in each case the face that is
pierced is one that blocks the path at a place where the heptahedron
intersects itself, not the face on which
the beetle is travelling. p (;,
For this reason, the heptahedron is 4 v
called a one-sided surface, while the
sphere and the pretzels considered thus
far are called two-sided. This distinction can also be applied to
bounded surfaces. We think of the surface as being embodied by
a membrane and try to determine whether there is a path on it
which leads from one side of the surface to the other without
crossing the boundary and without piercing the membrane at a
point that is just being traversed by the path. If such a path exists,
the surface is called one-sided, otherwise we
call it two-sided. All of the bounded surfaces
we have considered up till now—such as the
circular disk—are two-sided. But there is an
example of a bounded surface which is one-
sided and is much simpler than the hepta-
hedron; this is the Moébius strip. We can
make it from a long rectangular strip of
paper such as the one illustrated in Fig. 291.
If we put the ends AB and CD together in
such a way that A meets C and B meets D,
we get a cylindrical strip, as we have already seen. This is a two-
sided bounded surface. But if, before putting the ends together,
we twist one end of the paper strip through an angle of 180° rela-
tive to the other and then join the ends, with A meeting D and
B meeting C, we get a model of the Mébius strip (see Fig. 292).
It is easy to see that this surface is one-sided. For example, we
may draw the straight line PP’ parallel to the long edges of the
strip before putting the ends together. After the ends are put

F1G. 291

F16. 292
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together, the line becomes a path QQ’ that leads from one side
of the strip to the other.?

The one-sided surfaces may also be characterized by means of
another important topological concept which can be formulated
without considering a membrane substituted for the surface.
Imagine every point of any given surface (with the exception of
boundary points, if any) to be enclosed in a small closed curve that
lies entirely on the surface. We then try to fix a certain sense on
each of these closed curves in such a way that any two curves that
are sufficiently close together have the same sense. If such a deter-
mination of sense of traversal is possible in this way, we call it an
orientation of the surface and call the surface orientable. We shall
prove that a one-sided surface cannot be orientable. Let us con-
sider one of the closed paths the existence of which is equivalent
to the one-sidedness of the surface. Choosing, for example, the
path QQ’ on the Mobius strip, where @ and Q' are again regarded
as identical, let us assign a sense to the point @ and preserve the
sense continuously along the path Q@Q’; then the sense associated
with the moving point when the point @’ = @ is reached again is
necessarily the reverse of the original sense. This phenomenon
could not occur if the Mobius strip were orientable. The behavior
of all other one-sided surfaces is analogous to that of the Mdbius
strip. And conversely, it can be demonstrated that all two-sided
surfaces are orientable. Thus the classification of surfaces into
two-sided and one-sided surfaces is identical with the classification
into orientable and non-orientable surfaces.

It is easy to see that a surface is non-orientable if and only if
there exists on the surface some closed curve s which is such that
a small oriented circle whose center traverses the curve continu-
ously will arrive at its starting point with its orientation reversed
(e.g. the curve QQ’ of Fig. 292). If on such a surface we move along
one side of the curve s, we arrive on the other side of the curve
although we have never crossed it. For this reason, we call s a curve
with one bank. While all the curves on an orientable surface have

*The two following properties also illustrate the difference between the
Mobius strip and the cylindrical strip. First, the boundary of the Mébius strip
consists of a single closed curve, while the cylindrical strip is bounded by two
separate closed curves. Second, the Mobius strip, unlike the cylindrical strip,
when cut along the curve Q @', does not fall apart, but remains connected.
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two banks, the existence of a closed curve with one bank is char-
acteristic of the non-orientable surfaces. The one-sidedness of a
surface and the presence on it of a curve with one bank are equi-
valent. The former property has reference to the position of a sur-
face in space, the latter to the position of a curve on the surface.

Unlike the Mébius strip, the heptahedron has lines along which
it intersects itself. It would seem to be a reasonable conjecture
that every one-sided closed surface must intersect itself. For since
it has only one side, such a surface cannot divide the space into
two parts of which one is “inside” and the other “outside,” and
this is inconceivable in the case of a closed surface without self-
intersections. The conjecture is true: all one-sided closed surfaces
have self-intersections. But the proof would have to be conducted
along quite different lines.

Not every self-intersection is a topological singularity. Consider,

Fi1c. 293 F16. 294

for example, the surface of revolution formed when the curve shown
in Fig. 293 is rotated about the straight line as axis. The surface
intersects itself along the circle generated by the point A. But a
continuous deformation transforms the surface into the surface of
revolution generated by the curve shown in Fig. 294. Clearly this
curve has no self-intersections and is topologically equivalent to
the sphere. Conversely, the sphere can be transformed into the
first surface of revolution by a deformation. Hence the presence
of curves of self-intersection need not represent a topological
property. In the example we have just given, the points of self-
intersection form a closed curve. On the heptahedron, on the other
hand, the curves of self-intersection have six end-points in all,
namely the vertices of the heptahedron. Now these points really
have to be treated as singular points. For, the neighborhood of any
regular point on a surface can be deformed into a circular disk,
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but for the neighborhood of a vertex of the heptahedron (Fig. 288)
this is not possible. Accordingly, the heptahedron has six singular
points. This raises the question of whether there is any one-sided
closed surface at all that has no singular points.

F1G. 295

Such a surface was first constructed by Felix Klein. We begin
with an open tube (see Fig. 295). We earlier obtained the torus
from such a tube by bending the tube until the ends met and then
cementing the boundary circles together. This time we shall put
the ends together in a
different way. Taking a
tube with one end a little
thinner than the other,
we bend the thin end
over and push it through
the wall of the tube into
the position shown in
Fig. 296, where the two circles at the ends of the tube have con-
centric positions. We now expand the smaller circle and contract
the larger one a little until they meet, and then join them together.
This does not create any singular points. This construction gives
us Klein’s surface, also
known as the Klein bot-
tle, illustrated in Fig. 297.
It is clear that the surface
is one-sided and inter-
sects itself along a closed
curve where the narrow
end was pushed through
the wall of the tube.

Our first example of a closed one-sided surface, the heptahedron,
differed from the two-sided closed surfaces we have studied thus
far also in that it had an even connectivity number. Hence we
might expect that the connectivity of the Klein bottle would like-

F1G. 296

F16. 297
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wise be even. But this is not the case. For, its connectivity number
is 8, like that of the torus. Furthermore, we can choose the canonical
section in the same way as on the torus: As the first closed curve
of the system, we choose the seam along which the ends of the tube
are fastened together. As the second curve, we choose one of the
curves that become generating segments when the surface is trans-
formed back into its cylindrical shape after cutting it open along
the first curve. By being cut along these two curves, the Klein bottle,
like the torus, is changed into a rectangle. Every additional curve
connecting two boundary points of the rectangle divides it into two

Jane, | twodomdery | oz | twosided

X Lgi?iil\:s one nglgary h=2 one-sided
torus sﬂgf:ge h=3 two-sided

\xl lﬁl&ill:a sf:ll??:ge h=3 one-sided
pofecive | doed | 2 | oneside

parts. Applying the general definition of connectivity to the Klein
bottle, we therefore have h — 1 =2, h =23, as was to be proved.

By this time, we have obtained five different surfaces from the
rectangle (or square) by identifying pairs of edges in different
ways.? The table above lists the five surfaces, together with relevant
data. The data given for the projective plane will be justified later.

The table shows that the model of the Mobius strip is obtained
from that of the Klein surface on cancelling the identification of

? In projective space, the hyperboloid of one sheet is to be considered as a closed
surface, being connected at infinity. The reader will be able to decide by reference
to the table whether the hyperboloid of one sheet, considered from this point of
view, is topologically equivalent to the Klein bottle or to the torus.
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one of the two pairs of sides. Hence it must be possible to convert
the Klein bottle into a Moébius strip by cutting it open along a suit-
ably chosen closed curve. It is left to the reader as an exercise to
try this out on a model. Fig. 298 shows a different way of cutting
open the Klein bottle which results in two Mébius strips. The reader
is urged to find the corresponding modification which converts one
of the square models in the table into the other.

Among the closed one-sided surfaces we saw examples both of

FIG. 298a

=¥

F16. 298b

surfaces with even connectivities (e.g. the heptahedron) and of
surfaces with odd connectivities (e.g. the Klein bottle). On the
other hand, all the closed two-sided surfaces mentioned thus far
have had odd connectivity numbers. And it can be shown, more-
over, that there are no closed two-sided surfaces with even
connectivity numbers.

Like the square, all the other regular 4p-sided polygons can also
be made to serve, by identifying pairs of edges in various ways,
as models for a great many surfaces, including closed and bounded
ones, and one-sided and two-sided ones. If AB and CD in Fig. 299
are to be two identified edges of the 4p-gon, there are two possible
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ways of identifying them, as follows: (1) the two straight lines
connecting associated end-points do not intersect, or (2) they
intersect. An example of the first case is obtained by identifying
A with C and B with D in Fig. 299; an example of the second case
is obtained by identifying A with D and B with C. We shall prove
the following: If any two sides of the 4p-gon are associated in the
second way, then the surface represented by the polygon is one-
sided, irrespective of the way the other associations are set up.

We shall prove this by showing that the surface represented is
not orientable, using the method sketched on page 306. Let P
and P’ be two points associated under the identification and lying
on A B and C D respectively (see Fig. 299). Then
the straight-line segment P P’ represents a closed
path on the surface. A point traversing this path
on the surface is represented by a point R travel-
ling on PP’ first to the point P and then from P’
back to its original position. Let us give the point
of the surface represented by R a certain sense
of orientation which is not to undergo any dis-
continuous change as the point moves; thus we
have to draw a small circle about R with an arrow
indicating a sense, and move the circle continu-
ously along with B. Aslong as the whole circle lies inside the 4p-gon,
it is the image of a closed curve on the surface that the polygon

represents. When R is near P, only the arc 5 T of the circle remains
inside the 4p-gon. To preserve the image of a closed curve on the
surface, we have to make use of the points S’ and 77 on CD which
are associated with S and T'. Since the identification of AB and CD
is of the second kind, S and S’ lie on opposite sides of the line PP/,
and so do T and 7’. Hence the closed curve, with its sense of tra-

versal, is represented by the two directed arcs ST and 7'S’. This
figure does not undergo any discontinuous change when R reaches P
and then continues from P’ towards its initial position. As the
distance between the moving point and P’ increases, the arc ST
gradually disappears, while S’7” is transformed into a full circle.
But the sense of traversal of the new circle is opposite to the sense
of traversal of the initial circle, which proves that the surface is
not orientable.



312 VI. ToroLOGY

As a special case of this theorem, we get the result that the pro-
jective plane is one-sided. For, in its model, both the identifications
of pairs of sides are of the second kind.

The converse of our theorem—that the model always represents
a two-sided surface if all the identifications are of the first kind—
can also be proved without difficulty.

We obtained the model of the projective plane from the surface
of the sphere. On the other hand, the Klein bottle and the torus
were seen to be related, though not by the same relation as are the
sphere and the projective plane. We shall now show that the same
correspondence as exists between the two first-named surfaces can
actually be set up also between the Klein bottle and the torus, and
more generally, that there is a
two-sided surface correspond-
ing in the same way to every
one-sided surface.

In order to obtain the projec-
tive plane from the sphere, we
, i had to identify every pair of
diametrically opposite points
(see pp. 237 and 299). We now
apply the analogous construction to the torus. Let us designate as
the center of the torus the point M at which the perpendicular
from the center of one of the generating circles meets the axis (see
Fig. 300). Now if P is any point on the torus, then the point P’
which is the reflection of P in M lies on the torus as well. All pairs
of points on the torus that are symmetrical with respect to M will
be called diametrical. By treating every diametrical pair of points
as a single point, we transform the torus into a new surface F.
We shall prove that F' is the Klein bottle.

Consider a generating circle of the torus. This is associated with a
second generating circle, as shown in Fig. 300. The two circles divide
the torus into two halves. Now the surface F is obtained by omission
of one half of the torus and identification of the boundary circles of
the remaining half in the manner prescribed ; analogously, we were
able to use a hemisphere instead of the full sphere in the construction
of the projective plane. Now it becomes evident, from a considera-
tion of the sense of traversal of the two identified circles, that the
half-torus is converted into a Klein bottle by the identification.

1
|
1
'
i
!
1
1
'

F16. 300
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Furthermore, it is evident that the second half of the torus can
be superimposed on the first in such a way that every pair of points
that originally was diametrical now coincides. It is necessary here,
however, to turn the second half-torus inside out like a glove.
If the two halves are subsequently stuck together, the torus finally
acquires the form of a Klein bottle doubly covered.®* For this rea-
son, the torus may be referred to as a two-sheeted covering surface
of the Klein bottle. Likewise, the sphere is called a two-sheeted
covering surface of the projective plane. Quite generally, it can be
proved that every one-sided surface has a two-sided surface as a
two-sheeted covering surface.

§ 47. The Projective Plane as a Closed Surface

In order to determine the connectivity of the projective plane,
we shall apply Euler’s formula to the square model. Through the
center M of the square (Fig. 301) we draw the P
straight lines PQ and RS parallel to the sides of
the square, thus dividing the square into the smaller

. ¢
squares 1, 2, 3, and 4. But because of the way the p d 3
edges are identified, the squares 1 and 3 represent
a single polygon in the projective plane, and so do FIG‘S"UJ

the squares 2 and 4. Furthermore, the two segments
PM and QM must be regarded as a single edge, because P and Q
represent the same point ; and RM and SM are a single edge, because
R and S represent the same point. There are no vertices other
than M. In Euler’s formula, we must therefore set

V=1, E=2, F=2.

From Euler’s formula we therefore get V—E + F=1=3 —h,
so that the connectivity of the projective plane is 2, as indicated
in the table on page 309.

In analytic projective geometry, we encounter a different parti-
tion of the projective plane, resulting from the introduction of
trilinear coordinates. This partition is shown in Fig. 302, where
a circle, rather than a square, serves as model of the projective

*It might at first be assumed that the transformation can be effected by a
mere deformation of the torus. This is not the case. On the contrary, it is neces-
sary to cut the torus apart to make it possible to turn one half inside out.
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plane. Three arcs that do not all pass through a common point

divide the circle into seven regions. If each arc meets the circum-
ference in two diametrically opposite points, the regions 2 and 5
represent a single triangle; so do 3 and 6; and so do 4 and 7. It can
be seen that any three straight lines without a common point divide

the projective plane in this way
into four parts.! Here we have

Y

F1G. 302.

V=38, E =26, and F =4, from which we get h = 2, as before.

We shall now apply the same procedure to the square model of
the projective plane as we used in constructing the torus and the
Klein bottle from their square models, i.e., we shall bring the identi-
fied edges together and join them. First, we distort the square

I
!
N
1
'
'
I

'1G. 304 Fi1c. 305

into a sphere with a small quadrilateral A BC D removed (Fig. 308).
Now AB has to be attached to CD, and DA to BC. This can be

accomplished by raising A and C and lowering B and D and then
drawing each of these two pairs of points together (see Fig. 304).
The final result is a closed surface intersecting itself in a line seg-

! The partitions of the projective plane illustrated in Figs. 301 and 302 were
obtained on pages 148 and 149 as projections of the octahedron.
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ment (see Fig. 305). This surface is topologically equivalent to
the projective plane.

There is an algebraic surface of this form (Fig. 306). Its
equation is

(ky2? + kov?) (22 + 92 + 22) — 22(22 + y?) = 0.

This surface is connected with a construction in differential geom-

Fi6. 306a F1a. 306b

etry. On any surface F, we begin with a point P at which the
curvature of F' is positive. Then we construct all the circles of
normal curvature at P (cf. pp. 183, 184). This family of circles
sweeps out the very same surface
that is shown in Fig. 306, where

Fic. 307

the line of self-intersection is a segment of the normal to the sur-
face F' at P. The equation given above is referred to the rectangular
coordinate system with P as origin and with the principal direc-
tions of F' at the point P as z-axis and y-axis. k, and k, are the
principal curvatures of F' at the point P.
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If we once more start with Fig. 304 but now only put the pair
AB and CD together—but not DA and BC—we get a surface that
is topologically equivalent with the Mébius strip. For, this identi-
fication of sides is the same
identification which, by defi-
nition, transforms the square
into a Mé6bius strip. The
boundary of the new surface
is derived from the arcs DA
and BC, and since A and B
are attached to C and D re-
S spectively, it is a closed curve.
N i Thus we may, for example,
& 4 give the boundary the form
& g of a circle (as in Fig. 307).

R Obviously, the surface is not
self-intersecting. At the two
points arising from A, C and
B, D respectively, the curvature of the surface is discontinuous.
But by an additional deformation in the neighborhood of these
points, we can get a surface with continuous curvature every-
where. Figs. 308 and 309 give an indication of its form.

Although its boundary is circular,
our surface can not be used as a con-
tainer: being one-sided, it does not
separate the interior from the rest
of space.

By closing the surface by the in-
sertion of a circular disk, we get our
model of the projective plane again,
as can easily be seen from Figs. 307
and 305. Conversely, it follows that
the removal of a circular disk from
the model of the projective plane results in a model of the Mébius
strip. Here it is immaterial where the hole is made in the surface
of Fig. 305; for, since all diametrical pairs of points on the sphere
are alike, no point of the projective plane is distinguishable from
another. If, in particular, we choose to remove the bottom from
the surface of Fig. 805, we get an especially clear picture of the
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residual surface, as illustrated in Fig. 810. This surface is called
the cross-cap. It is another of the models of the Mébius strip that
have a circle as boundary. Despite the fact that it has only one
side, the cross-cap can obviously be used as a lid for a container.
This is made possible by the presence of a line of self-intersection.

If the cross-cap is cut open along its line of self-intersection, the
resulting surface can be deformed into a circular disk with a hole
in the form of a quadrilateral or a circle: this
is merely reversing the transformation out-
lined in Figs. 803 to 305. Accordingly, we
can get a model of the Mo6bius strip from the
region between two concentric circles by
identifying all the diametrically opposite pairs
of points of the smaller circle (see Fig. 311).
At first sight it certainly would not appear that
this figure represents the same surface as the
square model in the table on page 309. However, the square model
can be obtained from Fig. 811 by cutting the ring into two halves
(Fig. 312), deforming the parts (Fig. 313), turning one half over
(so as to interchange the positions of ¢ and b’ in Fig. 313), and finally
physically re-uniting some of the pairs of edges that originally
belonged together while abstractly identifying the rest (Fig. 314).

In our model of the projective plane, two points—the extremities
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of the line of self-intersection—are singular points. W. Boy suc-
ceeded in constructing a model of the projective plane that has no
singular points and no points at which the curvature is discontinuous.

In constructing Boy’s surface, we do not begin with a square
but with a hexagon. Diametrically opposite points on the boundary
of the hexagon are again treated as identical. A deformation
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converts the hexagon into a sphere with a hole having the form
of a regular spherical hexagon. Like the original hexagon, the
new figure can be divided into three congruent parts arranged sym-
metrically about an axis (see Fig. 815). Next, we separate the

/ three parts and subject each of
them to a deformation that we
shall describe presently. Thus we
obtain three congruent pieces of
a certain shape, which we shall
finally join together to get Boy’s
surface; it, too, will have a three-
fold axis of symmetry. Of course,
the method aims at finding a way
to join together the pairs of oppo-
gite points on the edge of the
hexagonal hole.

Hence we start by bringing into coincidence, at N (Fig. 316),
the points 4, B, C of the piece ScAaBbCdS (Fig. 315) but with-
out considering them as identical, since this would not be in accord
with the original scheme for identifying points. Then we move
the closed edge a up (Fig. 317) and over into the position shown in

N Fig. 318, while the points S a
and N and the edges b, ¢, 17
and d remain fixed. In this
operation, the part of the
surface between ¢ and a is
d distended considerably until
it is almost plane. Now we 4
move the loop b (in Fig. 318)
up towards the right until it
assumes the position shown
S in Fig. 319, bordering from
Fic. 316 behind on the part of the y et
surface mentioned just before. In this final position, the ares ¢ and d
should be congruent, the loops a and b should be congruent, and all
should be so situated that a rotation about the axis SN through an
angle 2n/3 as indicated by the arrows moves ¢ into d and b into a
(see Fig. 319). To the surface we have thus constructed we add
another that is congruent to it and whose corresponding elements
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we shall label a’, S, etc., putting the surfaces together in such a
way that d’ coincides with ¢ (S’ coinciding with S, and N’ with N).
Then o’ and b will automatically coincide and can thus be glued

Fic. 318 FIc. 319

together. Now the curve along which the two surfaces are attached
becomes a line of self-intersection for the new surface, as may be
seen from Fig. 319. The boundary of the new surface consists of
¢’,a, b, and d; this follows by going back
to the hexagon with which we, started
(see Fig. 320). Evidently, we can attach
a third replica to this boundary, so that
d is in contact with ¢”, a with b”, b’ with
a”, and ¢’ with d” (where the meaning
of the notation is obvious). This com-
pletes the construction of Boy’s surface.
It is clear from Fig. 320 that Boy’s sur-
face is equivalent to the projective plane.
Fig. 321 shows a model made of wire
netting. The curve in which the surface intersects itself consists
of three loops which pass through the point N and which, like the
whole surface, are symmetrically arranged about the axis SN.
A study of Fig. 320 shows that three sheets of the surface pass
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through N. A necessary and sufficient condition for the continuity
of the tangent planes of these three sheets at N is that the six
end-points of the loops meeting at N be tangential to three mutually
perpendicular straight lines at that point. Any creases or discon-

F1G. 321a Fic. 321b

tinuities of curvature that may occur along the other seams at
which the parts of the surface are joined, can be removed simply
by smoothing the surface. In the model of Fig. 321, the line of
self-intersection is accentuated by the use of heavier wire. The
only purpose of the other
heavy wires is to give sup-
port to the structure. The
model is held together by a
screw at the point S. The
way in which the model is
related to our construction
should be particularly clear
from Fig. 321b.

It follows from the fore-
going discussion that the
spherical image of Boy’s surface is everywhere continuous. Un-
fortunately, the way in which it is distributed over the sphere has
not yet been studied. Suppose we begin the construction of the
image with an arbitrary normal vector and then follow the image
continuously; it is certain, because of the one-sidedness of the
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surface, that we shall eventually reach also the opposite normal
vector of the starting point. 2
Thus the spherical represen- f
tation assigns a pair of dia- "'\\'
metrically opposite points on 4

the sphere to every point of #
Boy’s surface. But since this [ oy,
identification transforms the it 4 i i f
sphere back into the projec- ( 5 g R L%
tive plane, we see that the O / :
spherical representation of %
Boy’s surface produces a map-
ping of the projective plane e

..... -

onto itself, although this is F1c. 321d
not bi-unique, owing to the fact that several points of Boy’s surface
correspond to one pair of points on the sphere.

§ 48. Standard Forms for the Surfaces of Finite Connectivity

We define a class of surfaces as consisting of all those surfaces
that can be transformed into each other by a topological mapping.
The following are necessary conditions for two surfaces with
finite connectivity numbers to belong to the same class:

1. Both surfaces are either closed or else have the same number
of boundary curves.

2. Either both surfaces are orientable or both are non-orientable.

3. The connectivity numbers of the two surfaces are equal.

The necessity of the first condition is obvious. The proposition
that the second condition is necessary may be reformulated as
follows: Every surface F' that can be topologically mapped onto
an orientable surface G is itself orientable. In this form, the
proposition is easily proved. For in the topological mapping, an
orientation of G gives rise to an orientation of F. Similarity, we
can derive the necessity of the third condition: The connectivity
number of a surface determines the existence of a section on it
which under a topological mapping becomes a section having the
same structure on the image surface.

A more detailed study shows that the three conditions are also
sufficient to ensure that two surfaces be related by a topological
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mapping. For if a given surface is known to be orientable and if
the number of its boundary curves and its connectivity number
are known, then we can follow a procedure similar to that used
for the torus and the orientable closed surfaces of connectivities
5 and 7 and illustrated in Figs. 282 to 287 (pp. 299-301) : By dis-
section along a suitable system of curves, the surface can always
be transformed into a polygon with some, or all, of its sides identi-
fied in pairs; the structure of the section as well as the number of
sides of the polygon and the rule for identifying sides are uniquely
determined by the three items of information mentioned. Therefore
any two surfaces that are alike with respect to these three criteria
can be mapped topologically onto the same polygon and therefore
also onto each other.

As a result of the dissection, the closed orientable surfaces of
genus p become 4p-gons with pairs of sides identified in the manner
illustrated in Fig. 322. These 4p-gons
constitute a set of standard forms repre-
senting all the closed orientable surfaces,
since the connectivity of every surface of
this kind is an odd number A =2p + 1.
Another complete set of standard forms
has already been given: The sphere, the
torus, and the pretzels with p holes.

Some of the Riemann surfaces encountered in the theory of
functions are included in this classification, although their geo-
metrical appearance would not lead us to suspect this. These
surfaces, like the spherical images of most minimal surfaces (see
p. 271), cover the sphere in several layers connected at branch
points. All of these surfaces are orientable, since every orientation
of the surface of the sphere is carried over to the layer next to it.
A Riemann surface is closed if and only if the function associated
with it is algebraic; all transcendental functions give rise to open
Riemann surfaces. We shall not discuss this topic in further
detail.

In the case of the bounded surfaces, we can also find a set of
polygons which are such that every surface of finite connectivity
whose boundary consists of a finite number of curves can be mapped
topologically onto just one of these polygons. Two examples of
such polygons are the square models for the plane annulus and the
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Mobius strip. For the orientable bounded surfaces we can get even
clearer standard types by taking the sphere, the torus, and the
pretzels and cutting various numbers of holes into them (as in
Fig. 278, p. 297). In order to construct similar standard types for
the non-orientable surfaces as well, we can make use of the cross-
cap, the surface we constructed on page 316 as a model for the
Mobius strip. We take a sphere, cut a number of holes into it, and
then seal some of them with cross-caps. Every non-orientable
surface of finite connectivity is equivalent to a surface constructed
in this way. The number of cross-caps and of open holes is uniquely
determined by the number of boundary curves and the connectivity
of the surface represented.

The cross-cap has a line of self-intersection and two singular
points. The Klein bottle and Boy’s surface furnish examples of
one-sided surfaces not having singular points. The question of
whether all the other closed non-orientable surfaces can be realized
in space in a form free of singularities does not seem to have been
investigated yet. Certainly, none of them can be freed from self-
intersections, as has already been mentioned.

In four-dimensional space, however, all non-orientable sur-
faces can be represented in a form free of singularities or self-
intersections. We shall use the notation R, for the four-dimensional
space and R; for the three-dimensional space. We can think of the
R, as being imbedded in R, in the same way as a plane is imbedded
in R,. Now we begin by constructing a cross-cap having no
self-intersections and singularities in R,. To this end, we take a
cross-cap in R, and think of it as being imbedded in R,. Then we
choose a circular disc e on the cross-cap which has the line of self-
intersection as a diameter (cf. Fig. 307, p. 315). In R,, we can
keep the circumference of any circular disc fixed while curving out
the rest of the disc in such a way that none of its points remains
in the plane of the circumference. Likewise, we can take the disc
e in R, and deform it into a surface f in such a way that the cir-
cumference remains fixed on the cross-cap in the R; while the
interior of f juts out of the R;. But by this deformation, the cross-
cap becomes a surface F' in R, which is obviously devoid of self-
intersections and singular points. If we now imbed into R, a
sphere having a number of holes, and cover some of the holes not
with cross-caps but with surfaces like F, we get standard types



324 VI. ToroLoGY

free of self-intersections and singularities, to represent all the
non-orientable surfaces of finite connectivity.

Another problem is the representation of surfaces of a given
topological structure by algebraic equations of lowest possible
degree. Thus, for example, we mentioned that Steiner’s surface is a
model which represents the projective plane. The question of
whether there are any algebraic surfaces representing Boy’s sur-
face has not yet been investigated. The projective plane can be
realized in a surface in R, that is given by very simple equations
and has no self-intersections or singularities. The derivation is
given in an appendix to this chapter.

The problem of topological equivalence has been extended from
surfaces to three-dimensional and higher-dimensional structures.
This led to the study of Betti groups. In the theory of Betti groups,
the concepts of connectivity number and orientability of a surface
are treated from a much more general point of view. The reader
is referred to the books mentioned in the footnote on page 289.

§ 49. Topological Mappings of a Surface onto Itself. Fixed Points.
Classes of Mappings. The Universal Covering Surface of the Torus

The simplest topological mapping of a surface onto itself con-
sists of a continuous distortion which is such as to transform the
surface as a whole into itself. This type of mapping is called a
deformation. The motions of the plane into itself are deformations.
The reflection of the plane in a straight line, on the other hand,
is an example of a topological mapping that is not a deformation.
For, a reflection reverses the sense of traversal of every circle,
whereas deformations cannot reverse the sense of traversal.

A point that is mapped onto itself under a mapping is called a
fixed point of the mapping. We shall prove that every continuous
mapping of a circular disk (with the points of the circumference
included) onto itself has at least one fixed point. Let us begin by
supposing the contrary, i.e. by supposing that there is a continuous
mapping e of the disk onto itself in which no point is fixed. Then
we can attach an arrow to every point P of e pointing in the direc-
tion of the image of P (as this would fail to be possible only at a
fixed point). Since, by assumption, the mapping is continuous, the
change in direction of the arrows from point to point must be
continuous. Now consider the arrow attached to a point on the



§ 49. TOPOLOGICAL MAPPINGS OF A SURFACE ONTO ITSELF 325

circumference, and let the point move once around the circumfer-
ence clockwise; obviously, the tangent to the circle at the point
will make one full clockwise turn at the same time. We can show
that the arrow attached to the point must also make exactly one
clockwise turn in the process: First of all, the arrow has to make
an integral number of turns (which may conceivably be zero),
because it returns to its original position. Now, since the arrow
at a point of the circumference is always directed into the interior
of the circle, the angle between the tangent and the arrow can never
equal zero or any multiple of n. Yet if the number of turns made
by the arrow in the course of the motion differed from the number
of turns made by the tangent, it would have to happen at least
once on the circumference that the two directions are either equal
or opposite. Next, we consider the number of turns of the arrow
on any interior circle k concentric with the circumference, using
a similar argument. Here too, the arrow makes just one clockwise
turn during the course of one clockwise run of the point around
the circle, for otherwise there would have to be at least one dis-
continuous change in the number of turns of the arrow as the circle
is shrunk continuously from the circumference,to the position k&,
and this would contradict the continuity of the distribution of the
arrows. On the other hand, if k is continuously shrunk towards
the center M of the disk, the directions of the arrows for all the
points on k& have to get closer and closer to one single direction,
viz. the direction of the arrow at M. For sufficiently small circles,
the number of turns would therefore have to be zero. This is a
contradiction. Consequently, there is no continuous mapping with-
out fixed points of a circular disk onto itself.

Similarly, we can prove that every continuous mapping of the
surface of a sphere onto itself necessarily has either a fixed point
or a point that is mapped onto the diametrically opposite point.
Otherwise, every point would uniquely define an arc of a great
circle connecting the point with its image. This would create a
distribution of arrows that has to be continuous over the whole
surface of the sphere, and by consideration of the number of rota-
tions of the arrows, we can prove that such a distribution cannot
exist. We therefore cannot place signposts at all points on the
earth in such a way that the directions in which they point always
vary continuously from one place to the next.
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If we interpret the sphere with diametrically opposite pairs of
points identified, as a model of the projective plane, we get, as a
consequence of the theorem about the mapping of a sphere, that
every continuous mapping of the projective plane onto itself has
a fixed point.

In order to get a better perspective of the topological mappings
of a given surface onto itself, we shall divide all these mappings
into classes. Two mappings are put into the same class if they
differ only by a deformation; the deformations themselves consti-
tute the class of the identity. An example of a mapping on the
sphere which does not belong to this class is obtained by mapping
every point onto the diametrically opposite point; for, it is intui-
tively obvious that this mapping reverses the sense of traversal
on small circles. Thus we have found two classes, so far, of map-
pings of the sphere. It can be shown, by a more detailed investiga-
tion which would lead us too far afield here, that there are no
further classes of mappings of the sphere. It follows that all the
topological mappings of the projective plane are deformations.

On the torus, however, there is an infinity of classes. In order
to get a picture of some of these classes, we imagine the torus cut
open along a meridian and then bent into the shape of a circular
cylinder with two boundary circles. We then keep one of the circles
fixed and twist the cylinder in such a way that the cylinder is
transformed into itself, while the second boundary circle makes
k turns about the axis; this changes every generating line of the
cylinder into a helix which makes k turns about the axis of the
cylinder. If the cylinder is subsequently bent back into the form
of the torus and the end circles are stuck together, the result is a
topological mapping of the torus onto itself under which all the
points of the identified boundary circles are fixed points. The map-
ping of all the other points is determined by the mapping of the
cylinder: the generators of the cylinder correspond to the circles
of latitude of the torus, and by extending the correspondence
between the two surfaces to apply to the three-dimensional regions
bounded by them, we can make the axis of the cylinder correspond
to the “core” of the torus, i.e. to the path traced out by the center
of the generating circle of the torus. Then the mapping of the
torus onto itself thus constructed transforms the circles of latitude
into closed curves on the torus that turn, screw-like, k& times around
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the core. No subsequent deformation of the torus can change the
number k associated with such a curve. Hence two mappings of
the torus having different values of & cannot possibly belong to
the same class.

It would be a mistake to infer that an analogous argument could
be used to prove that on the Klein bottle there exist infinitely many
classes of mappings. The closed curves on the Klein bottle that
correspond to the helical images of the generators of the cylinder
for different values of k, can be transformed into each other by
deformation. We can shed some light on the way in which the
Klein bottle differs in this respect from the torus by referring to
the square models. As a matter of fact, the Klein bottle has only
a finite number of classes of mappings.

The above method by no means exhausts the totality of classes
of mappings on the torus. We may get a complete picture of this
totality with the help of the universal covering surface of the torus.
In order to get an idea of what this surface looks like, we wrap
the Euclidean plane around a circular cylinder of infinite length;
of course, the cylinder is covered infinitely many times in the
process. We have several times before bent a finite cylinder,
bounded by two circles, into the form of a torus. In the same
way, we can convert the infinite cylinder into a torus. In this
operation, the cylinder appears to slide into itself infinitely often,
while its axis makes infinitely many turns about the core of the
torus. In this manner, the Euclidean plane is mapped topologically
onto a surface that covers the torus in infinitely many layers with-
out any folds or branch points. This surface is the universal
covering surface of the torus.

Every turn around a meridian or circle of latitude of the torus
takes us from one layer of the covering surface into another layer.
Let us draw a canonical section (consisting of a meridian and a
circle of latitude) on the torus; we know that this converts the
torus into a rectangle with a definite identification of opposite sides.
Suppose we mark out all the points on the covering surface which
cover the curves of the section, and then convert the covering back
into a plane. Then the points we have drawn will mark out a
system of lines that divides the plane into infinitely many rect-
angles arranged like the unit cells of the crystallographic group
of plane translations (see Fig. 72, p. 70), and each rectangle cor-



328 VI. ToroLOGY

responds to one layer of the covering. We shall demonstrate this
by using a different construction of the universal covering surface.
Let us represent the torus by a square with pairs of opposite sides
identified. Proceeding as in the construction of the square lattice
in the plane (cf. p. 32), we put such squares together to form a
plane strip S that extends to infinity on both sides and has two
parallel straight lines ¢ and b as its boundary. By a suitable bend-
ing which brings a and b together, S is transformed into a circular
cylinder C of infinite length. The boundary lines separating the
squares of S divide C into regions bounded by circles. We can get
from such a region back to the torus by identifying the two circles
that constitute its boundary. If we therefore pull the cylinder over
the torus in the manner described above, the regions will come to
lie one on top of the other, with each region covering the whole
torus just once, and all the boundary lines coinciding with a canon-
ical section of the torus. We now continue as in the construction
of the square lattice: we cover the whole plane with adjacent strips
like S. If the plane is wrapped infinitely often around C in such
a way that S is transformed into C as before, then all of the strips,
like S, which fill out the plane, obviously become superimposed on
S, and the subdivisions into squares of all those strips coincide
with the subdivisions of S. On pulling C over the torus again, all
the squares of the plane become superimposed on one another and
all the boundaries fall on a canonical section of the torus, which
is what we set out to prove.

This second construction gives a particularly simple mapping of
the universal covering surface U of the torus onto the plane E. For
if all those points of U which cover the same point of the torus are
called equivalent, then every system of equivalent points of U is rep-
resented by a square point lattice on E. Let us now define the funda~
mental group (f) of the torus as the group of all those topological
mappings of U onto itself that map every point into an equivalent
point. Then the mapping U — E clearly transforms (f) into the
group of translations that move the square lattice into itself.

Let g be any other topological mapping of U onto itself that,
although it need not map every point into a point equivalent to it,
maps equivalent pairs of points into equivalent pairs of points.
Then g corresponds to a definite topological mapping h of the torus
onto itself. To see this, we note that every point P of the torus is
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occupied by a certain infinite set of equivalent points (Q) of U.
But by definition of g, all the images (Q’) of the points (Q) cover
a single point P’ on the torus. Hence g defines the topological map-
ping P — P’ of the torus onto itself, which we call 2. The converse
can also be proved; for any given mapping k of the torus we can
find a mapping g of the covering surface that is related to h as
described above. Then g is defined only to within an arbitrary
mapping of the group (f).

By use of this result, we can get a complete survey of the classes
of mappings of the torus onto itself. We shall state the result
without proof. Let every mapping g be replaced by the mapping y
of E obtained from g by the mapping U— E. Let ABCD be a
square unit cell of the translation group (¢) in E that corresponds
to (f). Let A’B’C’D’ be the images of A BC D under the mapping 7;
then the parallelogram A’B’C’D’ must be a unit cell of (¢). Now
the mapping % of the torus is a deformation if and only if ABCD
can be brought into coincidence with A’B’C’D’ by a translation.
The other classes of mappings of the torus correspond to the other
forms that can be assumed by a generating parallelogram of the
lattice (cf. Fig. 39, p. 33), as well as to the rotations and reflections
that map the square A BC D onto itself.

The concept of universal covering surface can be defined for all
surfaces. For the closed orientable surfaces we get the universal
covering surfaces by putting 4p-gons together and setting up a cor-
respondence among them, in much the same way as we did with the
squares in the case of the torus. For p > 1 the fundamental group
cannot, however, be represented by a Euclidean translation group;
but it can be represented by a hyperbolic translation group in which
are 4p-gons are the unit cells (cf. Fig. 249, p. 259 for the case
p=2). Surfaces with boundaries lead to groups of Euclidean or
hyperbolic translations with open unit cells. In the case of non-
orientable surfaces, the metrical realization of the fundamental
group calls for the consideration of Euclidean and hyperbolic
glide-reflections in addition to Euclidean and hyperbolic translations.

*If the lattice is defined as the set of all points whose Cartesian coordinates
are integers and if A’ is moved to the origin by a translation, then the parallelo-
gram A'B’'C’'D’ is fixed by the coordinates:a, b of B’ and ¢, d of C’. In order to
get all the classes of mappings of the torus, we have to give a, b, ¢, d all integral
values satisfying the condition ad —bec=+1 or —1.
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§ 50. Conformal Mapping of the Torus

In § 39 we raised the question of whether—and if so, in how
many ways—a surface can be mapped conformally onto itself or
onto another surface. We confined our attention there to surfaces
topologically equivalent either to the interior of a circle, or to a
circular disk including its circumference, or to a sphere. The con-
cept of universal covering surface enables us to attack this problem
for other surfaces as well. Let us limit ourselves to the task of
finding all the conformal mappings of a torus onto itself or onto
another torus. We shall content ourselves with this because the
methods we shall use for the torus apply to all the other surfaces
as well, although they are most easily visualized in the case of the
torus. In the sequel, we shall use the word torus to apply not only
to the surface of revolution formed by the rotation of a circle
about an axis lying in the plane of the circle but not intersecting
it, but also to every surface that is topologically equivalent to
this surface of revolution.

By the “either-or” theorem mentioned in § 39, every surface
that is topologically equivalent to the interior of a circle, or, what
amounts to the same, to the Euclidean plane, can be mapped con-
formally either onto the hyperbolic plane or onto the Euclidean
plane. We shall apply this theorem to the universal covering
surface U of a torus T, noting that U satisfies the conditions of
the theorem. Accordingly, let U be mapped conformally onto a
plane E, and let it be left open for the time being whether E is
the Euclidean plane or the hyperbolic plane.

Now, the fundamental group (f) is certainly a group of con-
formal mappings of U onto itself, since the images of every region
of U under the mappings of (f) are even congruent to that region.
In the conformal representation U — E, the group (f) is therefore
transformed into a group (¢) of conformal mappings of E onto itself.
But all the conformal mappings of the plane onto itself are known:
they are the hyperbolic rigid motions if E is the hyperbolic plane,
the Euclidean rigid motions and similarity transformations if F
is the Euclidean plane (cf. pp. 265 and 267). Furthermore, we
know that the group (Z) has a certain kinship to a crystallographic
translation group in the Euclidean plane: all the mappings in (£),
with the exception of the identity, are free of fixed points, and
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the unit cell of the group has four sides. If E were the hyperbolic
plane, then (¢) would have to be a discontinuous group of hyper-
bolic translations with a finite unit cell. But on pages 258-259
we have mentioned, and tried to make plausible, that the unit
cells of such groups have at least eight sides. The only remaining
alternative is that E is the Euclidean plane. It can be proved by
elementary methods that every Euclidean similarity transforma-
tion other than a rigid motion has a fixed point. Hence the group
(t) can only contain, besides the identity, the rigid motions with-
out fixed points, i.e. translations. Since, in addition, (¢) is dis-
continuous and has a finite unit cell, (¢) must be a crystallographic
translation group of the type discussed on pages 70-71.

Now let the same argument be carried through for any other
torus T7": Let U’ be the universal covering surface of 7”; let the
conformal representation U'— E transform the fundamental group
of T” into the crystallographic translation group (¢') of E. We have
already mentioned that every mapping of a torus onto itself can be
extended to a mapping of the covering surface. Similarly, every con-
formal mapping 7— T’ can be matched by a conformal mapping
U — U’ that is such that corresponding points of U'and U’ always
cover corresponding points of T and 7”. The mappings U — E and
U’'— E transform U — U’ into a conformal mapping a of E onto
itself. a must be a Euclidean rigid motion or similarity trans-
formation. Furthermore, a has to carry the translation group
(t) into (¥').

We have thus shown that there is a conformal mapping of T
onto 7" only if the group (¢) can be carried into (¢’) by a rigid
motion or a similarity transformation. This condition can be ex-
pressed in convenient geometrical form as follows. Let ¢, be a
shortest translation in the group (¢). Let ¢, be a shortest trans-
lation from among those translations of (¢) that are not parallel
to t,. Let m be the quotient of the lengths of ¢, and ¢,, so that
m =1. Let a be the angle between the directions of these trans-
lations; in order to fix a uniquely, it is sufficient to impose the
condition 0 < a =< n/2. Let m’ and o’ be the corresponding quanti-
ties for the group (¢#). Then a necessary and sufficient condition
for the existence of a similarity transformation carrying (t) into
(t’) is that m = m’ and a = o’. (The proof is elementary and is
left as an exercise for the reader.) Consequently, we can associate



332 VI. ToroLOGY

with every torus T two numbers m and a which are such that T can
be mapped conformally only onto those toruses for which these
two numbers are the same as they are for T. These two numbers
(or another pair of numbers related to them by a one-to-one cor-
respondence) are called the moduli of the torus.

But for the existence of a conformal mapping of a torus 7 onto
a torus 7”, the equality of the moduli is not only necessary but also
sufficient. For if it is satisfied, then there is a similarity trans-
formation or a rigid motion a of E into itself that transforms (¢)
into (') ; and it is easy to see that the conformal mapping U — U’
belonging to a determines a conformal mapping T — 7", because our
mapping U — U’ transforms equivalent points of U-—and them
only—into equivalent points of U’. Summarizing our result, we
may say that the toruses constitute a two-parameter family with
respect to conformal mapping.

If the spatial form of a torus does not display any particular
regularity, then the values of the moduli for this torus cannot be
deduced directly from its geometrical appearance. But if the torus
T is a surface of revolution, then (¢) must have a rectangular unit
cell, so that «a = n/2. For, in this case, the mapping U — E can
be given explicitly: It transforms the orthogonal net of meridians
and circles of latitude into two orthogonal families of parallel
straight lines of E'. In the particular case in which T is the surface
of revolution of a circle, the ratio m between the sides of the rect-
angular unit cells of (f) cannot depend on anything other than
the ratio between the radius of the meridian circle and that of the
core. Hence two toruses generated by circles can be mapped con-
formally onto each other if and only if they are similar.

In four-dimensional space we can find a torus whose covering
surface U can even be mapped isometrically onto the Euclidean
plane (see Appendix 2).

Now we can easily get a picture of the various ways in which
any given torus T can be mapped conformally onto itself. The
group (k) of these mappings must correspond to the group (1) of
rigid motions and of similarity transformations of E that leave
(t) invariant. Clearly, (I) contains all the translations of E into
itself. In general, these exhaust (I) ; but if (¢) exhibits any special
properties of regularity, such as a square unit cell, then (I) may
also contain rotations and reflections.
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The procedure we have followed in the case of the torus can also
be adapted to apply to all the other classes of surfaces. But in the
majority of cases the image plane in the conformal mapping of the
covering surface is not Euclidean, as it was in the case of the torus,
but hyperbolic. This applies, for example, to all closed orientable
surfaces of genus p > 1. These surfaces give rise to hyperbolic
translation groups, and two such surfaces can be mapped con-
formally onto each other only if their translation groups can be
transformed into each other by a hyperbolic rigid motion. It is
found in hyperbolic geometry that 6p — 6 constants determine a
group of hyperbolic translations with a 4p-sided finite unit cell to
within a hyperbolic rigid motion. Hence every closed orientable
surface of genus p > 1 has 6p — 6 moduli.

In the theory of functions, this method is applied chiefly to the
Riemann surfaces of the algebraic functions. For p =1, the map-
ping U — E leads to the elliptic functions; for p > 1, to the auto-
morphic functions of Klein and Poincare.

The open surfaces give rise to groups with infinite unit cells. In
the theory of functions, such groups are encountered, for instance,
in the study of the exponential function and the elliptic modular
functions.

§ 51. The Problem of Contiguous Regions, The Thread Problem,
and the Color Problem

In conclusion, we shall discuss three problems, intimately related
with each other, that arise when a surface is partitioned into regions.
In the plane, we find an example of such a partition in ordinary geo-
graphical maps. Furthermore, in combinatorial topology, parti-
tionings of arbitrary surfaces are encountered whenever a curved
surface is replaced by a topologically equivalent polyhedron. To
obtain the faces of the polyhedron, we must first partition the curved
surface into regions.

The problem of contiguous regions is the problem of finding the
greatest number of regions on a given surface which are such that
each of them borders on every other along a curve.! Let us begin
by examining this problem for the plane. Let us choose two con-
tiguous regions 1 and 2 in the plane bordering on each other along

! It is not required that the regions cover the whole surface.



334 VI. TopoLOGY

a curve. If a third region is chosen which surrounds the first two
completely, then it is impossible to find a fourth region bordering
on each of the first three (see Fig. 323). But if we choose the third
region in the manner illustrated in Fig. 324, then it is easy to find
a fourth. But no matter how the fourth region is chosen, one of
the remaining regions will be completely surrounded by the others,
so that it is impossible to find a fifth region that borders on each
of the first four along a curve. Try as we may, we can not get the
number of such regions in the plane to exceed four. The fact that
the maximal number of contiguous regions in the plane is four can
also be proved rigorously. Fig. 325 shows a particularly sym-
metrical arrangement of four such regions.

4

Fi1a. 323 F16. 324 F16. 325

The thread problem is the dual converse of the problem of con-
tiguous regions (where duality is to be understood in the sense of
a topological generalization of the principle of duality in space of
projective geometry). The thread problem is concerned with the
greatest number of points on a surface having the following prop-
erty: Each point can be joined to any other by a curve on the
surface in such a way that no two of these curves intersect. The
following simple argument shows that this maximal number is
equal to the maximal number of contiguous regions on the same
surface. Choose one point from each of the contiguous regions.
Since any two contiguous regions border on each other along a
curve, any two of these points can be connected by a curve lying
wholly inside the two regions containing the points. Furthermore,
the curves thus obtained can be chosen in such a way that the
portions lying in any one given region do not intersect, for in this
region we need only connect one interior point with a number of
points on the boundary. Thus every arrangement of n contiguous
regions yields a solution of the thread problem for »n points. There-
fore the maximal number of points in the thread problem is at
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least equal to the maximal number of contiguous regions. But
conversely, every solution of the thread problem for n points also
gives rise to an arrangement of n contiguous regions. To obtain
such an arrangement, we divide into two parts each of the curves
connecting a pair of points and make a two-dimensional region
out of the portion of the curve emanating from each point by
adjoining the surrounding points of the surface. In this way, we
obtain n star-shaped regions each of which borders on every other
one. Hence the maximal number of adjacent regions is at least
equal to the maximal number of points satisfying the condition
of the thread problem. And since we have already proved the con-
verse inequality, it follows that the two maximal numbers are equal.

These maximal numbers have also been determined for surfaces
of connectivity other than 1. For the projective plane and the

A';Qq =Kl

FiG. 326 Fi1c. 327 Fi1c. 328

torus, the numbers are 6 and 7 respectively. Figs. 326 and 327
exemplify such arrangements of adjacent regions. The projective
plane is represented by a circular disk with opposite points of the
circumference identified, the torus by a square with the usual iden-
tification of pairs of sides. Fig. 326 is essentially the same as
Fig. 167 on page 149 which represents a projection of the dodeca-
hedron. Fig. 328 illustrates a solution of the thread problem in the
projective plane; it corresponds dually to the partition of Fig. 326.

A problem that is closely related to the problem of contiguous
regions is the color problem. This can be presented as a problem
of practical cartography, as follows. Let a number of regions be
drawn on a surface. Each region has to be filled in with a certain
color in such a way that no two regions that border on each other
along a curve have the same color. (If two regions meet at isolated
points only, they are permitted to have the same color.) The prob-
lem is to find the smallest number of colors that will suffice to color
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the regions in every conceivable partition of the surface without
violating the above rule.

The number of colors must be at least equal to the greatest
number of contiguous regions possible on the surface. For, each
one of a set of contiguous regions must have a different color.
Conversely, it would seem to be a plausible assumption that this
maximal number of contiguous regions is also sufficient. In the
case of the projective plane and of the torus this has been proved
to be correct: In the projective plane six colors are sufficient for
the proper coloring of any map, and seven colors are sufficient on
the torus. On the other hand, it is still an unproved conjecture
that four colors will do on the plane and on the sphere.?

Let us begin with some examples of partitions in the plane. The
three neighboring areas of Fig. 329a have to be colored with three

a)

b) ¢
Fi1c. 329

different colors, 1, 2, and 3. The fourth region, bordering on 2
and 3, may be given the color 4 or the color 1. If 4 is used, then
four colors will not suffice to fill in the regions of Fig. 329b.
Hence we have to use the color 1 for the fourth region in this
case. But this would get us into difficulty in coloring the regions
of Fig. 329¢: here the fourth area has to have the color 4. This
example shows that the arrangement of the other regions has an
influence on the way the first four can be colored. Whenever a
new region is added, we may have to change the colors on the
regions already colored. This fact is at the root of the difficulty
in our problem.

We shall now follow a procedure that will lead to solutions of
the color problem for a number of closed surfaces. We begin by
distorting the surface in such a way that it becomes a poly-
hedron and that the individual regions become the faces of the

* The problems for the sphare and the plane are essentially the same.
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polyhedron.® Then it is clear that it is sufficient to solve the problem
for all polyhedra having the same connectivity as the given surface.
First of all, we prove the following result: Every polyhedron
of connectivity % can be colored with at most n colors if n satisfies
the inequality
nF > 6(F + h—3)

for all integers FF > n. Subsequently we shall determine, for any
given h > 0, the smallest number n, for which the inequality is
satisfied. As a result, we shall have proved that every partitioning
of a closed surface of connectivity h can be filled in with =, colors.
Now let & be a fixed number and let any number n be given satis-
fying the above condition for this A. Let us classify the polyhedra
of connectivity h according to the number
F of faces. We shall prove our result by ‘h ‘h
induction on F. For all F < n, the result
is trivially true, for then we can simply WAV vaﬁv
give each face of the polyhedron a dif-
ferent color. Now let us assume that the
theorem is already proved for all F < F, and let us prove it for
F=F,+ 1. From the preceding remarks it follows that we
need only consider the case FF >n. We assume, then, that this
number F satisfies the inequality.

nF > 6(F + h—3).

We shall make use of Euler’s formula:* V—FE + F=3—h,
ot F+h—3=F — V. By a deformation, which does not change
the number F or the connectivity h, we can get the polyhedron into
such a form that only three faces meet at every vertex, so that
there will also be only three edges meeting at each vertex (see
Fig. 330). Hence 3V edges altogether meet at the V vertices,
and since each edge is here counted twice, we have 3V=2F,
so that

FiG. 330

6(F+h—3)=6E—6V=6E—4FE =2FE.

* As may be seen from the examples of Figs. 326 and 327, this deformation
will in general be possible only if it is permitted that some of the faces be curved.
This will not affect the proof to be given here.

*In originally deriving this formula, we made certain assumptions about the
arrangement of the faces, which may not be satisfied in the present case. It may
be seen, however, that the formula also applies under the present conditions.
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Hence the inequality for the number n takes on the form
nF > 2FE.

From this inequality we may deduce that at least one face of the
polyhedron is bounded by less than n edges. For otherwise, the F
faces of the polyhedron would be bounded by at least nF edges in
all, and, allowing for the fact that every edge was counted twice,
we would get nF =< 2F. This argument is the core of our proof.

Now consider one of those faces that border on less than n other
faces. We remove this face for the time being and fill the resulting
gap by extending the neighboring faces into it. This gives another
closed polyhedron. The transformation has left the connectivity
number unchanged but has diminished the number of faces by one.
By our assumption, we can therefore fill in the new polyhedron
with n colors. Let us do this and then reverse the deformation.
We then get the old polyhedron with all its faces, excepting the
one we removed, filled in with our » colors. But since only n — 1
faces, at most, have an edge in common with the exceptional face,
this may also be colored without recourse to a new color. It may have
been necessary to alter the original polyhedron to get it into a form
where only three edges meet at every vertex. But this alteration
may now be reversed without changing the coloring system, as the
reverse transformation does not create any new boundary lines.

The next step is to find out which numbers » satisfy the condition
we have imposed. We shall write it in the form

n>6[1+ (h—3)/F],

where F' has to take all integral values exceeding n. If h is equal
to 1 or 2, the right-hand side of the inequality approaches 6 with
increasing F' and always remains smaller than this value. In these
two cases, therefore, n, — 6 is the smallest integer satisfying our
assumption. For h =3, the right-hand side has the fixed value 6,
so that n, ="7. For h > 3, the right-hand side decreases as F in-
creases, and it is therefore sufficient to substitute the smallest
admissible value n + 1 for F. This gives for n > 3 the inequality

n>6(1+21?),

which may be written

nn+1)>6n+6+6~h—18, a2—5un>06h—12,
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or -
n>3§+ LV24h — 23.

If [x] denotes the largest integer contained in x, we therefore
get, for h > 3,
m=[1 + Y240 —23].

It happens that this formula also leads to the correct values,
n, =6 and n, =17, for h = 2 and h = 3, although it is not applic-
able to these cases. But for h =1, the formula would give us 4
instead of the value 6 obtained above. Although a proof has not
been found to date, it is highly probable that 4 is the correct value
for the minimal number of colors, since nobody has been able to
construct a set of regions in the plane that can not be filled in with
four colors. The following table lists the values of #n, for h =1
to h=13:

h= np = h= np =

1 6 ([4.000] = 4) 8 [10.000] = 10
2 6 ([6.000] = 6) 9 (10.447] = 10
3 7([7.000] = 7) 10 [10.866] = 10
4 [7.7751 =7 11 [11.264] = 11
5 [8.425] = 8 12 [11.640] = 11
6 [9.000] = 9 13 [12.000] = 12
7 [9522] =9

So far, we have only proved that the numbers in the table repre-
sent sufficient numbers of colors. It is conceivable that there are
surfaces of connectivity 2 on which every combination of regions
can be filled in with fewer than n, colors. For the cases h =2, 3,
5,7, 9, 11, 13, however, it has been proved that exactly n, con-
tiguous areas can be constructed. On these surfaces, any number
of colors less than =, is therefore insufficient; hence the solution
of the color problem is complete for these surfaces. For all other
surfaces, the numbers =, represent upper bounds for the numbers
of adjacent regions.

A particularly conspicuous feature of the color problem is the
absence, so far, of any proof for the theorem in the case of the
plane, where the result seems intuitively to be particularly obvious.
This type of difficulty is encountered frequently in mathematics
if one wants to achieve a purely logical understanding, based on
numerical concepts, of theorems that are intuitively plausible.
We may cite, as an additional example, the theorem that any closed
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curve without double points divides the plane into two parts or
the theorem that the sphere contains the maximum volume for a
given surface area. Both theorems require fairly difficult and in-
volved proofs. But by far the most characteristic example of this
kind is the four-color problem, because there is no apparent reason
why just the case that is visually the simplest should offer such
difficulties while much more complicated cases admit of a solution.

Appendices to Chapter VI

1. The Projective Plane in Four-Dimensional Space

We shall construet an algebraic surface in Euclidean four-space
E, which is topologically equivalent to the projective plane but
which, unlike Boy’s surface, has no self-intersections or singulari-
ties of any kind. We begin with the spherical surface

(1) w4+ v +uwr=1

and consider the figure that is given in the four-dimensional
Cartesian coordinates z, vy, 2z, ¢ by the equations

(2) r=u*—v% Y=uv, z2=uw, =W,

where the values of the parameters #, v, and w are subject to
the condition (1). Since z, y, z, t are homogeneous quadratic
functions of u, v, and w, every diametrically opposite pair of points
on the sphere (1) is represented by a single point (2) of E,. We
proceed to show that any two points of (1) that are not diametric-
ally opposite are represented by two distinct points in (2). To
begin with, let us consider a point P of the sphere for which none
of the coordinates u, v, w vanishes. The corresponding values of
Y, 2, and ¢t are different from zero and define the proportion u:v:w
uniquely. Hence the point of (2) associated with P does not repre-
sent any points of the sphere other than P and the point opposite P.
If w vanishes, the values of u? and v? are uniquely determined by
the equations u® + v? =1, u*—v*=2x, and the corresponding
point in (2) can only take on the four positions (u, v, 0),
(v, —v,0), (—u,v,0), and (—u, —v, 0). If, in addition, we
have u = 0 or v = 0, these four points are reduced to a single pair
of diametrically opposite points, so that there is nothing left to
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prove in this case. If v 4 0 and v &= 0, we have to use the remain-
ing equation, ¥ = uv; this selects one diametrically opposite pair
from the four points. The only cases that remain to be considered
are those in which w differs from zero while one of the variables
% and v vanishes, in other words, either u=0, v+ 0, w & 0, or
u=+0,v=0, w0, or finally u=v=0, w=+1or —1. In
the first case, we have x = — v?, — o + w*=1, vw =1; whence
v%, w?, and vw are known. Analogously, %2, w?, and uw are known
in the second case. In both cases, it follows, as in the case w =0,
that the corresponding point of (2) represents only one pair of
opposite points of (1). The third case only applies to two dia-
metrically opposite points of the sphere (1) anyway, so that there
is nothing left to prove in this case. Thus we have demonstrated
that (2) together with the auxiliary condition (1) is a one-to-one
representation of a sphere with pairs of opposite points identified,
i.e. of a projective plane.

It is easy to eliminate u, v, and w from the equations defining
the model. From the last three equations of (2) we get

yz/t=wu? yYt/z=1% 2t/y=w2

Consequently, the first equation of (2) becomes

(3) Yy (22 —t?) = x2t,
and (1) is transformed into
(4) Yzt + Yt + 222 =yzt.

Thus our model is the intersection of the hypersurfaces (3) and (4).

The fact that the model is free of singularities, i.e. that its tangent
plane is everywhere continuous, is readily verified by expressing
the variables «, v, w of the sphere (1) as functions of two inde-
pendent parameters and then, by means of (2), expressing z,y, 2, t
in terms of the new parameters.

2. The Euclidean Plane in Four-Dimensional Space

In E,, all the surfaces that are isometric with the Euclidean
plane must extend to infinity, since they are necessarily ruled sur-
faces. In E,, on the other hand, there are surfaces that are iso-
metric with the Euclidean plane in the small but are not ruled.
We shall present such a surface F. It is confined to a finite part
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of the space and is topologically equivalent to the torus. F is
defined by the simple parametric equations

Z; = COS U, T3 = COS v,
r, = sin u, r,=sin v.

The line element of F is

ds? = dx} + dx} + dx} + dx
= sin?u du? 4 cos?udu? 4+ sin2vdv? 4+ cosvdv2 = du? + dv2.

Thus F is indeed isometric with the plane having the rectangular
coordinates u, v. The surface is finite, because all the coordinates
of its points lie between + 1 and — 1. F may also be thought of
as the intersection of the two three-dimensional hypercylinders
2,2+ 2,2=1 and x>+ z,2=1. We get all the points of F by
letting the point (u, v) in the Cartesian (u, v)-plane traverse all
the points of a square whose sides are parallei to the axes and
equal in length to 2a. Any two distinct points of the interior of
the square give rise to two distinct points of F; on the other hand,
two points of the circumference represent the same point of F if
they lie on a common straight line # = const. or v = const. and on
opposite sides of the square. Hence F is a torus, and the (u, v)-
plane is its universal covering surface.

We might attempt to realize Euclidean geometry on closed sur-
faces other than the torus. It is found, however, that the Klein
bottle is the only other closed surface on which this is possible.
Hyperbolic geometry, however, can be realized on closed surfaces
of connectivity » > 3, and on such surfaces only. Elliptic geometry
can not be realized on any closed surface other than the sphere and
the projective plane. These theorems may be deduced from the
formula, due to O. Bonnet, for the surface integral of the geodesic
curvature (curvatura integra).
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ADDITIVE property of plane rotations,
62
Adjacent regions on surface, 333-335,
339
Algebra, 289
Algebraic curves, 102, 272
Algebraic functions, 322, 333
Algebraic plane curves, 272
Algebraic surfaces. See Surfaces.
Analytic functions, 264, 269
Angle, exterior. See Exterior angle.
of rotation, 61-64, 67-69, 71-73
Angle-preserving. See Conformal.
Angles, base, of isosceles triangle, 246
of triangle, sum of, 246, 257-258
Annulus, plane, 261-262, 297, 309
Approximation of irrational numbers,
40-41, 43-44
Archimedean axiom, 130-132, 240
Arc length, 177-178, 213-214, 277
Area, surface, 224-226
Area-preserving mapping, 260-261
Astroid, 281
Asymptotic directions, 186, 192
Asymptotic lines, 189, 203-204
Atom, valences of, 52-53
Atomic structure, 53
of diamond, 54, 57, 271
Atoms, 52-56
Automorphic functions, 333
Automorphisms of a configuration,
107-109, 111, 127
Axes of similitude, 136-142
Axiom, Archimedean, 130-132, 240
Cantor’s, 240
of parallels, 116, 240-241, 245-246
Axioms, of eongruence, 131, 236-240,
244-245, 247, 257-258
of incidence, 131-132
of order, 130-131, 239, 244
of plane geometry, 116, 129-131,
238-2417
of solid geometry, 120-121, 129-131
Axis, instantaneous, 285
of rotation, in crystallography, 84-
86
polar, 181
Axode of rigid motion, 285-288

345

BASE angles of isosceles triangle, 246

Bending, 194-197, 204, 210, 227-230,
232-234

Besicovitch, 214

Bierberbach groups of motion, 88

Binormal, 179-181

Bonnet, 0., 342

Boundary points, identification of, 299,
309-312, 314-317, 319, 322-323, 342

Bounded surfaces, 297

Boy’s surface, 317-319, 324

Braggs, 54

Branch point, 202, 271, 322

Bravais, 52

Brianchon-Pascal configuration, 102-
112, 117-118, 129-132

Brianchon point, 106-107, 118

Brianchon’s theorem, 103-105, 117-118

Brightness, constant, 217

Bubble, soap, 189-190, 224, 226-228

CALCULUS of variations, 190, 224, 226
Canal surfaces, 219
Canonical section, 296, 300, 301, 309,
322, 328
Cantor’s axiom, 240
Cartesian coordinate system, 152-153
Catenoid, 191, 210
Caustic curve, 280
Cell, 143-157, 242, 292
Center, instantaneous, 276, 279, 283,
284
of curvature, 176-177, 181, 185-186
of rotation, in crystallography, 67-68
Centers of similitude, of circles and
spheres, 136-143
Central perspective, 112-116, 145-146.
See also Parallel projection.
Centrode, fixed, 277, 284
moving, 277, 284
Circle, 1-2, 25, 136-143, 159, 178, 192,
213, 248-259
focal line of, 280
involute of, 6-7
of curvature, 176-177, 181, 315
pedal-point construction on, 25
reflection with respect to.
See Inversion.
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thread construction of, 1-2
Circle-preserving transformations, in
plane, 248-259, 264, 265, 269
Circles, axes of similitude of, 136-142
centers of similitude of, 136-143
density of packing of, 37
packing of, 36-37, 74
densest, 36-37
Circular cone, 8, 24, 28, 29, 218-219
Circular cylinder, 7-8, 12, 219, 231, 232,
260-261, 300
Circular disc, continuous mapping of,
onto itself, 324-325
Circular sections, movable model of
general ellipsoid consisting of, 17-18
of second-order surfaces, 17-18
Class of surfaces, 321
of mappings, 326, 329
Closed surface, projective plane as,
313-321
Color problem, 335-340
Combinatorial topology, 294
Compass, 272
Complete polygon in space, 125
Complete quadrilateral, 96, 116, 137,
156
Complex numbers, plane of, 263
Computation of x, 34, 37-39
Cone, circular, 8, 24, 28, 29, 218-219
general, 113, 205, 209
of revolution, 24, 28, 29, 218-219
second-order, 12, 105.
See also Circular cone.
Configuration (7.), 98-101
(8:), 101-102
(9:):. See Brianchon-Pascal config-
uration.
(9:)., 108-111, 119
(9:):, 108-111, 119
(10,), 123-128, 133, 247
(9.12;), 102
(12, 16), 140.
See also Reye’s configuration.
(8)4, 134
automorphisms of, 107-109, 111, 127
Brianchon-Pascal, 102-112, 117-118,
129-132
Desargues, 123-128, 133, 247
last incidence of, 108, 110, 123, 128,
134, 165-169
Mobius, 134

of 27 straight lines, 168-169
Reye’s, 134-143, 154-157
Configurations, constructed by ruler,
109
in space, 133-134
plane, 95-96
polyhedral, 125
regular, 107-109, 125, 143-144, 157
self-dual, 118, 123-124, 128, 142-143,
169
Configuration scheme, 98-103
Confocal second-order curves, 4-6, 17,
188-189
Confocal second-order surfaces.
See Surfaces.
Conformal mapping, 249, 252-253, 262-
263, 268-269
in space, 268-269
in the plane, 263-268
of one surface into another, possi-
bility of, 333
on the sphere, 268-269
on the torus, 330-333
Congruence, axioms of, 131, 236-240,
244-245, 247, 257-258
Congruent regions, covering plane by.
See Tiling.
Conic, foci of, 2-4, 8, 19, 25-27.
Conies, 9-10, 25-29, 105-106, 115, 117,
121, 130, 159-161, 219. See also
Ellipse; Hyperbola; Parabola.
pedal-point construction of, 25-27
directrices of, 4, 27-29
Connectivity, 294-296, 297, 303-304,
309-10, 313, 321-322, 337-339
Constant brightness, surfaces of, 217
Constant curvature, curves of, 178,
212-214
Constant Gaussian curvature, surfaces
of, 204, 227-230, 234-237, 242-243,
261, 262, 285
Constant mean curvature, surfaces of,
226-227, 228-229, 285.
Constant width, curves of, 216-218
Constant width, surfaces of, 215-218
Constraint, least, principle of, 222
Contact, point of, 172
Continuous groups of motions, 230-
232, 256-257
Continuous mapping.
See Mapping, topological.
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Continuity, 95, 129-130, 240, 245
Convex curvature.
See Elliptic curvature.
Convex polyhedra, 290
Coordinates, natural, of a curve, 178,
182
Coordinate system, 143, 147-148, 152-
153, 313-314
“Core” of torus, 326-327, 332
Covering plane by congruent regions.
See Tiling.
Covering surface, two-sheeted, 313
universal, 327-329, 330-333, 342
Crystallographic classes, 81-88
Crystallographic groups, 59
in n-dimensional space, 88
in space, 81-88
in the plane, 70-81
Crystallographic groups of motions,
58-59, 64-81, 242, 258-259, 327-333
Crystallography, axis of rotation in,
84-86
center of rotation in, 67-68
Crystals, 46, 52-56
hexagonal, 46, 56
Cube, 47-48, 90-93, 134-135, 140-153,
157, 166
n-dimensional, 157
Cubical lattice, 47-48
Cubo-octahedron, 156
Curvatura integra, 342
Curvature, center of, 176-177, 181,
185-186
circle of, 176-177, 181, 315
constant, curves of, 178, 212-214
constant mean, surfaces of, 226-227,
228-229, 285
Curvature, convex.
See Elliptic curvature.
elliptic, 183-185, 197-198
Gaussian. See Gaussian curvature;
Surfaces.
geodesic, 211
hyperbolic. See Hyperbolic curva-
ture.
lines of. See Lines of Curvature.
on ellipsoid, thread construction
of, 188-189, 224
mean. See Mean curvature.
negative. See Hyperbolic curvature.
of plane curve, 175, 178

of space curve, 181, 221-222
parabolic. See Parabolic curvature;
Parabolic curve; Parabolic point.
positive. See Elliptic curvature.
radius of, 176-177, 181, 185-186
twisting of space curve without
changing, 206, 211-214
Curvatures, principal, of a surface,
185-187, 192, 193, 225
Curve, caustic, 280
in space. See Space curves.
natural coordinates of, 178, 182
parabolic, 198-202, 204
plane, curvature of, 175, 178
normal of, 172
principal normal of, 179-180
regular point of, 173-174, 180
Curves, algebraic, 102, 272
algebraic plane, 272
families of, 4-6, 186-187, 233
n-th order, 24
of constant curvature, 178, 212-214
of constant width, 216-218
on sphere, 182
orthogonal families of, 5, 187-189,
233
plane, 172-182
singular points of, 173-174, 199
second-order, confocal, 4-6, 17, 188-
189. See also Conics.
third-order, 102, 169
Cusp, 173-174, 177, 198, 204, 279
of first kind, 173-174, 177
of second kind, 173-174, 177
Cuspidal edge, 206
Cyeclides, 217-219
Cycloids, 277-283
Cylinder, circular, 7-8, 12, 219, 231,
232, 260-261, 300
elliptic, 12
hyperbolic, 12
of revolution, 7, 219, 231, 232, 260-
261, 300
parabolic, 12
Cylinders, 7-8, 12, 205, 209.
See also Circular cylinder.

DECAGONS, mutually inscribed and cir-
cumscribed, 127-128

Deformation, of surface into itself,
324, 325
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Densest packing, of circles, 36-37, 74
of spheres, 45-47, 51
in four- and five-dimensional
space, 46-47
Density of packing, of circles, 37
Desargues configuration, 123-128, 133,
247
Desargues theorem, 97, 121-124, 128-
132, 133, 241, 246-247
Developable surfaces, 204-211
Diamond, atomic structure of, 54, 57,
271
Differential geometry, 171-172
Dihedron, 85
Dilatation, 13
Directions, asymptotic, 186, 192
principal, 185, 203
Dirichlet problem, 266
Directrices of conics, 4, 27-29
Discontinuous groups of motions,
59, 64-81, 242, 258-259, 327-333
Discontinuous groups of transforma-
tions, with infinite unit cells, 64-69,
327-329
Distance, hyperbolic, 243, 256, 267
Dodecahedron, 90-93, 144-146, 148, 149,
335
“Double-six,” Schlaefli’s, 134, 157, 164-
172
Douglas, Jesse, 270-271
Duality principle, in plane, 117, 122-
123
in space, 92, 119-121, 124, 142-143,
169, 334
Dupin indiecatrix, 192, 217
Dupin’s cyclides, 217-219
Dupin’s theorem on triply orthogonal
systems of surfaces, 187-188

EARTH, spherical shape of, 215
Edge, cuspidal, 206
Edge of regression, 206
“Either-or theorem,” 269, 330
Elastic resistance, 221
Ellipse, 2-6, 10, 13, 16-18, 19-20, 22,
25-26, 27-29, 104-105, 115, 159-
161, 177, 188, 192, 219, 278, 281,
283-285
focal, 22
pedal-point construction of, 25-26

roulettes of, 283-285
thread construction of, 2
Ellipsoid, general, 13, 15-16, 17-18, 19-
22, 24, 162, 163, 188, 192, 222, 223
movable model of, 17-18
lines of curvature on, thread con-
struction of, 188-189, 224
of revolution. See Spheroid.
thread construction of, 19-20
Elliptic curvature, 183-185, 197-198
Elliptic cylinder, 12
Elliptic functions, 333
Elliptic geometry, 235-242, 246, 342
Elliptic paraboloid, 14, 15, 163
Elliptic plane, 238
exterior angle of triangle in, 241
motion of, 242
“tiling” of, 242
Enumerative geometry, 157-164, 275
Equations of first kind, Lagrange’s,
222
Equivalent points of discontinuous
groups of mappings, 58-59
Epicycloid, 277-280
Epitrochoid, 277-280
Euclidean geometry, as limit case of
both non-Euclidean ones, 246
Euclidean plane.
See Plane, Euclidean.
Euler’s formula on polyhedra, 290-293,
295, 303-304, 313-315, 337
Evolute, 178, 277
Exponential functions, 333
Exterior angle of triangle, 246
in elliptic plane, 241
Extremum problem.
See Minimal problem.

FAMILIES of curves. 4-6, 186-187, 233
orthogonal, 5, 187-189, 233

Family of planes, 204-205

Film, soap, 189-190, 224, 226-228

Five-dimensional space, densest pack-
ing of spheres in, 47

Fixed centrode, 277, 284

Fixed point of a mapping, 324, 331

Focal curves, of second-order surface,
20-24, 188, 219, 223-224

Focal ellipse. See Focal curves.

Focal hyperbola. See Focal curves.

Focal line, of circle, 280
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Focal surface, of a surface, 217-219,
223
Foci, of conic, 2-4, 8, 19, 25-27
of surface normal, 217-220
Forms, quadratic, minimal value of,
39-41
Formula, Euler’s, on polyhedra, 290-
293, 295, 303-304, 313-315, 337
Four-color problem, 336, 340
Four-dimensional space. See Space.
Fourth-order surfaces. See Surfaces.
Frontal line, 220-221
Functions, algebraic, 322, 333
analytic, 264, 269
automorphic, 333
elliptic, 333
exponential, 333
linear, 264-265
modular, 259, 333
theory of, 258, 263-268, 289, 297,
301-302, 322, 333
transcendental, 322
Fundamental group of surface, 329,
330-333

Gauss, 33-34, 171
Gauss-Hertz principle of “least can-
straint,” 222
Gaussian curvature, constant, surfaces
of. See Surfaces.
of a surface, 193-204, 227-230, 233-
237, 260
invariance of, with bending, 194-
195
Gaussian image, 173-174.
See also Tangential image.
Gaussian mapping. See Mapping by
means of parallel normals or tan-
gent planes; Spherical mapping.
Gears, hyperboloidal, 287-288
General cone. See Cone.
General ellipsoid. See Ellipsoid.
Geodesic curvature, 211
Geodesic lines, 189, 220-224, 233, 235-
237
Geodesic mapping, 261
Geodesics. See Geodesic lines.
Geometry. See Elliptic, enumerative,
Euclidean, intrinsic, hyperbolic, pro-
jective geometry.
Graphite, 54-55

Group. See Group of mappings; Group
of motions; Automorphisms.

Groups, crystallographic.
See Crystallographic groups.

Groups of motions, Bieberbach, 88
continuous, 230-232, 256-257
discontinuous and crystallographic,

58-59, 64-81, 242, 258-259, 327-333

Groups of transformations, 58-59, 107-
108, 242, 245, 254, 257. See also
Groups of motions.

Groups of translations, 64-65, 70-72,
84, 258-259, 327-328, 330-333

HARMONIC points, 97, 101, 129
Heesch, 50
Helicoid, right, 210-211, 233
Helicoidal surfaces, 210, 231-234
Helix, 182, 213-214, 232
Heptagons, mutually inscribed and
circumscribed, 111
Heptahedron, 303-305, 307-308
Hexagonal crystals, 46, 56
Hexahedron. See Cube.
Honeycomb, 76
Horizon, 112, 115, 276
Hyperbola, 3-4, 5-6, 8-9, 25-26, 103-
105, 115, 160, 188, 189, 192, 219
Hyperbolic angle, 244, 257
formed by two curves, 5, 172
Hyperbolic curvature, 183-185, 192,
195-196
Hyperbolic cylinder, 12
Hyperbolic distance, 243, 256, 267
Hyperbolic geometry, 242-247, 342
Hyperbolic motion, 245, 257-259, 265,
267-268, 330-331
Hyperbolic paraboloid, 15-16, 18-19,
120, 274-275
movable model of, 17, 18-19, 274-275
Hyperbolic plane, 242-247, 254-258,
261, 267, 302, 329, 333
line in, reflection with respect to, 257
Poincaré’s model of, 256-258, 262,
267
“tiling” of, 259
translation in, 258-259, 329, 330-333
motion of, 245, 257-2569, 265, 267-
268, 330-331
Hyperbolic space, 247
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Hyperboloid, of one sheet, 11, 13-15,
16-17, 20, 29-31, 103-105, 120, 164,
167, 208, 223-224, 274-275, 309
movable, 16-17, 29-31, 274-275

of revolution, 11, 208, 287, 288

of two sheets, 11, 13-14, 15-16, 20,
23, 163, 223-224

Hyperboloidal gears, 287-288

Hyperboloidal position of four straight
lines, 164

Hypocycloids. See Hypotrochoids.

Hypotrochoids, 277-283

ICOSAHEDRON, 90-93, 144-146, 148, 150
Identification of boundary points, 299,
309-312, 314-317, 319, 322-323, 342
Identity transformation, 58
Image, Gaussian, 173-174.
Tangential image.
spherical. See Spherical mapping.
tangential, 173-174, 177, 180-181
See Spherical mapping.
Incidence, 95, 102, 114-116
axioms of, 131-132
last, of a configuration, 103, 110, 123,
128, 134, 165-169
theorems on, 132, 241, 246-247
Indicatrix, Dupin, 192
tangent, 173-174. See also Tangen-
tial image.
Infinity, plane at, 119
points and straight lines at, 114-
115, 119-120, 134-135, 140, 251,
260, 298
Inflection, point of, 102, 173-174, 177,
183, 198, 207
Instantaneous axis, 285
Instantaneous center, 276, 279, 283,
284
Intersection, self-.
See Self-intersection.
Intrinsic coordinates, of a curve, 178,
182
Intrinsic geometry on a surface, 194,
220-221
Inverse transformation, 58
Inversion, 253-254, 264, 273
in space, 219, 268
Inversor, Peaucellier’s, 272-273
Involute, 6-7, 178
of circle, 6-7

See also

Involutes, thread construction of, 6-7,
178

Irrational numbers, approximation of,
40-41, 43-44

Isogonal mapping, 249.
See also Mapping, conformal.

Isosceles triangle, base angles of, 246

JACOBI’S principle, 222

KINEMATICS, 272

Klein, 198, 333

Klein’s surface, 308-313, 327, 342
Koebe, 266

LAGRANGE’S equations of first kind, 222
Lattices. See Point lattices; Unit lat-
tices; Plane lattices; Square lattices.
Laue, 52
Laves, F., 50
Least constraint, principle of, 222
Leibniz’ series, 37-39
Length-preserving mapping, 260.
See also Motion; Bending.
Line, focal, of surface, 280
frontal, 220-221
in hyperbolic plane, reflection with
respect to, 257
of striction, 207-210, 286-287
shortest, 220-221
straight, Pascal’s, 118
straightest, 220-222
tangent. See Tangent.
Linear functions, 264-265
Lines, asymptotic, 189, 203-204
geodesic, 189, 220-224, 233, 235-237
of curvature, 187-188, 203, 218, 223
on ellipsoid, thread construction
of, 188-189, 224
of intersection of two second-order
surfaces, 24, 31
of self-intersection, 303, 307-308,
314-315, 317, 319, 320, 323
principal tangent.
See Asymptotic lines.
Linkage, for tracing plane, 274-275
for tracing straight line, 272-273,
278
Linkages, 272-275
Loosest packing of spheres, 48-49, 50-
52
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MAGNESIUM, 46, 56
Mapping, 260-263
angle-preserving, 249.
See also Mapping, conformal.
area-preserving, 260-261
by means of central perspective, 112-
116, 145-156
by means of parallel normals or
tangent planes, 193
by means of parallel tangents, 173-
174, 178, 180
conformal, 249, 252-253, 262-263,
268-269
in space, 267-269
in the plane, 263-268
moduli of surface with respect to,
332-333
of one surface into another, pos-
sibility of, 333
on the sphere, 268-269
on the torus, 330-333
continuous.
See Mapping, topological.
fixed point of, 324, 331
geodesic, 261
isogonal, 249.
See also Mapping, conformal.
of a surface of constant negative
Gaussian curvature into the plane,
243
of the projective plane into itself,
321, 326
of the torus into itself, 328-329
length-preserving, 260.
See also Motion; Bending.
projective, 129-131, 245
spherical, 180-181, 193-204, 205-206,
209, 270-271, 320-321
topological, 261-262, 321-329
of one surface into another, 321-
322
of surface into itself, 321-329
Mappings, classes of, 326, 329
discontinuous groups of, equivalent
points of, 58-59
Mapping theorem,
267, 271
Mean curvature, 224-227, 228-229, 285
constant, surfaces of, 226-227, 228-
229, 285
Mechanics of particle, 222

Riemann’s, 266-

Menelaus, 137
Minimal distance, between points in
a unit lattice, 35-36, 39-40, 45
Minimal problem, 190, 214, 224, 226-
228, 266, 280
Minimal surfaces, 189-190, 210, 224-
226, 269-271
Minowski, 41-44, 217
Modbius configuration, 134
Moabius net, 96
Mobius strip, 305-307, 309-310, 316-
317
Mobius transformations. See Circle-
preserving transformations.
Modular functions, 259, 333
Modules of surface with respect to
conformal mapping. See Mapping,
conformal.
Moebius. See Mobius.
Monge, 137
“Monkey saddle,” 191, 192, 202-204,
271
Motion, of elliptic plane, 242
hyperbolic. See Hyperbolic motion.
of hyperbolic plane, 245, 257-259,
265, 267-268, 330-331
of plane into itself, 59-64, 230-231,
275-276
of spherical surface, 84, 230-232,
242
relative, 282-283
rigid, axode of, 285-288
Motions, groups of, Bieberbach, 88
continuous, 230-232, 256-257
discontinuous and crystallographic,
58-59, 64-81, 242, 258-259, 327-
333
Movable hyperboloid of one sheet, 16-
17, 29-31, 274-275
Movable model, of hyperbolic para-
boloid, 17, 18-19, 274-275
of general ellipsoid, 17-18
Moving centrode, 277, 284
Moving trihedron of space curve, 180

NATURAL coordinates of curve, 178, 182
n-dimensional space, crystallographic
groups in, 88
Neovius, 271
Net, Mobius, 96
planar, of polyhedron, 291, 302-303
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Nonagon, inscribed into and circum-
scribed about itself, 111
Non-Euclidean geometry. See Elliptic
geometry; Hyperbolic geometry.
Normal, of plane curve, 172
principal, of a curve, 179-180
surface, 180, 221, 223, 228-229
foci of, 217-220
Normal plane of space curve, 178-180
Normal sections of surface, 183-186,
315
n-th order curves, 24
Numbers, irrational,
of, 40-41, 43-44

approximation

OCTAGONS, mutually inscribed and cir-
cumscribed, 111

Octahedron, 85-86, 90-93, 142-157, 314

One-sided surfaces, 302-313, 323-324

Operation, symmetry, 57-58, 81, 87

Optics, 3, 280

Orbit of planet, 282

Order, axioms of, 130-131, 239, 244

Orientation of a surface, 306, 321-322

Orthogonal families of curves, 5, 187-
189, 233

Orthogonal systems of surfaces, 22,
187-188

Osculating plane, 179-180, 205, 221-
222

Osculating sphere, 182

PACKING, of circles, 36-37, 74
densest, 36-37
density of, 37
of spheres, 45-52, 54, 56
densest, 45-47, 51
in four- and five-dimensional
space, 47
loosest, 48-49, 50-52
tetrahedral, 49-52, 54
Pappus, 119, 132
Parabola, 4-5, 8, 26-27, 29, 105, 115,
160
pedal-point construction of, 26-27
Parabolic curvature, 184
Parabolic curve, 198-202, 204
Parabolic cylinder, 12
Parabolic point, 184, 186, 191, 197,
202-204
Paraboloid, elliptic, 14, 15, 163

hyperbolic, 15-16, 18-19, 120, 274-
275
movable model of, 17, 18-19, 274-
275
of revolution, 10
Parallel projection, 13, 120, 145
Parallel surfaces, 229, 285
Parallels, axiom of, 116, 240-241, 245-
246
Particle, mechanics of, 222
Pascal, Brianchon-, configuration, 102-
112, 117-118, 129-132
Pascal’s straight line, 118
Pascal’s theorem, 117-118, 128-132, 241
Peaucellier’s inversor, 272-273
Pedal-point construction, of conics, 25-
27
Pentagon, complete, in space, 125-127
Pentagons, mutually inscribed and cir-
cumscribed, 125-127
Perspective. See Parallel projection;
Central perspective.
nx, computation of, 34, 37-39
Piteh, 208-210, 286, 287
Planar net, of polyhedron, 291, 302-
303
Plane, covering by congruent regions.
See Tiling.
Plane, Euclidean, tiling of, 81
Plane lattices, 32-44, 70-72, 76-78, 328
in number theory, 37-44
Planet, orbit of, 282
Plateau’s problem, 270
Platonic polyhedra, 90
Plane, at infinity, 119-120
circle-preserving transformations in,
248-259, 264, 265, 269
complex, 263
conformal mapping in, 263-268
crystallographic groups in, 70-81
duality principle in, 117, 122-123
elliptic. See Elliptic plane.
Euclidean, 160-161, 197, 215, 217,
230, 267, 268, 329, 342
hyperbolic. See Hyperbolic plane.
linkage for tracing, 274-275
motion of, into itself, 59-64, 230-231,
275-276
normal, of space curve, 178-180
of complex numbers, 2638
osculating, 179-180, 205, 221-222
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projective, 94, 116, 147, 241-242,
299, 309, 312, 313-321, 334-335,
340-341

as a closed surface, 313-321

rectifying, 179-180

tangent, 183-184, 198-202, 208-209

Plane annulus, 261-262, 297, 309
Plane configurations, 95-96
Plane curve, curvature of, 175, 178
normal of, 172
Plane curves, 172-182
algebraic, 272
singular points of, 173-174, 199
Plane geometry, axioms of, 116, 129-
131, 238-247
Plane rotations, 60-64
additive property of, 62
Planes, family of, 204-205
Poincaré, 292, 293, 333
Poincaré’s model of hyperbolic plane,
256-258, 262, 267
Point, branch, 202, 271, 322

Brianchon, 106-107, 118

of contact, 172

of inflection, 102, 173-174, 177, 183,

198, 207
of striction, 207-210, 286
parabolic, 184, 186, 191, 197, 202-
204
umbilical, 187-189, 192, 203, 217, 224
vanishing, 112, 115
Pointers, regular system of, 69-81, 87-
88
Point lattices, in space, 44, 48, 55-56,
57, 82-83
in three and more dimensions, 44-52
Points, at infinity. See Infinity.
Points, boundary, identification of,
299, 309-312, 314-317, 319, 322-
323, 342
harmonic, 97, 101, 129
regular system of, 50, 52, 56-59, 70-
81, 82-83
singular, of plane curves, 173-174,
199
Polar axis, 181
Polyhedra, 290-295
convex, 290
Euler’s formula on, 290-293, 295,
303-304, 313-315, 337
Platonic, 90

regular, 89-93, 143-157, 242, 290,
292-293
simple, 290-293
topologically regular, 293
Polyhedral configurations, 125
Polyhedroids, 144. See also Polytopes;
Polyhedra.
Polyhedron, planar net of, 291, 302-
303
Polygon, complete, in space, 125
Polygons, mutually inscribed and cir-
cumscribed, 111, 127-128
Polytopes, 144-145, 148-157
Pretzels, 296-297, 300-302, 322
Principal curvatures of a surface,
185-187, 193, 225
Principal directions, 185, 203
Principal normal of a curve, 179-180
Principal tangent lines.
See Asymptotic lines.
Principle, Jacobi’s, 222
Principle of least constraint, 222
Problem, color, 335-340
Dirichlet, 266
Plateau’s, 270
thread, 334-335
variational, 190, 214, 227, 266
Projection, parallel, 13, 120, 145
stereographic, 248-259, 268-269
Projective coordinate system, 148, 147-
148, 152-153, 313-314
Projective geometry, 94-95
Projective mapping, 129-131, 245
Projective plane, 94, 116, 147, 241-242,
299, 309, 312, 313-321, 334-335,
340-341
as a closed surface, 313-321
Projective space, 120, 150-151, 298,
309
surfaces in, 297-298
Projectivity, 129-131.
See also Mapping, projective.

QUADRANGLES, mutually circumscribed,
111

Quadratic forms, minimal value of,
39-41
Quadrics. See Surfaces, second-order.

Quadrilateral, complete, 96, 116, 137,
156
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RADIUS of curvature,
185-186
Radé, 270
Rectifying plane, 179-180
Reflection, 87, 236, 256, 324
with respect to circle.
See Inversion.
with respect to line in hyperbolic
plane, 257
with respect to sphere.
See Inversion in space.
Regions, adjacent, on surface, 333-
335, 339
Regression, edge of, 206
Regular cell, 143-157, 242, 292
Regular configurations, 107-109, 125,
143-144, 157
Regular point, of a curve, 173-174, 180
of a surface, 183
Regular systems, of pointers, 69-81,
87-88
of points, 50, 52, 56-59, 70-81, 82-83
Regular polyhedra, 89-93, 143-157,
242, 290, 292-293
Relative motion, 282-283
Relativity, theory of, 172, 194, 261
Resistance, elastic, 221
Revolution, cone of, 24, 28, 29, 218-
219
cylinder of, 7, 219, 231, 232, 260-
261, 300
ellipsoid of. See Spheroid.
hyperboloid of, 11, 208, 287-288
paraboloid of, 10
surface of, 7, 10, 191, 208, 219, 222,
231-234, 242, 285
Reye’s configuration, 184-143, 154-157
Rhombohedron, 45
Riemann, 171-172, 214
Riemann’s mapping theorem, 266-267,
271
Riemann surface, 202, 271, 322, 333
Right helicoid, 210-211, 233
Rigid motion, axode of, 285-288
Rolling, 277
“Roman” surface, 304
Rotation, angle of, 61-64, 67-69, 71-73
axis of, in crystallography, 84-86
center of, in crystallography, 67-68
Rotations, plane, 60-64
additive property of, 62

176-177, 181,

Roulettes of an ellipse, 283-285
Ruled surface, 15, 161-163, 169-170,
204-211, 286-287, 341

SADDLE surface.
See Hyperbolic paraboloid.
Salt, table, 55
Schlaefli’s “double-six,” 134, 157, 164-
172
Schnirelman, 222
Screw, 82-83, 231, 285-288
Second-order curves. See Conics.
Second-order surfaces.
See Surfaces.
Section, canonical, 296, 300, 301, 309,
322, 328
Sections, circular, of second-order sur-
faces, 17-18
normal, of surface, 183-186, 315
Self-dual configurations, 118, 123-124,
128, 142-143, 169
Self-intersection, lines of, 303, 307-308,
314-315, 317, 319, 320, 323
Series, Leibniz’, 37-39
Shortest line, 220-221
Similarity transformations, 252, 263,
268, 330-333
Similitude, axes of, of circles and
spheres, 136-142
centers of, of circles and spheres,
136-143
Simple polyhedra, 290-293
Singular points, of plane curves, 173-
174, 199
Soap bubble, 189-190, 224, 226-228
Solid geometry, axioms of, 120-121,
129-181
Space, complete n-gon in, 125
configurations in, 133-134
conformal mapping in, 267-268
crystallographic groups in, 81-88
duality principle in, 92, 119-121,
124, 142-143, 169, 334
elliptic, 242
“tiling” of, 242
Euclidean, “tiling” of, 87
four and more dimensional, 46-47.
88, 143-157, 242, 292, 293, 323-
324, 340-342
densest packing of spheres in, 47
hyperbolic, 247
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inversion in, 219, 268
projective, 120, 150-151, 298, 309
sphere-preserving transformations
in, 268
Space curves, 178-182, 203-206, 211-
214
curvature of, 181, 221-222
moving trihedron of, 180
normal plane of, 178-180
twisting of, without changing curva-
ture, 206, 211-214
Sphere, 10, 84, 90, 135-143, 161, 181-
182, 215-232, 237, 248-259, 260-
261, 325-326
conformal mapping on, 268-269
curves on, 182
osculating, 182
properties of, 215-232
reflection with respect to.
See Inversion in space.
Sphere-preserving transformations,
268
Spheres, axes of similitude of, 136-142
centers of similitude of, 136-143
denses packing of, 45-47, 51
in four- and five-dimensional
space, 47
packing of, 45-52, 54, 56
loosest packing of, 48-49, 50-52
tetrahedral packing of, 49-52, 54
Spherical image.
See Spherical mapping.
Spherical mapping, 180-181, 193-204,
205-206, 209, 270-271, 320-321
Spherical shape of earth, 215
Spherical surface, motion of, 84, 230-
232, 242
Spheroid, 10
Square lattices, 32-35, 76-78, 328
Staude, 19
Steiner’s surface, 304
Stereographic projection, 248-259, 268-
269
Straight line, Pascal’s, 118
Straight lines, 1, 11, 13-15, 94-95, 112-
113, 158-159, 160, 161-164, 172,
177, 182. See also Ruled surface.
at infinity, 82, 114-115, 118, 119, 298
configuration of 27, 168-169
hyperboloidal position of four, 164
linkage for tracing, 272-273, 278

on hyperboloid, 11

Straightest line, 220-222

Striction, line of, 207-210, 286-287
point of, 207-210, 286

Strip, Mobius, 305-307, 309-310, 316-
317

Subgroup, of discontinuous group, 66,
72-74, 77-79, 82-83, 92

Sum of angles, of triangle, 241, 246
of unit cell, 259

Surface, adjacent regions on, 333-335,

339
Boy’s, 317-3819, 324
deformation of, into itself, 324, 325
focal, of a surface, 217-219, 223
fundamental group of, 329, 330-333
Gaussian curvature of.

See Gaussian curvature.
intrinsic geometry on, 194, 220-221
Klein’s, 308-313, 327, 342
modules of, with respect to con-

formal mapping. See Mapping,

conformal.
normal of, 183, 221, 223, 228-229
normal sections of, 183-186, 315
of revolution, 7, 10, 191, 203, 219,

222, 231-234, 242, 285
orientation of, 306, 321-322
principal curvatures of, 185-187,

192, 193, 225
regular point of, 183
Riemann, 202, 271, 322, 333
“Roman,” 304
ruled, 15, 161-163, 169-170, 204-211,

286-287, 341
saddle. See Hyperbolic paraboloid.
second-order, focal curves of, 20-24,

188, 219, 223-224
spherical, motion of, 84, 230-232, 242
Steiner’s, 304
topological mapping of, into itself,

321-329
universal covering, 327-329, 330-

333, 342
See also Surfaces.

Surface area, 224-226
Surface normal. See Normal.
Surfaces, algebraic, 274, 315, 324, 340-
341
bounded, 297
canal, 219
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class of, 321
developable, 204-211
fourth-order, 304, 314
helicoidal, 210, 231-234
in projective space, 297-298
minimal. See Minimal surfaces.
of constant brightness, 217
of constant Gaussian curvature; 204,
227-230, 234-237, 242-243, 261,
262, 285
of constant mean curvature, 226-
227, 228-229, 285
of constant width, 215-218
of higher than third order, 164
one-sided, 302-313, 323-324
orthogonal systems of, 22, 187-188
parallel, 229, 285
second-order, 12-19, 121, 129-130,
161-162
circular sections of, 17-18
confocal, 29-31, 187-188, 220, 223-
224
lines of intersection of two, 24, 31
third-order, 163-164, 166-170
See also Surface.
Symmetry operation, 57-58, 81, 87
Systems of pointers, regular, 69-81,
87-88
Systems of points, regular, 50, 52, 56-
59, 70-81, 82-83
Systems of surfaces, orthogonal, 22,
187-188

TABLE salt, 55
Tangent, to plane curve, 172-177
to space curve, 179-180, 205-206
Tangent indicatrix, 173-174.
See also Tangential image.
Tangent plane, 183-184, 198-202, 208-
209
Tangential image, 173-174, 177, 180-
181
Tangents, parallel, mapping by means
of, 173-174, 178, 180
principal. See Asymptotic lines.
Tetrahedral packing of spheres, 49-
52, 54
Tetrahedron, 45, 53, 85-86, 90-93, 134,
141-142, 143-157
Theorem, Brianchon’s, 103-105, 117-
118

congruence.
See Axioms of congruence.

Desargues’, 97, 121-124, 128-132,

133, 241, 246-247

“either-or,” 269, 330

Pascal’s, 117-118, 128-132, 241

Riemann’s mapping, 266-267, 271
Theorems on incidence, 132, 241, 246-

247
Theory of functions. See Functions.
Theory of relativity, 172, 194, 261
Third-order curves, 102, 169
Third-order surfaces. See Surfaces.
Thread construction, of circle, 1-2

of ellipse, 2

of ellipsoid, 19-20

of involutes, 6-7, 178

of lines of curvature on ellipsoid,

188-189, 224
Thread problem, 334-335
“Tiling,” of elliptic plane, 242

of Euclidean plane, 81

of Euclidean space, 87

of hyperbolic plane, 259

of elliptic space, 242

problem, 81
Topological mapping.

See Mapping, topological.
Topologically regular polyhedra, 293
Topology, 262, 289, 294

combinatorial, 295
Torsion, 181-182
Torus, 200-201, 218, 230, 294, 309,

312-313, 326-333, 335, 342

conformal mapping on, 330-333

“core” of, 326-327, 332
Tracing plane, linkage for, 274-275
Tracing straight line, linkage for,

272-278, 278
Transcendental functions, 322
Transformation, identity, 58

inverse, 58
Transformations, circle-preserving, in

plane, 248-259, 264, 265, 269
discontinuous groups of, with infi-
nite unit cells, 64-69, 327-329
groups of, 58-59, 107-108, 242, 245,
254, 257. See also Groups of
Motions.

Mobius. See Circle-preserving

transformations.
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similarity, 252, 263, 268, 330-333
sphere-preserving, 268
Translation, in hyperbolic plane, 258-
259, 329, 330-333
Translations, 60-62, 82
groups of, 64-65, 70-72, 84, 258-259,
327-328, 330-333
Triangle, exterior angle of, 246
in elliptic plane, 241
isosceles, base angles of, 246
sum of angles of, 246, 257-258
Trihedron, moving, of space curve, 180
Triply orthogonal systems of surfaces,
22, 187-188
Trochoid, 277-282
Twisting space curve without chang-
ing its curvature, 206, 211-214

UMBILICAL point, 187-189, 192, 203,
217, 224

Unit cells, infinite, with discontinuous
groups of transformations. See
Transformations.

Unit lattices, 35-36, 39-45, 47

Universal covering surface, 327-329,
330-333, 342

VALENCES of atom, 52-53

Vanishing point, 112, 115

Variational problem, 190, 214, 227, 266
Variations, calculus of, 190, 224, 226
Volume, 224-226

YaTes, R. C., 283-285
ZING, 54



