Logic of Questions II

Vít Punčochář

Institute of Philosophy, Czech Academy of Sciences, Czech Republic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Three aspects of inquisitive logic

- 1. Questions are types of types (information types)
- 2. One can define a consequence relation among information types
- 3. Information types can be combined by logical connectives

Questions are types of types

- Statements classify structures.
- Questions classify statements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $\forall x R c x$

 $\forall x R c x$

\checkmark (this state provides the answer YES)

・ロト ・ 日 ト ・ モ ト ・ モ ト

\checkmark (this state provides the answer YES)

・ロト ・ 日 ト ・ モ ト ・ モ ト

\checkmark (this state provides the answer YES)

・ロト ・ 日 ト ・ モ ト ・ モ ト

\checkmark (this state provides the answer NO)

・ロト ・ 日 ト ・ モ ト ・ モ ト

× (this state provides no answer)

・ロト ・ 日 ト ・ モ ト ・ モ ト

 \times (this state provides no answer)

・ロト ・ 日 ト ・ モ ト ・ モ ト

 \times (this state provides no answer)

・ロト ・ 日 ト ・ モ ト ・ モ ト

Algebras of information tokens and of their types

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Algebras of information tokens and of their types

structures information tokens information types

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Algebras of information tokens and of their types

structures information tokens information types

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへぐ

Algebras of information states and their types

structures information tokens information types

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Entailment among types of information

The space of possibilities S:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Information tokens:

a is a circle, b is a triangle, a is red, ... Information types:

shape of a, shape of b, colour of a, colour of b

 \blacktriangleright a is a triangle \models_S b is red

 \blacktriangleright a is a circle \nvDash_S b is red

• colour of b, shape of $a \vDash_S$ colour of a

• colour of b, shape of a \nvDash_S shape of b

Entailment among types of information

The space of possibilities S:

Information tokens:

```
a is a circle, b is a triangle, a is red, ...
```

Information types:

shape of a, shape of b, colour of a, colour of b

- \blacktriangleright a is a triangle \vDash_S b is red
- \blacktriangleright a is a circle \nvDash_S b is red
- colour of b, shape of $a \vDash_S$ colour of a
- colour of b, shape of a \nvDash_S shape of b

Entailment among types of information

The space of possibilities S:

(日) (日) (日) (日) (日) (日) (日) (日)

Information tokens:

```
a is a circle, b is a triangle, a is red, ...
```

Information types:

shape of a, shape of b, colour of a, colour of b

- \blacktriangleright a is a triangle \vDash_S b is red
- \blacktriangleright a is a circle \nvDash_S b is red
- colour of b, shape of $a \vDash_S$ colour of a
- colour of b, shape of a \nvDash_S shape of b

Combining information types

- the shape of a and the colour of b (an instance: a is a circle and b is blue)
- the colour of all objects (an instance: a is red and b is blue)
- dependence of the shape of b on the colour of a (an instance: if a is red then b a triangle and if a is blue then b is a circle)

First-order language

Terms are defined in the usual way. Complex formulas are defined as follows:

$$\varphi ::= \bot \mid t_1 = t_2 \mid Pt_1 \dots t_n \mid \varphi \land \varphi \mid \varphi \to \varphi \mid \forall x \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

$$\varphi \lor \psi =_{def} \neg (\neg \varphi \land \neg \psi$$

$$\exists x \varphi =_{def} \neg \forall x \neg \varphi$$

$$?\varphi =_{def} \varphi \lor \neg \varphi$$

- Pa V Qa represents the question whether a has the property P or the property Q
- ► ∃xPx represents the question that asks what is an object that has the property P

Some examples

- Is Alice married to Bob?
- ► Is Alice married to Bob[↑] or to Charlie[↓]?
- Is Allice married to Bob or to Charlie[↑]
- Who did Alice invite to her wedding?
- What is Bob's favorite dish?

?Mab Mab \lor Mac ?(Mab \lor Mac) $\forall x$?Iax $\exists xFbx$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Some examples

 $\exists ! x \varphi(x) =_{def} \exists x (\varphi(x) \land \forall y (\varphi(y) \to y = x))$

- What is the largest city in the world?
- Who is the current president of France?
- Who was the best man at your wedding?

An inquisitive model (for a given signature) is a pair $\mathcal{M} = \langle D, W \rangle$, where

- D is a nonempty set,
- W is a set of first-order structures on the domain D.

We can assume that the interpretations of names and function symbols are rigid. Given an evaluation of variables e every term t has a fixed value $t^{\mathcal{M},e}$.

An information state in \mathcal{M} is a subset of W.

Inquisitive semantics

Given an inquisitive model $\mathcal{M} = \langle D, W \rangle$, and an evaluation of variables *e* in \mathcal{M} , we define a support relation between information states in \mathcal{M} and formulas.

s ⊨_e ⊥ iff s = Ø,
s ⊨_e t₁ = t₂ iff t₁^{M,e} is identical with t₂^{M,e},
s ⊨_e Pt₁...t_n iff M ⊨_e Pt₁...t_n, for every M ∈ W,
s ⊨_e φ ∧ ψ iff s ⊨_e φ and s ⊨_e ψ,
s ⊨_e φ → ψ iff for every t ⊆ s, if t ⊨_e φ, then t ⊨_e ψ,
s ⊨_e ∀xφ iff for every o ∈ D, s ⊨_{e(o/x)} φ,
s ⊨_e ∃xφ iff for some o ∈ D, s ⊨_{e(o/x)} φ.

Inquisitive semantics

Given an inquisitive model $\mathcal{M} = \langle D, W \rangle$, and an evaluation of variables *e* in \mathcal{M} , we define a support relation between information states in \mathcal{M} and formulas.

s ⊨_e ⊥ iff s = Ø,
s ⊨_e t₁ = t₂ iff t₁^{M,e} is identical with t₂^{M,e},
s ⊨_e Pt₁...t_n iff M ⊨_e Pt₁...t_n, for every M ∈ W,
s ⊨_e φ ∧ ψ iff s ⊨_e φ and s ⊨_e ψ,
s ⊨_e φ → ψ iff for every t ⊆ s, if t ⊨_e φ, then t ⊨_e ψ,
s ⊨_e φ ⋈ ψ iff s ⊨_e φ or s ⊨_e(o/x) φ,
s ⊨_e ∃xφ iff for some o ∈ D, s ⊨_{e(o/x)} φ.

Proposition

The following two properties hold generally for every formula arphi:

- 1. *Empty-set property:* $\emptyset \Vdash_{e} \varphi$,
- 2. Persistence: $s \Vdash_e \varphi$ and $t \subseteq s$ implies $t \Vdash_e \varphi$.

The following property holds for every $\{\exists, \forall\}$ -free formula α :

3. Truth-support bridge: $s \Vdash_e \alpha$ iff for all $M \in s$, $M \vDash_e \alpha$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Inquisitive vs. declarative existential quantifier

- s ⊨_e ∃xPx means: in every structure from s there is some object that has the property P.
- s ⊨_e ∃xPx means: there is some object that in every structure from s has the property P.

In this state *s* we have

- ▶ $s \Vdash_e \exists x Red(x)$,
- ▶ but $s \nvDash_e \exists x Red(x)$.

Inquisitive vs. declarative disjunction

- ▶ $s \Vdash_e Pa \lor Qa$ means: in every structure from s, the object a either has the property P or the property Q.
- s ⊩_e Pa ∨ Qa means: either the object a has the property P in all structures from s, or the object a has the property Q in all structures from s.

In this state *s* we have

- ▶ $s \Vdash_e Circle(a) \lor Red(a)$,
- but $s \nvDash_e Circle(a) \lor Red(a)$.

We define the consequence relation \vDash as preservation of support. Proposition For the $\{\exists, \forall\}$ -free fragment of the language, the logic corresponds to classical first-order logic.

◆□> <個> <=> <=> <=> <=> <=> <=>

Disjunction and existence property

Theorem (Grilletti 2018)

Let Γ be a set of $\{\exists, w\}$ -free formulas and φ, ψ arbitrary formulas. Then

(a) if $\Gamma \vDash \varphi \otimes \psi$ then $\Gamma \vDash \varphi$ or $\Gamma \vDash \psi$,

(b) if $\Gamma \vDash \exists x \varphi$ then for some term t, $\Gamma \vDash \varphi[t/x]$.

Compactness

Theorem If every finite subset of Δ is satisfiable then Δ is satisfiable.

Compactness for entailment is an open problem: • if $\Delta \vDash \varphi$ then for some finite $\Delta' \subseteq \Delta$, $\Delta' \vDash \varphi$.

More open problems

- Is the set of valid formulas recursively enumerable? (axiomatization)
- ▶ If φ is not valid, is there a counterexample $\langle D, W \rangle$ with countable *D* and *W*? (Löwenheim-Skolem)

A fragment of the language \mathcal{L}_{ing}^{-}

Only declarative antecedents are allowed:

 $\varphi ::= \bot \mid t_1 = t_2 \mid Pt_1 \dots t_n \mid \varphi \land \varphi \mid \alpha \to \varphi \mid \forall x \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$ where α is $\{\exists, \lor\}$ -free

Inquisitive logic in the language \mathcal{L}^-_{inq}

Intuitionistic logic plus (where
$$\alpha$$
 is declarative)
DN $\neg \neg \alpha \rightarrow \alpha$,
CD $\forall x(\varphi \lor \psi) \rightarrow (\varphi \lor \forall x\psi)$, if x is not free in φ ,
 \lor -split $(\alpha \rightarrow (\varphi \lor \psi)) \rightarrow ((\alpha \rightarrow \varphi) \lor (\alpha \rightarrow \psi))$,
 \exists -split $(\alpha \rightarrow \exists x\varphi) \rightarrow \exists x(\alpha \rightarrow \varphi)$, if x is not free in φ .
The derivability relation is denoted by \vdash .
Theorem (Grilletti 2020)
Let $\Phi \cup \{\varphi\}$ be a set of \mathcal{L}_{inq}^{-} -sentences. Then,
 $\Phi \vDash \varphi$ iff $\Phi \vdash \varphi$.
Mention-some fragment

$$\chi ::= \alpha \mid \chi \lor \chi \mid \exists x \chi \mid \chi \land \chi \mid \alpha \to \chi$$

where α is $\{\exists, {\mathbb W}\}\text{-}\mathsf{free}$

Theorem (Ciardelli 2016)

For every χ from the mention-some fragment there are declarative $\alpha_1, \ldots, \alpha_n$ and tuples of variables $\overline{x}_1, \ldots, \overline{x}_n$ such that:

 $\vdash \chi \leftrightarrow \exists \overline{x}_1 \alpha_1 \lor \ldots \lor \exists \overline{x}_n \alpha_n.$

Antecedents from the mention-some fragment

$$\begin{split} \chi &::= \alpha \mid \chi \otimes \chi \mid \exists x \chi \mid \chi \wedge \chi \mid \alpha \to \chi \\ \varphi &::= \bot \mid t_1 = t_2 \mid Pt_1 \dots t_n \mid \varphi \wedge \varphi \mid \chi \to \varphi \mid \forall x \varphi \mid \varphi \otimes \varphi \mid \exists x \varphi \\ \text{where } \alpha \text{ is } \{\exists, \forall\}\text{-free} \end{split}$$

・ロト・4日ト・4日ト・4日・9000

What creates the problem

Formulas like this:

Is inquisitive logic a non-classical logic?

Two alternative approaches:

- inquisitive logic as a superintuitionistic logic in the standard propositional language
- inquisitive logic as a conservative extension of classical logic in an enriched language

Picture taken from Galatos, N. Jipsen, P. Kowalski, T., Ono, H. (2007) Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier Science.

æ

Punčochář, V. (2023). Fuzzy Truth, Fuzzy Support and Fuzzy Information States for Inquisitive Semantics. *Proceedings of the* 20th International Conference on Principles of Knowledge Representation and Reasoning. Pages 572–581.

Is the enemy weak or strong?

- Is Ann a cat person or a dog person?
- Are you with us or against us?
- Are you an early bird or a night owl?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

► Do you like beer or wine?

- Is the enemy weak or strong?
- Is Ann a cat person or a dog person?
- Are you with us or against us?
- Are you an early bird or a night owl?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▶ Do you like beer or wine?

- Is the enemy weak or strong?
- Is Ann a cat person or a dog person?
- Are you with us or against us?
- Are you an early bird or a night owl?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▶ Do you like beer or wine?

- Is the enemy weak or strong?
- Is Ann a cat person or a dog person?
- Are you with us or against us?
- Are you an early bird or a night owl?

► Do you like beer or wine?

- Is the enemy weak or strong?
- Is Ann a cat person or a dog person?
- Are you with us or against us?
- Are you an early bird or a night owl?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Do you like beer or wine?

Language

Declarative language:

$$\alpha ::= \mathbf{p} \mid \bot \mid \alpha \land \alpha \mid \alpha \to \alpha$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Defined symbols:

lpha,eta declarative formulas $arphi,\psi$ arbitrary formulas

Crisp models

Definition

A c-model (a shorthand for "crisp model") is a pair $\mathcal{M}=\langle W,V\rangle$, where

- W is a non-empty set (of possible worlds);
- V is a c-valuation (crisp valuation), i.e. a function assigning to each atomic formula an information c-state

An information c-state is any subset of W.

Truth conditions

$$w \nvDash \perp$$
,
 $w \vDash p$ iff $w \in V(p)$, for each atomic formula p ,
 $w \vDash \alpha \land \beta$ iff $w \vDash \alpha$ and $w \vDash \beta$,
 $w \vDash \alpha \rightarrow \beta$ iff $w \nvDash \alpha$ or $w \vDash \beta$.

We define tc-consequence relation as the preservation of truth.

Support conditions

$$s \Vdash \bot \text{ iff } s = \emptyset,$$

$$s \Vdash p \text{ iff } s \subseteq V(p), \text{ for each atomic formula } p,$$

$$s \Vdash \varphi \land \psi \text{ iff } s \Vdash \varphi \text{ and } s \Vdash \psi,$$

$$s \Vdash \varphi \rightarrow \psi \text{ iff } \forall t \subseteq W, \text{ if } t \Vdash \varphi, \text{ then } s \cap t \Vdash \psi,$$

$$s \Vdash \varphi \lor \psi \text{ iff } s \Vdash \varphi \text{ or } s \Vdash \psi.$$

We define sc-consequence relation as the preservation of support.

Basic results

Proposition (Truth-Support Bridge-I)

For any information c-state s of any c-model, and for any declarative formula α :

$$s \Vdash \alpha$$
 iff $w \vDash \alpha$, for all $w \in s$.

Proposition

For any set of declarative formulas $\Delta \cup \{\alpha\}$:

 $\Delta \vDash_{sc} \alpha \text{ iff } \Delta \vDash_{tc} \alpha$

Proposition

In any c-model and for any formula φ : (a) $\emptyset \Vdash \varphi$ (empty-state property), (b) if $s \Vdash \varphi$ and $t \subseteq s$ then $t \Vdash \varphi$ (persistence property).

Continuous t-norms

Definition

A (continuous) t-norm is a continuous, commutative, associative and monotone binary function * on the interval [0, 1] such that 1 * x = x and 0 * x = 0, for each x from [0, 1].

Proposition

For every a t-norm * there is a unique binary residual operation \Rightarrow_* on [0, 1] satisfying:

$$x * y \leq z$$
 iff $x \leq y \Rightarrow_* z$.

The residual of minimum

the residual of *min* is the function \Rightarrow_{min} defined as follows:

$$x \Rightarrow_{min} y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$$

・ロト・4日ト・4日ト・4日・9000

Łukasiewicz t-norm

Łukasiewicz t-norm defined as follows:

$$x *_L y = max\{0, x + y - 1\}.$$

The residual of the Łukasiewicz t-norm $*_L$ is the function \Rightarrow_L defined in this way:

$$x \Rightarrow_L y = \begin{cases} 1 & \text{if } x \leq y \\ 1 - x + y & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Truth conditions

$$w(\bot) = 0,$$

$$w(p) = V(p)(w), \text{ for each atomic formula } p,$$

$$w(\alpha \land \beta) = min\{w(\alpha), w(\beta)\},$$

$$w(\alpha \rightarrow \beta) = w(\alpha) \Rightarrow_* w(\beta).$$

We define tc_* -consequence as preservation of the value 1.

(ロ)、(型)、(E)、(E)、 E) のQ()

Definition A fuzzy subset of W is a function from W to [0, 1].

- ▶ $Ø_f$ and W_f the fuzzy empty set and the fuzzy full set
- ▶ fuzzy subset relation: $s \sqsubseteq t$ iff $s(w) \le t(w)$, for all $w \in W$,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- fuzzy intersection: $(s \sqcap t)(w) = min\{s(w), t(w)\}$
- fuzzy union: $(s \sqcup t)(w) = max\{s(w), t(w)\}$

Definition

A fuzzy subset of W is a function from W to [0, 1].

- \emptyset_f and W_f the fuzzy empty set and the fuzzy full set
- ▶ fuzzy subset relation: $s \sqsubseteq t$ iff $s(w) \le t(w)$, for all $w \in W$,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- fuzzy intersection: $(s \sqcap t)(w) = min\{s(w), t(w)\}$
- fuzzy union: $(s \sqcup t)(w) = max\{s(w), t(w)\}$

Definition

A fuzzy subset of W is a function from W to [0, 1].

- \emptyset_f and W_f the fuzzy empty set and the fuzzy full set
- ▶ fuzzy subset relation: $s \sqsubseteq t$ iff $s(w) \le t(w)$, for all $w \in W$,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- fuzzy intersection: $(s \sqcap t)(w) = min\{s(w), t(w)\}$
- fuzzy union: $(s \sqcup t)(w) = max\{s(w), t(w)\}$

Definition

A fuzzy subset of W is a function from W to [0, 1].

- \emptyset_f and W_f the fuzzy empty set and the fuzzy full set
- ▶ fuzzy subset relation: $s \sqsubseteq t$ iff $s(w) \le t(w)$, for all $w \in W$,

• fuzzy intersection: $(s \sqcap t)(w) = min\{s(w), t(w)\}$

• fuzzy union: $(s \sqcup t)(w) = max\{s(w), t(w)\}$

Definition

A fuzzy subset of W is a function from W to [0, 1].

- \emptyset_f and W_f the fuzzy empty set and the fuzzy full set
- ▶ fuzzy subset relation: $s \sqsubseteq t$ iff $s(w) \le t(w)$, for all $w \in W$,

- fuzzy intersection: $(s \sqcap t)(w) = min\{s(w), t(w)\}$
- fuzzy union: $(s \sqcup t)(w) = max\{s(w), t(w)\}$

Definition

An f-model (fuzzy model) is a pair $\mathcal{M} = \langle W, V \rangle$, where

- W is a non-empty set (of possible worlds)
- V is an f-valuation (fuzzy valuation), i.e. a function assigning to each atomic formula an information f-state

An information f-state (fuzzy information state) is a fuzzy subset of $\ensuremath{\mathcal{W}}.$

	w_1	W ₂	W3	
the culprit is a man	1	1	0	
the culprit is tall	0.7	0.8	0.5	
the culprit is smart	0.5	0.9	0.8	
the culprit knew well the victim	0.8	0.2	0.7	
	0.5	0.2	0	-

Table: An example illustrating fuzzy states

Algebra of crisp information states for two worlds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Algebra of fuzzy information states for two worlds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Two dimensions of fuzzyfication

Four options:

- 1. crisp states, crisp support
- 2. crisp states, fuzzy support
- 3. fuzzy states, crisp support
- 4. fuzzy states, fuzzy support

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Support conditions: fuzzy states, crisp support

We define the operation * also on the level of f-states:

$$(s * t)(w) = s(w) * t(w),$$

The generalized support conditions are defined as follows:

$$s \Vdash \bot \text{ iff } s = \emptyset_f,$$

$$s \Vdash p \text{ iff } s \sqsubseteq V(p), \text{ for each atomic formula } p,$$

$$s \Vdash \varphi \land \psi \text{ iff } s \Vdash \varphi \text{ and } s \Vdash \psi,$$

$$s \Vdash \varphi \rightarrow \psi \text{ iff } \forall t \sqsubseteq W_f, \text{ if } t \Vdash \varphi, \text{ then } s * t \Vdash \psi,$$

$$s \Vdash \varphi \lor \psi \text{ iff } s \Vdash \varphi \text{ or } s \Vdash \psi.$$

We define sc_* -consequence as preservation of support in W_f .

Basic results

Proposition (Truth-Support Bridge-II)

For any information f-state s of any f-model, and for any declarative formula α :

 $s \Vdash \alpha \text{ iff } s(w) \leq w(\alpha)$, for all $w \in W$.

Proposition

For any set of declarative formulas $\Delta \cup \{\alpha\}$:

 $\Delta \vDash_{\mathit{sc}_*} \alpha \textit{ iff } \Delta \vDash_{\mathit{tc}_*} \alpha$

Proposition

In any f-model and for any formula φ:
(a) Ø_f ⊨ φ (empty-state property),
(b) if s ⊨ φ and t ⊑ s then t ⊨ φ (persistence property).

Graded support

	W_1	W ₂	W3
5	0.3	0.4	0.9
р	0.6	0.7	0.89
q	0.2	0.3	0.1

Table: An example illustrating graded support

For any f-state s and any formula α

$$s \rightsquigarrow_* \alpha$$
 is a shorthand for $\bigwedge_{w \in W} (s(w) \Rightarrow_* w(\alpha)).$

for any f-state s and any formula $\alpha :$

$$s \Vdash \alpha \text{ iff } s \rightsquigarrow \alpha = 1.$$

	W_1	W2	W3
5	0.3	0.4	0.9
р	0.6	0.7	0.89
q	0.2	0.3	0.1

Table: An example illustrating graded support

(ロ)、(型)、(E)、(E)、 E) のQ()

If * is the Łukasiewicz t-norm we obtain:

Our aim now is to capture the notion of graded or fuzzy support that would determine to what degree s supports φ.
 We denote this value as s_{*}[φ].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For declarative α we want to obtain $s_*[\alpha] = s \rightsquigarrow_* \alpha$.
Crisp semantic clause for implication:

▶ $s \Vdash \varphi \to \psi$ iff $\forall t \sqsubseteq W_f$, if $t \Vdash \varphi$, then $s * t \Vdash \psi$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Graded semantic clause for implication:

►
$$s[\varphi \to \psi] = \bigwedge_{t \sqsubseteq W_f} (t[\varphi] \Rightarrow_* s * t[\psi]).$$

Support conditions: fuzzy states, fuzzy support

$$s[\bot] = s \rightsquigarrow \bot,$$

$$s[p] = s \rightsquigarrow p, \text{ for every atomic formula } p,$$

$$s[\varphi \land \psi] = min\{s[\varphi], s[\psi]\},$$

$$s[\varphi \rightarrow \psi] = \bigwedge_{t \sqsubseteq W_f} (t[\varphi] \Rightarrow s * t[\psi]),$$

$$s[\varphi \lor \psi] = max\{s[\varphi], s[\psi]\}.$$

We define fsc_* -consequence as preservation of 1 in W_f .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Basic results

Proposition (Truth-Support Bridge-III)

For any information f-state $s \sqsubseteq W_f$ of any f-model and any declarative formula α :

$$\mathbf{s}_*[\alpha] = \mathbf{s} \rightsquigarrow_* \alpha.$$

Proposition

For any set of declarative formulas $\Delta \cup \{\alpha\}$:

$$\Delta \vDash_{\mathit{fsc}_*} \alpha \textit{ iff } \Delta \vDash_{\mathit{tc}_*} \alpha$$

Proposition

For every formula φ:
(a) Ø_f[φ] = 1 (empty-set property),
(b) if s ⊑ t then t[φ] ≤ s[φ] (persistence property).

Declarative vs. inquisitive propositions

Proposition

For any declarative α :

$$\bigwedge_i (s_i[\alpha]) = (\bigvee_i s_i)[\alpha]$$

A counterexample to $inf\{s[p \lor q], t[p \lor q]\} = (s \sqcup t)[p \lor q]$:

	V	W
5	1	0
t	0	1
р	1	0
q	0	1

Setting	Truth-Support Bridge
crisp states,	$c \models \alpha$ iff $\forall w \in c, w \models \alpha$
crisp support	$\mathbf{S} \parallel \alpha \parallel \forall \mathbf{w} \in \mathbf{S}, \mathbf{w} \vdash \alpha$
fuzzy states,	$\mathbf{c} \Vdash \alpha$ iff $\forall w \in \mathcal{W}$ $\mathbf{c}(w) \leq w(\alpha)$
crisp support	$\mathbf{S} \cap \alpha \cap \mathbf{W} \in \mathbf{W}, \mathbf{S}(\mathbf{W}) \leq \mathbf{W}(\alpha)$
fuzzy states,	$\mathfrak{s}[\alpha] = \Lambda$ ($\mathfrak{s}(w) \to w(\alpha)$)
fuzzy support	$\mathbf{s}[\alpha] = /(w \in W(\mathbf{s}(w) \rightarrow w(\alpha)))$

Table: Truth-Support Bridge in different versions of inquisitive semantics

・ロト・4日ト・4日ト・4日・9000

Setting	Propositions expressed by formulas
crisp states,	downward closed crisp sets
crisp support	of crisp information states
fuzzy states,	downward closed crisp sets
crisp support	of fuzzy information states
fuzzy states,	antitone fuzzy sets
fuzzy support	of fuzzy information states

Table: Propositions in different versions of inquisitive semantics

・ロト・4日ト・4日ト・4日・9000

$\varphi := \mathbf{p} \mid \bot \mid \varphi \to \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}}\varphi \mid E_{\mathsf{a}}\varphi$

$\varphi := p \mid \bot \mid \varphi \to \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}}\varphi \mid E_{\mathsf{a}}\varphi$

$\varphi := p \mid \bot \mid \varphi \to \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid K_{\mathsf{a}}\varphi \mid E_{\mathsf{a}}\varphi$

$$\varphi := p \mid \bot \mid \varphi \to \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid E_a \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

$$\varphi \lor \psi =_{def} \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \leftrightarrow \psi =_{def} (\varphi \to \psi) \land (\psi \to \varphi)$$

$$?\varphi =_{def} \varphi \lor \neg \varphi$$

$$W_a \varphi =_{def} E_a \varphi \land \neg K_a \varphi$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

$$\varphi := p \mid \bot \mid \varphi \to \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid E_a \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

$$\varphi \lor \psi =_{def} \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \leftrightarrow \psi =_{def} (\varphi \to \psi) \land (\psi \to \varphi)$$

$$?\varphi =_{def} \varphi \lor \neg \varphi$$

$$W_a(\varphi =_{def} E_a(\varphi \land \neg K_a))$$

$$\varphi := p \mid \bot \mid \varphi \to \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid K_a \varphi \mid E_a \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

$$\varphi \lor \psi =_{def} \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \leftrightarrow \psi =_{def} (\varphi \to \psi) \land (\psi \to \varphi)$$

$$?\varphi =_{def} \varphi \lor \neg \varphi$$

$$W_a \varphi =_{def} E_a \varphi \land \neg K_a \varphi$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

the formula	represents
K _a p	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent <i>a</i> entertains whether <i>p</i> .
$W_a?p=E_a?p\wedge eg K_a?p$	The agent <i>a</i> wonders whether <i>p</i> .

the formula	represents
K _a p	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent <i>a</i> entertains whether <i>p</i> .
$W_a?p=E_a?p\wedge eg K_a?p$	The agent a wonders whether p .

the formula	represents
K _a p	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent <i>a</i> entertains whether <i>p</i> .
$W_a?p=E_a?p\wedge eg K_a?p$	The agent a wonders whether p .

the formula	represents
K _a p	The agent <i>a</i> knows that <i>p</i> .
K _a ?p	The agent <i>a</i> knows whether <i>p</i> .
E _a ?p	The agent a entertains whether p .
$W_a?p=E_a?p\wedge eg K_a?p$	The agent a wonders whether p .

<□ > < @ > < E > < E > E のQ @

- ► K_a(question) = statement
- $E_a(question) = statement$
- W_a (question) = statement

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Declarative formulas

Definition

The set of declarative \mathcal{L}_{IEL} -formulas is the least set that contains all atomic formulas, \perp , $K_a\varphi$ and $E_a\varphi$, for any \mathcal{L}_{IEL} -formula φ , and is closed under \wedge and \rightarrow .

Models

Definition

A concrete inquisitive epistemic model (CIE-model) is a triple $\langle W, \Sigma_A, V \rangle$, where

- ► W is a nonempty set of possible worlds
- ▶ $\Sigma_A = {\Sigma_a \mid a \in A}$ is a set of inquisitive state maps
- \blacktriangleright V is a valuation assigning subsets of W to atomic formulas

Σ_a assigns to every world w the issue of the agent a in the world w

- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

- Σ_a assigns to every world w the issue of the agent a in the world w
- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Σ_a assigns to every world w the issue of the agent a in the world w
- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

- Σ_a assigns to every world w the issue of the agent a in the world w
- every issue is represented by a set of information states (those states that resolve the issue)
- every information state is represented by a set of possible worlds (those worlds that are compatible with the information, i.e. that are not excluded by the information)
- the information state of the agent in a world determines the boundaries for the issue of the agent in the world

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\Sigma_a: W o \mathcal{P}(\mathcal{P}(W)), \ \sigma_a: o \mathcal{P}(W)$$
 satisfying:

• $\Sigma_a(w)$ is nonempty downward closed,

$$\blacktriangleright \sigma_a(w) = \bigcup \Sigma_a(w),$$

• for any
$$w \in W$$
, $w \in \sigma_a(w)$ (factivity),

For any w, v ∈ W, if v ∈ σ_a(w), then Σ_a(v) = Σ_a(w) (introspection).

Support conditions

Theorem

In every inquisitive epistemic model:

- (a) every formula is supported by the empty state,
- (b) support is downward persistent for all formulas,
- (c) support of declarative formulas is closed under arbitrary unions,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

(d) every formula is equivalent to the inquisitive disjunction of a finite set of declarative formulas.

Axiomatization of IEL

 $\begin{array}{ll} \text{INT} & \text{Axioms of intuitionistic logic and modus ponens} \\ \text{split} & (\alpha \to (\varphi \lor \psi)) \to ((\alpha \to \varphi) \lor (\alpha \to \psi)) \\ \text{rdn} & \neg \neg \alpha \to \alpha \end{array}$

- S5 S5-axioms and necessitation for K_a and E_a K2 $K_a(\varphi \otimes \psi) \leftrightarrow (K_a \varphi \vee K_a \psi)$
- $\mathsf{KE} \quad \mathbf{E}_{\mathbf{a}} \alpha \leftrightarrow \mathbf{K}_{\mathbf{a}} \alpha$

(α ranges over declarative formulas)