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Three aspects of inquisitive logic

1. Questions are types of types (information types)
2. One can define a consequence relation among information

types
3. Information types can be combined by logical connectives



Questions are types of types

I Statements classify structures.
I Questions classify statements.
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Algebras of information tokens and of their types
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Algebras of information states and their types
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Entailment among types of information

The space of possibilities S :

© 4 4 ©
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Information tokens:
a is a circle, b is a triangle, a is red, . . .

Information types:
shape of a, shape of b, colour of a, colour of b

I a is a triangle �S b is red
I a is a circle 2S b is red
I colour of b, shape of a �S colour of a
I colour of b, shape of a 2S shape of b
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Combining information types

I the shape of a and the colour of b (an instance: a is a circle
and b is blue)

I the colour of all objects (an instance: a is red and b is blue)
I dependence of the shape of b on the colour of a (an instance:

if a is red then b a triangle and if a is blue then b is a circle)



First-order language

Terms are defined in the usual way. Complex formulas are defined
as follows:

ϕ ::= ⊥ | t1 = t2 | Pt1 . . . tn | ϕ ∧ ϕ | ϕ→ ϕ | ∀xϕ | ϕ > ϕ | ∃∃xϕ

I ¬ϕ =def ϕ→ ⊥
I ϕ ∨ ψ =def ¬(¬ϕ ∧ ¬ψ)

I ∃xϕ =def ¬∀x¬ϕ
I ?ϕ =def ϕ

> ¬ϕ

I Pa

>

Qa represents the question whether a has the property P
or the property Q

I ∃∃xPx represents the question that asks what is an object that
has the property P



Some examples

I Is Alice married to Bob? ?Mab

I Is Alice married to Bob↑ or to Charlie↓? Mab

>

Mac

I Is Allice married to Bob or to Charlie↑ ?(Mab ∨Mac)

I Who did Alice invite to her wedding? ∀x?Iax

I What is Bob’s favorite dish? ∃∃xFbx



Some examples

∃∃!xϕ(x) =def ∃∃x(ϕ(x) ∧ ∀y(ϕ(y)→ y = x))

I What is the largest city in the world?
I Who is the current president of France?
I Who was the best man at your wedding?



Inquisitive model

An inquisitive model (for a given signature) is a pairM = 〈D,W 〉,
where
I D is a nonempty set,
I W is a set of first-order structures on the domain D.

We can assume that the interpretations of names and function
symbols are rigid. Given an evaluation of variables e every term t
has a fixed value tM,e .

An information state inM is a subset of W .



Inquisitive semantics

Given an inquisitive modelM = 〈D,W 〉, and an evaluation of
variables e inM, we define a support relation between information
states inM and formulas.
I s 
e ⊥ iff s = ∅,
I s 
e t1 = t2 iff tM,e

1 is identical with tM,e
2 ,

I s 
e Pt1 . . . tn iff M �e Pt1 . . . tn, for every M ∈W ,
I s 
e ϕ ∧ ψ iff s 
e ϕ and s 
e ψ,
I s 
e ϕ→ ψ iff for every t ⊆ s, if t 
e ϕ, then t 
e ψ,
I s 
e ∀xϕ iff for every o ∈ D, s 
e(o/x) ϕ,
I s 
e ϕ

>

ψ iff s 
e ϕ or s 
e ψ,
I s 
e ∃∃xϕ iff for some o ∈ D, s 
e(o/x) ϕ.
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Key properties

Proposition
The following two properties hold generally for every formula ϕ:
1. Empty-set property: ∅ 
e ϕ,
2. Persistence: s 
e ϕ and t ⊆ s implies t 
e ϕ.

The following property holds for every {∃∃, > }-free formula α:
3. Truth-support bridge: s 
e α iff for all M ∈ s, M �e α.



Inquisitive vs. declarative existential quantifier

I s 
e ∃xPx means: in every structure from s there is some
object that has the property P .

I s 
e ∃∃xPx means: there is some object that in every structure
from s has the property P .

© 4 4 ©
© © 4 4

In this state s we have
I s 
e ∃xRed(x),
I but s 1e ∃∃xRed(x).



Inquisitive vs. declarative disjunction

I s 
e Pa ∨ Qa means: in every structure from s, the object a
either has the property P or the property Q.

I s 
e Pa

>

Qa means: either the object a has the property P in
all structures from s, or the object a has the property Q in all
structures from s.

© 4 4 ©
© © 4 4

In this state s we have
I s 
e Circle(a) ∨ Red(a),
I but s 1e Circle(a)

>
Red(a).



Inquisitive consequence relation

We define the consequence relation � as preservation of support.

Proposition
For the {∃∃, > }-free fragment of the language, the logic
corresponds to classical first-order logic.



Disjunction and existence property

Theorem (Grilletti 2018)
Let Γ be a set of {∃∃, > }-free formulas and ϕ,ψ arbitrary formulas.
Then
(a) if Γ � ϕ

>

ψ then Γ � ϕ or Γ � ψ,
(b) if Γ � ∃∃xϕ then for some term t, Γ � ϕ[t/x ].



Compactness

Theorem
If every finite subset of ∆ is satisfiable then ∆ is satisfiable.

Compactness for entailment is an open problem:
I if ∆ � ϕ then for some finite ∆′ ⊆ ∆, ∆′ � ϕ.



More open problems

I Is the set of valid formulas recursively enumerable?
(axiomatization)

I If ϕ is not valid, is there a counterexample 〈D,W 〉 with
countable D and W ? (Löwenheim-Skolem)



A fragment of the language L−inq

Only declarative antecedents are allowed:

ϕ ::= ⊥ | t1 = t2 | Pt1 . . . tn | ϕ ∧ ϕ | α→ ϕ | ∀xϕ | ϕ > ϕ | ∃∃xϕ

where α is {∃∃, > }-free



Inquisitive logic in the language L−inq

Intuitionistic logic plus (where α is declarative)
DN ¬¬α→ α,
CD ∀x(ϕ

>

ψ)→ (ϕ

> ∀xψ), if x is not free in ϕ,

>

-split (α→ (ϕ

>

ψ))→ ((α→ ϕ)

>

(α→ ψ)),
∃∃-split (α→ ∃∃xϕ)→ ∃∃x(α→ ϕ), if x is not free in ϕ.

The derivability relation is denoted by `.

Theorem (Grilletti 2020)
Let Φ ∪ {ϕ} be a set of L−inq-sentences. Then,

Φ � ϕ iff Φ ` ϕ.



Mention-some fragment

χ ::= α | χ > χ | ∃∃xχ | χ ∧ χ | α→ χ

where α is {∃∃, > }-free

Theorem (Ciardelli 2016)
For every χ from the mention-some fragment there are declarative
α1, . . . , αn and tuples of variables x1, . . . , xn such that:

` χ↔ ∃∃x1α1

>

. . .

> ∃∃xnαn.



Antecedents from the mention-some fragment

χ ::= α | χ > χ | ∃∃xχ | χ ∧ χ | α→ χ

ϕ ::= ⊥ | t1 = t2 | Pt1 . . . tn | ϕ ∧ ϕ | χ→ ϕ | ∀xϕ | ϕ > ϕ | ∃∃xϕ

where α is {∃∃, > }-free



What creates the problem

Formulas like this:
I ∀x?Px → ∃∃xSx



Is inquisitive logic a non-classical logic?

Two alternative approaches:
I inquisitive logic as a superintuitionistic logic in the standard

propositional language
I inquisitive logic as a conservative extension of classical logic in

an enriched language



Picture taken from Galatos, N. Jipsen, P. Kowalski, T., Ono, H. (2007)
Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier
Science.



Punčochář, V. (2023). Fuzzy Truth, Fuzzy Support and Fuzzy
Information States for Inquisitive Semantics. Proceedings of the
20th International Conference on Principles of Knowledge
Representation and Reasoning. Pages 572–581.



Vagueness-based false dilemma fallacy

I Is the enemy weak or strong?
I Is Ann a cat person or a dog person?
I Are you with us or against us?
I Are you an early bird or a night owl?
I Do you like beer or wine?
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Language

Declarative language:

α ::= p | ⊥ | α ∧ α | α → α

Defined symbols:
I ¬α =def α→ ⊥
I α ∨ β =def ((α→ β)→ β) ∧ ((β → α)→ α)

To this declarative language we will add inquisitive disjunction:

>

.

α, β declarative formulas
ϕ,ψ arbitrary formulas



Crisp models

Definition
A c-model (a shorthand for “crisp model”) is a pairM = 〈W ,V 〉,
where
I W is a non-empty set (of possible worlds);
I V is a c-valuation (crisp valuation), i.e. a function assigning to

each atomic formula an information c-state
An information c-state is any subset of W .



Truth conditions

w 2 ⊥,
w � p iff w ∈ V (p), for each atomic formula p,
w � α ∧ β iff w � α and w � β,
w � α→ β iff w 2 α or w � β.

We define tc-consequence relation as the preservation of truth.



Support conditions

s 
 ⊥ iff s = ∅,
s 
 p iff s ⊆ V (p), for each atomic formula p,
s 
 ϕ ∧ ψ iff s 
 ϕ and s 
 ψ,
s 
 ϕ→ ψ iff ∀t ⊆W , if t 
 ϕ, then s ∩ t 
 ψ,
s 
 ϕ

>

ψ iff s 
 ϕ or s 
 ψ.
We define sc-consequence relation as the preservation of support.



Basic results

Proposition (Truth-Support Bridge-I)
For any information c-state s of any c-model, and for any
declarative formula α:

s 
 α iff w � α, for all w ∈ s.

Proposition
For any set of declarative formulas ∆ ∪ {α}:

∆ �sc α iff ∆ �tc α

Proposition
In any c-model and for any formula ϕ:
(a) ∅ 
 ϕ (empty-state property),
(b) if s 
 ϕ and t ⊆ s then t 
 ϕ (persistence property).



Continuous t-norms

Definition
A (continuous) t-norm is a continuous, commutative, associative
and monotone binary function ∗ on the interval [0, 1] such that
1 ∗ x = x and 0 ∗ x = 0, for each x from [0, 1].

Proposition
For every a t-norm ∗ there is a unique binary residual operation ⇒∗
on [0, 1] satisfying:

x ∗ y ≤ z iff x ≤ y ⇒∗ z .



The residual of minimum

the residual of min is the function ⇒min defined as follows:

x ⇒min y =

{
1 if x ≤ y

y otherwise



Łukasiewicz t-norm

Łukasiewicz t-norm defined as follows:

x ∗L y = max{0, x + y − 1}.

The residual of the Łukasiewicz t-norm ∗L is the function ⇒L

defined in this way:

x ⇒L y =

{
1 if x ≤ y

1− x + y otherwise



Truth conditions

w(⊥) = 0,
w(p) = V (p)(w), for each atomic formula p,
w(α ∧ β) = min{w(α),w(β)},
w(α→ β) = w(α)⇒∗ w(β).

We define tc∗-consequence as preservation of the value 1.



Fuzzy sets

Definition
A fuzzy subset of W is a function from W to [0, 1].

I ∅f and Wf the fuzzy empty set and the fuzzy full set
I fuzzy subset relation: s v t iff s(w) ≤ t(w), for all w ∈W ,
I fuzzy intersection: (s u t)(w) = min{s(w), t(w)}
I fuzzy union: (s t t)(w) = max{s(w), t(w)}
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f-models and f-states

Definition
An f-model (fuzzy model) is a pairM = 〈W ,V 〉, where
I W is a non-empty set (of possible worlds)
I V is an f-valuation (fuzzy valuation), i.e. a function assigning

to each atomic formula an information f-state
An information f-state (fuzzy information state) is a fuzzy subset of
W .



w1 w2 w3
the culprit is a man 1 1 0
the culprit is tall 0.7 0.8 0.5
the culprit is smart 0.5 0.9 0.8
the culprit knew well the victim 0.8 0.2 0.7

0.5 0.2 0

Table: An example illustrating fuzzy states



Algebra of crisp information states for two worlds

0, 0

0, 1 1, 0

1, 1



Algebra of fuzzy information states for two worlds

0, 0

0, 1 1, 0

1, 1

0.2, 0.3

0.7, 0.4

0.1, 0.5

0.8, 0.9

. . .
. . .

. . .



Two dimensions of fuzzyfication

Four options:
1. crisp states, crisp support
2. crisp states, fuzzy support
3. fuzzy states, crisp support
4. fuzzy states, fuzzy support



Support conditions: fuzzy states, crisp support

We define the operation ∗ also on the level of f-states:

(s ∗ t)(w) = s(w) ∗ t(w),

The generalized support conditions are defined as follows:
s 
 ⊥ iff s = ∅f ,
s 
 p iff s v V (p), for each atomic formula p,
s 
 ϕ ∧ ψ iff s 
 ϕ and s 
 ψ,
s 
 ϕ→ ψ iff ∀t vWf , if t 
 ϕ, then s ∗ t 
 ψ,
s 
 ϕ

>

ψ iff s 
 ϕ or s 
 ψ.
We define sc∗-consequence as preservation of support in Wf .



Basic results

Proposition (Truth-Support Bridge-II)
For any information f-state s of any f-model, and for any
declarative formula α:

s 
 α iff s(w) ≤ w(α), for all w ∈W .

Proposition
For any set of declarative formulas ∆ ∪ {α}:

∆ �sc∗ α iff ∆ �tc∗ α

Proposition
In any f-model and for any formula ϕ:
(a) ∅f 
 ϕ (empty-state property),
(b) if s 
 ϕ and t v s then t � ϕ (persistence property).



Graded support

w1 w2 w3
s 0.3 0.4 0.9
p 0.6 0.7 0.89
q 0.2 0.3 0.1

Table: An example illustrating graded support



Graded support

For any f-state s and any formula α

s  ∗ α is a shorthand for
∧

w∈W
(s(w)⇒∗ w(α)).

for any f-state s and any formula α:

s 
 α iff s  α = 1.



w1 w2 w3
s 0.3 0.4 0.9
p 0.6 0.7 0.89
q 0.2 0.3 0.1

Table: An example illustrating graded support

If ∗ is the Łukasiewicz t-norm we obtain:
I s  ∗ p = 0.99
I s  ∗ q = 0.2



I Our aim now is to capture the notion of graded or fuzzy
support that would determine to what degree s supports ϕ.
We denote this value as s∗[ϕ].

I For declarative α we want to obtain s∗[α] = s  ∗ α.



The main idea

Crisp semantic clause for implication:
I s 
 ϕ→ ψ iff ∀t vWf , if t 
 ϕ, then s ∗ t 
 ψ.

Graded semantic clause for implication:
I s[ϕ→ ψ] =

∧
tvWf

(t[ϕ]⇒∗ s ∗ t[ψ]).



Support conditions: fuzzy states, fuzzy support

s[⊥] = s  ⊥,
s[p] = s  p, for every atomic formula p,
s[ϕ ∧ ψ] = min{s[ϕ], s[ψ]},
s[ϕ→ ψ] =

∧
tvWf

(t[ϕ]⇒ s ∗ t[ψ]),
s[ϕ

>

ψ] = max{s[ϕ], s[ψ]}.
We define fsc∗-consequence as preservation of 1 in Wf .



Basic results

Proposition (Truth-Support Bridge-III)
For any information f-state s vWf of any f-model and any
declarative formula α:

s∗[α] = s  ∗ α.

Proposition
For any set of declarative formulas ∆ ∪ {α}:

∆ �fsc∗ α iff ∆ �tc∗ α

Proposition
For every formula ϕ:
(a) ∅f [ϕ] = 1 (empty-set property),
(b) if s v t then t[ϕ] ≤ s[ϕ] (persistence property).



Declarative vs. inquisitive propositions

Proposition
For any declarative α: ∧

i

(si [α]) = (
∨
i

si )[α]

A counterexample to inf {s[p

>

q], t[p
>

q]} = (s t t)[p

>

q]:

v w
s 1 0
t 0 1
p 1 0
q 0 1



Setting Truth-Support Bridge
crisp states,
crisp support

s 
 α iff ∀w ∈ s,w � α

fuzzy states,
crisp support

s 
 α iff ∀w ∈W , s(w) ≤ w(α)

fuzzy states,
fuzzy support

s[α] =
∧

w∈W (s(w)⇒ w(α))

Table: Truth-Support Bridge in different versions of inquisitive semantics



Setting Propositions expressed by formulas
crisp states, downward closed crisp sets
crisp support of crisp information states
fuzzy states, downward closed crisp sets
crisp support of fuzzy information states
fuzzy states, antitone fuzzy sets
fuzzy support of fuzzy information states

Table: Propositions in different versions of inquisitive semantics



The language LIEL

ϕ := p | ⊥ | ϕ→ ϕ | ϕ ∧ ϕ | ϕ > ϕ | Kaϕ | Eaϕ
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Epistemic modalities

the formula represents
Kap The agent a knows that p.
Ka?p The agent a knows whether p.
Ea?p The agent a entertains whether p.
Wa?p = Ea?p ∧ ¬Ka?p The agent a wonders whether p.
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the formula represents
Kap The agent a knows that p.
Ka?p The agent a knows whether p.
Ea?p The agent a entertains whether p.
Wa?p = Ea?p ∧ ¬Ka?p The agent a wonders whether p.



I Ka(question) = statement
I Ea(question) = statement
I Wa(question) = statement



Declarative formulas

Definition
The set of declarative LIEL-formulas is the least set that contains
all atomic formulas, ⊥, Kaϕ and Eaϕ, for any LIEL-formula ϕ, and
is closed under ∧ and →.



Models

Definition
A concrete inquisitive epistemic model (CIE-model) is a triple
〈W ,ΣA,V 〉, where
I W is a nonempty set of possible worlds
I ΣA = {Σa | a ∈ A} is a set of inquisitive state maps
I V is a valuation assigning subsets of W to atomic formulas



Inquisitive state maps

I Σa assigns to every world w the issue of the agent a in the
world w

I every issue is represented by a set of information states (those
states that resolve the issue)

I every information state is represented by a set of possible
worlds (those worlds that are compatible with the information,
i.e. that are not excluded by the information)

I the information state of the agent in a world determines the
boundaries for the issue of the agent in the world
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Inquisitive state maps

Σa : W → P(P(W )), σa :→ P(W ) satisfying:
I Σa(w) is nonempty downward closed,
I σa(w) =

⋃
Σa(w),

I for any w ∈W , w ∈ σa(w) (factivity),
I for any w , v ∈W , if v ∈ σa(w), then Σa(v) = Σa(w)

(introspection).



Support conditions

I s � Kaϕ iff ∀w ∈ s: σa(w) � ϕ,
I s � Eaϕ iff ∀w ∈ s ∀t ∈ Σa(w): t � ϕ.



Theorem
In every inquisitive epistemic model:
(a) every formula is supported by the empty state,
(b) support is downward persistent for all formulas,
(c) support of declarative formulas is closed under arbitrary unions,
(d) every formula is equivalent to the inquisitive disjunction of a

finite set of declarative formulas.



Axiomatization of IEL

INT Axioms of intuitionistic logic and modus ponens
split (α→ (ϕ

>

ψ))→ ((α→ ϕ)

>

(α→ ψ))
rdn ¬¬α→ α

S5 S5-axioms and necessitation for Ka and Ea

K2 Ka(ϕ

>

ψ)↔ (Kaϕ ∨ Kaψ)
KE Eaα↔ Kaα

(α ranges over declarative formulas)
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