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John!
I Send the letter! / Send the letter or burn it!

(Ross’s paradox)
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Making sense of arguments with questions I
Inferential Erotetic Logic

P1 Mary is Peter’s mother.
P2 If Mary is Peter’s mother, then John is Peter’s father or

George is Peter’s father.
C Who is Peter’s father: John or George?



Making sense of arguments with questions II
Inquisitive Logic

S1,S2 are statements and Q1,Q2 questions

an argument its intended interpretation
S1/S2 S1 implies S2
Q1/S2 Q1 presupposes S2
S1/Q2 S1 resolves Q2
Q1/Q2 any information that resolves Q1 resolves also Q2



Examples

(a) The statements if Mary is Peter’s mother, then John is not
Peter’s father and John is Peter’s father together resolve
the question whether Mary is Peter’s mother .

(b) The question who is Peter’s father: John or George?
pressuposes that John or Georg is Peter’s father .
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More complex examples

Assume that if today is not Monday and Mary is in the pub,
then John is in the library and if John is in the library and
Mary is not in the pub, then it is Monday . Then any
information that resolves the question whether John is in
the library resolves also the conditional question whether
Mary is in the pub if it is not Monday.
(¬m ∧ p)→ l , (l ∧ ¬p)→ m, ?l/¬m→?p



More complex examples

Any information that resolves the conditional questions
whether John is in the library, if Mary is in the pub and
whether Mary is in the pub, if it is not Monday , resolves
also the question whether John is in the library, if it is not
Monday .
p →?l ,¬m→?p/¬m→?l



Formalization via inquisitive disjunction

I disjunctive questions: whether A or B.
I polar questions: whether A = whether A or not A.



A nonstandard propositional language

I InqB is a logic for a basic propositional language with one
additional operator: inquisitive disjunction

>
;

I > is a question-generating operator: ϕ
>

ψ is interpreted
as the question whether ϕ or ψ;

I ?ϕ =def ϕ

> ¬ϕ (the question whether ϕ)
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The standard language of propositional (intuitionistic)
logic

ϕ := p | ⊥ | ϕ→ ϕ | ϕ ∧ ϕ | ϕ > ϕ.

¬ϕ =def ϕ→ ⊥
ϕ ∨ ψ =def ¬(¬ϕ ∧ ¬ψ)

ϕ↔ ψ =def (ϕ→ ψ) ∧ (ψ → ϕ)

?ϕ =def ϕ

> ¬ϕ
!ϕ =def ¬¬ϕ



Formalization

(a) Valid: The statements if today is Monday then it is not
Tuesday and today is Tuesday together resolve the
question whether today is Monday .
m→ ¬t , t/?m,
(i.e. m→ ¬t , t/m

> ¬m)



Formalization

(b) Invalid: Any information that resolves the (conditional)
question whether John will go swimming today, if it is
Monday resolves also the (unconditional) question whether
John will go swimming today .
m→?s/?s
(i.e. m→ (s

> ¬s)/s

> ¬s)



Basic Inquisitive Logic InqB

Intuitionistic logic plus
split (α→ (ψ

>

χ))→ ((α→ ψ)

>

(α→ χ)),
rdn ¬¬α→ α,

where α ranges over

>

-free formulas.



Propositions expressed by questions

Frege claimed in The Thought that a statement (like Mary is
drinking beer ) and the corresponding yes-no question (Is Mary
drinking beer?) have the same content and differ only in
something that is not a part of the content itself.



Frege on questions

An interrogative sentence and an indicative one contain
the same thought; but the indicative contains some-
thing else as well, namely, the assertion. The interrog-
ative sentence contains something more too, namely a
request. Therefore two things must be distinguished
in an indicative sentence: the content, which it has
in common with the corresponding sentence-question,
and the assertion.



A problem for Frege’s approach

This view seems to be limited to yes-no question.
When we take a disjunctive question (Is Mary drinking red
wine or white wine?), we cannot identify its content in the
same style with the content of any single declarative
sentence.



A different approach

Some authors suggest that one can identify the semantic
content of a question with the content of a declarative
sentence that describes the epistemic presuppositions of
the question.
Peliš, M., Majer, O.: Logic of Questions from the Viewpoint
of Dynamic Epistemic Logic, in: The Logica Yearbook
2009, Peliš, M. (ed.), College Publications, London 2010,
pp. 157-172.
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A different approach

According to this view, there is also no substantial
difference between declarative and interogative
propositions, though we need a rich language, namely a
language of a modal epistemic logic, to capture properly
the semantic content of questions.



Questions express propositions

In inquisitive semantics questions are regarded as expressing a
special kind of propositions.



The meaning of a sentence = its truth conditions

“To understand a proposition means to know what is the
case if it is true."

L. Wittgenstein, TLP, 4.024



The sentential meaning of declarative sentences.

I In formal semantics, sentential meaning is usually
identified with the informative content of the sentence.

I The informative content is modeled as a set of possible
worlds.

I This is applicable only to declarative sentences.
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Informative and inquisitive content of sentences

I Inquisitive semantics introduces a richer notion of
sentential meaning that is applicable to declarative
sentences as well as to questions.

I In inquisitive semantics, sentential meaning is modelled as
consisting of an informative part and an inquisitive part.
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Localization of the actual world

I The informative content info(A) of a given sentence A can
be represented as a set of possible worlds and the
sentence provides the information that the actual world is
located somewhere in the set.

I The inquisitive content inq(A) can be understood as a
request to locate the actual world more precisely. The
request inq(A) can be modeled as a set of those nonempty
subsets of info(A) that contain enough information to settle
the request.
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Info(A) can be retrieved from Inq(A).

I The request to locate the actual world more precisely in
info(A) should not a priori exclude any world of info(A).

I As a consequence, info(A) has to be the union of inq(A).



Info(A) can be retrieved from Inq(A).

I The request to locate the actual world more precisely in
info(A) should not a priori exclude any world of info(A).

I As a consequence, info(A) has to be the union of inq(A).



Propositions as sets of information states

I A proposition is not just a set of possible worlds but a set of
sets of possible worlds (i.e. a set of information states).

I Propositions are downward closed.



Propositions as sets of information states

I A proposition is not just a set of possible worlds but a set of
sets of possible worlds (i.e. a set of information states).

I Propositions are downward closed.



Declarative and inquisitive propositions

I A proposition P is declarative if
⋃

P ∈ P.
I A proposition is inquisitive if it is not declarative.
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Truth-functional semantics for classical logic

A truth-functional model: M = 〈W ,V 〉.

The relation of truth:
I p is true in w iff w ∈ V (p),
I ⊥ is not true in w ,
I α→ β is true in w iff α is not true in w or β is true in w
I α ∧ β is true in w iff α is true in w and β is true in w



Inquisitive semantics

An inquisitive model: N = 〈P(W ),V 〉.

The support relation:
s � p iff s ⊆ V (p),
s � ⊥ iff s = ∅,
s � ¬ϕ iff for any nonempty t ⊆ s, t 2 ϕ,
s � ϕ→ ψ iff for any t ⊆ s, if t � ϕ then t � ψ,
s � ϕ ∧ ψ iff s � ϕ and s � ψ,
s � ϕ

>

ψ iff s � ϕ or s � ψ.



Theorem
In every inquisitive model:
(a) every formula is supported by the empty state,
(b) support is downward persistent for all formulas,
(c) support of declarative formulas is closed under arbitrary

unions,
(d) every formula is equivalent to the inquisitive disjunction of

a finite set of declarative formulas.



Truth-support bridge

I As regards the declarative language the two semantics are
equivalent:

universal truth = universal support
preservation of truth = preservation of support

I The standard framework is based on ontic objects
(possible worlds) and an ontic relation of truth;

I The inquisitive framework is based on informational objects
(information states = partial representations of possible
worlds) and an informational relation of support.



C. I. Lewis: Implication and the algebra of logic, 1912

One of the important practical uses of implication is the
testing of hypotheses whose truth or falsity is problem-
atic. The algebraic [truth-table] implication has no use
here. If the hypothesis happens to be false, it implies
anything you please... In other words, no proposition
could be verified by its logical consequences. If the
proposition be false, it has these “consequences” any-
way.



Examples

a) Jane is in the cinema.
b) Is Peter in the cinema?
c) Is Jane also in the cinema like Peter?
d) Peter or Jane is in the cinema.
e) Is Peter or Jane in the cinema?
f) Who is in the cinema: Peter or Jane?

g) If Peter is in the cinema, Jane is also there.
h) If Peter is in the cinema, is there also Jane?
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An example due to Ivano Ciardelli

I a certain disease may give rise to two symptoms: S1, S2

I hospital’s protocol:

if a patient presents symptom S2, the treatment is always
prescribed; if the patient only presents symptom S1, the
treatment is prescribed just in case the patient is in good
physical condition; if not, the risk associated with the
treatment outweigh the benefits, and the treatment is not
prescribed



A formalization of the protocol

The protocol:
I t ↔ s2 ∨ (s1 ∧ g)

where
I s1: the patient has symptom S1

I s2: the patient has symptom S2

I g: the patient is in good physical condtion
I t : the treatment is prescribed



Types of information

Examples of types of information:
I patient’s symptoms (S1,S2, . . .)
I patient’s conditions (good, bad)
I treatment (prescribed, not prescribed)



Types of information

Types of information correspond to questions:
I what are the patient’s symptoms: ?s1∧?s2

I whether the patient is in good physical conditions: ?g
I whether the treatment is prescribed: ?t



Dependencies among information types correspond to
logical relations among questions

t ↔ s2 ∨ (s1 ∧ g), ?s1∧?s2, ?g �?t
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Epistemic modalities

the formula represents
Kap The agent a knows that p.
Ka?p The agent a knows whether p.
Ea?p The agent a entertains whether p.
Wa?p = Ea?p ∧ ¬Ka?p The agent a wonders whether p.
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I Ka(question) = statement
I Ea(question) = statement
I Wa(question) = statement



Declarative formulas

Definition
The set of declarative LIEL-formulas is the least set that
contains all atomic formulas, ⊥, Kaϕ and Eaϕ, for any
LIEL-formula ϕ, and is closed under ∧ and→.



Models

Definition
A concrete inquisitive epistemic model (CIE-model) is a triple
〈W ,ΣA,V 〉, where
I W is a nonempty set of possible worlds
I ΣA = {Σa | a ∈ A} is a set of inquisitive state maps
I V is a valuation assigning subsets of W to atomic formulas



Inquisitive state maps

I Σa assigns to every world w the issue of the agent a in the
world w

I every issue is represented by a set of information states
(those states that resolve the issue)

I every information state is represented by a set of possible
worlds (those worlds that are compatible with the
information, i.e. that are not excluded by the information)

I the information state of the agent in a world determines the
boundaries for the issue of the agent in the world
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Inquisitive state maps

Σa : W → P(P(W )), σa :→ P(W ) satisfying:
I Σa(w) is nonempty downward closed,
I σa(w) =

⋃
Σa(w),

I for any w ∈W , w ∈ σa(w) (factivity),
I for any w , v ∈W , if v ∈ σa(w), then Σa(v) = Σa(w)

(introspection).



Support conditions

I s � Kaϕ iff ∀w ∈ s: σa(w) � ϕ,
I s � Eaϕ iff ∀w ∈ s ∀t ∈ Σa(w): t � ϕ.



Theorem
In every inquisitive epistemic model:
(a) every formula is supported by the empty state,
(b) support is downward persistent for all formulas,
(c) support of declarative formulas is closed under arbitrary

unions,
(d) every formula is equivalent to the inquisitive disjunction of

a finite set of declarative formulas.



Axiomatization of IEL

INT Axioms of intuitionistic logic and modus ponens
split (α→ (ϕ

>

ψ))→ ((α→ ϕ)

>

(α→ ψ))
rdn ¬¬α→ α

S5 S5-axioms and necessitation for Ka and Ea
K2 Ka(ϕ

>

ψ)↔ (Kaϕ ∨ Kaψ)
KE Eaα↔ Kaα

(α ranges over declarative formulas)



Is inquisitive logic a non-classical logic?

Two alternative approaches:
I inquisitive logic as a superintuitionistic logic in the standard

propositional language
I inquisitive logic as a conservative extension of classical

logic in an enriched language



Picture taken from Galatos, N. Jipsen, P. Kowalski, T., Ono, H. (2007)
Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier
Science.
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