## Unsupervised Learning

- No goal class (either $Y$ nor $G$ ).
- We are interested in relations in the data:

Are the data organized in natural clusters? (Clustering, Segmentation)
EM algorithm for clustering
(Dirichlet Process Mixture Models)
(Spectral Clustering)
les Are there some frequent combinations, implication relations? (Market Basket Analysis) later

## Unsupervised Learning

- No goal class (either $Y$ nor $G$ ).
- We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering,
Segmentation)
EM algorithm for clustering
(Dirichlet Process Mixture Models)
(Spectral Clustering)


## Unsupervised Learning

- No goal class (either $Y$ nor $G$ ).
- We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering, Segmentation)
EM algorithm for clustering (Dirichlet Process Mixture Models) (Spectral Clustering)
Association Rules Are there some frequent combinations, implication relations? (Market Basket Analysis) later

## Unsupervised Learning

- No goal class (either $Y$ nor $G$ ).
- We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering, Segmentation)
EM algorithm for clustering
(Dirichlet Process Mixture Models) (Spectral Clustering)
Association Rules Are there some frequent combinations, implication relations? (Market Basket Analysis) later
Other The Elements of Statistical Learning Chapter 14
SOM Self Organizing Maps
PCA Principal Component Analysis Linear Algebra; $k$ linear combinations of features minimizing reconstruction error ( $=$ first $k$ principal components).

- Principal Curves and Surfaces, Kernel and Spare Principal Components
ICA Independent Component Analysis.


## Clustering Example



Pitch, Yawn, Roll Clustering


- We set the color of items, no colour in train data.
- We want to assign same color to nearby points.


## K - means !

## $K$-means

1: procedure $K$-means: $(X$ data, $K$ the number of clusters )
2: $\quad$ select randomly $K$ centers of clusters $\mu_{k}$
3: \# either random data points or random points in the feature space
4: repeat
5: for each data record do
6:
7: end for
8: $\quad$ for each cluster $k$ do $\#$ find new centers $\mu_{k}$
9: $\quad \mu_{k}=\sum_{x_{i}: C\left(x_{i}\right)=k} \frac{x_{i}}{C(k) \mid}$.
10: end for
11: until no chance in assignment
12: end procedure

## K - means

## K-means

The $t$ iterations of K -means algorithm take $O(t k p N)$ time.

- To find global optimum is NP-hard.
- The result depends on initial values.
- May get stuck in local minimum.


## K - means

## K-means

The $t$ iterations of K -means algorithm take $O(t k p N)$ time.

- To find global optimum is NP-hard.
- The result depends on initial values.
- May get stuck in local minimum.
- May not be robust to data sampling.
(for example, different bootstrap samples may give very different clustering results).


## K - means

## K-means

The $t$ iterations of K -means algorithm take $O(t k p N)$ time.

- To find global optimum is NP-hard.
- The result depends on initial values.
- May get stuck in local minimum.
- May not be robust to data sampling.
(for example, different bootstrap samples may give very different clustering results).


## K - means

## K-means

The $t$ iterations of K -means algorithm take $O(t k p N)$ time.

- To find global optimum is NP-hard.
- The result depends on initial values.
- May get stuck in local minimum.
- May not be robust to data sampling.
(for example, different bootstrap samples may give very different clustering results).


## K - means

## K-means

The $t$ iterations of K -means algorithm take $O(t k p N)$ time.

- To find global optimum is NP-hard.
- The result depends on initial values.
- May get stuck in local minimum.
- May not be robust to data sampling.
- We may generate datasets by bootstrap method.
(for example, different bootstrap samples may give very different clustering results).


## K - means

## K-means

The $t$ iterations of K -means algorithm take $O(t k p N)$ time.

- To find global optimum is NP-hard.
- The result depends on initial values.
- May get stuck in local minimum.
- May not be robust to data sampling.
- We may generate datasets by bootstrap method.
- The cluster centers found in different dataset may be quite different. (for example, different bootstrap samples may give very different clustering results).


## K - means

## K-means

The $t$ iterations of K -means algorithm take $O(t k p N)$ time.

- To find global optimum is NP-hard.
- The result depends on initial values.
- May get stuck in local minimum.
- May not be robust to data sampling.
- We may generate datasets by bootstrap method.
- The cluster centers found in different dataset may be quite different. (for example, different bootstrap samples may give very different clustering results).
- Each record must belong to some cluster. Sensitive to outliers.


## Distance measures

the most common distance measures:

| Euclidian | $d\left(x_{i}, x_{j}\right)=\sqrt{\sum_{r=1}^{p}\left(x_{i r}-x_{j r}\right)^{2}}$ |
| :--- | :--- |
| Hamming (Manhattan) | $d\left(x_{i}, x_{j}\right)=\sum_{r=1}^{p}\left\|x_{i r}-x_{j r}\right\|$ |
| overlap (p̌rekrytí) <br> categorical variables | $d\left(x_{i}, x_{j}\right)=\sum_{r=1}^{p} I\left(x_{i r} \neq x_{j r}\right)$ |
| cosine similarity | $s\left(x_{i}, x_{j}\right)=\frac{\sum_{r=1}^{p}\left(x_{i r} \cdot x_{j r}\right)}{\sqrt{\sum_{r=1}^{p}\left(x_{j r} \cdot x_{j r}\right) \cdot \sum_{r=1}^{p}\left(x_{i r} \cdot x_{i r}\right)}}$ |
| cosine distance | $d\left(x_{i}, x_{j}\right)=1-\frac{\sum_{r=1}^{p}\left(x_{i r} \cdot x_{j r}\right)}{\sqrt{\sum_{r=1}^{p}\left(x_{j r} \cdot x_{j r}\right) \cdot \sum_{r=1}^{p}\left(x_{i r} \cdot-x_{i r}\right)}}$ |

## Other Distance Measures



Correlation Proximity
Variable Index

- Euclidian distance: Observations 1 and 3 are close.
- Correlation distance: 1 and 2 look very similar.

$$
\rho_{X, Y}=\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

## Distance - key issue, application dependent

- The result depends on the choice of distance measure $d\left(x_{i}, \mu_{k}\right)$.
- The choice is application dependent.
- Scaling of the data is recommended.
- Total distance as a weighted sum of attribute distances.


## Distance - key issue, application dependent

- The result depends on the choice of distance measure $d\left(x_{i}, \mu_{k}\right)$.
- The choice is application dependent.
- Scaling of the data is recommended.
- Weights for equally important attributes $j$ are: $w_{j}=\frac{1}{d j}$ where

$$
\hat{d}_{j}=\frac{1}{N^{2}} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} d_{j}\left(x_{i_{1}}, x_{i_{2}}\right)=\frac{1}{N^{2}} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N}\left(x_{i_{1}}[j]-x_{i_{2}}[j]\right)^{2}
$$

- Total distance as a weighted sum of attribute distances.


## Distance - key issue, application dependent

- The result depends on the choice of distance measure $d\left(x_{i}, \mu_{k}\right)$.
- The choice is application dependent.
- Scaling of the data is recommended.
- Weights for equally important attributes $j$ are: $w_{j}=\frac{1}{d j}$ where

$$
\hat{d}_{j}=\frac{1}{N^{2}} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} d_{j}\left(x_{i_{1}}, x_{i_{2}}\right)=\frac{1}{N^{2}} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N}\left(x_{i_{1}}[j]-x_{i_{2}}[j]\right)^{2}
$$

- Total distance as a weighted sum of attribute distances.
- Distance may be specified directly by a symmetric matrix, 0 at the diagonal, should fulfill triangle inequality

$$
d\left(x_{i}, x_{\ell}\right) \leq d\left(x_{i}, x_{r}\right)+d\left(x_{r}, x_{\ell}\right) .
$$

## Alternative Ideas

- Scaling may remove natural clusters


- Consider internet shop offering socks and computers.
- Compare: number of sales, standardized data, \$





## Alternative Ideas

- Scaling may remove natural clusters


- Weighting Attributes
- Consider internet shop offering socks and computers.
- Compare: number of sales, standardized data, \$





## Number of Clusters

- We may focus on the Within cluster variation measure:

$$
W(C)=\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i)=k} d\left(x_{i}, x_{i}\right)
$$

- Notice that $W(C)$ is decreasing also for uniformly distributed data.
- We look for small drop of $W(C)$ as a function of $K$ or maximal difference


## Number of Clusters

- We may focus on the Within cluster variation measure:

$$
W(C)=\frac{1}{2} \sum_{k=1}^{k} \sum_{C(i)=k} \sum_{C(i \mid)=k} d\left(x_{i}, x_{i \mid}\right)
$$

- Notice that $W(C)$ is decreasing also for uniformly distributed data.
- Total cluster variation is the sum of between cluster variation and within cluster variation


## Number of Clusters

- We may focus on the Within cluster variation measure:

$$
W(C)=\frac{1}{2} \sum_{k=1}^{k} \sum_{C(i)=k} \sum_{C(i \mid)=k} d\left(x_{i}, x_{i \mid}\right)
$$

- Notice that $W(C)$ is decreasing also for uniformly distributed data.
- We look for small drop of $W(C)$ as a function of $K$ or maximal difference between $W(C)$ on our data and on the uniform data.


## Number of Clusters

- We may focus on the Within cluster variation measure:

$$
W(C)=\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i)=k} d\left(x_{i}, x_{i}\right)
$$

- Notice that $W(C)$ is decreasing also for uniformly distributed data.
- We look for small drop of $W(C)$ as a function of $K$ or maximal difference between $W(C)$ on our data and on the uniform data.
- Total cluster variation is the sum of between cluster variation and within cluster variation

$$
\begin{aligned}
T(C) & =\frac{1}{2} \sum_{i, i \mid=1}^{N} d\left(x_{i}, x_{i}\right)=W(C)+B(C) \\
& =\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k}\left(\sum_{C(i)=k} d\left(x_{i}, x_{i}\right)\right)+\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k}\left(\sum_{C(i) \neq k} d\left(x_{i}, x_{i}\right)\right)
\end{aligned}
$$

## GAP function for Number of Clusters

- denote $W_{k}$ the expected $W$ for uniformly distributed data and $k$ clusters, the average over 20 runs
- GAP is expected $\log \left(W_{k}\right)$ minus observed $\log (W(k))$



## GAP function for Number of Clusters

- denote $W_{k}$ the expected $W$ for uniformly distributed data and $k$ clusters, the average over 20 runs
- GAP is expected $\log \left(W_{k}\right)$ minus observed $\log (W(k))$

$$
\begin{aligned}
& K^{*}=\operatorname{argmin}\left\{k \mid G(k) \geq G(k+1)-s_{k+1}^{\mid}\right\} \\
& s_{k}^{\mid}=s_{k} \sqrt{1+\frac{1}{20}} \text { where } s_{k} \text { is the standard deviation of } \log \left(W_{k}\right)
\end{aligned}
$$

## Silhouette

For each data sample $x_{i}$ we define

- $a(i)=\frac{1}{\left|C_{i}\right|-1} \sum_{j \in C_{i}, i \neq j} d(i, j)$ if $\left|C_{i}\right|>1$
- $b(i)=\min _{k \neq i} \frac{1}{\left|C_{k}\right|} \sum_{j \in C_{k}} d(i, j)$
- $-1 \leq s(i) \leq 1$.



## Silhouette

For each data sample $x_{i}$ we define

- $a(i)=\frac{1}{\left|C_{i}\right|-1} \sum_{j \in C_{i}, i \neq j} d(i, j)$ if $\left|C_{i}\right|>1$
- $b(i)=\min _{k \neq i} \frac{1}{\left|c_{k}\right|} \sum_{j \in c_{k}} d(i, j)$


## Definition (Silhouette)

Silhouette $s$ is defined

- $s(i)=\frac{b(i)-a(i)}{\max \{a(i), b(i)\}}$ if $\left|C_{i}\right|>1$
- $s(i)=0$ for $\left|C_{i}\right|=1$.

$$
\text { - }-1 \leq s(i) \leq 1 \text {. }
$$

## Silhouette analysis for KMeans clustering on sample data with n_clusters $=\mathbf{3}$




## Silhouette

For each data sample $x_{i}$ we define
Optimal number of clusters $k$ - $a(i)=\frac{1}{\left|C_{i}\right|-1} \sum_{j \in C_{i}, i \neq j} d(i, j)$ if $\left|C_{i}\right|>1$ may be selected by the SC.

- $b(i)=\min _{k \neq i} \frac{1}{\left|C_{k}\right|} \sum_{j \in C_{k}} d(i, j)$


## Definition (Silhouette)

Silhouette $s$ is defined

## Definition (Silhouette Score)

- $s(i)=\frac{b(i)-a(i)}{\max \{a(i), b(i)\}}$ if $\left|C_{i}\right|>1$
- $s(i)=0$ for $\left|C_{i}\right|=1$.

The Silhouette score is $\frac{1}{N} \sum_{i}^{N} s(i)$.

Silhouette is always between

$$
-1 \leq s(i) \leq 1 .
$$



## Silhouette

For each data sample $x_{i}$ we define
Optimal number of clusters $k$ - $a(i)=\frac{1}{\left|C_{i}\right|-1} \sum_{j \in C_{i}, i \neq j} d(i, j)$ if $\left|C_{i}\right|>1$ may be selected by the SC.

- $b(i)=\min _{k \neq i} \frac{1}{\left|C_{k}\right|} \sum_{j \in C_{k}} d(i, j)$


## Definition (Silhouette)

Silhouette $s$ is defined

## Definition (Silhouette Score)

- $s(i)=\frac{b(i)-a(i)}{\max \{a(i), b(i)\}}$ if $\left|C_{i}\right|>1$
- $s(i)=0$ for $\left|C_{i}\right|=1$.

The Silhouette score is $\frac{1}{N} \sum_{i}^{N} s(i)$.

Silhouette is always between

$$
\text { - }-1 \leq s(i) \leq 1 \text {. }
$$

## Silhouette analysis for KMeans clustering on sample data with n clusters = $\mathbf{3}$




Note: One cluster $(-1,1),(1,1)$, other cluster $(0,-1.2),(0,-1.1)$, the point $(0,0)$ is assigned to the first cluster but has a negative silhouette. https://stackoverflow.com/a/66751204

## Country Similarity Example

- Data from a political science survey: values are average pairwise dissimilarities of countries from a questionnaire given to political science students.

|  | BEL | BRA | CHI | CUB | EGY | FRA | IND | ISR | USA | USS | YUG |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRA | 5.58 |  |  |  |  |  |  |  |  |  |  |
| CHI | 7.00 | 6.50 |  |  |  |  |  |  |  |  |  |
| CUB | 7.08 | 7.00 | 3.83 |  |  |  |  |  |  |  |  |
| EGY | 4.83 | 5.08 | 8.17 | 5.83 |  |  |  |  |  |  |  |
| FRA | 2.17 | 5.75 | 6.67 | 6.92 | 4.92 |  |  |  |  |  |  |
| IND | 6.42 | 5.00 | 5.58 | 6.00 | 4.67 | 6.42 |  |  |  |  |  |
| ISR | 3.42 | 5.50 | 6.42 | 6.42 | 5.00 | 3.92 | 6.17 |  |  |  |  |
| USA | 2.50 | 4.92 | 6.25 | 7.33 | 4.50 | 2.25 | 6.33 | 2.75 |  |  |  |
| USS | 6.08 | 6.67 | 4.25 | 2.67 | 6.00 | 6.17 | 6.17 | 6.92 | 6.17 |  |  |
| YUG | 5.25 | 6.83 | 4.50 | 3.75 | 5.75 | 5.42 | 6.08 | 5.83 | 6.67 | 3.67 |  |
| ZAI | 4.75 | 3.00 | 6.08 | 6.67 | 5.00 | 5.58 | 4.83 | 6.17 | 5.67 | 6.50 | 6.92 |

## $K$-medoids

1: procedure $K$-medoids: $(X$ data, $K$ the number of clusters )
2: $\quad$ select randomly $K$ data samples to be centroids of clusters
3: repeat
4: for each data record do
5:
6:
7 :
8:
9: end for
10: until no chance in assignment
11: end procedure

- To find a centroid requires quadratic time compared to linear $k$-means.
- We may use any distance, for example number of differences in binary attributes.


## Complexity

The $t$ iterations of $K$-medoids take $O\left(t k p N^{2}\right)$.

## Clusters of Countries

- Survey of country dissimilarities.
- Left: dissimilarities
- Reordered and blocked according to 3-medoid clustering.
- Heat map is coded from most similar (dark red) to least similar (bright red).
- Right: Two-dimensional multidimensional scaling plot
- with 3-medoid clusters indicated by different colors.


Reordered Dissimilarity Matrix


First MDS Coordinate

## Multidimensional Scaling

- The right figure on previous slide was done by Multidimesional scaling.
- We know only distances of countries, not a metric space.
- We try to keep proximity of countries (least squares scaling).
- We choose the number of dimensions $p$.


## Definition (Multidimensional Scaling)

For a given data $x_{1}, \ldots, x_{N}$ with their distance matrix $d$, we search $\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{R}^{p}$ projections of data minimizing stress function

$$
S_{D}\left(z_{1}, \ldots, z_{N}\right)=\left[\sum_{i \neq \ell}\left(d\left[x_{i}, x_{\ell}\right]-\left\|z_{i}-z_{\ell}\right\|\right)^{2}\right]^{\frac{1}{2}}
$$

- It is evaluated gradiently.
- Note: Spectral clustering.


## Hierarchical clustering - Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.

## Hierarchical clustering - Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters. Measures for join

- closest points (single linkage)


## Hierarchical clustering - Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters. Measures for join

- closest points (single linkage)
- maximally distant points (complete linkage)


## Hierarchical clustering - Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters. Measures for join

- closest points (single linkage)
- maximally distant points (complete linkage)
- average linkage, $d_{G A}\left(C_{A}, C_{B}\right)=\frac{1}{\left|C_{A}\right| \cdot\left|C_{B}\right|} \sum_{x_{i} \in C_{A}, x_{j} \in C_{B}} d\left(x_{i}, x_{j}\right)$


## Hierarchical clustering - Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters. Measures for join

- closest points (single linkage)
- maximally distant points (complete linkage)
- average linkage, $d_{G A}\left(C_{A}, C_{B}\right)=\frac{1}{\left|C_{A}\right| \cdot\left|C_{B}\right|} \sum_{x_{i} \in C_{A}, x_{j} \in C_{B}} d\left(x_{i}, x_{j}\right)$
- Ward distance minimizes the sum of squared differences within all clusters.

$$
\begin{aligned}
\operatorname{Ward}\left(C_{A}, C_{B}\right) & =\sum_{i \in C_{A} \cup C_{B}} d\left(x_{i}, \mu_{A \cup B}\right)^{2}-\sum_{i \in C_{A}} d\left(x_{i}, \mu_{A}\right)^{2}-\sum_{i \in C_{B}} d\left(x_{i}, \mu_{B}\right)^{2} \\
& =\frac{\left|C_{A}\right| \cdot\left|C_{B}\right|}{\left|C_{A}\right|+\left|C_{B}\right|} \cdot d\left(\mu_{A}, \mu_{B}\right)^{2}
\end{aligned}
$$

## Hierarchical clustering - Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters. Measures for join

- closest points (single linkage)
- maximally distant points (complete linkage)
- average linkage, $d_{G A}\left(C_{A}, C_{B}\right)=\frac{1}{\left|C_{A}\right| \cdot\left|C_{B}\right|} \sum_{x_{i} \in C_{A}, x_{j} \in C_{B}} d\left(x_{i}, x_{j}\right)$
- Ward distance minimizes the sum of squared differences within all clusters.

$$
\begin{aligned}
\operatorname{Ward}\left(C_{A}, C_{B}\right) & =\sum_{i \in C_{A} \cup C_{B}} d\left(x_{i}, \mu_{A \cup B}\right)^{2}-\sum_{i \in C_{A}} d\left(x_{i}, \mu_{A}\right)^{2}-\sum_{i \in C_{B}} d\left(x_{i}, \mu_{B}\right)^{2} \\
& =\frac{\left|C_{A}\right| \cdot\left|C_{B}\right|}{\left|C_{A}\right|+\left|C_{B}\right|} \cdot d\left(\mu_{A}, \mu_{B}\right)^{2}
\end{aligned}
$$

- where $\mu$ are the centers of clusters ( $A, B$ and joined cluster).


## Hierarchical clustering - Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters. Measures for join

- closest points (single linkage)
- maximally distant points (complete linkage)
- average linkage, $d_{G A}\left(C_{A}, C_{B}\right)=\frac{1}{\left|C_{A}\right| \cdot\left|C_{B}\right|} \sum_{x_{i} \in C_{A}, x_{j} \in C_{B}} d\left(x_{i}, x_{j}\right)$
- Ward distance minimizes the sum of squared differences within all clusters.

$$
\begin{aligned}
\operatorname{Ward}\left(C_{A}, C_{B}\right) & =\sum_{i \in C_{A} \cup C_{B}} d\left(x_{i}, \mu_{A \cup B}\right)^{2}-\sum_{i \in C_{A}} d\left(x_{i}, \mu_{A}\right)^{2}-\sum_{i \in C_{B}} d\left(x_{i}, \mu_{B}\right)^{2} \\
& =\frac{\left|C_{A}\right| \cdot\left|C_{B}\right|}{\left|C_{A}\right|+\left|C_{B}\right|} \cdot d\left(\mu_{A}, \mu_{B}\right)^{2}
\end{aligned}
$$

- where $\mu$ are the centers of clusters ( $A, B$ and joined cluster).
- It is a variance-minimizing approach and in this sense is similar to the k -means objective function but tackled with an agglomerative hierarchical approach.


## Dendrograms

- Dendrogram is the result plot of a hierarchical clustering.
- Cutting the tree of a fixed high splits samples at leaves into clusters.
- The length of the two legs of the U-link represents the distance between the child clusters.

Average Linkage


Complete Linkage


Single Linkage


## Interpretation of Dendrograms - 2 and 9 are NOT close

Samples fused at very bottom are close each other.


## Mean Shift Clustering

## Mean Shift Clustering

1: procedure Mean Shift Clustering: $(X$ data, $K(\cdot)$ the kernel, $\lambda$ the bandwidth )
2: $\quad \mathcal{C} \leftarrow \emptyset$
3: for each data record do
4: repeat $\#$ shift each mean $x$ to the weighted average

$$
m(x) \leftarrow \frac{\sum_{i=1}^{N} K\left(x_{i}-x\right) x_{i}}{\sum_{i=1}^{N} K\left(x_{i}-x\right)}
$$

until no chance in assignment add the new $m(x)$ to $\mathcal{C}$
end for
return prunned $\mathcal{C}$
10: end procedure
Kernels:

- flat kernel $\lambda$ ball
- Gaussian kernel $K\left(x_{i}-x\right)=e^{\frac{\left\|x_{i}-x\right\|^{2}}{\lambda^{2}}}$


## Gaussian Mixture Model

- Assume the data come from a set of $k$ gaussian distributions
- each with
- prior probability $\pi_{k}$
- mean $\mu_{k}$
- covariance matrix $\Sigma_{k}$
- $\phi_{\mu_{k}, \Sigma_{k}}(x)=\frac{1}{\sqrt{(2 \pi)^{p}\left|\Sigma_{k}\right|}} e^{-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)}$.
- We want to find the maximum likelihood estimate of the model parameters.
- We use (more general) EM algorithm.



## EM learning of Mixture of $K$ Gaussians !

- Model parameters $\pi_{1}, \ldots, \pi_{k}, \mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}$ such that $\sum_{k=1}^{K} \pi_{k}=1$.
- Expectation: weights of unobserved 'fill-ins' $k$ of variable $C$ :

$$
\begin{aligned}
p_{i k} & =P\left(C=k \mid x_{i}\right)=\alpha \cdot P\left(x_{i} \mid C_{i}=k\right) \cdot P\left(C_{i}=k\right) \\
& =\frac{\pi_{k} \phi_{\theta_{k}}\left(x_{i}\right)}{\sum_{l=1}^{K} \pi_{l} \phi_{\theta_{l}}\left(x_{i}\right)} \\
p_{k} & =\sum_{i=1}^{N} p_{i k}
\end{aligned}
$$

- Maximize: mean, variance and cluster 'prior' for each cluster $k$ :

$$
\begin{aligned}
\mu_{k} & \leftarrow \sum_{i} \frac{p_{i k}}{p_{k}} x_{i} \\
\Sigma_{k} & \leftarrow \sum_{i} \frac{p_{i k}}{p_{k}}\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T} \\
\pi_{k} & \leftarrow \frac{p_{k}}{\sum_{l=1}^{K} p_{l}} .
\end{aligned}
$$



Classification




## Kernel Density Estimation

- Kernel Density Estimation is an unsupervised procedure
- We smooth the density estimate in the neighbourhood $\mathcal{N}\left(x_{0}\right)$ with lenghtscale $\lambda$

$$
\hat{f}_{X}\left(x_{0}\right)=\frac{\# x_{i} \in \mathcal{N}\left(x_{0}\right)}{N \lambda}
$$

- by the Parzen kernel estimate

$$
\hat{f}_{X}\left(x_{0}\right)=\frac{1}{N \lambda} \sum_{i=1}^{N} K_{\lambda}\left(x_{0}, x_{i}\right)
$$

- Popular choice for $K_{\lambda}$ is the Gaussian kernel density $\phi_{\lambda}$.



## Kernel Density Classification

- We may estimate Kernel Density for each target class $k=1, \ldots, K$, estimate class priors $\pi_{k}$ and use Bayes' theorem:

$$
\hat{\operatorname{Pr}}\left(G=k \mid X=x_{0}\right)=\frac{\pi_{k} \hat{f}_{k}\left(x_{0}\right)}{\sum_{j=1}^{K} \pi_{j} \hat{f}_{k}\left(x_{0}\right)}
$$

- by the Parzen kernel estimate

$$
\hat{f}_{X}\left(x_{0}\right)=\frac{1}{N \lambda} \sum_{i=1}^{N} K_{\lambda}\left(x_{0}, x_{i}\right)
$$

- Popular choice for $K_{\lambda}$ is the Gaussian kernel density $\phi_{\lambda}$.




FIGURE 6.15. The population class densities may have interesting structure (left) that disappears when the posterior probabilities are formed (right).

## Radial Basis Functions and Kernels for Regression

- The kernels do not have to be placed at all observation points.
- We may select (fit) prototype parameters $\xi_{j}$ and scale patameters $\lambda_{j}$ to place pre-defined number of kernels $K_{\lambda_{j}}\left(\xi_{j}, x\right), j \in 1, \ldots, M, \lambda_{j} \in \mathbb{R}, \xi_{j} \in X$.
- and then fit the density as a linear function of kernels as basis

$$
f(x)=\sum_{j=1}^{M} K_{\lambda_{j}}\left(\xi_{j}, x\right) \beta_{j}
$$

- We should either fit the lengthscale parameters $\lambda_{j}$ or re-normalize the radial basis functions. Otherwise, the RBF can leave holes (upper figure, re-normalized down).



## Mixuture Models for Density Estimation and Classification

- One RBF kernel was fitted for each class
- The data sample is classified according the more probable label (let kernels vote).
- If the covariance matrices are constrained to be scalar $\Sigma_{m}=\sigma_{m} l$, we actually fit the naive Bayes model.
- In this case, this method was as good as logistic regression.



## Summary

- K-means clustering - the basic one
- the number of clusters:
- GAP
- Silhouette
- The distance is crucial.
- Consider standardization or weighting the features.
- K-medoids - does need metric, just a distance
- hierarchical clustering
- different distance measures
- dendrogram
- other approaches (mean shift clustering, Self Organizing Maps, Spectral Clustering).


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).
- Usually binary data $X_{i j} \in\{0,1\}^{N \times p}$


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).
- Usually binary data $X_{i j} \in\{0,1\}^{N \times p}$
- Value $=1$ is our interest; for example purchase.


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).
- Usually binary data $X_{i j} \in\{0,1\}^{N \times p}$
- Value $=1$ is our interest; for example purchase.
- p may be very large; for example the size of the range of goods in an market.


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).
- Usually binary data $X_{i j} \in\{0,1\}^{N \times p}$
- Value $=1$ is our interest; for example purchase.
- p may be very large; for example the size of the range of goods in an market.
- Popular application: Market basket analysis.


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).
- Usually binary data $X_{i j} \in\{0,1\}^{N \times p}$
- Value $=1$ is our interest; for example purchase.
- p may be very large; for example the size of the range of goods in an market.
- Popular application: Market basket analysis.
- Generally: We look for $L$ prototypes $v_{1}, \ldots, v_{L} \in X^{p}$ such that $P\left(v_{\ell}\right)$ is relatively large.


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).
- Usually binary data $X_{i j} \in\{0,1\}^{N \times p}$
- Value $=1$ is our interest; for example purchase.
- p may be very large; for example the size of the range of goods in an market.
- Popular application: Market basket analysis.
- Generally: We look for $L$ prototypes $v_{1}, \ldots, v_{L} \in X^{p}$ such that $P\left(v_{\ell}\right)$ is relatively large.
- With large $p$, we do not have enough data to estimate $P\left(v_{\ell}\right)$ since number of observations with $P\left(X=v_{\ell}\right)$ is too small.


## Frequent itemsets, Association Rules

Unsupervised learning

- No goal class (either $Y$ nor $G$ ).
- Usually binary data $X_{i j} \in\{0,1\}^{N \times p}$
- Value $=1$ is our interest; for example purchase.
- p may be very large; for example the size of the range of goods in an market.
- Popular application: Market basket analysis.
- Generally: We look for $L$ prototypes $v_{1}, \ldots, v_{L} \in X^{p}$ such that $P\left(v_{\ell}\right)$ is relatively large.
- With large $p$, we do not have enough data to estimate $P\left(v_{\ell}\right)$ since number of observations with $P\left(X=v_{\ell}\right)$ is too small.
- We seek for regions where $P(x)$ is large, that can be written as conjunctive rule on dimension conditions $\bigcap_{j=1}^{p}\left(X_{j} \in s_{j}\right)$ where $s_{j}$ are selected values of the feature $X_{j}$.


## Hypothesis space for Apriori

## ESL book Figure:


$X_{1}$

$X_{1}$


FIGURE 14.1. Simplifications for association rules. Here there are two inputs $X_{1}$ and $X_{2}$, taking four and six distinct values, respectively. The red squares indicate areas of high density. To simplify the computations, we assume that the derived subset corresponds to either a single value of an input or all values. With this assumption we could find either the middle or right pattern, but not the left one.

## Market Basket Analysis

- For very large datasets, $p \approx 10^{4}, N \approx 10^{8}$; in unit ball is the distance to the nearest neighbour $\approx 0.9981$.


## Market Basket Analysis

- For very large datasets, $p \approx 10^{4}, N \approx 10^{8}$; in unit ball is the distance to the nearest neighbour $\approx 0.9981$.
- Simplifications: Test on feature $X_{j}$ either equal to a specific value or no restriction at all,


## Market Basket Analysis

- For very large datasets, $p \approx 10^{4}, N \approx 10^{8}$; in unit ball is the distance to the nearest neighbour $\approx 0.9981$.
- Simplifications: Test on feature $X_{j}$ either equal to a specific value or no restriction at all,
- I select combinations of items with higher number of occurences (support) than predefined threshold $t$.


## Market Basket Analysis

- For very large datasets, $p \approx 10^{4}, N \approx 10^{8}$; in unit ball is the distance to the nearest neighbour $\approx 0.9981$.
- Simplifications: Test on feature $X_{j}$ either equal to a specific value or no restriction at all,
- I select combinations of items with higher number of occurences (support) than predefined threshold $t$.
- I select all combinations fulfilling conditions above.


## Market Basket Analysis

- For very large datasets, $p \approx 10^{4}, N \approx 10^{8}$; in unit ball is the distance to the nearest neighbour $\approx 0.9981$.
- Simplifications: Test on feature $X_{j}$ either equal to a specific value or no restriction at all,
- I select combinations of items with higher number of occurences (support) than predefined threshold $t$.
- I select all combinations fulfilling conditions above.
- Categorical variables may be codded by dummy variables in advance (if not too many).


## Market Basket Analysis

- For very large datasets, $p \approx 10^{4}, N \approx 10^{8}$; in unit ball is the distance to the nearest neighbour $\approx 0.9981$.
- Simplifications: Test on feature $X_{j}$ either equal to a specific value or no restriction at all,
- I select combinations of items with higher number of occurences (support) than predefined threshold $t$.
- I select all combinations fulfilling conditions above.
- Categorical variables may be codded by dummy variables in advance (if not too many).
- OneHotEncoder for each class $g$, a new variable $X_{g}=[X==g]$.


## Apriori Algorithm

```
procedure Apriori:( \(X\) dataset, \(t\) threshold for support )
    \(i \leftarrow 0\)
    Generate list of candidates of the length \(i\)
    while Candidate set not empty do
        for each data sample do
        for each candidate do
                if all items of candidate appear in the data sample then
                increase the candidate counter by 1
                    end if
            end for
        end for
        \(i \leftarrow i+1\)
        Discard candidates with support less than \(t\).
        Generate list of candidates of the length \(i\)
            Join any two candidates from previous step having \(i-2\)
    elements common. (More pruning possible.)
16: end while
17: end procedure
```


## Example: Apriori Algorithm

- $t=0.2$
- $t * N=2=$
$0.20 * 10$

| $0.20 * 10$ | $\mathrm{i}=1$ |
| :---: | :---: |
| - Data | $\mathrm{a}=8$ |
| abcefo | $\mathrm{b}=2$ |
| a cg | $\mathrm{c}=8$ |
| e i | $\mathrm{d}=2$ |
| acdeg | $\mathrm{e}=8$ |
| acegl | $\mathrm{f}=2$ |
| e j | $\mathrm{g}=5$ |
| abcefp | $\mathrm{i}=\mathrm{j}=\mathrm{l}=0=1$ |
| acd | $\mathrm{p}=\mathrm{m}=\mathrm{n}=1$ |

- Data
aceg m
acegn

$$
\begin{aligned}
& \frac{i=2}{a b=2} \\
& \text { ac=8 } \\
& \operatorname{ad}=2 \\
& a \mathrm{a}=6 \\
& a f=2 \\
& a g=5 \\
& b c=2 \\
& b d=0 \\
& \text { be }=2 \\
& b f=2 \\
& \mathrm{bg}=0 \\
& c d=2 \\
& \text { ce }=6 \\
& \mathrm{cf}=2 \\
& c g=5 \\
& \text { de }=1 \\
& \mathrm{df}=0 \\
& \mathrm{dg}=1
\end{aligned}
$$

## Properties of the Apriori Algorithm

- Applicable for very large data (with high threshold $t$ ).
- Only few of $2^{K}$ combinations have high support $>t$
- subset of high-support combination has also high support


## Properties of the Apriori Algorithm

- Applicable for very large data (with high threshold $t$ ).
- The key idea:
- Only few of $2^{K}$ combinations have high support $>t$,
- subset of high-support combination has also high support.


## Properties of the Apriori Algorithm

- Applicable for very large data (with high threshold $t$ ).
- The key idea:
- Only few of $2^{k}$ combinations have high support $>t$,
- subset of high-support combination has also high support.
- The number of passes through the data is equal to the size of the longest supported combination. The data does not to be in memory simultaneously.


## Properties of the Apriori Algorithm

- Applicable for very large data (with high threshold $t$ ).
- The key idea:
- Only few of $2^{K}$ combinations have high support $>t$,
- subset of high-support combination has also high support.
- The number of passes through the data is equal to the size of the longest supported combination. The data does not to be in memory simultaneously.
- FPgrowth algorithm needs only two passes through the data.


## Association Rules!

- From each supported itemset $\mathcal{K}$ found by Apriori algorithm we create a list of association rules, implications of the form $A \Rightarrow B$ where:
- $A, B$ are disjoint and $A \cup B=\mathcal{K}$
- $A$ is called antecedent
- $B$ is called consequent.


## Association Rules !

- From each supported itemset $\mathcal{K}$ found by Apriori algorithm we create a list of association rules, implications of the form $A \Rightarrow B$ where:
- $A, B$ are disjoint and $A \cup B=\mathcal{K}$
- $A$ is called antecedent
- $B$ is called consequent.
- Support of the rule $T(A \Rightarrow B)$ is defined as normalized support of the itemset $\mathcal{K}$, that is normalized support of the conjunction $A \& B$.

$$
\begin{aligned}
T(\mathcal{K}) & =\frac{\mid \text { data }_{\mathcal{K}} \mid}{\mid \text { data } \mid} \\
T(A \Rightarrow B) & \left.=\frac{\mid \text { data\& } \mid}{} \right\rvert\, \text { data } \mid
\end{aligned}
$$

## Rule Confidence and Lift

There are two important measures for a rule $A \Rightarrow B$ :

- Confidence (predictability, přesnost)

$$
C(A \Rightarrow B)=\frac{T(A \Rightarrow B)}{T(A)}
$$

that is an estimate of $P(B \mid A)$,

- Lift is the ration of confidence and expected precision
- Conviction is the ratio:


## Rule Confidence and Lift

There are two important measures for a rule $A \Rightarrow B$ :

- Confidence (predictability, přesnost)

$$
C(A \Rightarrow B)=\frac{T(A \Rightarrow B)}{T(A)}
$$

that is an estimate of $P(B \mid A)$,

- Support $T(B)$ is an estimate of $P(B)$,
- Lift is the ration of confidence and expected precision



## Rule Confidence and Lift

There are two important measures for a rule $A \Rightarrow B$ :

- Confidence (predictability, přesnost)

$$
C(A \Rightarrow B)=\frac{T(A \Rightarrow B)}{T(A)}
$$

that is an estimate of $P(B \mid A)$,

- Support $T(B)$ is an estimate of $P(B)$,
- Lift is the ration of confidence and expected precision:

$$
L(A \Rightarrow B)=\frac{C(A \Rightarrow B)}{T(B)}
$$

that is an estimate of $\frac{P(A \& B)}{P(A) \cdot P(B)}$.

- Leverage is the difference of supports:

$$
\text { leverage }(A \Rightarrow B)=T(A \Rightarrow B)-T(A) \cdot T(B)
$$

- Conviction is the ratio:

$$
\operatorname{conviction}(A \Rightarrow B)=\frac{1-T(B)}{1-C(A \Rightarrow B)}
$$

## Association Rule Example

ESL book example:
Association rule 2: Support 13.4\%, confidence 80.8\%, and lift 2.13.

$$
\left[\begin{array}{rl}
\text { language in home } & =\text { English } \\
\text { householder status } & =\text { own } \\
\text { occupation } & =\{\text { professional/managerial }\}
\end{array}\right]
$$

- $\mathcal{K}=\{$ English, own, prof/man, income $>\$ 40000\}$,
- $13.4 \%$ people has all four properties,
- $80.8 \%$ of people with $\{$ English, own, prof/man\} have income $>\$ 40000$,
- $T$ (income $>\$ 40000)=37.94 \%$, therefore Lift $=2.13$.


## The Goal of Apriori Algorithm !

- Apriori finds all rules with high support.
- Frequently, it finds many of rules.
- We usually select lower threshold $c$ on confidence, that is we select rules with $T(A \Rightarrow B)>t$ and $C(A \Rightarrow B)>c$.
- Conversion of itemsets to rules is usually relatively fast compared to search of itemsets.
- See lispMiner for user interface and a lot of more.
- Python Apriori library:
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules from mlxtend.frequent_patterns import fpgrowth,fpmax
from mlxtend.frequent_patterns import hmine


## Demographical Data ESL Example

| Feature | Demographic | \# Values | Type |
| :---: | :--- | :---: | :--- |
|  |  |  |  |
| 1 | Sex | 2 | Categorical |
| 2 | Marital status | 5 | Categorical |
| 3 | Age | 7 | Ordinal |
| 4 | Education | 6 | Ordinal |
| 5 | Occupation | 9 | Categorical |
| 6 | Income | 9 | Ordinal |
| 7 | Years in Bay Area | 5 | Ordinal |
| 8 | Dual incomes | 3 | Categorical |
| 9 | Number in household | 9 | Ordinal |
| 10 | Number of children | 9 | Ordinal |
| 11 | Householder status | 3 | Categorical |
| 12 | Type of home | 5 | Categorical |
| 13 | Ethnic classification | 8 | Categorical |
| 14 | Language in home | 3 | Categorical |

## Demographical Example - Continuing

- $N=9409$ questionnaires, the ESL authors selected 14 questions.
- Preprocessing:
- na.omit() remove records with missing values,
- ordinal features cut by median to binary,
- for categorical create dummy variable for each category.
- Apriori input was matrix $6876 \times 50$.
- Output: 6288 association rules
- with max. 5 elements
- with support at least $10 \%$.


## Negated Literals - Useful, Problematic

Association rule 3: Support $26.5 \%$, confidence $82.8 \%$ and lift 2.15.

$$
\left[\begin{array}{rl}
\text { language in home } & =\text { English } \\
\text { income } & <\$ 40,000 \\
\text { marital status } & =\text { not married } \\
\text { number of children } & =0 \\
\Downarrow &
\end{array}\right]
$$

education $\notin\{$ college graduate, graduate study $\}$

## Non-frequent Values Dissapear

Relative Frequency in Association Rules


Relative Frequency in Data


## Unsupervised Learning as Supervised Learning




- We add additional attribute $Y_{G}$.
- $Y_{G}=1$ for all our data.
- We generate randomly a dataset of similar size with uniform distribution, set $Y_{G}=0$ for this artificial data.
- The task is to separate $Y_{G}=1$ and $Y_{G}=0$.


## Generalize Association Rules

- We search for high lift, where probability of conjunction is greater than expected.
- Hypothesis is specified by column indexes $j$ and subsets of values $s_{j}$ corresponding features $X_{j}$. We aim:

$$
\hat{P}\left(\bigcap_{j \in \mathcal{J}}\left(X_{j} \in s_{j}\right)\right)=\frac{1}{N} \sum_{1}^{N} l\left(\bigcap_{j \in \mathcal{J}}\left(x_{i j} \in s_{j}\right)\right) \gg \Pi_{j \in \mathcal{J}} \hat{P}\left(X_{j} \in s_{j}\right)
$$

- On the data from previous slide, CART (decision tree alg.) or PRIM ('bump hunting') may be used.
- Figure on previous slide: Logistic regression on tensor product of natural splines.
- Other methods may be used. All are heuristics compared to full evaluation by Apriori.

1: procedure FP-TreE:(Data )
2: Calculate counts of items (singletons)
3: $\quad$ Create table header ordered by decreasing item count
4: for each data sample do
5: order items according to header
6: insert branch into the tree
7: increase all counters on the inserted branch
8: end for
9: return the tree

## 10: end procedure

| Data | ordered |
| :--- | :--- |
| abcefo | ecabf |
| acg | cag |
| ei | e |
| acdeg | ecagd |
| acegl | ecag |
| ej |  |
| abcefp |  |



## Frequent Itemsets with only 2 pass through data

- Build an internal structure called FP-tree
- Call FP-growth to generate frequent itemsets
- Each construction of a conditional tree needs 2 pass through the parent tree
- an optimized version with only 1 pass is presented. (It needs an additional data structure array.)
- FP-max to find maximal itemsets


## Frequent Itemsets with only 2 pass through data

- Build an internal structure called FP-tree
- Call FP-growth to generate frequent itemsets
- Each construction of a conditional tree needs 2 pass through the parent tree
- an optimized version with only 1 pass is presented. (It needs an additional data structure array.)
- FP-max to find maximal itemsets
- non of immediate supersets is frequent
- FP-close to find close itemsets


## Frequent Itemsets with only 2 pass through data

- Build an internal structure called FP-tree
- Call FP-growth to generate frequent itemsets
- Each construction of a conditional tree needs 2 pass through the parent tree
- an optimized version with only 1 pass is presented. (It needs an additional data structure array.)
- FP-max to find maximal itemsets
- non of immediate supersets is frequent
- FP-close to find close itemsets
- non of immediate supersets has the same support.


## FP-tree

- FP-tree contains all frequency information of the database.
- Principle: If $X$ and $Y$ are two itemsets, the count of $\frac{\mathrm{i}=3}{\mathrm{abc}=2}$ itemsets $X \cup Y$ in the database is exactly that of $Y \quad a b d=0$ in the restriction of the database to those transactions containing $X$.

$$
a b e=2
$$

$$
a b f=2
$$

$$
a b g=0
$$

$$
\operatorname{acd}=2
$$

ace=6

$$
\operatorname{acf}=2
$$

$$
\operatorname{acg}=5
$$

$$
\text { ade }=1
$$

$$
\operatorname{adf}=0
$$

$$
\operatorname{adg}=1
$$

$$
\mathrm{aeg}=4
$$

1: procedure FPGROWTH*:( $T$ a conditional FP-tree )
2: if $T$ only contains a single path $P$ then
for each subpath $Y$ of $P$ do output pattern $Y \cup T$.base with count $=$ smallest count of nodes in $Y$
end for
else
for each $i$ in $T$.header do $Y \leftarrow T$.base $\cup\{i\}$ with $i . c o u n t$
if $T$.array is not NULL then construct a new header table for $Y$ 's FP-tree from $T$.array else construct a new header table for $Y$ 's from $T$ end if construct $Y$ 's conditional FP-tree $T_{Y}$ and its array $A_{Y}$; if $T_{Y} \neq \emptyset$ then call FPgrowth ${ }^{*}\left(T_{Y}\right)$
end if
end for


## Table of Contens

(1) Overview of Supervised Learning
(2) Kernel Methods, Basis Expansion and regularization
(3) Linear Methods for Classification
(4) Model Assessment and Selection
(5) Additive Models, Trees, and Related Methods
(6) Ensamble Methods
(7) Bayesian learning, EM algorithm
(8) Clustering
(9) Association Rules, Apriori
(10) Inductive Logic Programming
(11) Undirected (Pairwise Continuous) Graphical Models
(12) Gaussian Processes
(13) PCA Extensions, Independent CA
(14) Support Vector Machines

