
Unsupervised Learning

No goal class (either Y nor G).
We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering,
Segmentation)
EM algorithm for clustering
(Dirichlet Process Mixture Models)
(Spectral Clustering)

Association Rules Are there some frequent combinations, implication
relations? (Market Basket Analysis) later

Other The Elements of Statistical Learning Chapter 14
SOM Self Organizing Maps
PCA Principal Component Analysis Linear Algebra; k linear

combinations of features minimizing reconstruction error (=
first k principal components).
Principal Curves and Surfaces, Kernel and Spare Principal
Components

ICA Independent Component Analysis.
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Clustering Example
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We set the color of items, no colour in train data.
We want to assign same color to nearby points.
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K – means !

K–means

1: procedure K–means:(X data, K the number of clusters )
2: select randomly K centers of clusters µk
3: # either random data points or random points in the feature space
4: repeat
5: for each data record do
6: C(xi)← argmink∈{1,...,K}d(xi , µk)
7: end for
8: for each cluster k do # find new centers µk
9: µk =

∑
xi :C(xi )=k

xi
|C(k)| .

10: end for
11: until no chance in assignment
12: end procedure
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K – means

K–means

The t iterations of K–means algorithm take O(tkpN) time.

To find global optimum is NP-hard.
The result depends on initial values.
May get stuck in local minimum.
May not be robust to data sampling.

We may generate datasets by bootstrap method.
The cluster centers found in different dataset may be quite different.

(for example, different bootstrap samples may give very different clustering
results).
Each record must belong to some cluster. Sensitive to outliers.
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Distance measures

the most common distance measures:
Euclidian d(xi , xj) =

√∑p
r=1(xir − xjr )2

Hamming (Manhattan) d(xi , xj) =
∑p

r=1 |xir − xjr |

overlap (překrytí)
categorical variables d(xi , xj) =

∑p
r=1 I(xir ̸= xjr )

cosine similarity s(xi , xj) =
∑p

r=1
(xir ·xjr )√∑p

r=1
(xjr ·xjr )·

∑p
r=1

(xir ·xir )

cosine distance d(xi , xj) = 1−
∑p

r=1
(xir ·xjr )√∑p

r=1
(xjr ·xjr )·

∑p
r=1

(xir ·xir )
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Other Distance Measures

Correlation Proximity

5 10 15 20

0
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1
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0

Variable Index

Observation 1

Observation 2

Observation 3

1

2

3

Euclidian distance: Observations 1 and 3 are close.
Correlation distance: 1 and 2 look very similar.

ρX ,Y = corr(X , Y ) = cov(X , Y )
σX σY

= E [(X − µX )(Y − µY )]
σX σY
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Distance – key issue, application dependent

The result depends on the choice of distance measure d(xi , µk).
The choice is application dependent.
Scaling of the data is recommended.
Weights for equally important attributes j are: wj = 1

d̂ j where

d̂j = 1
N2

N∑
i1=1

N∑
i2=1

dj(xi1 , xi2) = 1
N2

N∑
i1=1

N∑
i2=1

(xi1 [j]− xi2 [j])2

Total distance as a weighted sum of attribute distances.
Distance may be specified directly by a symmetric matrix, 0 at the diagonal,
should fulfill triangle inequality

d(xi , xℓ) ≤ d(xi , xr ) + d(xr , xℓ).
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Alternative Ideas

Scaling may remove natural clusters
Weighting Attributes

Consider internet shop offering socks and computers.
Compare: number of sales, standardized data, $
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Number of Clusters
We may focus on the Within cluster variation measure:

W (C) = 1
2

K∑
k=1

∑
C(i)=k

∑
C(i|)=k

d(xi , xi|)

Notice that W (C) is decreasing also for uniformly distributed data.
We look for small drop of W (C) as a function of K or maximal difference
between W (C) on our data and on the uniform data.
Total cluster variation is the sum of between cluster variation and within
cluster variation

T (C) = 1
2

N∑
i,i|=1

d(xi , xi|) = W (C) + B(C)

= 1
2

K∑
k=1

∑
C(i)=k

(
∑

C(i|)=k

d(xi , xi|)) + 1
2

K∑
k=1

∑
C(i)=k

(
∑

C(i|) ̸=k

d(xi , xi|))
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i,i|=1

d(xi , xi|) = W (C) + B(C)

= 1
2

K∑
k=1

∑
C(i)=k

(
∑

C(i|)=k

d(xi , xi|)) + 1
2

K∑
k=1

∑
C(i)=k

(
∑

C(i|) ̸=k

d(xi , xi|))
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GAP function for Number of Clusters
denote Wk the expected W for uniformly distributed data and k clusters, the
average over 20 runs
GAP is expected log(Wk) minus observed log(W (k))

K∗ = argmin{k|G(k) ≥ G(k + 1)− s |
k+1}

s |
k = sk

√
1 + 1

20 where sk is the standard deviation of log(Wk)
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Silhouette

For each data sample xi we define
a(i) = 1

|Ci |−1
∑

j∈Ci ,i ̸=j d(i , j) if |Ci | > 1

b(i) = mink ̸=i
1

|Ck |
∑

j∈Ck
d(i , j)

Definition (Silhouette)
Silhouette s is defined

s(i) = b(i)−a(i)
max{a(i),b(i)} if |Ci | > 1

s(i) = 0 for |Ci | = 1.

Optimal number of clusters k
may be selected by the SC.

Definition (Silhouette
Score)
The Silhouette score is
1
N

∑N
i s(i).

Silhouette is always between
−1 ≤ s(i) ≤ 1.

0.10.0 0.2 0.4 0.6 0.8 1.0
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The silhouette plot for the various clusters.
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The visualization of the clustered data.
Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Note: One cluster (−1, 1), (1, 1),
other cluster (0, −1.2), (0, −1.1),
the point (0, 0) is assigned to the
first cluster but has a negative sil-
houette. https://stackoverflow.com/a/66751204
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Country Similarity Example

Data from a political science survey: values are average pairwise dissimilarities
of countries from a questionnaire given to political science students.
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K–medoids

1: procedure K–medoids:( X data, K the number of clusters )
2: select randomly K data samples to be centroids of clusters
3: repeat
4: for each data record do
5: assign to the closest cluster
6: end for
7: for each cluster k do # find new centroids i∗

k ∈ Ck
8: i∗

k ← argmin{i :C(i)=k}
∑

C(i|)=k d(xi , xi|)
9: end for

10: until no chance in assignment
11: end procedure

To find a centroid requires quadratic time compared to linear k–means.
We may use any distance, for example number of differences in binary
attributes.

Complexity

The t iterations of K–medoids take O(tkpN2).
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Clusters of Countries
Survey of country dissimilarities.
Left: dissimilarities

Reordered and blocked according to 3-medoid clustering.
Heat map is coded from most similar (dark red) to least similar (bright red).

Right: Two-dimensional multidimensional scaling plot
with 3-medoid clusters indicated by different colors.
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Multidimensional Scaling

The right figure on previous slide was done by Multidimesional scaling.
We know only distances of countries, not a metric space.
We try to keep proximity of countries (least squares scaling).
We choose the number of dimensions p.

Definition (Multidimensional Scaling)
For a given data x1, . . . , xN with their distance matrix d , we search
(z1, . . . , zN) ∈ Rp projections of data minimizing stress function

SD(z1, . . . , zN) =

∑
i ̸=ℓ

(d [xi , xℓ]− ∥zi − zℓ∥)2

 1
2

.

It is evaluated gradiently.

Note: Spectral clustering.
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Hierarchical clustering – Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

closest points (single linkage)
maximally distant points (complete linkage)
average linkage, dGA(CA, CB) = 1

|CA|·|CB |
∑

xi ∈CA,xj ∈CB
d(xi , xj)

Ward distance minimizes the sum of squared differences within all clusters.

Ward(CA, CB) =
∑

i∈CA∪CB

d(xi , µA∪B)2 −
∑
i∈CA

d(xi , µA)2 −
∑
i∈CB

d(xi , µB)2

= |CA| · |CB |
|CA|+ |CB |

· d(µA, µB)2

where µ are the centers of clusters (A, B and joined cluster).
It is a variance-minimizing approach and in this sense is similar to the k-means
objective function but tackled with an agglomerative hierarchical approach.
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Dendrograms

Dendrogram is the result plot of a hierarchical clustering.
Cutting the tree of a fixed high splits samples at leaves into clusters.

The length of the two legs of the U-link represents the distance between the
child clusters.

Average Linkage Complete Linkage Single Linkage

Machine Learning Clustering 8 1 - 52 April 19, 2024 17 / 48



Interpretation of Dendrograms – 2 and 9 are NOT close
Samples fused at very bottom are close each other.
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Mean Shift Clustering

Mean Shift Clustering

1: procedure Mean Shift Clustering:(X data, K (·) the kernel, λ the
bandwidth )

2: C ← ∅
3: for each data record do
4: repeat # shift each mean x to the weighted average

5: m(x)←
∑N

i=1
K(xi −x)xi∑N

i=1
K(xi −x)

6: until no chance in assignment
7: add the new m(x) to C
8: end for
9: return prunned C

10: end procedure

Kernels:
flat kernel λ ball
Gaussian kernel K (xi − x) = e

∥xi −x∥2

λ2
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Gaussian Mixture Model

Assume the data come from a set of k gaussian distributions
each with

prior probability πk
mean µk
covariance matrix Σk

ϕµk ,Σk (x) = 1√
(2π)p |Σk |

e− 1
2 (x−µk )T Σ−1

k (x−µk ).

We want to find the maximum likelihood estimate of the model parameters.
We use (more general) EM algorithm.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.5. Mixture example. (Left panel:) His-
togram of data. (Right panel:) Maximum likelihood
fit of Gaussian densities (solid red) and responsibility
(dotted green) of the left component density for obser-
vation y, as a function of y.
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EM learning of Mixture of K Gaussians !
Model parameters π1, . . . , πk , µ1, . . . , µk , Σ1, . . . , Σk such that

∑K
k=1 πk = 1.

Expectation: weights of unobserved ’fill–ins’ k of variable C :

pik = P(C = k|xi) = α · P(xi |Ci = k) · P(Ci = k)

= πkϕθk (xi)∑K
l=1 πlϕθl (xi)

pk =
N∑

i=1
pik

Maximize: mean, variance and cluster ’prior’ for each cluster k:

µk ←
∑

i

pik
pk

xi

Σk ←
∑

i

pik
pk

(xi − µk)(xi − µk)T

πk ← pk∑K
l=1 pl

.
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FIGURE 8.6. EM algorithm: observed data log-like-
lihood as a function of the iteration number.
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FIGURE 8.7. Maximization–maximization view of
the EM algorithm. Shown are the contours of the (aug-

mented) observed data log-likelihood F (θ′, P̃ ). The E
step is equivalent to maximizing the log-likelihood over
the parameters of the latent data distribution. The M
step maximizes it over the parameters of the log-likeli-
hood. The red curve corresponds to the observed data

log-likelihood, a profile obtained by maximizing F (θ′, P̃ )
for each value of θ′.
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Kernel Density Estimation
Kernel Density Estimation is an unsupervised procedure
We smooth the density estimate in the neighbourhood N (x0) with
lenghtscale λ

f̂X (x0) = #xi ∈ N (x0)
Nλ

by the Parzen kernel estimate

f̂X (x0) = 1
Nλ

N∑
i=1

Kλ(x0, xi),

Popular choice for Kλ is the Gaussian kernel density ϕλ.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 6
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FIGURE 6.13. A kernel density estimate for systolic
blood pressure (for the CHD group). The density es-
timate at each point is the average contribution from
each of the kernels at that point. We have scaled the
kernels down by a factor of 10 to make the graph read-
able.
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Kernel Density Classification

We may estimate Kernel Density for each target class k = 1, . . . , K , estimate
class priors πk and use Bayes’ theorem:

P̂r(G = k|X = x0) = πk f̂k(x0)∑K
j=1 πj f̂k(x0)

.

by the Parzen kernel estimate

f̂X (x0) = 1
Nλ

N∑
i=1

Kλ(x0, xi),

Popular choice for Kλ is the Gaussian kernel density ϕλ.
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FIGURE 6.14. The left panel shows the two separate
density estimates for systolic blood pressure in the CHD
versus no-CHD groups, using a Gaussian kernel density
estimate in each. The right panel shows the estimated
posterior probabilities for CHD, using (6.25).
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Radial Basis Functions and Kernels for Regression
The kernels do not have to be placed at all observation points.
We may select (fit) prototype parameters ξj and scale patameters λj to place
pre-defined number of kernels Kλj (ξj , x), j ∈ 1, . . . , M, λj ∈ R, ξj ∈ X .
and then fit the density as a linear function of kernels as basis

f (x) =
M∑

j=1
Kλj (ξj , x)βj ,

We should either fit the lengthscale parameters λj or re-normalize the radial
basis functions. Otherwise, the RBF can leave holes (upper figure,
re-normalized down).
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FIGURE 6.16. Gaussian radial basis functions in IR
with fixed width can leave holes (top panel). Renormal-
ized Gaussian radial basis functions avoid this problem,
and produce basis functions similar in some respects to
B-splines.
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Mixuture Models for Density Estimation and Classification
One RBF kernel was fitted for each class
The data sample is classified according the more probable label (let kernels
vote).
If the covariance matrices are constrained to be scalar Σm = σmI, we actually
fit the naive Bayes model.
In this case, this method was as good as logistic regression.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 6
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FIGURE 6.17. Application of mixtures to the heart
disease risk-factor study. (Top row:) Histograms of Age
for the no CHD and CHD groups separately, and com-
bined. (Bottom row:) estimated component densities
from a Gaussian mixture model, (bottom left, bottom
middle); (bottom right:) Estimated component densi-
ties (blue and orange) along with the estimated mixture
density (green). The orange density has a very large
standard deviation, and approximates a uniform den-
sity.
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Summary

K-means clustering - the basic one
the number of clusters:
GAP
Silhouette

The distance is crucial.
Consider standardization or weighting the features.

K-medoids - does need metric, just a distance
hierarchical clustering

different distance measures
dendrogram

other approaches (mean shift clustering, Self Organizing Maps, Spectral
Clustering).
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Frequent itemsets, Association Rules

Unsupervised learning
No goal class (either Y nor G).
Usually binary data Xij ∈ {0, 1}N×p

Value = 1 is our interest; for example purchase.
p may be very large; for example the size of the range of goods in an market.
Popular application: Market basket analysis.
Generally: We look for L prototypes v1, . . . , vL ∈ X p such that P(vℓ) is
relatively large.
With large p, we do not have enough data to estimate P(vℓ) since number of
observations with P(X = vℓ) is too small.
We seek for regions where P(x) is large, that can be written as conjunctive
rule on dimension conditions

⋂p
j=1(Xj ∈ sj) where sj are selected values of

the feature Xj .
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Hypothesis space for Apriori

ESL book Figure:
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Market Basket Analysis

For very large datasets, p ≈ 104, N ≈ 108; in unit ball is the distance to the
nearest neighbour ≈ 0.9981.
Simplifications: Test on feature Xj either equal to a specific value or no
restriction at all,
I select combinations of items with higher number of occurences (support)
than predefined threshold t.
I select all combinations fulfilling conditions above.
Categorical variables may be codded by dummy variables in advance (if not
too many).

OneHotEncoder for each class g , a new variable Xg = [X == g ].
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Apriori Algorithm!

1: procedure Apriori:(X dataset, t threshold for support )
2: i ← 0
3: Generate list of candidates of the length i
4: while Candidate set not empty do
5: for each data sample do
6: for each candidate do
7: if all items of candidate appear in the data sample then
8: increase the candidate counter by 1
9: end if

10: end for
11: end for
12: i ← i + 1
13: Discard candidates with support less than t.
14: Generate list of candidates of the length i
15: Join any two candidates from previous step having i − 2

elements common. (More pruning possible.)
16: end while
17: end procedure
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Example: Apriori Algorithm

t = 0.2
t ∗N = 2 =
0.20 ∗ 10
Data

a b c e f o
a c g
e i
a c d e g
a c e g l
e j
a b c e f p
a c d
a c e g m
a c e g n

i=1
a=8
b=2
c=8
d=2
e=8
f=2
g=5
i=j=l=o=1
p=m=n=1

i=2
ab=2
ac=8
ad=2
ae=6
af=2
ag=5
bc=2
bd=0
be=2
bf=2
bg=0
cd=2
ce=6
cf=2
cg=5
de=1
df=0
dg=1
ef=2
eg=4
fg=2

i=3
abc=2
abd=0
abe=2
abf=2
abg=0
acd=2
ace=6
acf=2
acg=5
ade=1
adf=0
adg=1
aeg=4
. . .

i=4 . . .
abce=2
abcf=2
abef=2
abeg=0
acef=2
aceg=4
adeg=1
aefg=0
. . .
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Properties of the Apriori Algorithm

Applicable for very large data (with high threshold t).
The key idea:

Only few of 2K combinations have high support > t,
subset of high–support combination has also high support.

The number of passes through the data is equal to the size of the longest
supported combination. The data does not to be in memory simultaneously.
FPgrowth algorithm needs only two passes through the data.
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Association Rules !

From each supported itemset K found by Apriori algorithm we create a list of
association rules, implications of the form A⇒ B where:

A, B are disjoint and A ∪ B = K
A is called antecedent
B is called consequent.

Support of the rule T (A⇒ B) is defined as normalized support of the
itemset K, that is normalized support of the conjunction A&B.

T (K) = |dataK|
|data|

T (A⇒ B) = |dataA&B |
|data|
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Rule Confidence and Lift
There are two important measures for a rule A⇒ B:

Confidence (predictability, přesnost)

C(A⇒ B) = T (A⇒ B)
T (A)

that is an estimate of P(B|A),
Support T (B) is an estimate of P(B),
Lift is the ration of confidence and expected precision:

L(A⇒ B) = C(A⇒ B)
T (B)

that is an estimate of P(A&B)
P(A)·P(B) .

Leverage is the difference of supports:

leverage(A⇒ B) = T (A⇒ B)− T (A) · T (B)

Conviction is the ratio:

conviction(A⇒ B) = 1− T (B)
1− C(A⇒ B) .
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Association Rule Example

ESL book example:

K = {English, own, prof/man, income>$40000},
13.4% people has all four properties,
80.8% of people with {English, own, prof/man} have income> $40000,
T (income > $40000) = 37.94%, therefore Lift = 2.13.
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The Goal of Apriori Algorithm !

Apriori finds all rules with high support.
Frequently, it finds many of rules.
We usually select lower threshold c on confidence, that is we select rules with
T (A⇒ B) > t and C(A⇒ B) > c.
Conversion of itemsets to rules is usually relatively fast compared to search of
itemsets.
See lispMiner for user interface and a lot of more.
Python Apriori library:

from mlxtend.preprocessing import TransactionEncoder

from mlxtend.frequent_patterns import apriori, association_rules
from mlxtend.frequent_patterns import fpgrowth,fpmax

from mlxtend.frequent_patterns import hmine
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Demographical Data ESL Example
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Demographical Example – Continuing

N = 9409 questionnaires, the ESL authors selected 14 questions.
Preprocessing:

na.omit() remove records with missing values,
ordinal features cut by median to binary,
for categorical create dummy variable for each category.

Apriori input was matrix 6876× 50.
Output: 6288 association rules

with max. 5 elements
with support at least 10%.
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Negated Literals – Useful, Problematic

Machine Learning Association Rules, Apriori 9 53 - 93 April 19, 2024 40 / 48



Non–frequent Values Dissapear
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Unsupervised Learning as Supervised Learning

We add additional attribute YG .
YG = 1 for all our data.
We generate randomly a dataset of similar size with uniform distribution, set
YG = 0 for this artificial data.
The task is to separate YG = 1 and YG = 0.
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Generalize Association Rules

We search for high lift, where probability of conjunction is greater than
expected.
Hypothesis is specified by column indexes j and subsets of values sj
corresponding features Xj . We aim:

P̂

 ⋂
j∈J

(Xj ∈ sj)

 = 1
N

N∑
1

I

 ⋂
j∈J

(xij ∈ sj)

 >> Πj∈J P̂(Xj ∈ sj)

On the data from previous slide, CART (decision tree alg.) or PRIM (’bump
hunting’) may be used.
Figure on previous slide: Logistic regression on tensor product of natural
splines.
Other methods may be used. All are heuristics compared to full evaluation by
Apriori.
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FP–tree

1: procedure FP–tree:(Data )
2: Calculate counts of items (singletons)
3: Create table header ordered by decreasing item count
4: for each data sample do
5: order items according to header
6: insert branch into the tree
7: increase all counters on the inserted branch
8: end for
9: return the tree

10: end procedure

Data ordered
a b c e f o e c a b f
a c g c a g
e i e
a c d e g e c a g d
a c e g l e c a g
e j
a b c e f p
a c d
a c e g m
a c e g n

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Hanet al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.

a b c e f o
a c g
e i
a c d e g
a c e g l
e j
a b c e f p
a c d
a c e g m
a c e g n

(a)

root

e:8

Header table

item

Head of

node−links c:2

c:6 a:2

a:6

b:2 g:4

f:2 d:1

g:1 d:1

e:8

c:8

a:8

g:5

b:2

f:2

d:2

(b)

Figure 1. An Example FP-tree (minsup=20%)

To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
sentingi, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: ifX andY are two itemsets, the count
of itemsetX ∪ Y in the database is exactly that ofY in
the restriction of the database to those transactions contain-
ing X. This restriction of the database is called thecondi-
tional pattern baseof X, and the FP-tree constructed from
the conditional pattern base is calledX ’s conditional FP-
tree, which we denote byTX . We can view the FP-tree
constructed from the initial database asT∅, the conditional
FP-tree for∅. Note that for any itemsetY that is frequent in
the conditional pattern base ofX, the setX∪Y is a frequent
itemset for the original database.

Given an itemi in the header table of an FP-treeTX ,
by following the linked list starting ati in the header table
of TX , all branches that contain itemi are visited. These
branches form the conditional pattern base ofX ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-treeTX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches ofTX along the linked list ofi one more time
and inserting the corresponding itemsets inTX∪{i}. Note
that the order of items can be different inTX andTX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique

The main work done in the FP-growth method is travers-
ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each itemi in the header of a con-
ditional FP-treeTX , two traversals ofTX are needed for
constructing the new conditional FP-treeTX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base ofX ∪ {i}, and initializes the FP-treeTX∪{i} by con-
structing its header table. The second traversal constructs
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Frequent Itemsets with only 2 pass through data

Build an internal structure called FP-tree
Call FP-growth to generate frequent itemsets

Each construction of a conditional tree needs 2 pass through the parent tree
an optimized version with only 1 pass is presented. (It needs an additional
data structure array.)

FP-max to find maximal itemsets
non of immediate supersets is frequent

FP-close to find close itemsets
non of immediate supersets has the same support.

Machine Learning Association Rules, Apriori 9 53 - 93 April 19, 2024 45 / 48



Frequent Itemsets with only 2 pass through data

Build an internal structure called FP-tree
Call FP-growth to generate frequent itemsets

Each construction of a conditional tree needs 2 pass through the parent tree
an optimized version with only 1 pass is presented. (It needs an additional
data structure array.)

FP-max to find maximal itemsets
non of immediate supersets is frequent

FP-close to find close itemsets
non of immediate supersets has the same support.

Machine Learning Association Rules, Apriori 9 53 - 93 April 19, 2024 45 / 48



Frequent Itemsets with only 2 pass through data

Build an internal structure called FP-tree
Call FP-growth to generate frequent itemsets

Each construction of a conditional tree needs 2 pass through the parent tree
an optimized version with only 1 pass is presented. (It needs an additional
data structure array.)

FP-max to find maximal itemsets
non of immediate supersets is frequent

FP-close to find close itemsets
non of immediate supersets has the same support.

Machine Learning Association Rules, Apriori 9 53 - 93 April 19, 2024 45 / 48



FP-tree
FP-tree contains all frequency information of the
database.
Principle: If X and Y are two itemsets, the count of
itemsets X ∪ Y in the database is exactly that of Y
in the restriction of the database to those
transactions containing X .

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Hanet al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.
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Figure 1. An Example FP-tree (minsup=20%)

To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
sentingi, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: ifX andY are two itemsets, the count
of itemsetX ∪ Y in the database is exactly that ofY in
the restriction of the database to those transactions contain-
ing X. This restriction of the database is called thecondi-
tional pattern baseof X, and the FP-tree constructed from
the conditional pattern base is calledX ’s conditional FP-
tree, which we denote byTX . We can view the FP-tree
constructed from the initial database asT∅, the conditional
FP-tree for∅. Note that for any itemsetY that is frequent in
the conditional pattern base ofX, the setX∪Y is a frequent
itemset for the original database.

Given an itemi in the header table of an FP-treeTX ,
by following the linked list starting ati in the header table
of TX , all branches that contain itemi are visited. These
branches form the conditional pattern base ofX ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-treeTX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches ofTX along the linked list ofi one more time
and inserting the corresponding itemsets inTX∪{i}. Note
that the order of items can be different inTX andTX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique

The main work done in the FP-growth method is travers-
ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each itemi in the header of a con-
ditional FP-treeTX , two traversals ofTX are needed for
constructing the new conditional FP-treeTX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base ofX ∪ {i}, and initializes the FP-treeTX∪{i} by con-
structing its header table. The second traversal constructs

i=3
abc=2
abd=0
abe=2
abf=2
abg=0
acd=2
ace=6
acf=2
acg=5
ade=1
adf=0
adg=1
aeg=4
. . .
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FPgrowth*

1: procedure FPgrowth*:(T a conditional FP-tree )
2: if T only contains a single path P then
3: for each subpath Y of P do
4: output pattern Y ∪ T .base with
5: count = smallest count of nodes in Y
6: end for
7: else
8: for each i in T .header do
9: Y ← T .base ∪ {i} with i .count

10: if T .array is not NULL then
11: construct a new header table for Y ’s FP-tree from T .array
12: else
13: construct a new header table for Y ’s from T
14: end if
15: construct Y ’s conditional FP-tree TY and its array AY ;
16: if TY ̸= ∅ then
17: call FPgrowth∗(TY )
18: end if
19: end for
20: end if
21: end procedure
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t = 2
T{g} = [a : 5, c : 5, e : 4]

root

a:4+1

c:4+1

e:4

the new treeTX∪{i}. We can omit the first scan ofTX by
constructing an arrayAX while buildingTX . The follow-
ing example will explain the idea. In Figure 1 (a), supposing
that the minimum support is 20%, after the first scan of the
original database, we sort the frequent items ase:8, c:8,a:8,
g:5, b:2, f :2,d:2. This order is also the order of items in the
header table ofT∅. During the second scan of the database
we will constructT∅, and an arrayA∅. This array will store
the counts of all 2-itemsets. All cells in the array are initial-
ized as 0.
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Figure 2. Two array examples

In A∅, each cell is a counter of a 2-itemset, cell
A∅[d, e] is the counter for itemset{d, e}, cell A∅[d, c]
is the counter for itemset{d, c}, and so forth. Dur-
ing the second scan for constructingT∅, for each trans-
action, first all frequent items in the transaction are ex-
tracted. Suppose these items form itemsetI. To insert
I into T∅, the items inI are sorted according to the or-
der in header table ofT∅. When we insertI into T∅,
at the same timeA∅[i, j] is incremented by 1 if{i, j}
is contained inI. For example, for the first transaction,
{a, b, c, e, f} is extracted (itemo is infrequent) and sorted
as e, c, a, b, f . This itemset is inserted intoT∅ as usual,
and at the same time,A∅[f, e], A∅[f, c], A∅[f, a], A∅[f, b],
A∅[b, a], A∅[b, c],A∅[b, e], A∅[a, e],A∅[a, c], A∅[c, e] are all
incremented by 1. After the second scan, arrayA∅ keeps the
counts of all pairs of frequent items, as shown in table (a)
of Figure 2.

Next, the FP-growth method is recursively called to mine
frequent itemsets for each item in header table ofT∅. How-
ever, now for each itemi, instead of traversingT∅ along
the linked list starting ati to get all frequent items ini’s
conditional pattern base,A∅ gives all frequent items fori.
For example, by checking the third line in the table forA∅,
frequent itemse, c, a for the conditional pattern base ofg
can be obtained. Sorting them according to their counts, we
get a, c, e. Therefore, for each itemi in T∅ the arrayA∅
makes the first traversal ofT∅ unnecessary, andT{i} can be
initialized directly fromA∅.

For the same reason, from a conditional FP-treeTX ,
when we construct a new conditional FP-tree forX ∪ {i},
for an item i, a new arrayAX∪{i} is calculated. Dur-
ing the construction of the new FP-treeTX∪{i}, the array

AX∪{i} is filled. For instance, in Figure 1, the cells of
arrayA{g} is shown in table (b) of Figure 2. This array
is constructed as follows. From the arrayA∅, we know
that the frequent items in the conditional pattern base of
{g} are, in order,a, c, e. By following the linked list of
g, from the first node we get{e, c, a} : 4, so it is inserted as
(a : 4, c : 4, e : 4) into the new FP-treeT{g}. At the same
time,A{g}[e, c], A{g}[e, a] andA{g}[c, a] are incremented
by 4. From the second node in the linked list,{c, a} : 1 is
extracted, and it is inserted as(a : 1, c : 1) into T{g}. At the
same time,A{g}[c, a] is incremented by 1. Since there are
no other nodes in the linked list, the construction ofT{g} is
finished, and arrayA{g} is ready to be used for construction
of FP-trees in next level of recursion. The construction of
arrays and FP-trees continues until the FP-growth method
terminates.

Based on above discussion, we define a variation of the
FP-tree structure in which besides all attributes given in [6],
an FP-tree also has an attribute,array, which contains the
corresponding array.

Now let us analyze the size of an array. Suppose the
number of frequent items in the first FP-tree isn. Then
the size of the associated array is

∑n−1
i=1 i = n(n − 1)/2.

We can expect that FP-trees constructed from the first FP-
tree have fewer frequent items, so the sizes of the associated
arrays decrease. At any time, since an array is an attribute
of an FP-tree, when the space for the FP-tree is freed, the
space for the array is also freed.

2.3. Discussion

The array technique works very well especially when the
dataset is sparse. The FP-tree for a sparse dataset and the re-
cursively constructed FP-trees will be big and bushy, due to
the fact that they do not have many shared common pre-
fixes. The arrays save traversal time for all items and the
next level FP-trees can be initialized directly. In this case,
the time saved by omitting the first traversals is far greater
than the time needed for accumulating counts in the associ-
ated array.

However, when a dataset is dense, the FP-trees are more
compact. For each item in a compact FP-tree, the traversal
is fairly rapid, while accumulating counts in the associated
array may take more time. In this case, accumulating counts
may not be a good idea.

Even for the FP-trees of sparse datasets, the first levels of
recursively constructed FP-trees are always conditional FP-
trees forthe most common prefixes. We can therefore expect
the traversal times for the first items in a header table to be
fairly short, so the cells for these first items are unnecessary
in the array. As an example, in Figure 2 table (a), since
e, c, anda are the first 3 items in the header table, the first
two lines do not have to be calculated, thus saving counting
time.

2. Discovering FI’s

2.1. The FP-tree and FP-growth method
The FP-growth method by Hanet al. [6] uses a data

structure called the FP-tree (Frequent Pattern tree). The FP-
tree is a compact representation of all relevant frequency
information in a database. Every branch of the FP-tree rep-
resents a frequent itemset, and the nodes along the branches
are stored in decreasing order of frequency of the corre-
sponding items, with leaves representing the least frequent
items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corre-
sponding branches.

The FP-tree has a header table associated with it. Single
items and their counts are stored in the header table in de-
creasing order of their frequency. The entry for an item also
contains the head of a list that links all the corresponding
nodes of the FP-tree.

Compared with Apriori [1] and its variants which need
several database scans, the FP-growth method only needs
two database scans when mining all frequent itemsets. The
first scan counts the number of occurrences of each item.
The second scan constructs the initial FP-tree which con-
tains all frequency information of the original dataset. Min-
ing the database then becomes mining the FP-tree.
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To construct the FP-tree, first find all frequent items by
an initial scan of the database. Then insert these items in the
header table, in decreasing order of their count. In the next
(and last) scan, as each transaction is scanned, the set of
frequent items in it are inserted into the FP-tree as a branch.
If an itemset shares a prefix with an itemset already in the
tree, the new itemset will share a prefix of the branch rep-
resenting that itemset. In addition, a counter is associated
with each node in the tree. The counter stores the number of
transactions containing the itemset represented by the path
from the root to the node in question. This counter is up-
dated during the second scan, when a transaction causes the
insertion of a new branch. Figure 1 (a) shows an example
of a database and Figure 1 (b) the FP-tree for that database.

Note that there may be more than one node corresponding
to an item in the FP-tree. The frequency of any one item
i is the sum of the count associated with all nodes repre-
sentingi, and the frequency of an itemset equals the sum
of the counts of the least frequent item in it, restricted to
those branches that contain the itemset. For instance, from
Figure 1 (b) we can see that the frequency of the itemset
{c, a, g} is 5.

Thus the constructed FP-tree contains all frequency in-
formation of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: ifX andY are two itemsets, the count
of itemsetX ∪ Y in the database is exactly that ofY in
the restriction of the database to those transactions contain-
ing X. This restriction of the database is called thecondi-
tional pattern baseof X, and the FP-tree constructed from
the conditional pattern base is calledX ’s conditional FP-
tree, which we denote byTX . We can view the FP-tree
constructed from the initial database asT∅, the conditional
FP-tree for∅. Note that for any itemsetY that is frequent in
the conditional pattern base ofX, the setX∪Y is a frequent
itemset for the original database.

Given an itemi in the header table of an FP-treeTX ,
by following the linked list starting ati in the header table
of TX , all branches that contain itemi are visited. These
branches form the conditional pattern base ofX ∪ {i}, so
the traversal obtains all frequent items in this conditional
pattern base. The FP-growth method then constructs the
conditional FP-treeTX∪{i}, by first initializing its header
table based on the found frequent items, and then visiting
the branches ofTX along the linked list ofi one more time
and inserting the corresponding itemsets inTX∪{i}. Note
that the order of items can be different inTX andTX∪{i}.
The above procedure is applied recursively, and it stops
when the resulting new FP-tree contains only one single
path. The complete set of frequent itemsets is generated
from all single-path FP-trees.

2.2. An array technique

The main work done in the FP-growth method is travers-
ing FP-trees and constructing new conditional FP-trees after
the first FP-tree is constructed from the original database.
From numerous experiments we found out that about 80%
of the CPU time was used for traversing FP-trees. Thus,
the question is, can we reduce the traversal time so that the
method can be sped up?

The answer is yes, by using a simple additional data
structure. Recall that for each itemi in the header of a con-
ditional FP-treeTX , two traversals ofTX are needed for
constructing the new conditional FP-treeTX∪{i}. The first
traversal finds all frequent items in the conditional pattern
base ofX ∪ {i}, and initializes the FP-treeTX∪{i} by con-
structing its header table. The second traversal constructs
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