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Unsupervised Learning

o No goal class (either Y nor G).
@ We are interested in relations in the data:

Clustering Are the data organized in natural clusters? (Clustering,
Segmentation)
EM algorithm for clustering
(Dirichlet Process Mixture Models)
(Spectral Clustering)

Association Rules Are there some frequent combinations, implication
relations? (Market Basket Analysis) /ater
Other The Elements of Statistical Learning Chapter 14

SOM Self Organizing Maps
PCA Principal Component Analysis Linear Algebra; k linear

combinations of features minimizing reconstruction error (=

first k principal components).
o Principal Curves and Surfaces, Kernel and Spare Principal
Components
ICA Independent Component Analysis.

Machine Learning Clustering 8 1-52 April 19, 2024

1/48



Clustering Example

2 Clusters

Scaled Data
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Pitch, Yawn, Roll Clustering
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@ We set the color of items, no colour in train data.

@ We want to assign same color to nearby points.
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K — means !

K—means

1: procedure K—MEANS:(X data, K the number of clusters )
2 select randomly K centers of clusters jiy

3 # either random data points or random points in the feature space
4 repeat

5: for each data record do

6 C(xi) < argmingeqa,.. kyd(Xi, pi)

7 end for

8 for each cluster k do # find new centers

9 He = D iClx) =k \ch)\

10: end for

11: until no chance in assignment

12: end procedure
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K — means

K-means

The t iterations of K—means algorithm take O(tkpN) time.

@ To find global optimum is NP-hard.
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K — means

K-means

The t iterations of K—means algorithm take O(tkpN) time.

To find global optimum is NP-hard.
The result depends on initial values.

May get stuck in local minimum.

May not be robust to data sampling.

(for example, different bootstrap samples may give very different clustering
results).
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K — means

K—means

The t iterations of K—means algorithm take O(tkpN) time.

To find global optimum is NP-hard.
The result depends on initial values.
May get stuck in local minimum.

May not be robust to data sampling.

o We may generate datasets by bootstrap method.
o The cluster centers found in different dataset may be quite different.

(for example, different bootstrap samples may give very different clustering
results).

@ Each record must belong to some cluster. Sensitive to outliers.
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Distance measures

the most common distance

measures:

= /0 e = )2

Euclidian d(xi, x;)
Hamming (Manhattan) | d(xi,x;) = > o, [xir — X;r|
overlap (prekryti) Y _ .
categorical variables 06, 5) = 2or—y 10xr # X5r)
L > (i)
cosine similarit s(x;, x
y ( ! J) \/Zr 1 Xﬂ le) Z (X/r Xl’
cosine distance d(xi,x;)=1— Z'*l(x" )

\/Zle(Xjf'Xj')'Zle(Xir‘Xr’r)
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Other Distance Measures

20
1

Observation 1
= Observation 2
Observation 3

15

10

Variable Index

Correlation Proximity
o Euclidian distance: Observations 1 and 3 are close.
o Correlation distance: 1 and 2 look very similar.

px,y = corr(X,Y) = cov(X, Y) _ E[(X — pux)(Y — py)]

OXx0y OX0y
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Distance — key issue, application dependent

@ The result depends on the choice of distance measure d(x;, pk).
@ The choice is application dependent.

@ Scaling of the data is recommended.
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Distance — key issue, application dependent

The result depends on the choice of distance measure d(x;, fk).
The choice is application dependent.

Scaling of the data is recommended.

Weights for equally important attributes j are: w; = aij where

N N
7 2 ) = gz 2 Dl = 1)
i1: :

o Total distance as a weighted sum of attribute distances.
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Distance — key issue, application dependent

The result depends on the choice of distance measure d(x;, fk).
The choice is application dependent.

Scaling of the data is recommended.

Weights for equally important attributes j are: w; = aij where

N N
7 2 ) = gz 2 Dl = 1)
i1: :

Total distance as a weighted sum of attribute distances.

Distance may be specified directly by a symmetric matrix, 0 at the diagonal,
should fulfill triangle inequality

d(xi,xe) < d(xi, %) + d(xr, x¢)-
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Alternative ldeas

@ Scaling may remove natural clusters

04 06 08

02

Ciee 8

Socks

m .

Computers

Socks

Computers
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Alternative ldeas

@ Scaling may remove natural clusters S« S x
o Weighting Attributes

o Consider internet shop offering socks and computers.
o Compare: number of sales, standardized data, $

1500

1000

m . .

Socks  Computers Socks  Computers Socks  Computers
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Number of Clusters

@ We may focus on the Within cluster variation measure:

ilz S den)

C(i) kC(l\)

l\)\l—l
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Number of Clusters

@ We may focus on the Within cluster variation measure:

ilz S den)

C(i) kC(l\)

l\)\l—l

o Notice that W(C) is decreasing also for uniformly distributed data.

@ We look for small drop of W(C) as a function of K or maximal difference
between W(C) on our data and on the uniform data.
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Number of Clusters

@ We may focus on the Within cluster variation measure:

ilz S den)

C(i) kC(l\)

l\)\l—l

o Notice that W(C) is decreasing also for uniformly distributed data.

@ We look for small drop of W(C) as a function of K or maximal difference
between W(C) on our data and on the uniform data.

@ Total cluster variation is the sum of between cluster variation and within
cluster variation

N
> d(xi, x) = W(C) + B(C)

iil=1

DD IS DICENEED DI DN DITCR D)

k=1 C(i)=k C(il)=k k=1 C(i)=k C(il)k

T =

I\JM—l

l\)\l—l
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GAP function for Number of Clusters

o denote W) the expected W for uniformly distributed data and k clusters, the
average over 20 runs

log W

Machine Learning
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GAP function for Number of Clusters

o denote W) the expected W for uniformly distributed data and k clusters, the
average over 20 runs

o GAP is expected log(Wj) minus observed log(W (k))

K* = argmin{k|G(k) > G(k+1) — S,LH}

1
S,L = s/1+ 20 where s is the standard deviation of log( W)

log W

Machine Learning
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Silhouette

For each data sample x; we define
o a(l):m+1 _[EC,,I#jd(,LI) |f|C,| >1
o b(i) = mi”k;eiﬁ Zjeck d(i,J)

4

J o —1<5s(i) <1

Silhouette ana!ysis for KMeans clustering on sample data with n_clusters = 3
The silhouette plot for the various clusters.  The visuali of the clustéred data.
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Silhouette

For each data sample x; we define
e a(i) = ﬁ iec.iz d(i,)) if |G| > 1
o b(i) = minkziteq Yjec, d(i.4)

Definition (Silhouette)
Silhouette s is defined

b(i)—a(i)
max{a(i),b(i)}
@ s(i)=0for |G| =1.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3
The silhouette plot for the various clusters.  The visualization of the clustéred data.

e s(i) = .

Cluster label
Feature space for the 2nd feature

0100 02 04 06 08 10 -02 00 02 04 06 08
The silhouette coefficient values Feature space for the 1st feature

Machine Learning
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Silhouette

For each data sample x; we define Optimal number of clusters k
e a(i)= ﬁ eCidi d(i,j) if |G| > 1 may be selected by the SC.

Definition (Silhouette

e b(i) = mink;éiﬁ >jec, d(i.)) Score)
core

Definition (Silhouette) The Silhouette score is

. . : 1 =N /-
Silhouette s is defined w2 s(i).
; b()—a(i) _
Q@ S\l) = —F~ 77 If C > 1 . .
(1) max{a(i),b(i)} |Gl ilhouette is always between
@ s(i)=0for |G| =1. o —1<s(i)<1.
Silhouette analysis for KMeans clustering on sample data with n_clusters = 3
The silhouette plot for the various clusters.  The visualization of the clustéred data.
y 08
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Silhouette

For each data sample x; we define Optimal number of clusters k
e a(i)= ﬁ eCidi d(i,j) if |G| > 1 may be selected by the SC.

e b(i) = ml'nk;éiﬁ ZjeCk d(i,j)

Definition (Silhouette
Score)

Definition (Silhouette) The Silhouette score is

N .
Silhouette s is defined % > s(i).
N — _b)—ald) o
° s(i) = max{a(i),b(i)} if ]Gl > 1 ilhouette is always between

o s(i)=0for |G| =1. o —1<s(i)< 1.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3
The silhouette plot for the various clusters.  The visualization of the clustéred data.

y 08

e Note: One cluster (—1,1),(1,1),
other cluster (0,—1.2),(0,—1.1),
the point (0,0) is assigned to the
first cluster but has a negative sil-

Cluster label
Feature space for the 2nd feature

houette. https:/ /stackoverflow.com/a /66751204

0100 02 04 06 08 10 02 00 02 04 06 08
The silhouette coefficient values Feature space for the 1st feature
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Country Similarity Example

e Data from a political science survey: values are average pairwise dissimilarities
of countries from a questionnaire given to political science students.

BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG
BRA | 5.58
CHI | 7.00 6.50
CUB | 7.08 7.00 3.83
EGY | 4.83 5.08 8.17 5.83
FRA | 217 5.75 6.67 6.92 4.92
IND |6.42 5.00 558 6.00 4.67 6.42
ISR | 342 550 6.42 6.42 5.00 3.92 6.17
USA | 250 4.92 6.25 7.33 4.50 225 6.33 2.75
USS | 6.08 6.67 4.25 267 6.00 6.17 6.17 692 6.17
YUG | 525 6.83 450 3.75 575 542 6.08 583 6.67 3.67
ZAL |4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 567 6.50 6.92
Machine Lear Clustering 8 1-52 April 19, 2024
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1: procedure K-MEDOIDS:( X data, K the number of clusters )
2 select randomly K data samples to be centroids of clusters
3 repeat

4 for each data record do

5: assign to the closest cluster

6 end for

7 for each cluster k do # find new centroids iy € Cj

8 Iy 4= argming;.c(iy=k} Zc(n):k d(xi, x;1)

9 end for

10: until no chance in assignment

11: end procedure

@ To find a centroid requires quadratic time compared to linear k—means.
@ We may use any distance, for example number of differences in binary
attributes.

Complexity

The t iterations of K—-medoids take O(tkpN?).

Machine Learning Clustering 8 1-52 April 19, 2024 13 / 48



Clusters of Countries

@ Survey of country dissimilarities.
o Left: dissimilarities

o Reordered and blocked according to 3-medoid clustering.

o Heat map is coded from most similar (dark red) to least similar (bright red).
@ Right: Two-dimensional multidimensional scaling plot

e with 3-medoid clusters indicated by different colors.

18R

Reordered Dissimilarity Matrix

P—
Clustering 8

Second MDS Coordinate

el
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BELSR
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CHI
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0

2

First MDS Coordinate
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Multidimensional Scaling

@ The right figure on previous slide was done by Multidimesional scaling.
@ We know only distances of countries, not a metric space.
o We try to keep proximity of countries (least squares scaling).

@ We choose the number of dimensions p.

Definition (Multidimensional Scaling)

For a given data xi, ..., xy with their distance matrix d, we search
(z1,-..,2zn) € RP projections of data minimizing stress function

1

2

So(z,- .y zn) = | >_(dlxi, xe] — ||z — zl|)?

il

o It is evaluated gradiently.

@ Note: Spectral clustering.
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

@ closest points (single linkage)
e maximally distant points (complete linkage)

o average linkage, doa(Ca, C8) = o] Loxecanecs 4% %)
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

@ closest points (single linkage)
e maximally distant points (complete linkage)
o average linkage, doa(Ca, C8) = o] Loxecanecs 4% %)

Ward distance minimizes the sum of squared differences within all clusters.

Ward(Ca, Cs) = > d(xi,paue)® — > d(xi, pa)® = Y d(xi, pg)?

i€CaUCp i€Cx i€Cg
|Cal - |Cs| 2

= ——— - d(pa, s
|Cal + |Cs] (12; 1)
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

@ closest points (single linkage)
e maximally distant points (complete linkage)
o average linkage, doa(Ca, C8) = o] Loxecanecs 4% %)

Ward distance minimizes the sum of squared differences within all clusters.

Ward(Ca, Cs) = > d(xi,paue)® — > d(xi, pa)® = Y d(xi, pg)?

i€CaUCp i€Cx i€Cg
|Cal - |Cs| 2

= ——— - d(pa, s
|Cal + |Cs] (12; 1)

o where 1 are the centers of clusters (A, B and joined cluster).
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Hierarchical clustering — Bottom Up

Start with each data sample in its own cluster. Iteratively join two nearest clusters.
Measures for join

o closest points (single linkage)
e maximally distant points (complete linkage)
o average linkage, doa(Ca, C8) = o] Loxecanecs 4% %)

@ Ward distance minimizes the sum of squared differences within all clusters.

Ward(Ca, Cs) = > d(xi,paue)® — > d(xi, pa)® = Y d(xi, pg)?

i€CaUCp i€Cx i€Cg
|Cal - |Cs| 2

= ——— - d(pa, s
|Cal + |Cs] (12; 1)

o where 1 are the centers of clusters (A, B and joined cluster).
e It is a variance-minimizing approach and in this sense is similar to the k-means
objective function but tackled with an agglomerative hierarchical approach.
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Dendrograms

@ Dendrogram is the result plot of a hierarchical clustering.

o Cutting the tree of a fixed high splits samples at leaves into clusters.

o The length of the two legs of the U-link represents the distance between the
child clusters.

Average Linkage Complete Linkage Single Linkage

.
i

— —]
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Interpretation of Dendrograms — 2 and 9 are NOT close

Samples fused at

00 05 10 15 20 25 30

X

Machine Leal

rning

very bottom are close each other.
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Mean Shift Clustering

Mean Shift Clustering

1: procedure MEAN SHIFT CLUSTERING:(X data, K(-) the kernel, A the

bandwidth )
22 C+0
3: for each data record do
4: repeat # shift Atlaach mean x to the weighted average
5 m(x) + Z'ﬁvl MO

Zi:l e

6 until no chance in assignment
7 add the new m(x) to C
8 end for
9: return prunned C

10: end procedure

Kernels:
o flat kernel A\ ball

llx =12
o Gaussian kernel K(x; — x) =€ 2

Clustering 8 1-52
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Gaussian Mixture Model

@ Assume the data come from a set of k gaussian distributions

@ each with
o prior probability 7
e mean pik
e covariance matrix X
_ 1 == TE T (=)
° X) = —F/———e 2 k .
¢Nk:zk( ) )P 12hl

@ We want to find the maximum likelihood estimate of the model parameters.

@ We use (more general) EM algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
density

00 02 04 06 08 10

VNN

IIIIII IIIIIII
0 2 4 6

y y

0 2 4 6
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EM learning of Mixture of K Gaussians !

@ Model parameters 71, ..., Tk, b1, - - - fhks 21, - - - , 2k Such that Zszl m, = 1.

o Expectation: weights of unobserved 'fill-ins' k of variable C:

pix = P(C=klx))=a-P(x|C = k) P(C;=k)
_ TP (xi)
Z;(:l 7T/¢0/ (Xi)

N
Pk = Zpik
i=1

@ Maximize: mean, variance and cluster 'prior’ for each cluster k:

273 Z %XI

plk
Yo E — )"
Pk
Tk < K .
Z/:1 Pi
[V Gl Clustering 8 1-52 April 19, 2024
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Density Classification

density
0.05 0.10 0.15 0.20 0.25
|

a1 39
Model Parameters
2
L

Observed Data Log-fikeihood
2

5 10 15 20 T T T T T
Heration N 2 3 4 5
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Kernel Density Estimation

o Kernel Density Estimation is an unsupervised procedure
@ We smooth the density estimate in the neighbourhood N (xg) with

lenghtscale A
A #x; € N(x
x() NX )

@ by the Parzen kernel estimate

N
N 1
fx(x0) = N E Kx(xo, xi),
i=1

@ Popular choice for K is the Gaussian kernel density ¢, .

Density Estimate
0.005 0.010 0.015 0.020

0.0

v t t t
100 120 140 160 180 200 220

Qustalic Rlnnd Pressiire (for CHDN arnin)
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Kernel Density Classification

@ We may estimate Kernel Density for each target class k = 1,..., K, estimate
class priors m, and use Bayes' theorem:

7T/<7%/<(X0)

PAr(G:k‘X:X()): =K -, <
Zj:l ;i (%0)

@ by the Parzen kernel estimate
T
fx(XO) = m ; K)\(Xo,X,'),

@ Popular choice for Ky is the Gaussian kernel density ¢ .

. s &80 . 2
§ g g
s £,
i ge
z g o Y
£ S 3
8 & o
S o0
Q = L.
° ° FIGURE 6.15. The population class densities may
100 140 180 220 100 140 180 220 - ) ]
Systolic Blood Pressure Systolic Blood Pressure have interesting str re (left) that disappears when

the posterior probabilities are formed (right).
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Radial Basis Functions and Kernels for Regression

@ The kernels do not have to be placed at all observation points.

@ We may select (fit) prototype parameters & and scale patameters \; to place
pre-defined number of kernels K (§;,x), j€1,...,M,\; € R, § € X.

@ and then fit the density as a linear function of kernels as basis

M
Fx) = 2 Ko (G:)8,
j=1
@ We should either fit the lengthscale parameters ); or re-normalize the radial

basis functions. Otherwise, the RBF can leave holes (upper figure,
re-normalized down).

@
©
°
@
S

\
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Mixuture Models for Density Estimation and Classification

@ One RBF kernel was fitted for each class

@ The data sample is classified according the more probable label (let kernels
vote).

@ If the covariance matrices are constrained to be scalar ¥, = o,/, we actually
fit the naive Bayes model.

@ In this case, this method was as good as logistic regression.

No CHD CHD Combined
20 3 40 S0 6 0 3 4 50 60 0 3 4 50 60
Age Age Age

0.0025

0.0015

Mixture Estimate
Mixture Estimate

00 0005 0010 0015 0.020 0025
Mixture Estimate

00 0005 0010 0015 0.020 0025

/

00 0.0005

20 30 40 S0 60 20 3 40 50 60 20 30 40 50 60
Age Age Age
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Summary

@ K-means clustering - the basic one

o the number of clusters:
o GAP
o Silhouette

The distance is crucial.
o Consider standardization or weighting the features.

K-medoids - does need metric, just a distance

hierarchical clustering

o different distance measures
e dendrogram

other approaches (mean shift clustering, Self Organizing Maps, Spectral
Clustering).
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Frequent itemsets, Association Rules

Unsupervised learning
@ No goal class (either Y nor G).
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Frequent itemsets, Association Rules

Unsupervised learning
@ No goal class (either Y nor G).
e Usually binary data Xj; € {0, 1}VxP
@ Value = 1 is our interest; for example purchase.
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Frequent itemsets, Association Rules

Unsupervised learning
@ No goal class (either Y nor G).

e Usually binary data Xj; € {0, 1}VxP

@ Value = 1 is our interest; for example purchase.

@ p may be very large; for example the size of the range of goods in an market.
@ Popular application: Market basket analysis.

o Generally: We look for L prototypes vq,..., v, € XP such that P(v) is

relatively large.

o With large p, we do not have enough data to estimate P(v;) since number of
observations with P(X = v;) is too small.
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Frequent itemsets, Association Rules

Unsupervised learning
@ No goal class (either Y nor G).
Usually binary data X € {0,1}V*P
Value = 1 is our interest; for example purchase.
p may be very large; for example the size of the range of goods in an market.

Popular application: Market basket analysis.

Generally: We look for L prototypes v, ..., vy € XP such that P(v;) is
relatively large.

o With large p, we do not have enough data to estimate P(v;) since number of
observations with P(X = v;) is too small.

o We seek for regions where P(x) is large, that can be written as conjunctive

rule on dimension conditions (7_, (X; € ;) where s; are selected values of
the feature X;.
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Hypothesis space for Apriori

ESL book Figure:

Xy X1

FIGURE 14.1. Simplifications for association rules. Here there are two inputs
X1 and Xo, laking four and six distinct values, respectively., The red squares
indicate areas of high density. To simplify the computations, we assume that the
derived subset corresponds to either a single value of an input or all values. With
this assumption we could find either the middle or right patiern, bul not the left
one.

Xy

X1
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Market Basket Analysis

@ For very large datasets, p ~ 10%, N ~ 10%; in unit ball is the distance to the
nearest neighbour ~ 0.9981.
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Market Basket Analysis

@ For very large datasets, p ~ 10%, N ~ 10%; in unit ball is the distance to the
nearest neighbour ~ 0.9981.
o Simplifications: Test on feature Xj either equal to a specific value or no

restriction at all,

@ | select combinations of items with higher number of occurences (support)
than predefined threshold t.

@ | select all combinations fulfilling conditions above.
o Categorical variables may be codded by dummy variables in advance (if not
too many).
o OneHotEncoder for each class g, a new variable X; = [X == g].
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Apriori Algorithm

1: procedure APRIORI:(X dataset, t threshold for support )

2 i+ 0

3 Generate list of candidates of the length f

4 while Candidate set not empty do

5: for each data sample do

6 for each candidate do

7 if all items of candidate appear in the data sample then
8 increase the candidate counter by 1

9

: end if
10: end for
11: end for
12: i+—i+1
13: Discard candidates with support less than t.
14: Generate list of candidates of the length i
15: Join any two candidates from previous step having i — 2
elements common. (More pruning possible.)
16: end while

17: end procedure
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Example: Apriori Algorithm

i=2
ab=2
ac=8
o t=02 =2 i=3
o txN=2= af=2 abc=2
020410 =1 2g=5 24 =4 .
e Data a=8 bc=2 2;;2 abce=2
Sbcefo  b=2 bd=0 abcf=2
c=8 be=2 abg=0 abef=2
Z ,c & d=2 bf=2 aCdfg abeg=0
acdeg e=8 bg=0 22::2 acef=2
acegl f=2 cd=2 B aceg=4
e g=5 ce=6 azg:li) adeg=1
abcefp i=j=l=0=1 cf=2 :d]f:_o aefg=0
acd p=m=n=1 cg=>5 adg—1
acegm de=1 aeg—4
acegn df=0
dg=1

af—92
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Properties of the Apriori Algorithm

@ Applicable for very large data (with high threshold t).
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Properties of the Apriori Algorithm

@ Applicable for very large data (with high threshold t).

@ The key idea:
o Only few of 2% combinations have high support > t,
o subset of high—support combination has also high support.
@ The number of passes through the data is equal to the size of the longest
supported combination. The data does not to be in memory simultaneously.
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Properties of the Apriori Algorithm

Applicable for very large data (with high threshold t).

The key idea:

o Only few of 2% combinations have high support > t,
o subset of high—support combination has also high support.

@ The number of passes through the data is equal to the size of the longest
supported combination. The data does not to be in memory simultaneously.

FPgrowth algorithm needs only two passes through the data.
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Association Rules !

@ From each supported itemset K found by Apriori algorithm we create a list of
association rules, implications of the form A = B where:
e A, B are disjoint and AUB =K
o Ais called antecedent
e B is called consequent.
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Association Rules !

@ From each supported itemset K found by Apriori algorithm we create a list of
association rules, implications of the form A = B where:
e A, B are disjoint and AUB =K
o Ais called antecedent
e B is called consequent.

@ Support of the rule T(A = B) is defined as normalized support of the
itemset K, that is normalized support of the conjunction A&B.

|datax|
T(K) =
(K) |datal
T(A= B) — |9atance|
|data|
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Rule Confidence and Lift

There are two important measures for a rule A = B:
e Confidence (predictability, pfesnost)

R

that is an estimate of P(B|A),
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Rule Confidence and Lift

There are two important measures for a rule A = B:
e Confidence (predictability, pfesnost)
T(A= B)
C(A By=—F—~
(A= B) T0A)

that is an estimate of P(B|A),
@ Support T(B) is an estimate of P(B),
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Rule Confidence and Lift

There are two important measures for a rule A = B:
e Confidence (predictability, pfesnost)
T(A= B)
C(A=B)= "7~/
(A= B) T0A)
that is an estimate of P(B|A),
@ Support T(B) is an estimate of P(B),
o Lift is the ration of confidence and expected precision:

C(A= B)
that is an estimate of %.

o Leverage is the difference of supports:

leverage(A= B) = T(A= B) — T(A)- T(B)
@ Conviction is the ratio:
1-T(B)

conviction(A = B) = 1-C(A= B)’
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Association Rule Example

ESL book example:
Association rule 2: Support 13.4%, confidence 80.8%, and Lft 2.13.

language in home = English
householder status = own
occupation = {professional/managerial}
1

income > $40,000

e K = {English, own, prof/man, income>$40000},

@ 13.4% people has all four properties,

@ 80.8% of people with {English, own, prof/man} have income> $40000,
e T(income > $40000) = 37.94%, therefore Lift = 2.13.
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The Goal of Apriori Algorithm !

@ Apriori finds all rules with high support.
@ Frequently, it finds many of rules.

@ We usually select lower threshold ¢ on confidence, that is we select rules with
T(A= B)>tand C(A= B) > c.

@ Conversion of itemsets to rules is usually relatively fast compared to search of
itemsets.

@ See lispMiner for user interface and a lot of more.
@ Python Apriori library:

from mixtend.preprocessing import TransactionEncoder

from mlixtend.frequent_ patterns import apriori, association_rules
from mixtend.frequent_patterns import fpgrowth,fpmax

from mlixtend.frequent_ patterns import hmine
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Demographical Data ESL Example

Feature Demographic # Values Type
1 Sex 2 Categorical
2 Mamntal status 5] Categorical
3 Age 7 Ordinal
4 Education & Ordinal
H Occupation 9 Categorical
6 Income 9 Ordinal
7 Years in Bay Area 5 Ordinal
8 Dual incomes 3 Categorical
9 Number in household 9 Ordinal
10 Number of children 9 Ordinal
11 Householder status 3 Categorical
12 Type of home 5] Categorical
13 Fthnic clagsification 8 Categorical
14 Language in home 3 Categorical

Machine Learning Association Rules, Apriori 9 53-93 April 19, 2024 38 /48



Demographical Example — Continuing

@ N = 9409 questionnaires, the ESL authors selected 14 questions.
@ Preprocessing:
e na.omit() remove records with missing values,
e ordinal features cut by median to binary,
o for categorical create dummy variable for each category.
@ Apriori input was matrix 6876 x 50.
@ Output: 6288 association rules

e with max. 5 elements
o with support at least 10%.
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Negated Literals — Useful, Problematic

Association rule 3: Support 26.5%, confidence 82.8% and lift 2.15.

language in home = English
income < $40,000
marital status = not maerried
number of children = ¢

s
education ¢ {college graduate, graduate study}
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Non—frequent Values Dissapear

Relative Frequency in Association Rules Relative Freguency in Data
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Unsupervised Learning as Supervised Learning

:;Scw— >{<\‘Nf
o A =
o o
1 0 1 2 1 0 1 2
Xy X1

@ We add additional attribute Y.
@ Y¢ =1 for all our data.

@ We generate randomly a dataset of similar size with uniform distribution, set
Y¢ = 0 for this artificial data.

@ The task is to separate Y =1 and Yg = 0.
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Generalize Association Rules

@ We search for high lift, where probability of conjunction is greater than
expected.

o Hypothesis is specified by column indexes j and subsets of values s;
corresponding features X;. We aim:

(X es) ]| =

JjeET

= \

N
Z (i €5) | >>MesP(X €s)
1 JET

@ On the data from previous slide, CART (decision tree alg.) or PRIM ('bump
hunting') may be used.

@ Figure on previous slide: Logistic regression on tensor product of natural
splines.

@ Other methods may be used. All are heuristics compared to full evaluation by
Apriori.
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1:
2:
3:
4:
5:
6:
7
8:
9:

procedure FP—TREE:(Data )
Calculate counts of items (singletons)
Create table header ordered by decreasing item count
for each data sample do

order items according to header
insert branch into the tree
increase all counters on the inserted branch

end for
return the tree

10: end procedure

Data ordered
a b ce fo eca b f Header table root
Head of M
acg cag i node-links @ @
. Ed v
el e :
acdeg ecagd ;
acegl ecag i ’ @
. v
ej , =
abcefp .
m Association Rules, Apriori 9 April 19, 2024
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Frequent Itemsets with only 2 pass through data

@ Build an internal structure called FP-tree

o Call FP-growth to generate frequent itemsets

o Each construction of a conditional tree needs 2 pass through the parent tree
e an optimized version with only 1 pass is presented. (It needs an additional
data structure array.)

@ FP-max to find maximal itemsets
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Frequent Itemsets with only 2 pass through data

@ Build an internal structure called FP-tree

o Call FP-growth to generate frequent itemsets
o Each construction of a conditional tree needs 2 pass through the parent tree
e an optimized version with only 1 pass is presented. (It needs an additional

data structure array.)

@ FP-max to find maximal itemsets
e non of immediate supersets is frequent

@ FP-close to find close itemsets

e non of immediate supersets has the same support.
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FP-tree

o FP-tree contains all frequency information of the
database. i3
1=
@ Principle: If X and Y are two itemsets, the count of ———
; . X abc=2
itemsets X U Y in the database is exactly that of Y abd—0

in the restriction of the database to those abe—?
transactions containing X. abf=2
abg=0
Header table a Cd =2
Head of ace=6
1151;1 node-links acf:2
S| acg=5
a:8 < ade:1

g5 N _
s adf=0
f:2 adg=1
d:2 X aeg=4
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FPgrowth*

1: procedure FPGROWTH*:(T a conditional FP-tree )

2 if T only contains a single path P then

3 for each subpath Y of P do

4 output pattern Y U T .base with

5: count = smallest count of nodes in Y

6 end for

7 else

8 for each i in T.header do

o: Y < T.base U {i} with i.count

10: if T.array is not NULL then

11 construct a new header table for Y's FP-tree from T .array
12: else

13: construct a new header table for Y's from T

14: end if

15: construct Y's conditional FP-tree Ty and its array Ay;
16: if Ty # 0 then

17: call FPgrowth*(Ty)

18: end if

19: end for
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t = 2

cC|6

Tigy = [a:5,c:5,e:4] alels
gj4|5|5
b[2][2]2]o0 -
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