
Holevo bound

The measurement postulate implies that the von Neumann entropy corresponds
exactly to the entropy of the random variable that is the result of the measurement
of a given mixed state in the basis of its eigenvectors. However, as we have already
said, a „properly“ defined entropy should take into account all possible measure-
ments. The random variable about which we are trying to obtain information by
measurement is the random variable with the distribution defining an ensemble of
states. The exact relation of von Neumann entropy to the information obtainable
by arbitrary measurements is unknown. The most important result in this respect
is the so-called Holevo bound.

Věta (Holevo bound). Let X be a discrete random variable with distribution Pr[X =
i] = pi. Let ρ =

∑n
i=1 piρi be a mixed state generated by encoding the value of

X using the states of ρi. Let Y be the random variable of the results of some
measurement of the state ρ. Then

I(X : Y ) ≤ S(ρ)−
n∑

i=1

piS(ρi) .

Holevo bound says that the von Neumann entropy is an upper estimate for the
information available by any measurement of the random variable X. If all states
of ρi are pure, then the inequality has the form I(X : Y ) ≤ S(ρ). Moreover, we
know that S(ρ) ≤ H(X), which gives the classical I(X : Y ) ≤ H(X).

The equality S(ρ) = H(X) occurs precisely when the states are pure and dis-
tinguishable. Then it is a classical random variable, it is not important that we
understand its values as quantum states. Then also I(X : Y ) = H(X) for measu-
rements in the basis containing the chosen states, when Y = X.

For the proof of the Holevo bound, consider, in addition to the prepared and
measured system denoted by Q, two additional systems. A system P , containing
information about the value of the random variable X encoded in basis states, and
a system M containing in turn the similarly encoded result Y of the measurement
given by the operators (Mj). After preparation, the density matrix of this composite
system is

ρPQM
0 =

∑
i

pi|i⟩⟨i| ⊗ ρi ⊗ |0⟩⟨0| ,

and after the measurement it is

ρPQM
1 =

∑
i,j

pi|i⟩⟨i| ⊗MjρiM
†
j ⊗ |j⟩⟨j| .

It turns out that the Holevo bound is actually the inequality

S(ρP1 : ρM1 ) ≤ S(ρP0 : ρQ0 ) .

For the right hand side we can verify the following:

ρP0 =
∑
i

pi|i⟩⟨i| S(ρP0 ) = H(X)

ρQ0 = ρ =
∑
i

piρi S(ρQ0 ) = S(ρ)

ρPQ
0 =

∑
i

pi|i⟩⟨i| ⊗ ρi S(ρPQ
0 ) = H(X) +

∑
i

piS(ρi)
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For the left hand side, first note that tr(MjρiMj) is the probability that the measu-
rement result is j, under the condition that the measured state is ρi, let us denote
it by pj|i. Since the measurement result is independent of the choice of X, pipj|i is
the joint probability of i and j, let us denote it by pij . Thus:

ρP1 =
∑
i,j

pij |i⟩⟨i| =
∑
i

pi|i⟩⟨i| S(ρP1 ) = H(X)

ρM1 =
∑
i,j

pij |j⟩⟨j| =
∑
j

pj |j⟩⟨j| S(ρM1 ) = H(Y )

ρPM
0 =

∑
i,j

pij |i⟩⟨i| ⊗ |j⟩⟨j| S(ρPM
1 ) = H(X,Y )

Holevo bound is now obtained as follows:

S(ρP0 : ρQ0 ) = S(ρP0 : ρQM
0 ) ≥ S(ρP1 : ρQM

1 ) ≥ S(ρP1 : ρM1 ).

The derivation follows from three intuitive (and provable) principles:
• mutual information is not changed by adding an additional (uncorrelated)

system;
• the mutual information of two systems cannot be increased by any measu-

rement (or any unitary operations);
• the mutual information cannot be increased by removing part of one of the

systems.
The first principle simply follows from the relation of entropy of decomposable

states S(σ ⊗ ρ) = S(σ) + S(ρ), which we get directly from the definition.
The third principle follows from strong subadditivity. In our case, we have

S(ρPQM
1 ) + S(ρM1 ) ≤ S(ρPM

1 ) + S(ρQM
1 ),

where we get the required

S(ρP1 ) + S(ρM1 )− S(ρPM
1 ) ≤ S(ρP1 ) + S(ρQM

1 )− S(ρPQM
1 ) .

Regarding the second principle, let us first note that the matrices UρU† are
similar, i.e. they have the same diagonal form, i.e. S(ρ) = S(UρU†). It is natural
that the entropy does not change by choosing a different basis. For measurements,
we can reduce the principle to the second one by showing that each measurement
can be viewed as a unitary transformation of our system along with some external,
additional system, which we again remove after the measurement. This elegant and
useful construction proceeds as follows.

Let us denote the system to be measured by Q and consider measurements using
the operators (Mj). The additional system M will have base elements |j⟩. Then the
“indexing” mapping

U : |φ⟩ ⊗ |0⟩ 7→
∑
j

Mj |φ⟩ ⊗ |j⟩

is unitary. More precisely, this mapping preserves the scalar product (as can be
straightforwardly verified using the completeness relation

∑
j M

†
jMj = E), and

can thus be extended to the unitary mapping of the system Q⊗M . The resulting
density matrix is thus

ρQM = U(|φ⟩⟨φ| ⊗ |0⟩⟨0|)U† =
∑
j,j′

Mj |φ⟩⟨φ|M†
j′ ⊗ |j⟩⟨j′|
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and the reduced matrix for the original system is

ρQ =
∑
j

Mj |φ⟩⟨φ|M†
j ,

as we wanted.
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