
Quantum entropy

Entropy is a measure of the information content of a random variable. Classical
entropy, measured in bits and called Shannon entropy after its inventor, is for a
discrete random variable X with probabilities Pr[X = i] = pi, defined by the
formula

H(X) = −
∑
i

p(i) log pi.

This value can be interpreted informally as the average number of bits of the address
of the random event that occurred. The basic property of Shannon entropy that
shows that it actually expresses information content is the source coding theorem,
also called the compression theorem or the noiseless channel capacity theorem.
It shows that a sequence n of independent copies of a random variable X can be
encoded by a sequence of bits of length nH(X) with error probability asymptotically
going to zero for large n. (The theorem is proved by noting that the vast majority
of sequences have the expected distribution of the number of letters, and showing
that there are almost exactly 2nH(X) of such typical sequences of length n.)

The total information of a pair of random variables H(X,Y ) is at most the
sum of H(X) + H(Y ), but can be smaller. For example, if Y is a function of X,
then (X,Y ) is completely determined by X and H(X,Y ) = H(X). The remaining
information content of Y given knowledge of X is the conditional entropy H(Y |X).
(We should correctly say „average entropy“ , since it is the average over the different
values of X. The entropy H(Y ) is itself an average over different values of Y .) So
the value H(Y ) − H(Y |X) expresses how much information we learn about Y if
we know X. Similarly, H(X)−H(X |Y ) is a measure of the information Y reveals
about X. The expected relation H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X |Y )
holds. Value

I(X : Y ) := H(X) +H(Y )−H(X,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X)

is thus a measure of the dependence of the two quantities and is called mutual
information. Note that this value is symmetric in X and Y .

The information content of a quantum system is given by the uncertainty about
the measurement results. In other words, the result of a given measurement of a
given system is a random variable with some entropy. However, the entropy of a
quantum state must take into account all possible measurements. If the system is
in a pure state, there is a measurement whose result is given uniquely (it is any
measurement in the basis containing the measured state). Thus, the entropy of a
quantum system is non-zero only in the case of mixed states and comes from the
uncertainty about the prepared state. However, it is also affected by the nature of
the ensemble. Let us illustrate this with the states that occur in the BB84 protocol.
If we know what base Alice encodes in, but we don’t know what bit she encodes,
the system is in a state
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|1⟩⟨1| = 1

2
E .

Measuring in the canonical basis is equivalent to accepting a random bit. The fact
that the value was encoded using quantum states rather than classically plays no
role here. The entropy of such a state should therefore be equal to one. If, on the
other hand, we know that Alice encoded zero, but we do not know in what basis,
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we get a matrix
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The diagonal form is with respect to the (normalized) eigenvectors
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Thus, we get the same density matrix if we choose v1 or v2 with probabilities
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4 . The classical entropy of such a random variable is
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The entropy is not equal to one because the selected bit was encoded into two states
that are not completely distinguishable, thus some information was lost.

We can also use this example to illustrate the independence of the measurement
result from the way the density matrix was created. Let us examine the probability
of obtaining a result corresponding to |0⟩, |1⟩ when measuring in the |0⟩ basis.
By Postulate 3’, this is tr(|0⟩⟨0|ρ) = 3/4. This corresponds to simple reasoning:
with probability one-half we have a state |0⟩, and then the measurement result
corresponds to |0⟩ with certainty; with probability one-half we have a state |+⟩,
where the result corresponds to |0⟩ with probability one-half. Similarly, we could
verify that if |v1⟩ = α1|0⟩+ β1|1⟩ and |v2⟩ = α2|0⟩+ β2|1⟩, then
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These examples lead to the definition of the von Neumann entropy density matrix
ρ. It is the entropy of the random variable corresponding to the choice of the
eigenvectors ρ, which can be written concisely as

S(ρ) = − tr(ρ log ρ) .

Let us list some properties of quantum entropy. For the entropy of the mixed state
ρ =

∑
i piρi, the following holds

S(ρ) ≤ H(X) +
∑
i

piS(ρi),

where X is the random variable of the state selection ρi, i.e. a discrete random
variable with probability Pr[X = i] = pi. Equality holds if and only if the states
ρi are distinguishable, i.e. if they are defined on mutually orthogonal spaces. The
entropy of a state ρ is at most the entropy of the corresponding choice of ρi plus the
average entropy contained in ρi itself. If the states ρi are pure, we get S(ρ) ≤ H(X).
If they are pure and distinguishable, we have S(ρ) = H(X). Then it is a classical
random variable, it does not matter that we encode its values by quantum states.

For complex systems, strong subadditivity holds:

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) .

Let us define the mutual information of two quantum states as

S(ρA : ρB) := S(ρA) + S(ρB)− S(ρAB) .
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