
Mixed states

By the mixed state of a system we mean the probabilistic combination of the
states we have discussed so far, called pure. (Note that formally a pure state is a
special case of a mixed state). For computational reasons, mixed states are usually
represented by a density matrix rather than a vector. Thus, the density matrix of
a mixed state is of the form

ρ =
∑

piρi,

where pi are non-negative numbers with sum one (i.e., discrete probability distri-
butions) and ρi are density matrices. The set {(ρi, pi)} where

∑
pi = 1 is called

an ensemble of states. A mixed state thus represents a situation where, in addition
to the underlying quantum-mechanical uncertainty about the measurement result,
there is also „ordinary“ probabilistic uncertainty about what pure state the system
is in. Note that we get a mixed state even if the states ρi are themselves mixed.
This shows a fundamental advantage of this approach to mixed states: we can treat
the density matrix as a single state, regardless of whether it is mixed or pure. It
is easy to see that this is also true of the evolution of a system: if ρ is the density
matrix of a system, then UρU† is the density matrix of that system after applying
the unitary operation U (including the appropriate probabilistic interpretation).

The previous observation can be reinforced: we can operate on a mixed state
without knowing what pure states it consists of. Indeed, the same density
matrix can arise from different sets of states. However, we noted that not knowing
the „correct“ decomposition of the density matrix into pure states does not prevent
us from computing the evolution of the system. We now show that the same is
true for measurements: the density matrix uniquely determines the results of the
measurements (i.e., their probability distribution). To this end, we define a more
general notion of measurement than that of projective measurement, to which we
have restricted ourselves in formulating the relevant postulate.

Postulate 3’ The measurement of a quantum system is given by a system of
operators Mi satisfying the condition∑

i

M†
iMi = I.

After measuring the state |ψ⟩, the system with probability ⟨ψ|M†
iMi|ψ⟩ is in the

state
Mi|ψ⟩√

⟨ψ|M†
iMi|ψ⟩

.

If the use of the operator Mi is associated with the measured value mi, then the
expected value of the measurement is

E(m) =
∑
i

pimi = mi⟨ψ|M†
iMi|ψ⟩ = ⟨ψ|M |ψ⟩ ,

where
M =

∑
miM

†
iMi

is called observable.
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Using the density matrix ρ = |ψ⟩⟨ψ| and the relation ⟨ψ|A|ψ⟩ = tr(A|ψ⟩⟨ψ|), we
obtain the equivalent condition that the i-th state measurement ρ will occur with
probability tr(M†

iMiρ) and the system will be in the state after such a measurement

MiρM
†
i

tr(M†
iMiρ)

.

The mean value of the measurement is tr(Mρ).
Thus, the state after the measurement can be seen as a mixed state

∑
iMiρM

†
i .

From linearity we get the desired property that the above holds even if the original
measured state ρ was mixed, independently of the particular set of states. Let us
illustrate this fact on the expected value. If ρ =

∑
piρi, where ρi are the pure states,

then the expected outcome of the measurement of the pure state ρi is tr(Mρ).
Since the state ρi is measured with probability pi, the mean of the mixed state
measurement is ∑

pi tr(Mρi) = tr(M
∑

piρi) = tr(Mρ) .

Note further that while we need to know the measurement operators to compute
the state of the system after the measurement, for the statistics of the results it
is sufficient to know the set {M†

iMi}, which is the decomposition of the identity
into positive operators. For a one-time measurement where we are not interested
in the state of the system after the measurement (e.g., this is naturally true for
destructive measurements such as photon detection), it is sufficient to specify such
a set Ei. A measurement defined in this way is called POVM (positive operator
value measurement) in the literature.

The diagonal form of the pure state density matrix contains exactly one 1 on the
diagonal. It follows that the trace of the pure, and hence of any mixed state matrix,
is equal to one. Since density matrices are positive operators, their diagonal form
represents a discrete probability distribution. In other words, each mixed matrix
can be viewed as a probabilistic combination of projections onto some orthonormal
basis.

Recall that the density matrix of a general pure qubit is of the form 1
2 (E+xX+

yY + zZ), where (x, y, z) is a unit vector. The mixed state of the qubit is therefore
of the form

1

2

∑
pi (E + xiX + yiY + ziZ) .

Vector ∑
pi (xi, yi, zi)

is the weighted average (center of gravity) of the points (xi, yi, zi). The convexity
of the sphere implies that it is a vector less than one. Conversely, each point in
the unit sphere represents a mixed state. Thus the Bloch ball represents all mixed
states, with the pure states lying on the surface.

Let ρAB be the density matrix of the composite system. We define the reduced
density matrix on system A as

ρA := trB
(
ρAB

)
,

where trB is the so-called partial trace defined by a linear extension of the relation

trB(ρa ⊗ ρb) = tr(ρb)ρa
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or, written in basis vectors,

trB (|ai⟩⟨aj | ⊗ |bk⟩⟨bℓ|) = δkℓ|ai⟩⟨aj | .
The reduced density matrix ρA has a clear and important physical meaning. It
captures the properties of the system A understood in isolation. More precisely, the
measurement results of the system A alone are the same for the state ρA as for
the state ρAB . Even more precisely, the measurement of the state ρA given by the
operators (Mj) has the same properties as the measurement results of the state ρAB

given by the operators (Mj⊗E). Another physical view of the same statement is that
the matrix ρA describes the state of system A after (any!) measurement of system
B for which we do not know the outcome (this uncertainty translates into a mixed
state ρA). Indeed, any such measurement releases system A from entanglement with
system B. These two views are equivalent: if we are restricted to measurements of
system A, we cannot know whether system B has been measured or not.
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