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Abstract
Convincing evidence indicates that prenatal exposure to the gonadal
hormone, testosterone, influences the development of children’s sex-
typical toy and activity interests. In addition, growing evidence shows
that testosterone exposure contributes similarly to the development of
other human behaviors that show sex differences, including sexual ori-
entation, core gender identity, and some, though not all, sex-related
cognitive and personality characteristics. In addition to these prenatal
hormonal influences, early infancy and puberty may provide additional
critical periods when hormones influence human neurobehavioral or-
ganization. Sex-linked genes could also contribute to human gender
development, and most sex-related characteristics are influenced by
socialization and other aspects of postnatal experience, as well. Neu-
ral mechanisms underlying the influences of gonadal hormones on
human behavior are beginning to be identified. Although the neural
mechanisms underlying experiential influences remain largely uninves-
tigated, they could involve the same neural circuitry as that affected by
hormones.
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Gonadal hormones:
gonads’ products,
including androgens,
produced mainly by
the testes, and
estrogens and
progesterone,
produced mainly by
the ovaries

Testosterone: the
major androgenic
hormone produced by
the testes
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INTRODUCTION
Males and females differ both behaviorally and
neurally. Indeed, the existence of behavioral sex
differences implies the existence of neural sex
differences, given that behavior depends on the
nervous system. Contemporary research shows
that gendered behavior results from a complex
interplay of genes, gonadal hormones, social-
ization, and cognitive development related to
gender identification. This article focuses on
the role of gonadal hormones, particularly
testosterone, during early development. This
focus has been chosen because extensive
experimental research in nonhuman mam-
mals shows that testosterone exerts powerful

influences on both gender-related behavior
and the developing brain and because recent
research provides convincing evidence that
testosterone exerts similar influences on human
development. The article critically reviews the
evidence of prenatal hormonal influences on
human neurobehavioral sexual differentiation
and contextualizes these hormonal effects with
genetic, social, and cognitive influences on
gender development. It also critically reviews
the evidence regarding possible neural changes
underlying hormonal influences on human
behavior and suggests that neural systems sim-
ilar to those influenced by hormones underlie
other types of influences on gendered behavior.

GENERAL PRINCIPLES OF
SEXUAL DIFFERENTIATION
Gender development begins at conception
with the union of two X chromosomes (genetic
female) or an X and a Y chromosome (genetic
male). The main role of these sex chromosomes
in human sexual differentiation is to determine
whether the gonads become testes or ovaries
(Arnold 2009). Genetic information on the Y
chromosome leads to testicular differentiation
(Wilson et al. 1981), whereas without the Y
chromosome, ovaries develop instead of testes.
The testes begin to produce testosterone
prenatally, and the ovaries do not (Wilson et al.
1981). Consequently, male and female fetuses
differ in the amount of testosterone to which
they are exposed. This sex difference appears
to be maximal between about weeks 8 and 24
of human gestation, with testosterone in males
tapering off before birth (Carson et al. 1982,
Reyes et al. 1973). In nonhuman mammals
at comparable stages of early development,
testosterone and hormones produced from
testosterone influence neural survival, neuro-
anatomical connectivity, and neurochemical
specification, producing sex differences in
brain structure and function (McCarthy et al.
2009). These effects of testosterone on neural
development provide powerful mechanisms
for influencing behavior across the life span.
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Rough-and-tumble
play: juvenile
behavior characterized
by overall body contact
or playful aggression;
more common in
males than in females

SDN-POA: sexually
dimorphic nucleus of
the preoptic area

ANIMAL MODELS OF
HORMONE EFFECTS
The influences of early testosterone exposure
on neurobehavioral development were first
documented in a landmark study by Phoenix
et al. (1959). They showed that administering
testosterone to pregnant guinea pigs produced
female offspring who showed increased capacity
for male-typical sexual behavior and decreased
capacity for female-typical sexual behavior in
adulthood (Phoenix et al. 1959). Phoenix et al.
contrasted these early, and permanent, effects
of hormones, which they called organizational
because they were thought to reflect changes
in the organization of neural systems, with the
later, and transient, effects of hormones after
puberty, which they called activational because
they were thought to reflect transient activation
of the previously organized systems. This orga-
nizational/activational distinction has stood up
well in the subsequent 50 some years (Arnold
2009), and thousands of studies on numerous
species, including not only guinea pigs, but
also rats, mice, hamsters, gerbils, ferrets, dogs,
sheep, and marmoset and rhesus monkeys,
have documented the early organizing effects
of testosterone on a wide variety of behaviors
that show sex differences (Hines 2004, 2009;
McCarthy et al. 2009). For instance, the female
offspring of rhesus macaques treated with
testosterone during pregnancy show increased
male-typical, and reduced female-typical,
sexual behavior in adulthood, and increased
male-typical, rough-and-tumble play as
juvenile animals.

The organizing influences of testosterone
on behavioral development were originally
thought to reflect subtle neural changes
(Phoenix et al. 1959). Subsequent research,
however, has shown that early hormone manip-
ulations produce dramatic changes in the struc-
ture of neural regions with the relevant hor-
mone receptors. The first dramatic neural sex
difference described in the rodent brain was the
sexually dimorphic nucleus of the preoptic area
(SDN-POA). This region of the anterior hy-
pothalamic/preoptic area (AH/POA) is several

fold larger in the adult male rat than in the adult
female rat, and its volume can be altered by
manipulating testosterone during early devel-
opment (Gorski et al. 1978, 1980). Administer-
ing testosterone to developing female animals
increases the volume of the SDN-POA, and re-
moving testosterone from developing males re-
duces its volume (Dohler et al. 1984, Jacobson
et al. 1981). Other neural regions in addition
to the SDN-POA show sex differences, and in
these regions too, the size of the sex difference is
influenced by the early hormone environment.
For instance, a second region of the preoptic
area, the anteroventral paraventricular nucleus,
is larger and contains more neurons in female
rats than in males, and these characteristics are
reduced by early testosterone treatment (Ito
et al. 1986, Sumida et al. 1993). Similar neural
sex differences have been reported in other ro-
dent species, including gerbils, hamsters, mice,
and guinea pigs, as well as in ferrets, sheep, and
rhesus monkeys, and studies investigating early
hormone influences have found similar results
to those seen in rats, in other rodent species, and
in ferrets (Bleier et al. 1982, Byne 1998, Hines
et al. 1987, Roselli et al. 2004, Simerly et al.
1997, Tobet et al. 1986, Ulibarri & Yahr 1988).

Some general principles can be derived from
the extensive experimental work in nonhuman
mammals, and these principles have informed
hypotheses regarding possible hormonal influ-
ences on human brain and behavior (see Hines
2009, for a review). First, during early devel-
opment, estrogens generally do not promote
female-typical development. Instead, female-
typical development occurs in the absence of
testicular hormones. Thus, exposure to high
levels of estrogen is not expected to femininize
neurobehavioral development. Second, the ef-
fects of testosterone on development are graded
and linear; the more hormone the animal is
exposed to, the more male-typical its behav-
ior and brain structure become. An implica-
tion of this principle is that gonadal hormones
can contribute to individual differences within
each sex, as well as to differences between the
sexes. Third, neurobehavioral sexual differenti-
ation is a multidimensional process. The many
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Critical period:
programmed stage of
development at which
an influence is most
likely (or only likely)
to occur. Sometimes
called sensitive period

Androgenic
(anti-androgenic)
progestins: synthetic
hormones that mimic
progesterone, but
which can also mimic
androgens
(androgenic) or impair
androgen action
(antiandrogenic)

Congenital adrenal
hyperplasia (CAH):
genetic disorder
causing increased
adrenal androgen
production, beginning
prenatally

behaviors and neural systems that differ for
males and females can be influenced by hor-
mones during slightly different critical peri-
ods, or can be sensitive to different doses of
hormone, or to different metabolites of testos-
terone, or can involve different downstream
mechanisms such as cofactors. Implications of
this principle include an expectation that the
many human behaviors and brain structures
that differ by sex may not relate in a uniform way
to one another and that individuals can develop
complicated patterns of sex-typed behavior, be-
ing masculine in some respects and feminine
in others. Fourth, the effects of hormones can
differ somewhat from one species to another.
For instance, behaviors that are influenced in
one species may not be influenced in all others.
Similarly, brain regions that differ for males and
females in one species may not show a sex dif-
ference in another. Thus the specific effects of
gonadal steroids seen on the brain and behav-
ior of nonhuman mammals cannot be automat-
ically generalized to humans, as well. Instead,
hypothesized neural and behavioral influences
of testosterone during early development must
be evaluated directly in humans. Fifth, the be-
haviors and neural features that are influenced
by gonadal hormones are those that show sex
differences, meaning that they differ on average
for males and females. Therefore, the charac-
teristics that are likely to be influenced in hu-
mans are also those that show sex differences.

HUMAN RESEARCH
Ethical considerations generally preclude ex-
perimental manipulations of gonadal hormones
in humans during early development. However,
information from genetic syndromes that pro-
duce fetal hormone abnormality, as well as from
situations in which pregnant women have been
prescribed hormones, and studies relating nor-
mal variability in hormones early in life to nor-
mal variability in subsequent behavior all sug-
gest that hormones contribute to human gender
development. The most convincing evidence
of these influences has come from studies of
childhood play.

Why Study Children’s Play?
Girls and boys differ in their toy, playmate, and
activity preferences (Hines, 2010a). For exam-
ple, boys tend to prefer toy vehicles, whereas
girls tend to prefer dolls. Girls and boys also
generally prefer playmates of their own sex, and
boys spend more time in rough-and-tumble
play than girls do. Children’s sex-typed play
behavior is the aspect of human gender devel-
opment that has been studied most extensively
in relation to the early hormone environment.
This focus on childhood play reflects several
considerations. First, children spend most of
their time playing, and play is thought to be
essential for healthy cognitive and emotional
development (Ginsburg et al. 2007, Piaget
1970, Vygotsky 1976). Second, children’s
sex-typed play behavior can be assessed readily
and reliably. Third, large sex differences
exist in children’s play, larger than those in
cognitive abilities or personality characteristics
(Hines 2010b), providing scope for detecting
hormonal influences. Fourth, sex differences
in children’s play are evident early in life
and relate to other behaviors that show sex
differences, including sexual orientation and
gender identification (Bailey & Zucker 1995,
Green 1985, Hines et al. 2004). Fifth, play
can be assessed during a period of hormonal
quiescence, allowing examination of the early
and permanent organizational influences of
hormones on brain development, prior to the
addition of the transient, activational influences
of hormones that occur after puberty.

Several types of studies provide convergent
evidence that testosterone concentrations
prenatally influence children’s subsequent sex-
typed toy, playmate, and activity preferences.
Studies of girls exposed to unusually high
levels of testosterone and other androgens
before birth, because they have the genetic
disorder known as classic congenital adrenal
hyperplasia (CAH), consistently find that these
girls show increased male-typical play and
reduced female-typical play (Berenbaum &
Hines 1992, Dittmann et al. 1990, Ehrhardt
et al. 1968, Ehrhardt & Baker 1974, Hall et al.
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Androgens:
substances, including
testosterone, that
promote
masculinization.
Produced by the testes,
adrenal glands, and
ovaries, with the testes
the largest source

Virilized genitalia:
masculinized genitalia,
typically involving an
enlarged clitoris and
partially fused labia

2004, Nordenstrom et al. 2002, Pasterski et al.
2005). Similarly, children whose mothers took
androgenic progestins during pregnancy have
shown increased male-typical toy and activity
preferences, whereas the opposite occurs in
children whose mothers took antiandrogenic
progestins (Ehrhardt et al. 1977, Ehrhardt &
Money 1967).

Is the Behavioral Alteration Caused
by Hormones Acting on the
Developing Brain?
The external genitalia, as well as the brain, con-
tain androgen receptors, and girls with CAH, as
well as those whose mothers took androgenic
progestins, are typically born with varying de-
grees of genital virilization (enlarged clitoris,
fused labia). Those skeptical of gonadal hor-
mone influences on human neurobehavioral de-
velopment suggest that the abnormal genital
appearance, rather than the neural influences
of androgens, could cause behavioral masculin-
ization (Fausto-Sterling 1992, Jordan-Young
2010). Specifically, they suggest that parents
may treat their daughters differently because of
the girls’ external virilization at birth and that
this difference in parental treatment could al-
ter sex-typed behavior. In addition, they sug-
gest that virilized genitalia could reduce self-
identification as female, which could in turn
cause increased male-typical behavior.

Some evidence suggests that parents can
influence the development of children’s
gender-typical behavior. For instance, parents
generally encourage sex-typical play (Fagot
1978, Langlois & Downs 1980, Pasterski et al.
2005), and the amount of such encouragement
has been found to correlate with the amount
of sex-typed toy play, at least among typically
developing children (Pasterski et al. 2005).
However, parents have been found to offer
more, rather than less, encouragement of
sex-typical play to their daughters with CAH
than to their daughters who do not have the
disorder (Pasterski et al. 2005), suggesting that
parental encouragement is not responsible for
cross-gendered toy choices in girls with CAH.

Similarly, although gender identification
plays a role in children’s acquisition of gender-
related behavior, at least in typically developing
children (Hines 2010a, Ruble et al. 2006), it
is unlikely that the male-typical behavior in
girls with CAH results solely from altered
gender identity based on genital virilization
at birth. Evidence arguing against this expla-
nation comes from studies relating normal
variability in prenatal testosterone exposure
to normal variability in subsequent behavior.
Testosterone concentrations in maternal blood
samples taken during pregnancy or in amniotic
fluid from normally developing fetuses relate
positively to male-typical childhood behavior
(Auyeung et al. 2009b, Hines et al. 2002).
Because the children in these studies have nor-
mal appearing genitalia, it is unlikely that differ-
ential parental socialization or changes in gen-
der identification based on genital appearance
account for the observed relationships between
prenatal testosterone and postnatal behavior.

Researchers have also looked at species in
which children’s toys are novel objects and
therefore not subject to the socialization his-
tories or processes of gender identification
thought to explain sex-typed toy preferences in
children. Two studies of nonhuman primates
have reported sex-typed toy preferences similar
to those seen in children. Male vervet monkeys
(Alexander & Hines 2002) have been found to
spend more time than females contacting toys
that are typically preferred by boys (e.g., a car)
and less time contacting toys that are typically
preferred by girls (e.g., a doll) (Figure 1). Sim-
ilarly, male rhesus monkeys have been found to
prefer toys normally preferred by boys (wheeled
toys) to plush toys (Hassett et al. 2008). These
findings show that sex-typed toy preferences
can arise independent of the social and cogni-
tive processes involved in gender development.

Rethinking Children’s Preferences
for Sex-Typed Toys
Children’s sex-typical toy preferences have
been widely assumed to result from social-
ization and other postnatal factors and to
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Figure 1
Examples of a male and a female vervet monkey contacting human children’s sex-typed toys. The female
animal (left) appears to be inspecting the doll in a manner similar to that in which vervet monkeys inspect
infant vervets. The male animal (right) appears to be moving the car along the ground as a child might do.
Reproduced by permission from Alexander & Hines (2002).

provide rehearsals for adult sex-typed social
roles. Evidence of inborn influences has led
researchers to reevaluate this perspective and
to investigate the object features that make
certain toys more or less interesting to brains
exposed prenatally to different amounts of
testosterone. Although boys’ toys and girls’
toys differ in shape and color (boys’ toys tend
to be angular and blue, whereas girls’ toys tend
to be rounded and pink), sex differences in toy
preferences are present in very young infants
(Alexander et al. 2009b, Campbell et al. 2000,
Jadva et al. 2010, Serbin et al. 2001), before
sex differences in color or shape preferences
are seen ( Jadva et al. 2010), suggesting that the
object preferences do not result from the color
or shape preferences. Another possibility is
that boys like toys that can be moved in space,

and prenatal androgen exposure may increase
interest in watching things move in space
(Alexander 2003, Alexander & Hines 2002,
Hines 2004), perhaps by altering development
of the visual system (Alexander 2003).

Early Hormone Influences on Sexual
Orientation and Core Gender Identity
Adult behaviors that show sex differences,
including sexual orientation and core gender
identity, also appear to be influenced by prena-
tal testosterone exposure. Women with CAH
not only recall more male-typical childhood
behavior, but also show reduced heterosexual
orientation as adults, and these two outcomes
correlate (Hines et al. 2004; see Meyer-
Bahlburg et al. 2008 for a review of additional
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studies of CAH and sexual orientation). Nor-
mal variability in testosterone prenatally, e.g.,
from maternal blood or amniotic fluid, has not
yet been related to sexual orientation, but a
characteristic that is thought to provide an indi-
rect measure of prenatal testosterone exposure,
the ratio of the second to the fourth digit of the
hand (2D:4D), which is greater in females than
in males, has been linked. A study of more than
200,000 individuals, who measured their own
2D:4D and reported their sexual orientation
online, found that 2D:4D related as predicted
to sexual orientation in males, but not in females
(Collaer et al. 2007). A meta-analysis that did
not include this large study reached a somewhat
different conclusion, however, finding that
2D:4D related as predicted to sexual orienta-
tion in females, but not in males (Grimbos et al.
2010). Finger ratios are probably a weak corre-
late of prenatal testosterone exposure, perhaps
explaining the somewhat inconsistent results.

Women with CAH not only show reduced
heterosexual interest, but also show diminished
identification with the female gender, and this
too correlates with their recalled childhood
sex-typical behavior (Hines et al. 2004; see
Hines 2010a for a review of studies of gender
identity in females with CAH). About 3% of
women with CAH express a desire to live as
men in adulthood, despite having been reared
as girls, in contrast with ∼0.005% of all women
(Dessens et al. 2005). Although 3% may seem
small, it indicates that women with CAH are
∼600 times more likely than women in general
to experience severe gender dysphoria. Girls
with other disorders involving exposure to un-
usually high levels of androgens prenatally also
show increased gender dysphoria (Slijper et al.
1998). Additionally, even when not gender
dysphoric, or wishing to change sex, girls and
women with CAH show somewhat reduced
satisfaction with the female sex assignment
(Ehrhardt et al. 1968, Ehrhardt & Baker 1974,
Hines et al. 2004). No evidence thus far has
linked normal variability in the early hormone
environment to gender dysphoria. In addition,
research attempting to link 2D:4D to gen-
der identification has produced inconsistent

findings (Kraemer et al. 2009, Schneider et al.
2006, Wallien et al. 2008), again perhaps
because of the weak relationship between
2D:4D and prenatal androgen exposure.

Early Hormone Influences on
Personality and Cognition
Sex differences in personality characteristics
and in cognitive ability are smaller than are
sex differences in children’s sex-typed activ-
ities, sexual orientation, or gender identity
(Hines 2010b). Nevertheless, they also have
been examined for evidence of early hormonal
influence.

Some personality characteristics that show
sex differences relate to prenatal testosterone
exposure. For instance, empathy, which is
higher on average in females than in males,
appears to be reduced by testosterone expo-
sure before birth. Females with CAH show
reduced empathy (Mathews et al. 2009), and
testosterone measured in amniotic fluid relates
negatively to empathy in both boys and girls
(Chapman et al. 2006). Tendencies toward
physical aggression, which are higher on
average in males than in females, also relate to
prenatal testosterone exposure, with prenatal
testosterone exposure increasing aggression.
Girls and women with CAH show increased
physical aggression (Mathews et al. 2009,
Pasterski et al. 2007), as do children exposed
prenatally to androgenic progestins (Reinisch
1981). Not all personality dimensions that
show average sex differences relate to prenatal
testosterone exposure, however. For instance,
the study that reported increased aggression
and reduced empathy in females with CAH
also considered the personality dimension of
dominance/assertiveness, which is higher on
average in males than in females. Despite seeing
the expected sex difference in healthy controls,
no difference in dominance/assertiveness was
seen between females with and without CAH.

Cognitive and motor abilities that show sex
differences also have been examined for influ-
ences of prenatal testosterone exposure (re-
viewed in Hines 2010a). One study found that
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females with CAH showed more male-typical
behavior in the form of increased accuracy in
throwing balls and darts at targets (Hines et al.
2003), a result that was not accounted for by
increased muscle strength (Collaer et al. 2009).
Some studies have also found that females with
CAH resemble males in showing enhanced
mental rotations performance, but other
studies have not corroborated these results
(Hines et al. 2003). Two studies found that
males with CAH show reduced performance
on mental rotations or other visuo-spatial
tasks (Hampson et al. 1998, Hines et al. 2003),
results that had not been predicted. Several
studies have also found that both males and
females with CAH show impaired performance
on arithmetic and mathematical tests (Baker &
Ehrhardt 1974, Perlman 1973, Sinforiani et al.
1994), despite males generally being viewed
as better than females at mathematics. Studies
relating amniotic fluid testosterone to spatial
and mathematical performance have also pro-
duced inconsistent and largely negative results
(Finegan et al. 1992, Grimshaw et al. 1995).
Most studies have found no alterations in in-
dividuals with CAH on tasks at which females
excel, such as verbal fluency or perceptual
speed, although one study suggests reduced
female-typical behavior in females with CAH
in the form of impaired fine motor perfor-
mance (Collaer et al. 2009). Perhaps prenatal
testosterone exposure has a clearer impact
on motor abilities that show sex differences
(e.g., targeting and fine motor performance)
than on cognitive abilities assessed with
paper-and-pencil tests.

Socialization and Sex Differences
in Cognitive Performance
Substantial evidence supports social and
cultural influences on some cognitive sex
differences (see Hines 2010a for a review). For
instance, sex differences on certain measures of
cognitive abilities appear to have declined over
time (Feingold 1988). For the SAT Mathe-
matics, in particular, the sex ratio among those
scoring at the upper extreme has declined from

13 boys to one girl in 1982 to 2.8 boys to 1 girl
more recently (Halpern et al. 2007). There are
also large national differences in mathematical
and science performance, differences that are
many fold larger than the sex difference within
any nation (Mullis et al. 2008). Additionally, the
magnitude of the sex difference in mathematics
performance within a nation relates to the role
of women. Nations where women and men
are similar in regard to variables such as rep-
resentation in the legislature show more equal
mathematics performance (Guiso et al. 2008).

Sex-Related Psychiatric Disorders
Some psychiatric disorders are more common
in one sex or the other, and testosterone could
contribute here, as well. For example, prenatal
testosterone exposure has been suggested to
contribute to autistic spectrum conditions
(ASC) (Baron-Cohen 2002) and to obsessive
compulsive disorder (OCD) and Tourette Syn-
drome (Alexander & Peterson 2004), and to
be protective against eating disorders (Culbert
et al. 2008, Klump et al. 2006). For OCD and
Tourette syndrome, evidence that individuals
with these disorders are more male-typical
in other respects, such as childhood play
behavior, has been interpreted to support a link
to testosterone (Alexander & Peterson 2004).
For ASC (Auyeung et al. 2009a, Chapman
et al. 2006, Knickmeyer et al. 2006) and for
eating disorders (Culbert et al. 2008, Klump
et al. 2006), behaviors in the normal range that
are similar to those seen in the disorders (e.g.,
empathy for ASC, disordered eating for eating
disorders) have been linked to prenatal an-
drogens, although for disordered eating, some
studies have failed to replicate these results
(Raevuori et al. 2008). In addition, for ASC and
for eating disorders, studies have not shown
that variability in the early hormone environ-
ment leads to the disorder itself, as opposed
to behaviors in the normal range that resemble
those that characterize the disorder. For in-
stance, although a study of females exposed to
high levels of androgens prenatally, because of
CAH, found increased scores on an inventory
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INAH 1 to 4:
interstitial nuclei of
the anterior
hypothalamus,
numbers 1 to 4

of traits related to ASC, none of the women
with CAH scored high enough to suggest a
clinical diagnosis (Knickmeyer et al. 2006). The
proposed link between prenatal testosterone
and ASC has also been questioned by evidence
indicating that both males and females with
gender identity disorder, rather than females
only, are at increased risk of ASC (de Vries et al.
2010) and by the larger male predominance for
the less severe ASC, Asperger syndrome, than
for the more severe ASC, classical autism. One
possibility is that prenatal androgen exposure
contributes to individual differences within
the normal range in behaviors that show sex
differences and that some of these resemble
behaviors associated with developmental disor-
ders, such as ASC. As a consequence, exposure
to testosterone before birth, when added to
other risk factors, could contribute to some
individuals crossing a threshold for diagnosis.
However, developmental disorders are one area
in which direct genetic effects (Skuse 2006),
particularly those of genes encoded in the X and
Y chromosomes (Reinius et al. 2008, Reinius &
Jazin 2009, Skuse 2006), may play an important
role.

Sex Differences in Brain
Structure and Function
There are numerous reports of sex differences
in human brain structure or function (reviewed
by Cahill 2009, Hines 2009). For instance, total
brain volume, like body size, is larger in males
than females. In addition, the amygdala is larger
in males, whereas the hippocampus is larger in
females (Goldstein et al. 2001). Women also
show greater cortical thickness than men do in
many regions (Luders et al. 2006). Perhaps in
compensation for the smaller brain, women also
show greater gyrification in parts of frontal and
parietal cortex and perhaps more efficient use
of white matter (Gur et al. 1999). There are
many reports of sex differences in the human
brain, particularly in its function, and many of
these are as yet unreplicated. Because males and
females are routinely compared in studies, and
positive results are more readily published than

negative results, some findings of neural sex dif-
ferences may prove to be spurious.

In addition, although many neural sex
differences have been described, few have been
linked to behavioral sex differences. In fact,
many differences in brain function have been
noted during equivalent performance by the
sexes. For instance, men and women show dif-
ferent patterns of asymmetry of function when
performing certain phonological tasks, despite
showing no sex difference in task performance
(Shaywitz et al. 1995). Similarly, for men
and women matched for mathematical ability,
mathematical performance correlates with tem-
poral lobe activation in men but not in women
(Haier & Benbow 1995), and for women, per-
formance on intelligence tests that do not differ
by sex correlates with gray and white matter in
frontal regions, whereas for men the correlation
is with parietal regions (Haier et al. 2005). In-
deed, neural sex differences may sometimes, or
even commonly, exist to produce similar behav-
ior in males and females, rather than to produce
differences (De Vries & Sodersten 2009, Mc-
Carthy et al. 2009). Additionally, it appears that
during performance of many tasks, male and
female brains function similarly (Frost et al.
1999, Halari et al. 2005, Mansour et al. 1996).

Despite the many neural sex similarities and
the many neural sex differences that do not re-
late to any behavioral sex difference, neural and
behavioral sex differences have been linked in
some instances. Much research in this area has
focused on neural differences related to sexual
orientation, particularly in men. The only find-
ing in this area that has been independently
replicated, at least as of yet, involves the third
interstitial nucleus of the anterior hypothala-
mus (INAH-3). INAH-3 is thought to be the
human homolog of the rodent SDN-POA, and
four different research groups have reported
that INAH-3, like the SDN-POA, is larger in
males than in females (Allen et al. 1989, Byne
et al. 2001, Garcia-Falgueras & Swaab, 2008,
LeVay 1991). INAH-3 is also smaller (i.e.,
more female-typical) in homosexual than het-
erosexual men (Byne et al. 2001, LeVay 1991),
although the number of neurons in the nucleus
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appears similar for these two groups (Byne et al.
2001). The volumetric sex difference does not
appear to relate to disease processes (e.g., HIV
status) or to hormone use in adulthood (see
Hines 2009 for discussion). Because the sex dif-
ference in SDN-POA volume in other mam-
mals results from early testosterone exposure,
differences in INAH-3 volume in humans may
relate to the early hormone environment, as
well. This possibility has not yet been directly
investigated, however.

Heterosexual and homosexual men also dif-
fer in corpus callosum anatomy; the isthmus,
in particular, is significantly larger in right-
handed homosexual compared with right-
handed heterosexual men (Witelson et al.
2008). Patterns of cerebral asymmetry and
functional cortical connectivity have also been
linked to sexual orientation in both men and
women (Savic & Lindstrom 2008).

Researchers have also searched for neu-
ral correlates of gender identity disorder. One
group has reported that the central subregion
of the BNST (BNSTc) is smaller in women
and in male-to-female transsexuals than in non-
transsexual men (Zhou et al. 1995). Interpre-
tation of this finding is complicated, however,
because the sex difference in BNSTc does not
appear until after puberty (Chung et al. 2002),
whereas most transsexual individuals recall feel-
ing strongly cross-gendered from early child-
hood. Thus, the difference in BNSTc may be
the result of experience (Hines, 2009) or of
the adult hormone treatment associated with
changing sex (Lawrence 2009). This same re-
search group also reported that INAH-3 is
smaller and contains fewer neurons in male-
to-female transsexuals than in control males
(Garcia-Falgueras & Swaab 2008).

In the realm of cognitive and motor sex
differences, the midsagittal area of posterior
callosal regions, particularly the splenium, re-
lates negatively to language lateralization and
positively to verbal fluency in women (Hines
et al. 1992b). These findings suggest a corre-
spondence between female-typical brain struc-
ture and female-typical cognitive function,
given that language lateralization is reduced

in women compared to men (McGlone, 1980,
Voyer, 1996), whereas verbal fluency is greater
in women than in men (Hyde & Linn 1988,
Kolb & Wishaw 1985, Spreen & Strauss 1991)
and posterior callosal regions tend to be larger
in women than in men as well (de LaCoste-
Utamsing & Holloway 1982, Witelson 1985).

Gron et al. (2000) have also described links
between sex differences in brain function and
navigational performance (Gron et al. 2000).
In both men and women, navigating through
a virtual maze, on which males perform better
on average than do females, is accompanied
by neural activity in the medial occipital gyri,
medial and lateral superior parietal lobules,
posterior cingulate and parahippocampal gyri,
and the right hippocampus proper. However,
women show more activity than men do in the
right prefrontal cortex at Brodmann’s areas
46/9, the right inferior parietal lobule, and the
right superior parietal lobule, whereas men
show significantly more activity than women
do in the left hippocampus proper, the right
parahippocampal gyrus, and the left posterior
cingulate. Women with CAH have been found
to perform better than healthy women on a
different virtual maze task (Mueller et al. 2008),
but there is, as yet, no evidence regarding neu-
ral activation in women with and without CAH
while performing navigational tasks.

Effects of Experience on the Brain
Sex differences in brain structure or even
function are often interpreted to imply inborn
differences between males and females. This
leap is inappropriate, however. Behavioral
differences must be accompanied by neural
differences, so the observation of a neural sex
difference on its own tells us little to nothing
about how the difference developed. This is
true not only for differences in brain function,
but also, at least in some cases, for differences
in brain structure. For instance, experience can
change the mammalian brain throughout the
life span, and even neurogenesis in some brain
regions can continue in adulthood ( Juraska
1998, Maguire et al. 2006, Ming & Song 2005).
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Idiopathic
hypogonadotropic
hypogonadism:
involves gonadotropin
deficiency and
impaired gonadal
steroid production
after birth in affected
males

Turner syndrome:
absent or imperfect
second X chromosome
causes ovarian
regression, typically
before birth, impairing
or eliminating ovarian
hormone production

Hence, the existence of a neural sex dif-
ference, even one that relates to a behavior
known to be influenced by early androgen ex-
posure, does not prove that the hormone expo-
sure caused the neural difference. A more di-
rect strategy for identifying links between early
hormones and the brain could be to look at
neural structure or function in individuals with
early hormone abnormality or in individuals for
whom the early hormone environment has been
measured. Although very little information of
this type is available, some neural differences
have been described in individuals with CAH
(Hines 2009). Most notably, both males and
females with CAH show decreased amygdala
volume (Merke et al. 2003), and females with
CAH show increased amygdala activation to
negative facial emotions and, in this respect, re-
semble healthy males (Ernst et al. 2007). These
findings fit well with expectations based on ex-
perimental work in other species because the
amygdala, or some of its subregions, is larger
in males than in females, contains receptors for
androgen, is influenced by early manipulations
of testosterone, and is involved in behaviors
that show sex differences, including rough-and-
tumble play and aggression (Cooke et al. 2007,
Hines et al. 1992a).

Other Potential Critical Periods
for Hormone Influences on Gender
Development
In addition to the difference in testosterone
in male and female fetuses, males and females
differ in gonadal hormone levels neonatally.
Shortly after birth, testosterone surges in boys
(Forest et al. 1974), and estrogen surges in girls
(Bidlingmaier et al. 1974, 1987). The testos-
terone surge has been called “mini-puberty”
and may play a role in development of the
gonads and external genitalia in infant boys
(Quigley 2002). Human brain development,
particularly cortical development, continues
rapidly for the first two years after birth
and reacts to experience (de Graaf-Peters &
Hadders-Algra 2005, Huttenlocher 2002).
Thus, this early postnatal period could provide

a time when gonadal hormones and experience
interact to shape the brain and behavioral
propensities.

The early postnatal hormone surges,
particularly the testosterone surge in boys,
are a focus of current research activity. Men
with anorchia (missing testes) but with normal
penile development, who apparently experi-
ence normal testosterone levels prenatally, but
who lack testosterone after birth, resemble
controls in terms of sexual orientation, core
gender identity, and questionnaire measures of
personality characteristics viewed as masculine
or feminine (Poomthavorn et al. 2009). Other
characteristics may be influenced by the post-
natal hormone surge, however. For example,
men who lack the postnatal testosterone surge
because they have idiopathic hypogonadotropic
hypogonadism show reduced spatial abilities,
and this condition is not reversed by sub-
sequent testosterone replacement (Hier &
Crowley 1982). In addition, females who do not
experience the early postnatal surge of gonadal
steroids because they have Turner syndrome
show evidence of reduced performance on tasks
at which males excel, as well as on tasks at which
females excel, but not on sex-neutral tasks
(Collaer et al. 2002). Evidence from healthy
infants also suggests that the postnatal testos-
terone surge may play a role in gender
development. Initial evidence suggests that
testosterone during early infancy relates to
infants’ visual preferences for social stimuli
(Alexander et al. 2009a), to neural organization
for language processing (Friederici et al. 2008),
and to sex-related development of the visual
system (Held et al. 1996). Although these
initial reports are somewhat inconsistent and
require replication, they provide intriguing
glimpses through a potential new window
on early gonadal hormone contributions to
human gender development.

Contemporary research is also focusing on
possible hormonal influences on neurobehav-
ioral sexual differentiation at puberty. The hor-
monal changes of puberty produce dramatic
changes in the human body, and experimental
research in rodents suggests that they produce
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an additional wave of neural and behavioral or-
ganization as well (Schulz et al. 2009).

Puberty is also a time of great change in
human behavior, characterized by increased
sexual interest and activity and the emergence
of some types of behavioral problems, includ-
ing higher rates of depression in females than
in males (Halpern et al. 1993, Hyde et al.
2008). Evidence supports the existence of
sex differences in the timing of some neural
changes that accompany puberty, and these
seem to parallel the earlier puberty experienced
by girls compared with boys. Total cerebral
volume peaks earlier in girls than in boys (at
about age 10.5 years versus 14.5 years), and
although both adolescent girls and adolescent
boys show an inverted-U-shaped pattern of
change in cortical and subcortical gray matter,
the peak occurs one to two years earlier in girls
than in boys (Lenroot et al. 2007). Studies have
also proposed links to hormones at this time.
One study found that among girls global gray
matter volume related negatively to estradiol
levels, but among boys the same variable
related positively to testosterone levels (Peper
et al. 2009). Similarly, neural sex differences
in adolescent girls and boys have been found
to relate to circulating testosterone levels
(Neufang et al. 2009). These data are cor-
relational, so investigators do not know if
hormones, or other associated developmental
processes, are the causal factors. Another study,
however, suggests that testosterone may play
a role in the growth of white matter in the
adolescent brain. In this study, white matter
increased at different rates in girls and boys,
and testosterone levels and androgen receptor
type interacted in relation to this sex differ-
ence. The association between male-typical
brain development and testosterone levels
was significantly stronger in boys with the
more efficient type of androgen receptor than
in boys with the less efficient type (Perrin
et al. 2008). Like the investigations of possible
organizational influences of hormones during
neonatal development, research on puberty
as an additional time of brain organization in
relation to gender-linked behavior is in its early

stages, but it offers promise for understanding
the dramatic behavioral changes that occur at
this time of adolescent development.

CONCLUDING REMARKS
The prenatal hormone environment clearly
contributes to the development of sex-related
variation in human behavior and plays a role
in the development of individual differences in
behavior within each sex, as well as differences
between the sexes. Thus, early hormone dif-
ferences appear to be part of the answer to
questions such as why males and females dif-
fer behaviorally and neurally, as well as why
some of us are more sex-typical than others. In
other species, the early hormone environment
exerts its enduring effects on behavior by alter-
ing neural development. Similar neural changes
are thought to underlie associations between
the early hormone environment and human be-
havior, but the specific neural changes involved
are just beginning to be identified. Many sex
differences have been described in the human
brain, but only a subset of these has been related
to behavioral sex differences and still fewer have
been linked to the early hormone environment.
Steroid-sensitive regions, including regions of
the hypothalamus and the amygdala, are impli-
cated, as are interhemispheric connections, but
establishing firm links between early hormones,
brain development, and behavior is a primary
area for future research.

Although this review has focused on hor-
monal influences on gender-related brain de-
velopment and behavior, it has also discussed
direct genetic influences that may contribute,
in particular, to developmental disabilities, such
as autistic spectrum conditions. In addition,
the role of socialization, culture, and cognitive
developmental processes in the development
of behavioral differences between males and
females has been noted. Although hormones
contribute to behavioral sex differences, other
factors contribute, as well. In addition, gen-
der development is multidimensional, and de-
velopmental processes involved in each dimen-
sion are likely to differ somewhat. A good
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example of the numerous types of factors
that can influence human gender development
comes from research on children’s play. Here,
evidence clearly shows that prenatal testos-
terone exposure plays a role in sex differences
and individual differences, promoting male-
typical toy, playmate, and activity interests. Af-
ter birth, the early surges of testosterone or es-
trogen may be important, too, but socialization
factors also gain in importance, as parents and
then peers and eventually teachers encourage
children to engage in gender-typed play (Fagot
1978, Langlois & Downs 1980, Pasterski et al.
2005). The child also begins to develop the un-
derstanding that he or she is male or female, and

this knowledge produces motivation to imitate
the behavior of others of the same sex and to re-
spond to information that things, such as toys
or activities, are for girls or for boys by choos-
ing the things that they have been told are for
their own sex (Bussey & Bandura 1999, Martin
et al. 2002, Masters et al. 1979, Perry & Bussey
1979). These social and cognitive developmen-
tal influences on children’s activities could en-
gage the same neural circuitry as underlies
the effects of the early hormone environment.
Thus, identifying the brain systems influenced
by early androgen exposure could help elucidate
systems involved in other types of influences on
the same behavioral outcomes, as well.

SUMMARY POINTS

1. Human gender development begins before birth and is influenced by levels of testos-
terone prenatally, and perhaps neonatally. Sex-typed play in childhood relates to levels
of testosterone before birth, and evidence indicates that the prenatal hormone environ-
ment also contributes to variability in sexual orientation, gender identity, and some, but
not all, personality traits that differ on average for males and females.

2. Other types of influences on neurobehavioral gender development include direct genetic
effects of the sex chromosomes and postnatal socialization and cognitive understanding
of gender.

3. Gender development is multidimensional, and the combinations of factors that influence
the many different dimensions of gender appear to differ. Early hormonal influences
appear to play a larger role, for example, in children’s toy preferences than they do in
cognitive abilities that show sex differences, where social and cultural influences appear
to be more important.

FUTURE ISSUES

1. Which neural changes can be associated with the early hormone environment, either in
individuals with disorders that cause hormone abnormality or in healthy individuals for
whom measures of the early hormone environment are available?

2. Does the early hormone environment contribute to the development of psychological
disorders that are more common in one sex or the other?

3. Will early infancy and puberty prove to be critical periods when hormones exert
permanent influences on human gendered behavior, as has been shown for prenatal
development?

4. Are the neural systems associated with hormone-induced changes in behaviors that show
sex differences also the systems that respond to experiential effects on the same behavioral
outcomes?
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