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Abstract: We explore Shelah’s model-theoretic dividing line methodology. In particular, we discuss
how problems in model theory motivated new techniques in model theory, for example classifying
theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice
(ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the
study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and
attempts to clarify the “main gap” by reducing the dependence of certain versions on (highly inde-
pendent) cardinal arithmetic.
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THE 1960s produced technical revolutions in both set and model theory.
Researchers such as Martin, Solovay and Moschovakis kept the central philosoph-
ical importance of the set-theoretic work for the foundations of mathematics in
full view. In contrast, the model-theoretic shift is often seen as “technical”, or at
least “merely mathematical”. Although the shift is productive in multiple senses,
it is a rich mathematical subject that provides a metatheory in which to investi-
gate many problems of traditional mathematics; the profound change in viewpoint
of the nature of model theory is often overlooked. We will discuss the effect of
Shelah’s dividing line methodology in shaping the last half century of model the-
ory. This description will provide some background, definitions and context for
(Shelah, 2020b).
In this introduction we briefly describe the paradigm shift in first-order1 model

theory that is laid out in more detail in (Baldwin, 2018). We outline some of its
philosophical consequences, in particular concerning the role of model theory in
mathematics.
We expound in Section 1 the classification of theories which lies at the heart

of the shift, and the effect of this division of all theories into a then-finite number
of classes on the development of first-order model theory, its role in other areas

1 While by first-order logic we mean that formulas are only closed under finite Boolean operations, we
will also touch on infinitary logic.
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of mathematics and its connections with set theory in the last third of the twenti-
eth century. We emphasize that, for most practitioners of late twentieth century
model theory, and especially for applications in traditional mathematics, the effect
of this shift was to lessen the links with set theory that had seemed evident in the
1960s. In Section 2, we explore how Shelah’s underlying methodological precept
of dividing lines led to the refinement of this classification to admit infinitely
many classes, deeper connections with set theory, and to the current emphasis on
“neo-stability theory” in both pure and applied model theory. These developments
undermine the impression from Section 1 that classification theory completely
freed first-order model theory from considering extensions of ZFC. In Section 3,
we build on Maddy’s (2019) discussion of the role of foundations to explore the
ways in which model theory can provide essential guidance in both traditional
mathematics and for axiomatic set theory.
What I call the paradigm shift in model theory (Baldwin, 2018) took place in

two phases. The first phase is a shift from the Russell–Hilbert–Gödel conception
of higher-order logic as a general framework for all of mathematics to a
Robinson–Tarski focus on first-order theories to study distinct areas of mathemat-
ics. One key to this shift is the switch from a logic that allows quantification over
predicate variables of all arities and all orders to the modern conception of fixing
a vocabulary with a fixed set τ of relation symbols relevant to the area being stud-
ied and quantifying only over individuals. The focus becomes, not the study of
logic(s), but theories, the consequences of a set of axioms. At the same time, this
transfers the focus from a single structure, for example, the natural numbers, to
the collection of distinct (non-isomorphic) structures that satisfy (model) a set of
axioms (e.g., algebraically closed fields). Unless all models are finite, there are
such models of every infinite cardinality.
Henkin’s 1948 proof of the completeness theorem enables this shift by carrying

out the proof in an expansion of a given vocabulary2 τ only by constants. In con-
trast, Gödel’s proof requires an expansion of the vocabulary by additional rela-
tions and so moves outside the original context. This is not just a technical
change (Baldwin, 2017). Gödel studies the completeness of the “restricted3 predi-
cate calculus”; all of mathematics is analysed in a global framework. Henkin’s
proof allows one to focus on particular topics formalized in a relevant vocabulary
τ. The transition continued as a few specific properties of theories were investi-
gated in the 1950s and 1960s. For example, Robinson (1956) not only intro-
duced the notion of model completeness but developed the study of algebraically

2 A vocabulary is a list of relation, function and constant symbols. It is a slightly less abstract notion
than similarity type and more precise than the overloaded word “language”.
3 There are still predicate symbols of all orders, but quantification is restricted to individuals.
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and, eventually, differentially closed fields. Morley (1965) proved a groundbreak-
ing result: A countable theory is ℵ1-categorical (all models of cardinality ℵ1 are
isomorphic) if and only if it is κ-categorical in every uncountable κ.
The second phase of the paradigm shift arises from Shelah’s introduction in

(Shelah, 1969) of the stability hierarchy and his classification program. Around
1970, there were two schools of model theory; both had adopted the topic-based
notion of vocabulary, the study of theories. One can be thought of as “internal”,
determining the properties of theories and their models in the abstract. While this
school is based on Tarski’s semantics, the essential point is the study of all theo-
ries and developing useful properties for distinguishing among theories. The other
is more “external”, “applied” or “algebraic” model theory. Here, the focus is the
study of theories of specific families of structures such as p-adic fields (Ax and
Kochen, 1965). The eventual effect of Shelah’s classification theory was a joining
of those fields in the 1980s, when the usefulness of the stability classification for
applications became evident. The classification has become an increasingly strong
tool in applications to such diverse fields as combinatorics, number theory and
differential equations.
In accepting the 2013 Steele prize, Shelah wrote:

I am grateful for this great honour. While it is great to find full understanding of that for which we
have considerable knowledge, I have been attracted to trying to find some order in the darkness,
more specifically, finding meaningful dividing lines among general families of structures. This
means that there are meaningful things to be said on both sides of the divide: characteristically,
understanding the tame ones and giving evidence of being complicated for the chaotic ones. It is
expected that this will eventually help in understanding even specific classes and even specific
structures. Some others see this as the aim of model theory, not so for me. Still I expect and wel-
come such applications and interactions. It is a happy day for me that this line of thought has
received such honourable recognition. Thank you. (Shelah, 2013b)

Much of mathematics concerns only structures of cardinality at most the con-
tinuum (e.g., the reals are the only separable Dedekind-complete ordered field) or
statements whose truth in a structure is completely independent of the cardinality
of the structure (e.g., If every element a of a group G satisfies a + a = 0, then G
is commutative). Vaught (1961) focused on countable models of countable theo-
ries (i.e., jτj = ℵ0); Morley (1965) showed the importance of uncountable struc-
tures in his epic treatment of categoricity in uncountable cardinalities. We
explore below Shelah’s demonstration that the properties of models of a theory
can differ essentially depending on the cardinality of a model and cardinal arith-
metic. His work provides the first systematic exploration of Cantor’s paradise in
all cardinalities motivated by algebraic-structural (model-theoretic) rather than
combinatorial or cardinal arithmetic considerations.
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The use of uncountable cardinals in proving results about the model theory of
countable theories initially led some to object to the set-theoretic component of
Shelah’s model theory as distracting from core mathematical notions. Ironically,
the actual effect of Shelah’s classification theory (Section 1) was to free large por-
tions of first-order model theory from an apparent dependence on axiomatic set
theory. Shelah reported, “In 69, Morley and Keisler told me that model theory of
first order logic is essentially done and the future is the development of infinitary
logics” (Shelah, 2000). The interaction with set theory remains central to the
development of infinitary model theory. But, when it became clear that such
issues as the existence of saturated models, two cardinal theorems and the con-
struction of indiscernible sequences4 could be done in ZFC, by restricting to the-
ories which behaved well in the stability classification, first-order model theory
flourished. And, when it turned out that many important areas of modern mathe-
matics could be formalized in first-order theories that behaved well in the stability
classification, applications flourished as well.
But Shelah discovered that more subtle properties of first-order theories and

such fundamental properties as categoricity in power for infinitary logic are much
more closely entwined with set theory. Often, they require new techniques in set
theory for their resolution. Such developments arising in first-order logic are the
main topics of this paper.
However, the more ambitious claim is that the “method of dividing lines” is a

useful technique in mathematics. There is no assertion that it is a universal meth-
odology, but only that it is not a one-off for the main gap (Section 1.1). The
choice of classification, or more precisely of dividing lines, depends on the test
problem. We study the stability classification aimed at the main gap in Sec-
tion 1.1. Here are several further possibilities: saturation of ultrapowers and the
Keisler order (Section 1.2), universality (Section 2.1), and exact saturation
(Shelah, 2020b). These are all different ways of organizing the collection of first-
order theories. These frameworks provide tools to recognize connections across
mathematics that are made evident by formalizing various topics. Much of
Shelah’s work in recent years attempts to apply this methodology to infinitary
logic via studying abstract elementary classes (Baldwin, 2009; Shelah, 2009;
Shelah, 2010; Shelah and Vasey, 2018). We will not explore that topic in depth
here; it concerns a semantic approach to infinitary logic, and there are deep con-
nections with axiomatic set theory.

4 Here the improvement proves a theorem about stable theories without the axiom of replacement.
Shelah obtains indiscernibles by constructing non-forking sequences in stable theories instead of the
original reliance on replacement to find ℶω1 instances of the Erdos–Rado theorem. Vasey (2017) extends
the result to simple theories.
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The entire project raises questions about the nature of axiomatization; in Sec-
tion 3 we discuss the effect on the axioms of set theory. The study of arbitrary
theories in model theory reflects the view of axioms not as “self-evident” or even
“well-established” fundamental principles but as tools for organizing mathemat-
ics. When dealing with specific examples, the standpoint is much like that of
Russell (1973) and Schlimm (2013), and Detlefsen’s notion of descriptive axi-
omatization (Detlefsen, 2014). For example, in (Robinson, 1959), Abraham Rob-
inson formalized the framework that Ritt and Kolchin had developed for
differential algebra, while keeping in mind his earlier work on Artin-Schreier and
the Hilbert Nullstellensatz, so his theory yielded a differential Nullstellensatz.
Schlimm (1985) explores the connections between axiomatizations of different
but related fields. But Shelah’s classification project takes this to a higher level of
abstraction by providing general schemes for comparing theories. This raises new
problems in the philosophy of mathematical practice: What are criteria for evalu-
ating axiom systems? What are the connections among the justificatory and
explanatory functions of axioms? For example, are there criteria for choosing
among first-order, second-order, or infinitary logic? In what sense is second-order
logic simply a natural avatar for set theory (Väänänen, 2012)? What principles
underlie the development of a taxonomy of mathematics (or at least formal theo-
ries) such as the ones described here?

1. Classification Theory

Classification is one of the fundamental aims of mathematics. The description in
(Gowers, 2008; Malliaris and Shelah, 2013; Malliaris and Shelah, 2014; Malliaris
and Pillay, 2016) provides an overview. Usually, the problem is seen as classify-
ing the structures in a certain class: the finite simple groups, differentiable mani-
folds, finite-dimensional vector spaces, etc. Shelah transformed model theory by
proposing a two-step classification. The first step classifies complete first-order
theories. At first impression, this is just a routine “divide and conquer” strategy:
divide a problem into cases that might require different kinds of arguments. The
method of dividing lines makes this procedure more precise. Such a classification
is aided by applying this method to a specific test question. Generalizing from the
“main gap” described in detail below, we think of the test question having either
a “wild” or a “tame” answer for each theory. The collection of all theories is suc-
cessively divided into pairs of classes of theories. At each step, the models of the-
ories in one class are wild because of a specific property; models of the other
become explicitly more tame when this property fails. For the main gap, a second
step classifies the models by assigning a system of invariants determining the
models of those theories that are deemed classifiable at the first stage. After
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sketching the general strategy, we will discuss several possible such classifications
for first-order theories. On the one hand, as we describe here and in Section 1.1,
the particular case division given by the stability hierarchy has led to both impor-
tant applications across mathematics and the solution of problems unrelated to
the specific test question. On the other hand, some new problems have led to new
classifications (Sections 1.2 and 2.1).
Gregory Cherlin suggested that this strategy is a version for mathematics of

Plato’s strategy of definition, “cutting through the middle” (Plato, 1892). We
explored this analogy to Shelah’s proof strategy in [Baldwin (2018), Chap-
ter 13.4]. I say a property of a theory is virtuous if the property has significant
mathematical consequences for any theory satisfying it. Then a dividing line is a
property such that both it and its negation are virtuous. Some writers refer to any
property of theories as a dividing line; this misses the core of the methodology.
When investigating a property to determine whether it is an actual dividing line,
one might call it a candidate (or pre-)dividing line. We expound these distinc-
tions in specific cases in Sections 1.1 and 1.2.
The crucial model-theoretic notion of type arose in the 1950s. The complete

type of an element a over a set B in a structure M is the collection of first-order
formulas ϕ(x, r) such that M ⊧ ϕ(a, r) (with r in B). Thus, if M is the field of real
numbers and B = {0, 1}, each rational number realizes a principal type (generated

by one formula) over B (m * x = n for some5 m, n) while the √2 realizes a non-
principal type (“in the cut”). (Further examples are given in (Väänänen, 2019)).
Through the 1950s and 1960s, it became clear that the number of complete types
over each model M of a theory T was an important characteristic.
We sketch the stability hierarchy, the progenitor, though not the only example,

of applying the dividing line strategy. The notion of κ-stability is one of the key
elements of the classification. The countable theory T is κ-stable if, for every M ⊧
T with jMj ≤ κ, there are only κ complete types over M. Morley proved that
ω-stability is equivalent to stability in every infinite cardinal. Shelah proves the
equivalence of two ostensibly vastly different properties of a theory T: (i) There
is no formula ϕ(x, y) which linearly orders an infinite subset of Mn where M ⊧ T.
(ii) T is κ-stable for those κ such that κℵ0 = κ. Such a T is called stable.
An implicit variation in the existential quantifier in this definition disguises some

of the significance. A theory T is unstable if there is a formula with the order prop-
erty. This formula may change from theory to theory. In a dense linear order, one
such is x < y; in a real closed field, one is (9z)(x + z2 = y); in the theory of (Z,
+ , 0, ×), one is 9z1,z2,z3,z4ð Þ x+ z21 + z

2
2 + z

2
3 + z

2
4

� �
= y

� �
. In the theory6 of (C,

5 The mth successor of 0 is denoted m.
6 Here exp denotes complex exponentiation, ez, where z is a complex number.
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+ , × , exp), one first notices that exp(u) = 0 defines a substructure which is iso-
morphic to (ℤ, + , 0,×) and uses the formula from arithmetic. It is this flexibility,
grounded in the formal language, which underlies the wide applicability of stabil-
ity theory. In infinite Boolean algebras, an unstable formula is x≠ y & (x ^
y) = x; here the domain of the linear order is not definable.
Unstable theories are split into two classes by (i) the strict order property7

(SOP): for some formula ϕ(x, y) and some (equivalently any) model of T for
every n, there are sequences {am: m < n} such that, for m1 < m2 < n, ϕ y,am1ð Þ!
ϕ y,am2ð Þ^ 9yð Þ ϕ y,am2ð Þ^¬ϕ y,am1ð Þ½ � and (ii) the independence property: for
some formula ϕ(x, y) and some (equivalently any) model M of T for every m,
there are {ai: i <m} and {bX: X⊆m} such that ϕ(ai, bX) if and only i � X. Natu-
rally, linear orders satisfy SOP and not the independence property, and the Rado
random graph satisfies the independence property but not SOP. Each of set the-
ory and arithmetic satisfy both of these properties. We make the syntactic defini-
tions of these properties explicit to emphasize that, despite their consequences for
the uncountable, no complicated “foundation” is needed to define them; we give
a more graphic definition of the strict order property in Section 2.1.
Such important mathematical theories as algebraically and differentially closed

fields are ω-stable; all Abelian groups are stable as, in a spectacular result of Sela,
are non-Abelian free groups (Sela, 2013). The many applications of classification
theory across algebra are described in such surveys as (Pillay, 1995;
Marker, 1996; Poizat, 2001; Scanlon, 2001; Sànchez and Pillay, 2017) and the
book on Hrushovski’s proof in all characteristics of the Mordell–Lang conjecture
for function fields (Bouscaren, 1999). Another line of results stem not directly
from the stability hierarchy but provide another method of characterizing a class
of theories. The notion of o-minimality, which provides a general setting for
studying expansions of the real field (van den Dries, 1999), underlies Karp prizes
awarded in 2013 and 2018 for contributions to number theory and to analysis.
All of these works exemplify the paradigm shift.
Shelah suggests in (2020b, §1) three adjectives to describe a dividing line pro-

gram. He assumes that there is a guiding question that the strategy aims to
answer. A program is internally successful if there is a serious structure theory on
the positive side, and externally successful if it implies a negative answer to the
guiding question (e.g., for the main gap question, the theory has many models)
and fruitful if that structure theory has an impact in other areas of mathematics;
robust is discussed in the next paragraph. Shelah’s discussion there refines his
earlier writings and conflicts in some ways with the account in [Baldwin (2018),
Chapter 13]. In particular, fruitful has been specialized to the effect of the positive

7 Abbreviated SOP or StOP.
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structure theory, and versatile now describes the wider impacts of the theory, ear-
lier called fruitful. The stability classification is successful: models of a stable
theory admit a kind of “local” dimension generalizing the notion of dimension in
vector spaces or, “more roughly”, of geometric space. Further, it is a dividing line
as the unstable theories have the maximal number of models in every uncountable
cardinality. Finally, the many ways in which the stability hierarchy has been
applied to solve problems ([Shelah (2009), Introduction], [Baldwin (2018), Chap-
ters 5, 6, 13]) other than those originally targeted illustrate its fruitfulness and
versatility.
Shelah (2020b, §1) calls a dividing line “robust” if it has both (i) an internal

definition in terms of first-order definability and (ii) an external one in terms of
properties of the class of models. Thus, an internal definition is robust when it is
absolute (in the the technical set theoretic sense), as are the notions of the stabil-
ity hierarchy. On the other hand, external conditions such as counting the number
of models may be subject to the vagaries of cardinal arithmetic. Thus, an external
condition is more robust if it is less susceptible to deformation by forcing.
Thus, κ-stability is disqualified as implying robust because it involves types

and so is not external – it refers to more than models. But, Shelah views as an
external characterization of stability, the fact that a theory T is stable in exactly
those cardinals where it has a unique resplendent8 model (compare
[Shelah, 2000, 5.2, 5.3] and (Shelah, 1988a)).

1.1 Morley’s conjecture and the main gap: stability classification
The main gap theorem, described in (Väänänen, 2019), arose to answer Morley’s
conjecture. For every first-order theory T and every infinite cardinal κ, the
uncountable spectrum function of T, I(T, κ), counts the number of non-
isomorphic models of T with cardinality κ. Morley conjectured that, if κ, λ are
uncountable and λ ≥ κ, then I(T, λ) ≥ I(T, κ). The survey in this section will con-
sider only countable theories. Shelah’s amazing solution to this problem arose
from his new strategy. Rather than proving the result by arguing directly that the
function I(T, λ) is non-decreasing on uncountable cardinals9, he rephrased it as an
apparently much harder problem. Find all possible spectrum functions
(as T varies) and observe that each is non-decreasing.

8 The structure M is resplendent whenever M can be expanded to M̂ = M ,cð Þ by naming < |T| individ-

ual constants and M̂ has an elementary extension M
0
that is expandable to be a model of T

0
where

Th M̂
� �

T 0 with |T
0
| < |T|, then already M̂ can be expanded to a model of T

0
. Every saturated model is

resplendent but not conversely.
9 Hart (1989) proves the result in this form but only by resorting to cases depending on the
classification.
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Shelah proposed solving this problem by finding a series of dividing lines. The
first dividing line is stability. For every uncountable κ, any unstable theory
T satisfies I(T, κ) = 2κ, the maximal possible value. For stable theories, the local
dimension described just after Theorem 1.1.1 is a step toward finding invariants.
For the Morley conjecture, at each step the “wild” side will imply that the theory
has the maximal number of models in every uncountable cardinal and the “tame
side” will provide more tools for eventually assigning (trees of) cardinal invari-
ants to determine each model of a classifiable theory up to isomorphism. Eventu-
ally, Shelah finds a finite number (Section 2.3) of classes of theories such that all
theories in the same class have the same (modulo parameters) spectrum function
(Shelah, 1990; Hart and Laskowski, 1997; Hart et al., 2000). And, these functions
are all non-decreasing. Moreover10, the main gap separates the growth rate gi (for
i < 6) of spectra into two classes.

gia bð Þ = 2ℵα or

≤ℶω1 α +ωj Þjð

(
ð1Þ

Although there is a detailed study of the slow-growing spectra functions, which
yields much more detailed structural information, the main gap appears to say the
number is maximal or well below the maximal. Section 2.3 explores the extent to
which the malleability of cardinal arithmetic undermines “well below”.
By coding stationary sets11, into first, certain linear orders and then their Skolem

hulls, Shelah established that each unstable or even unsuperstable theory (replacing lin-
ear order by trees of height ω) has the maximal number of models in each uncountable
cardinal. Thus, stable/unstable is the first dividing line for the classification.

Theorem 1.1.1. (The Stability Hierarchy:). Every countable complete first-order
theory lies in exactly one of the following classes:

(1) (unstable) T is stable in no λ.
(2) (strictly stable) T is stable in exactly those λ such that λω = λ

(3) (strictly superstable) T is stable in exactly those λ≥ 2ℵ0 .
(4) (ω-stable) T is stable in all infinite λ.

10 The ℶ-cardinals are defined by induction ℶ0 = ℵ0 but ℶγ +1 = 2
ℶγ while limits are taken as sups.

11 A closed unbounded set (club) of an uncountable cardinal is one that is unbounded and closed in
the order topology. A stationary set is one that intersects each club. Roughly, stationary sets are those
which are not small (analagous to a set of positive measure).
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Superstability is a dividing line as it entails a number of structural tools which
are essential for describing the next more technical tools that are explicitly for
counting the number of models, while its negation implies T has the maximal
number of models.
The test question for the stability classification was Morley’s conjecture. But

the stability hierarchy is both fruitful and versatile. The tools developed to solve
it had far wider consequences. As noted in Section 1, a key consequence of sta-
bility is the existence of a notion of dependence generalizing that in vector
spaces. This relation is called “forking”; in many cases it induces a combinatorial
geometry which allows one to assign a dimension to certain (type)-definable sets.
In algebraically closed fields, this dimension is the same as the Krull/Weil dimen-
sion in algebraic geometry, illustrating the versatility of Morley rank. The notion
of orthogonality allows one to describe the relations among the dimensions of
various sets. Essentially, two types are orthogonal if their dimensions can be var-
ied independently. This notion provides an important technique for one of
Shelah’s most important innovations from an algebraic standpoint. Rather than
characterize a structure by the dimension of each of a family of subsets, these
dimensions are arranged on a tree, but one with countable height, regardless of
the cardinality of the model. These dimensions are the basis of the invariants
which describe the models to establish the main gap. But the geometries are cen-
tral to many results across mathematics. One example is the recent resolution
using classification theory (Nagloo and Pillay, 2017; Freitag and Scanlon, 2018)
of transcendence problems arising in Painlevé’s study of partial differential equa-
tions at the turn of the twentieth century.
Shelah introduced the notion of a simple theory in (Shelah, 1980b). One test

problem was to characterize the spectra for a theory T of pairs (λ, κ) such that
every model in λ extends to a κ-saturated12 model also of cardinality κ. See
(Shelah, 1980b; Shelah, 1996; Shelah, 2000). Although simple theories were
defined to study the saturation spectrum, Pillay (Buss et al., 2001) summarizes
some of the work on simple theories, as an “amazing journey from ‘finite fields’
to the ‘independence theorem’’. Building on Ax’s proof of the decidability of the
theory of finite fields, numerous authors (Chatzidakis et al., 1992;
Hrushovski, 1993; Kim and Pillay, 1997) built up a general account which both
showed that pseudo-finite fields and ACFA13 are simple and that simple theories
are characterized by the property: The dependence relation of forking satisfies the
independence theorem. This kind of interplay is central to modern model theory.

12 Defined in Section 2.1.
13 The theory of algebraically closed fields with a generic automorphism.
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In one sense, Shelah’s classification theory broke the tight connection between
model theory and set theory that seemed natural in the 1960s [Baldwin (2018),
Chapter 8]. The classification is given by absolute properties; the definition is in
ZFC and is impervious to extensions by forcing. A certain collection of tools
from combinatorial set theory (Ramsey theorem, Erd}os–Rado theorem and sta-
tionary sets), or at least certain key consequences of them, are used to establish
the classification and basic properties thereof. But for most practicing model the-
orists, set theory faded into the background. We see below that this vanishing
was ephemeral.

1.2 From saturation of ultrapowers to cardinal invariants of the continuum:
Keisler order

We provide here some background (Shelah, 2020b, I.5) on the Keisler order;
(Keisler, 1967) showed the following order on theories is well defined:

Definition 1.2.1. (Keisler order). For complete countable first-order theories T1,
T2, we write T1 ⊴ T2 if for any set I A1⊧T1, A2⊧T2, and regular14 ultrafilter D on I,

if AI
2=D is I+-saturated then AI

1=D is I+-saturated.

That is, T2 is more complex than T1 if it is harder for ultrafilters to saturate
models of T2 than models of T1.
Keisler’s order preceded Shelah’s classification theory. But, partly because of

its clear syntactic content, Shelah’s stability classification became the central
model-theoretic tool. After the early work, Shelah (1978) showed that all count-
able stable theories fell into two classes under the Keisler order and that these
two classes were the minimal class and its successor, and found three additional
classes. The subject then languished for decades until Malliaris (2009) showed
that, as for stability, the Keisler order reduces to syntactic properties of single for-
mulas. This work unleashed a renaissance. The Keisler order really establishes a
correspondence between syntactic properties of theories and the fine structure of
ultrafilters. Malliaris and Shelah (2013), 2016) proved the first dividing line for
the Keisler order within simple theories. In the other direction, they improved
Shelah’s (1996) result that every SOP3 theory is maximal in the Keisler order,
with the striking result that SOP2 (the 2-strong order property15) is a sufficient
condition for a theory to be maximal in the Keisler order. Still more striking, they

14 “Regular” is a technical condition on ultrafilters; the relevance here is that regularity guarantees that,
if an ultrafilter saturates one model of a complete theory T, it satisfies all models of T. So the Keisler
order is on theories.
15 For n ≥ 3, ϕ(x, y) with x, y of the same length has SOPn if there is no n-cycle, but there are arbi-
trarily long finite chains. SOP2 has a more technical definition. See Section 2.1.
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showed (Malliaris and Shelah, 2018), contrary to expectation, that there is a
decreasing chain of distinct classes in the Keisler order. Thus, while the original
stability hierarchy had only finitely many classes, the finer investigation of such
areas as the spectra of universal models discussed in Section 2.1 and the Keisler
order led to refining the stability classification and eventually to infinitely many
classes. Indeed, (Malliaris and Shelah, 2019) shows there are the maximal num-

ber (2ℵ0 ) of classes for the Keisler order.
This line of work had a remarkable corollary. In the early twentieth century,

topologists and set theorists discovered a large family of cardinal invariants of
sets of subsets of the natural numbers. Here are two examples. We write A, B, …
for sets of integers and  for families of such sets. We say A is almost-contained
in B if A−B is finite. A family  is a tower if ‘almost-contained in’ linearly
orders  , and we say  has the strong finite intersection property if the inter-
section of any finite collection of sets from  is infinite.  has an infinite pseudo-
intersection if there is an infinite set A that is almost-contained in every F�.
The invariant t is the cardinality of the smallest tower with no infinite pseudo-

intersection, and p is the cardinality of the smallest  with the strong finite inter-
section property but no infinite pseudo-intersection. A number of such character-
istics or invariants were defined. Van Douwen (1984) introduced the now
standard convention of naming these cardinals by lower-case fraktur letters, fol-
lowing c for the cardinality of the continuum. In particular, b,p, t had been iso-
lated by Rothberger (1939, 1948).
Under the continuum hypothesis, all these invariants are equal to ℵ1. If the

continuum hypothesis is false, these numbers may be different. So, before Gödel
proved the consistency of the continuum hypothesis, attempts to establish
inequalities among cardinal invariants were attacks on the continuum hypothesis.
Afterwards, the alternatives were equality and consistent inequality. For example,
Van Douwen (1984) gives six equivalents to b; specific equivalences among other
invariants had been established by various authors from Rothberger to Van
Douwen. Once the independence of the continuum hypothesis was established,
forcing established the consistency of inequality of most pairs in the last 50 years.
So, it was surprising when (Malliaris and Shelah, 2013) proved in ZFC that p = t.
The connections between model theory and invariants of the continuum were

explored at least as early as (Shelah, 2004), where Shelah proved the consistency
of a> d . He distinguished the property a, which “speak of sets”, from d , which
deals with cofinality16. He writes in [Shelah, 2004, p. 188], “This manifests itself

16 The cofinality of a cardinal λ is the least cardinal κ such that there is an increasing function f from κ
into λ such that the supremum of the range of f is κ, that is, λ = cf(λ); otherwise λ is singular. In the con-
text of this section, this notion is extended to the cofinality of a partial order.
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by using ultrapowers for some x-complete ultrafilter (in model-theoretic outlook),
and by using ‘convergent sequences’ (see (Shelah, 1987)], or the existence of Av,
the average, in (Shelah, 1978)) in §7 and 3, respectively. The meaning of ‘model-
theoretic outlook’ is that by experience set theorists, starting to hear an explana-
tion of the forcing tend to think of an elementary embedding j :V!M, and then
the limit practically does not make sense (though of course we can translate).”
The work with Malliaris emphasizes that the underlying issue is to control the
cofinality of various cuts and the fine structure of ultrafilters is a powerful tool for
this purpose. But it takes the interaction between model theory and set theory to
a different level. Rather than just applying cofinality in two related areas, they
define (Malliaris and Shelah, 2013) the notion of a cofinality spectrum property
(CSP), and prove that a specific such property, C s, tsð Þ= ; , implies both
(a) (model theory) every SOP2 theory is maximal in the Keisler order and (b) (set
theory) p = t . They deduce their two goals by showing that, for any CSP, s ,
C s, tsð Þ= ;.
How does the dividing line strategy fare as a method for investigating the

Keisler order? It is robust in the sense of Section 1; the ultrapower definition is
external, and Malliaris (2009) gives the internal characterization mentioned
above. In Shelah (2020b), II. §9E, Shelah points out a recent proof that SOP2 is a
robust dividing line; it defines the class of ⊴ (and ⊴*)-maximal theories in the
Keisler order. Thus among the SOPn candidate dividing lines, SOP2 is now iden-
tified as a dividing line. Successful is not so clear. The minimal and near-minimal
class are identified with low classes in the stability classification and so share
their success. The case for internal success is boosted by recent advances
obtaining a useful notion of independence for NSOP1 theories (Chernikov and
Ramsey, 2016; Kaplan and Ramsey, 2019) and positive structural consequences
from NSOP2 (Malliaris and Shelah, 2017). Instances of versatility include both
the p = t problem and applications to study of Szemerédi’s Regularity Lemma in
combinatorics (Malliaris and Shelah, 2014; Malliaris and Pillay, 2016).
In his joint review of several Malliaris–Shelah papers (Keisler, 2017), Keisler

wrote, “The methods developed in these papers are likely to stimulate more
research in model theory and set theory. An enticing possibility is that the general
results on cofinality spectrum will have broader applications.”

2. Model-Theoretic Problems Motivate Set-Theoretic Results

We noted in Section 1 that an important effect of the stability classification was
to reduce for many model theorists the needed familiarity with ZFC. They just
employ ZFC as an implicit background foundation and employ the stability
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classification to organize their work. But this attitude really brackets foundations
rather than discarding them. Shelah wrote,

“My feeling is that ZFC exhausts our intuition except for things like consistency statements, so a
proof means a proof in ZFC. This is of course a strong justification for B1.” [the position17 that
ZFC should be the basis for set theory].

Position B.2 [the forcing position] in its strong form in essence tells us that all universes are
equally valid, and hence in fact we should be interested in extreme universes. In particular L has
no special status, and proving a theorem in ZFC or assuming GCH is not a big deal. This is the
strong defence, but I suspect that it has few adherents in this sense.

But in the moderate sense, this position is quite complementary to the ZFC position - one
approach gives the negative results for the other, so being really interested in one forces you to
have some interest in the other. In fact, I have been forced to really deal with forcing
(Shelah, 1977; Ben-David, 1978) was too “soft” in forcing for my taste) because I wanted to prove
that I was right to use ♢ on “every stationary subset of ℵ1” rather than CH in solving the White-
head problem18 for abelian groups of cardinality ℵ1. (Shelah, 2002).

A close entanglement of model theory and set theory appears in works con-
cerning the set-theoretic definability of logics (Väänänen, 1985; Kennedy
et al., 2016). But we are thinking here of a less close entanglement. Shelah’s
investigation into model-theoretic questions led him to issues that were not
resolvable in ZFC. In this section, we recount several examples. We assess the
motivation into one of three (possibly overlapping) categories: (i) addressing a
new problem, (ii) clarifying hypotheses and (iii) increasing robustness.
I now summarize in very general terms the impact of the set-theoretic revolu-

tion unleashed by Cohen’s method of forcing. It allows one to prove the indepen-
dence of propositions from the axioms of ZFC by constructing models of those
basic axioms where a proposition is, say, false, and others where it is true. The
first use of the forcing method complemented Gödel’s earlier construction of an
inner model (V = L) that showed the consistency of the continuum hypothesis

(2ℵ0 =ℵ1 ) by constructing an outer model(s) with 2ℵ0≠ℵ1 . Much of the vast
development using this tool focuses on cardinal arithmetic and topology. We
describe here some of Shelah’s efforts that arise from more model-theoretic
issues. Large cardinal axioms are another genre of extensions of ZFC that try to
extend the ability of ZFC to found mathematics.

17 Shelah is considering positions he labels B1–B5.
18 See Section 2.2.
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2.1 Universality order
This section provides an introduction to Shelah’s work (2020b, Part II) on
obtaining a classification for a different ordering of first-order theories; now, com-
plexity is measured by allowing fewer universal models. A major issue is to find
robust dividing lines for this problem.
Already with Pythagoras, we realize that the basic systems of numbers do not

account for all phenomena. Various extensions to the Greek framework were
made through time. The notion of extension became clearer with the problem of
finding all solutions of higher-degree equations. In the late nineteenth century, as
precise notions of structures and classes of structures arose, so did the idea of a
universal structure for a particular class. In the twentieth century, the notion of a
universal domain for such classes arose in such diverse fields as linear orders
(Hausdorff, 1914), topology (Pavel, 1927), algebraic geometry (Weil, 1946) and
logic (Fraïssé, 1954; Jónsson, 1956; Jónsson, 1960). In these papers, M is univer-
sal means that every structure N (in a given class) with jNj ≤ jMj can be isomor-
phically embedded in M.
Hausdorff ((Hausdorff, 1914) and the paper (Hausdorff, 2005), H 1908) proved

that, assuming 2ℵn =ℵn+ 1 , there is a universal linear order of cardinality ℵn for
each finite n. Twenty years later, Tarski dubbed the extension of this principle
from ℵn to arbitrary ℵα the generalized continuum hypothesis (GCH).
Fraïssé (1954) studied a class K of finite relational structures closed under sub-

structure and provided conditions that guaranteed an ℵ0-universal and homoge-
neous (any isomorphism between two finite substructures extends to an
automorphism) model for the class axiomatized by the universal sentences satis-
fied by all structures in K.
In Jónsson (1956), Jónsson introduced what is often called a Jónsson class. He

generalized Fraïssé’s notion to consider a collection of structures of arbitrary car-
dinality, closed under isomorphism with the joint embedding and amalgamation
property, closed under unions of chains, and with downward Löwenheim–Skolem
to some fixed cardinal. Examples included the class of linear orders and Boolean
algebras. Generalizing Hausdorff, he proved that, under GCH, a Jónsson class
has a universal model in every ℵα. In Jónsson (1960), he noticed that the con-
struction of a κ-universal model also yielded a κ-homogeneous-universal model
M. Namely, if N0, N1 are isomorphic substructures of M of smaller cardinality,
that isomorphism extends to an automorphism. He proved that such a homoge-
neous-universal model exists in λ if λ is regular and 2<λ = λ.
Morley and Vaught (1962) changed the context by requiring the class to be the

models of a complete theory and the embedding to be elementary (preserve the
truth values of each first-order formula). They discovered that this requirement is
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equivalent to saying every type over a subset of cardinality less than κ is realized
in M; such a model is called saturated19. But this discovery also demonstrates an
obstruction to the existence of saturated structures. If a theory is unstable, it can-

not have a saturated model in λ if λℵ0 > λ. Universality is more subtle. For exam-
ple, the theory of dense linear order is unstable in every cardinality but the
rational numbers are a universal countable model. We write D(T) to denote the
collection of n-types over the empty set for n <ω for a theory T. Morley and
Vaught prove that, if λ≥ jD(T)j and λ<λ = λ, that is μ< λ implies λμ≤ λ, there is a
saturated model in jTj.
With the use of saturated models, we can give a more global picture of the

strict order property promised in Section 1. A theory T has the strict order prop-
erty if there is a formula ϕ(x, y) such that, on every ℵ0-saturated model of T,
ϕ(x, y) defines a partial order of Mn which contains an infinite chain. This version
of the definition suggests the sequence of n-strong order properties introduced in
(Shelah, 1996): For n ≥ 3, ϕ(x, y) with x, y of the same length has SOPn if there
is no n-cycle, but there are arbitrarily long finite chains. Now the world of theo-
ries has been complicated to allow infinitely many classes. All of these properties
are implied by the strict order property; SOPn implies SOPn − 1; T has SOP3

implies T is not simple. In Shelah’s taxonomy (2020b, I. §1.2, II. §9E), SOPn for
larger n properties are pre-dividing lines at best; they arise in the discussion but
have no known strong consequences in either direction. Conant’s map (http://
www.forkinganddividing.com/) showing the geography of the stability hierarchy
is a widely use resource among model theorists that describes this situation.
The stability classification20 entirely determines the possible spectra for

uncountable saturated models: (i) (ω-stable) all infinite cardinals, (ii) (superstable)

all cardinals λ with λ≥ 2ℵ0 , (iii) (strictly stable) all λ with λℵ0 = λ and (iv) (unsta-
ble) no uncountable λ satisfying λ> λ<λ. There is some, but clearly demarcated,
variance among uncountable cardinals.
The situation is quite different if we replace saturated by universal. Since a sat-

urated model is universal, the first two classes are unchanged. But the same argu-
ments as in Morley and Vaught, 1962) show that, if λ = 2<λ (i.e., κ < λ implies
2κ < λ), there is a special21 and thus universal model in λ. Thus, for any first-order
theory, the existence of a universal model is open only when λ < 2<λ.

19 More precisely, A is λ-saturated if A realizes all complete types over X ⊆ A when jXj < λ and satu-
rated if it is jAj-saturated.
20 For convenience we restrict the analysis here to countable vocabularies.
21 A special model is one that is a union of β+-saturated model Aβ for infinite cardinals β < jAj. The
construction of special models allows one to delete the hypothesis of regularity from the result of
(Jónsson, 1960) quoted above at the cost of weakening saturated (homogeneous-universal) to universal in
the conclusion.
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Shelah now aims to classify first-order theories22 with respect to a new test
problem: universality. The intuition is that, if there are “fewer” cardinals in which
T2 has universal models, then a theory T2 is more complicated than T1. Thus, he
defines an ordering on theories that is analogous to the Keisler order.

Definition 2.1.1. Let T be a complete first-order theory. M ⊧ T is universal23 in λ
if N ⊧ T and jNj = λ implies N is elementarily embeddable in M. M is universal if
it is universal for all models with cardinality ≤jMj.

The universality spectrum of K, univ(T), is the class of uncountable cardinals λ
such that there is a universal model for K with cardinality λ.
We define T1 ≤

0
univT 2 if univ(T1)� univ(T2).

Since saturated models are universal, stability theory clearly delineates the ini-
tial classes for ≤ 0

univ, those which have universal models in the “most” cardinals.
If a countable theory T is ω-stable (superstable), it has saturated – and hence uni-

versal – models in all uncountable cardinals (all λ≥ 2ℵ0 ).
Unfortunately, the ordering ≤ 0

univ may be very uninteresting. Under the gener-
alized continuum hypothesis (GCH), the (Morley and Vaught, 1962) argument
described for λ = λ<λ shows that every theory has a universal model in every
uncountable cardinal. Given the independence of GCH, the degree of robustness
must be investigated.
Kojman and Shelah in (1992a) give an example of a theory T that has a univer-

sal model in ℵ1 if and only if ℵ1 = 2
ℵ0 . They24 further show in ZFC, using the

method of guessing clubs, which is discussed in Section 2.4, that there is no uni-

versal linear order in a regular cardinal λ with ℵ1 < λ< 2
ℵ0 . To address this sensi-

tivity to extensions of set theory, we build the set-theoretic options into a revised
definition of the order on theories. Given the examples of theories where the exis-
tence of a universal model below the continuum is equivalent to the CH, Defini-
tion 2.1.2 restricts to cardinals above the continuum.

Definition 2.1.2. Define T1 ≤ univT2 if and only if λ �univ (T2) implies λ �univ
(T1) in every forcing extension where λ≥ 2ℵ0 .

22 The notion of universality here specifies elementarily embeddable, as we are studying first-order the-
ories. The general setting in [Shelah, 2020b, Part II] is for classes K, and the notion of embedding
depends on the class. We explore this distinction in Section 2.4.
23 Earlier work, for example (Morley and Vaught, 1962), requires |N| ≤ λ; this is the same as requiring
|N| = λ for saturation but different for universality. The homogeneity implied by saturation guarantees
embedding over smaller models.
24 See the nice account in (Džamonja, 2005).
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We describe below some precise results or conjectures for the minimal and
maximal classes with respect to ≤-univ. The phrase “almost maximal (minimal)”
describes classes that are expected to be near the top (bottom) of the order but
which may fragment after further investigation. Here are the relevant classes.
Remark 2.1.3.

(1) The ≤-univ maximal class is conjectured to be those T such that, for every
forcing extension V1, T has a universal model in λ if and only if25

λV 1 = 2< λV1 .
(2) T is almost ≤-univ maximal if, for every forcing extension V1, there is a μ

with μ+ + = λ = λℵ0 < 2μ , then T has no universal model in λ. This class
includes linear orders and any first-order theory satisfying the strict order
property or even SOP4. [Kojman and Shelah (1992a), sections 3 and 5].
But it also includes the class of groups which is NSOP4 (Shelah, 2016).
The classes SOPn are refinements, introduced in (Shelah, 1996), of the
stability hierarchy which have consequences for both the Keisler order
and the universality order26.

(3) The class of superstable (ω-stable if we include cardinals below the con-
tinuum) theories is the ≤-univ minimal class.

(4) The almost ≤-univ minimal class is conjectured to be those theories, if
any, such that, for every forcing extension V1, {λ: λ = λω} is the class of λ
in which T has a universal model.

Further refinements of this general picture are discussed in [Shelah (2020b),
Part II] and here in Section 2.4. Model theory continues to address algebraic
problems in this area. In Fuchs (1970, problem 5.1), Fuchs asked about the exis-
tence of universal groups for the classes of torsion and torsion-free groups under
the relation of pure embedding27. By considering the class of models of certain
theories of Abelian groups, partially ordered by the relation of pure subgroup, as
an abstract elementary class, (Kucera and Mazari-Armida, 2020; Mazari-
Armida, 2020) are currently making further advances on this problem.

2.2 PC-classes and the Whitehead problem: proper forcing
In this subsection we discuss two problems, one algebraic and one model-theo-
retic, which led Shelah to a fundamental set-theoretic idea: the proper forcing

25 Here we write the superscript V1 to emphasize that the cardinal equality is computed in the forcing
extension; we omit the superscript V1 below.
26 See http://www.forkinganddividing.com/ for an overview of the geography.
27 S is a pure subgroup of an Abelian group G if, whenever an element of S has an nth root in G, it
necessarily has an nth root in S.
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axiom (Shelah, 2020b, 12A). In both cases, asserting formally the necessary
hypothesis for a result is central. In the model-theoretic case, the result reinforces
the robustness of the stability classification.
In Shelah (1974), Shelah proved that the topologist J.H.C. Whitehead’s famous

conjecture28 about Abelian groups was independent from ZFC. This conjecture
asserts that a “Whitehead group” is necessarily a free group. That conjecture is
true for a countable group G. But Shelah used established set-theoretic methods29

to falsify it when jGj = ℵ1; the conjecture is true if V = L and false under Martin’s
axiom30 and ¬CH.
The consistency of each of these axioms was known. But the possibility

remained (and was actively pursued by some group theorists) that the Whitehead
conjecture was decidable from the continuum hypothesis. In Shelah (1977), he
introduced a new principle of set theory that was consistent with the continuum
hypothesis, implied Martin’s axiom and implied the failure of the Whitehead con-
jecture. This principle eventually developed into the proper forcing axiom (PFA),

which, in particular, implies 2ℵ0 =ℵ2 . See (Mekler, 1982). Perhaps the most
important lesson for mathematics at large was that a statement purely about iso-
morphism types of Abelian groups was solved by resort to a specific set-theoretic
construction of an object, a Whitehead group, which is not free (Eklof and
Mekler, 2002).
The model-theoretic example concerns classes of models that go slightly

beyond first order. While there is a vast model theory for first-order logic, there
has been no such development for second-order logic. There is a fragment of
second-order logic, pseudo-elementary classes, that is susceptible to model-
theoretic treatment. These are classes axiomatized by formulas of the form

9Xð Þϕ X ,�Sð Þ

where X is a new relation variable and �S lists the formal symbols in the vocabu-
lary τ. For example, the class of non-well-orders is axiomatized in this way by
adding a function that is required to list a decreasing sequence. More generally,
we can think of theories in the vocabularies τ, τ1 = τ [{X}, and ask, for theories
T in τ and T1 in τ1, what we know about the class of reducts of models of T1 to
T. Such a class is designated PC(T1, T) (pseudo-elementary class), and I(λ, T1, T)

28 An Abelian group is Whitehead if every short exact sequence 0 ! ℤ ! B ! A satisfies
B = Z

L
A. While details are not relevant here, (Eklof, 1976) has an introductory account.

29 Furthermore, by focusing on the combinatorial essence of the conjecture, he was able to show the
independence of a conjecture concerning the chromatic number of graphs with cardinality ℵ1.
30 Martin’s axiom is both a consequence of the CH and consistent with its negation. It arose in the
study of the Suslin conjecture.
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denotes the number of non-isomorphic models in PC(T1, T) that have cardinal-
ity λ.
One of Shelah’s major innovations in set theory arose from the attempt to

understand the effect of moving a result about PC-classes from a countable to an
uncountable vocabulary. In (Shelah, 1978) it is shown that:

(*) If jT1j = ℵ0, 2
ℵ0 < 2λ, and T is complete but not ω-stable then

I λ,T1,Tð Þ=min 2λ,22
ℵ0

� �
:

While most of first-order model theory focuses on theories T in a countable
vocabulary (written jTj = ℵ0), there are natural examples of situations where an
uncountable vocabulary is needed. The usual formalism (Prest, 1988) for study-
ing vector spaces and, more generally, modules is to consider a vocabulary with a
unary function symbol λ for each λ in the field of scalars, denoting the scalar
multiplication of a vector by λ. Thus, in order to formalize such basic mathemati-
cal structures as a real vector space, an uncountable vocabulary is needed. But
Shelah’s motivation is more basic: What happens when we move from a count-
able to an uncountable language? And this curiosity led to an enormously impor-
tant new technique in set theory.
It follows (by naming constants) from the work in [Shelah, 1978, Chapter VII]

that (*) can be improved to requiring only jT1j ≤ λ, provided that 2ℵ0 < 2λ . In
Shelah (1980a), he shows that this result is not provable in ZFC. Thus, this exter-
nal characterization of ω-instability requires (in particular) the weak continuum

hypothesis (2ℵ0 < 2ℵ1 ). So it is less robust than the external characterization of
instability in Section 2.3. The significance of (Shelah, 1980a) is not only in the
result but in the method. In it, Shelah introduced the notion of oracle forcing and
what, in retrospect, is a progenitor of proper forcing. The immense significance
of these techniques is explained in (Väänänen, 2019). The paper is also an early
contribution to the study of universal models as it contains a proof of the consis-

tency of ZFC + 2ℵ0 =ℵ2 and “there is a universal linear order in ℵ1”.

2.3 Beautiful cardinals
In this section, we consider Shelah’s use of a large cardinal axiom in order to
clarify a model-theoretic result concerning the uncountable spectrum, the number
of models with each uncountable cardinality. The actual form of the main gap
theorem attaches to each of a small finite number of (parameterized) families of
classes of theories a formula for I(T, κ). While the classification is absolute
(i.e., does not depend on extensions of ZFC), the evaluation of the formula is
not; it depends on cardinal arithmetic. But, the variability of cardinal arithmetic
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in various extensions of ZFC was the original point of forcing. Thus, it is consis-
tent that there is a theory which is very classifiable, there is a clear way to assign
cardinal invariants (so, intuitively there are “few” models), and nevertheless in
some models of set theory it has 2κ models of cardinality κ for arbitrarily large31

κ. In [Shelah, 2000, 5.2], Shelah refers to this situation as a semi-ZFC result on
the structure side of the main gap. This is one, though far from the only, of the
motivations for the study of IE(T, λ), the maximal cardinality of a set of mutually
non-embeddable models (IE, isomorphically embeddable), of cardinality λ.
The relation “A is (elementarily) embedded in B” (but not necessarily vice versa)

satisfies transitivity A ⪵ B and B ⪵ C implies A ⪵ C. Such relations are called a
quasi-order, and they are well studied in combinatorics. Fraïssé conjectured that, if
{(Ai, ≤): i < ω} is a countable collection of countable ordered sets, then for some
i < j (Ai, ≤) isomorphically embeds into (Aj, ≤). That is, embedding is a well quasi-
ordering32 on countable linear orders. Nash-Williams (1965) introduced the more
technical but ultimately more malleable notion of better-quasi-order and proved that
the embeddability order on countable trees is “better” and thus “well” quasi-
ordered. Laver (1971) adapted this strategy and proved the Fraïssé conjecture by
showing that countable linear orders are better-quasi-ordered. To investigate the
elementary embedding on structures of uncountable cardinalities, Shelah (1982)
had to generalize the methods of Nash-Williams and Laver. He analyses the class
Kλ of coloured trees λ<ω with the usual partial order of initial sequence and requires
that nodes with the same colour are on the same level. Considering level-preserving
embeddings between such trees. Shelah (1982) proves:

Theorem 2.3.1. For any cardinal λ ≥ λbeaut, any family of pairwise non-
embeddable coloured trees in Kλ has cardinality less than the first beautiful cardi-
nal λbeaut.

To describe the model-theoretic application fully, we need a more detailed
description of the proof of the main gap theorem. Recall that, if a theory is unsta-
ble, then it has the maximal number of models in every uncountable cardinality.
In fact, this holds if T is not superstable. But for full control of the spectrum three
further properties are needed. We say that a countable theory is classifiable if it
is superstable and ndop (does not have the dimensional order property) and notop
(does not have the omitting types order property). Now, the crucial ingredient of

31 See details in [Shelah, 2020b, p. 3]. The ambiguity is resolved in the other direction in

[Baldwin, 2018, p. 192] by making every spectrum < 2ℵα on sufficiently large cardinals.
32 Well-quasi ordering also implies there are no uncountable descending chains, but that is not
important here.
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the main gap theorem is that any model with cardinality λ of a classifiable theory
is decomposed into a family of countable models indexed by a tree in Kλ. There
is a finer treatment of the shallow classifiable case in (Shelah, 1990), and even
finer in (Hart et al., 2000), where five separate classes with some finer partitions
of two of them and the respective spectrum functions are described. By studying
IE, the number of cases are almost reduced to classifiable or not. The classifiable
case is further split according to a third property: whether the decomposition tree
is shallow (the decomposition tree of every model is well founded33) or deep
(some model has a non-well-founded decomposition tree) where we apply Theo-
rem 2.3.1. If T is shallow, the depth of T is the supremum of the depths of
decomposition trees of models.

Theorem 2.3.2. Every countable first-order theory satisfies one of

(1) If T is not classifiable, IE(λ, T) = 2λ for all λ ≥ ℵ1.
(2) If T is classifiable, then

(a) If T is shallow then IE λ,Tð Þ≤ℶdepth Tð Þ <ℶω1 for all λ.

(b) If T is deep then
(i) If λ < λbeaut then IE(λ, T) = 2λ.
(ii) If λ ≥ λbeaut then for every ρ < λbeaut, there is a family of

2ρ pairwise non-mutually embeddable models of cardinal-
ity ρ. But there is no such family of cardinality λbeaut.

Here ℶα is the analog to ℵα where, inductively, the cardinal successor of ℵα is
replaced by the cardinality of the power set of ℶα. But what is λbeaut? Shelah’s
notion of a beautiful cardinal was characterized (earlier) by Silver (1970) as the
least ω-Erd}os cardinal. That is, the least κ such that34 κ! ωð Þω2 . This is a rather
small large cardinal (strongly inaccessible but not weakly compact35). Beautiful
cardinals have been applied to the study of Abelian groups (Eklof and
Shelah, 1999). Shelah makes the following remark about his use of large cardi-
nals in this connection:

But if we want to go any further, we have to consider some mildly large cardinal, but don’t be
afraid if you don’t believe in them. The theorems do not say “If some large cardinal exists

33 Some authors reserve the term classifiable for this case.
34 This is a simpler statement than the equivalent principle used in Shelah’s proof (1982, Definition
2.3). In the Erd}os notation for Ramsey-style theorems, κ! ωð Þω2 means: If f is a colouring of the
ω-element subsets of a set of cardinality κ, with two colours, then there is a homogeneous set of cardinal-
ity ω (a set, all whose countable-element subsets get the same f-value).
35 For an overview of the large cardinal hierarchy see http://cantorsattic.info/Upper_attic. See
(Silver, 1970), who proved that a beautiful cardinal “lives in L”.
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then…”. But, rather “the well-ordering cardinal of some naturally defined Q is a specific large car-
dinal”; so our results are meaningful even if no such cardinal exists. [Shelah, 1982, p. 179].

That is, if there are no “beautiful cardinals”, for every λ, either T is classifiable
and shallow and IE(λ, T) is very small or T is deep and IE(λ, T) = 2λ. And if there
is a beautiful cardinal, then the relatively small least such cardinal bounds the car-
dinality of maximal pairwise non-embeddable families if the theory is deep. Thus,
by choosing a finer measure, IE – non-mutually embeddable, the vulnerability of
the original main gap for non-isomorphism (I) to variations in cardinal arithmetic
has been substantially reduced. (The vulnerability can be eliminated by fixing a
small initial segment of the universe, Vℶω1

.) In contrast to the lower bound in the

main gap, ℶω1 α +ωj Þjð , the number of non-mutually embeddable models in ℵα of
classifiable theories is uniformly bounded by ℶω1 rather than by a cardinal
depending on α.

2.4 Club guessing and Abelian groups
We explore here the use of the set-theoretic technique of club guessing to con-
struct more counterexamples (particularly for Abelian groups) to universality
(Section 2.1). Then we note a further model-theoretic application. The club
guessing method is expounded in Shelah (1993), Jech (2006), Shelah (2013a)
and [Shelah (2020a), ch. III, theorem 23.3]. Unlike, for example Jensen’s dia-
mond, cases of this principle are provable in ZFC.

Definition 2.4.1. We say λ has club guessing for κ < λ when some �C witnesses
it, which means:

(a) S is a stationary subset of {δ < λ : cf(δ) = κ}.
(b) �C = Cδ : δ�Sh i, where Cδ is a club of δ of order type κ.
(c) if E is a club of λ, then for stationarily many δ � S we have Cδ ⊆ E.

Theorem 2.4.2. If λ > κ are regular cardinals and κ+ < λ, then λ has club
guessing for κ.

As noted in Section 2.1, for a stable theory, there are universal models in λ
with respect to elementary embedding if λω = ω. We describe two hypotheses on
λ that, using club guessing, imply for various contexts that there are no universal
models in λ. We now describe the first and sketch a proof.

Theorem 2.4.3. If there exist μ and regular λ such that 2ℵ0 ≤ μ + < λ< 2μ , then
any theory of linear order, with the strict order property, or even SOP4, has no
universal model in λ (sections 3 and 5 of Kojman and Shelah (1992a)). The
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argument also applies to the class of groups although they have NSOP4

(Shelah, 2016).

Proof Sketch. Suppose for some μ that μ+ < λ = cf(λ) < 2μ. Apply Theo-
rem 2.4.2 for κ = μ. We are able to assign to each model M of size λ a set of
invariants36 IM consisting of ≤ λ subsets of μ in such a way that, modulo an ideal
in P λð Þ , using club guessing, the set IM determines M up to isomorphism. Fur-
ther, if M can be embedded in N, IM⊆ IN. Now fix an N that pretends to be uni-
versal. Choose a model M

0
whose set of invariants contains a subset not

contained in any invariant of N. This is possible since 2μ > λ. Then M
0
cannot be

embedded in N and the pretence fails. Thus, there is no universal model in λ.
Shelah’s analysis of strictly stable theories revolves around the Shelah tree, a

tree of formulas of width λ and height ω + 1 such that each path is consistent and
the successors of each node are pairwise inconsistent. The existence of such a
tree implies T is non-superstable. We know (Section 2.1) that stable theories have

universal (indeed saturated) models when λℵ0 = λ . So, the investigation of non-
existence of universal models for strictly stable theories begins with the study of
the class Ktr: trees T with (ω + 1)-levels ordered by initial segment, that is T⊆ ω≥α

for some α, with the relations ηE0
nν≔ η j n= ν j n. For Ktr, by varying the sketched

proof for Theorem 2.4.3, we get that μ+ < λ= cf λð Þ< μℵ0 implies there is no uni-
versal for Ktr

λ (by Kojman and Shelah (1992b)). We need only λ< μℵ0, since the
invariants can be taken as sets of countable sequences from μ. More formally,

Theorem 2.4.4. If there exists μ, 2ℵ0 ≤ μ+ < λ< μℵ0 , then Ktr (Kojman and

Shelah, 1992b), reduced torsion-free groups Krtf , and Krs pð Þ, reduced separable p-
groups (below) do not have universal models (under either pure or arbitrary
embeddings).

The class Ktr is closely related to certain classes of Abelian groups that may
not be first-order axiomatizable. An abelian group is torsion free if every element
has infinite order. It is reduced if there is no divisible subgroup. The analysis of
cases for the existence of universal models in λ of Abelian groups depends on
several parameters: (a) the specific class of groups: torsion free versus torsion and
in the reduced torsion case, whether the group is required to be separable;
(b) whether the embedding is substructure (≤) or is required to be pure (≤p);
(c) various restrictions on the cardinal λ.

36 The invariants arise from the linear order and from coding linear orders from instability.
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The class Kab, ≤
� �

of all Abelian groups has universal models in every infinite

cardinality since any Abelian group can be embedded into a direct sum of divisi-
ble groups with the same cardinality, a direct sum of copies of Q and ℤ(p∞) (the

Prüfer group37). But Kab, ≤ p

� �
is more complicated; we will consider the torsion-

free and several torsion classes separately. As we note below, each of these clas-
ses is ≥ 0

univK
tr (Definition 2.1.1) and so has universal models in λ if λω = λ.

Club guessing is used to exhibit λ where universality fails. We now elaborate
on row D in the table introduced after (Shelah, 2020b, Claim 10.4), where the
other cardinal conditions for non-universality are listed.

We denote by Krtf the class of reduced torsion-free Abelian groups. Every
torsion-free Abelian group is a direct sum of a divisible group and a member of

Krtf . So the failure of a universal model in λ for Krtf implies a failure for Ktf .

Each group in Krtf interprets a member of Ktr , by defining the equivalence rela-

tion En(x, y) if and only if x− y is divisible by n!. However, Krtf does not behave
well with respect to the ordinary notion of substructure. In an extension an ele-
ment may become more divisible. So, pure embeddings are more appropriate

and, as in the case of Ktr , Krtf has no universal model for pure embeddings

(Lemma 2.4.3.2) if for some μ, μ + < λ= cf λð Þ< λℵ0 (Kojman and Shelah, 1995,
3.8). Shelah (2001, 1.6) extends the result to arbitrary embeddings by refining an
Abelian group construction that depends on an explicit construction of a structure
on λ.
Turning to torsion groups, note that each one decomposes in a unique way into

direct sums of p-groups for different primes p; so we can fix p. The last case in

the table concerns Krs pð Þ , reduced separable p-groups (separable means no ele-
ments of infinite height). While a reduced group may not have an element of infi-
nite height, there is a topological closure so that the tree imposed by divisibility
controls, without exhausting, those models with elements of infinite height.
Again, the pure embedding case is in (Kojman and Shelah, 1995, 3.3) and arbi-
trary embeddings in (Shelah, 2001, 2.7). But this last case requires that λ>ℶω.
Mazari-Armida (2021b), using “limit models” from abstract elementary clas-

ses, considers Fuchs’ problem of universal models in the class Kp−grp, ≤ pp

� �
of

p-groups under pure embedding. He establishes the existence of universal Abe-

lian p-groups for Kp−grp, ≤ pp

� �
when λω = λ or 8μ < λð Þμℵ0 < λ. In particular, this

shows that, for n ≥ 2, K, ≤ pp

� �
has a universal model if and only 2ℵ0 ≤ℵn. He also

adapts Lemma 2.4.3.2 to the p-group context to show the non-existence of uni-
versal models in the same cardinals as there.

37 Take the quotient of the subgroup of Q[ m
n : 9kð Þn= pk� �

by ℤ.
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Shelah (Section 2.3), extending ZFC by beautiful cardinals, counted the num-
ber of non-mutually embeddable models to separate classifiable from non-
classifiable classes by a calculation which was not susceptible to the vagaries of
cardinal arithmetic. Here the same theme is pursued but within ZFC. As in Sec-
tion 2.2, (Shelah, 1988b) deals with pseudo-elementary classes, but now with
respect to IE; the goal is the following result.

Theorem 2.4.5. Shelah (1988b), Conclusion 3.1 If T is a complete first-order
theory, which is not superstable, not only does jPC(T1, T, λ)j = 2λ but, for
λ > jT1j, IE(T1, T, λ) = 2λ.

In Shelah (1978, Chapter VIII), this result is proved with the additional
hypothesis that λ is regular38. Using club guessing, Shelah extends the result to
singular cardinals. This makes the external definitions of the stability classifica-
tion via spectrum functions more robust.
The moral of Theorem 2.4.5 is that specific combinatorial analysis of the tree

λω and the development of important club guessing techniques arose from exten-
ding a result from many non-isomorphic models in λ for regular λ to many non-
mutually embeddible models of a PC-class in λ for singular and thus arbitrary λ.
The first facet represents a fundamental model-theoretic contribution; the second
introduced the new line of club guessing in set theory (Ishiu, 1992; Cummings
et al., 2004; Džamonja, 2005).

3. The Role of Set-Theoretic Axioms

In Maddy (2019), Maddy writes

So my suggestion is that we replace the claim that set theory is a (or ‘the’) foundation for mathe-
matics with a handful of more precise observations: set theory provides Risk Assessment for math-
ematical theories, a Generous Arena where the branches of mathematics can be pursued in a
unified setting with a Shared Standard of Proof, and a Meta-mathematical Corral so that formal
techniques can be applied to all of mathematics at once.

I think one can distinguish “Generous Arena” from “Meta-mathematical Cor-
ral” as follows: Generous arena refers to the role of ZFC as establishing a frame-
work for traditional mathematics. This is the sense of set theory employed by
Bourbaki. The meta-mathematical corral is the collection of extensions of ZFC
that provide different and perhaps contradictory arenas (witness: V = L, Martin’s
axiom, and the Whitehead problem).

38 The cofinality of a cardinal λ is the least cardinal κ such that there is an increasing function f from κ
into λ such that the supremum of the range of f is κ; otherwise λ is singular.
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Maddy includes another criterion, essential guidance, described as follows
[Maddy (2019), p. 300]: “such a foundation is to reveal the fundamental features
– the essence, in practice – of the mathematics being founded, without irrelevant
distractions; and it’s to guide the progress of mathematics along the lines of those
fundamental features and away from false alleyways.”
I argue in Baldwin (2020) that inserting model theory as an intermediate step

between the (in principle) reduction of arguments in, say, algebraic geometry to
set theory has several virtues. First, we preserve the role of set theory for risk
assessment, shared standard of proof, and the meta-mathematical corral. And
model theory makes this more convenient for most of mathematical practice than
the implied but not carried out full coding of traditional mathematics into set-
theoretic foundations. For algebra (category theory excepted), only formulating
the notion of structure is “set-theoretic”. The description of operations for com-
bining structures is part of traditional practice. But model theory also provides
essential guidance for traditional mathematical research in two ways. By provid-
ing formal frameworks aligned to each subject area, it helps to clarify arguments
within the area, and by exposing, through notions such as stability, combinatorial
principles that hold in several areas, it helps to build connections among areas.
Until very recently, this support seemed to be primarily for algebraic topics, nota-
bly real algebraic geometry and Diophantine geometry. But recent work in differ-
entially closed fields on the partial differential equations of Painlevé (Nagloo and
Pillay, 2017) shows that the stability hierarchy and geometric stability can have
significant applications in analysis. Further, we noted above the role of o-
minimality on the frontiers of number theory (Pila and Wilkie, 2006; Pila, 2011)
and in asymptotic analysis (Aschenbrenner et al., 2017). And in the last few years
there have been deeper connections with combinatorics and even learning theory
(Chernikov and Starchenko, 2018; Chase and Freitag, 2019; Laskowski and
Terry, 2019).
Essential guidance is a purported advantage of univalent foundations,

according to supporters. But Maddy argues, I think correctly, that this claim
holds only for certain restricted, but highly influential, areas of mathematics that
depend heavily on category-theoretic methods. My first point is that model the-
ory, via classification theory, provides such essential guidance in a wider range
of mathematics because the formalization for a particular area takes its concerns
into account and easily accommodates the constructions of the area. But the
examples discussed in this paper support a widening of that claim; the examples
here illustrate that model theory (and algebra) have a role in guiding set-
theoretic research. And this leads to an effect of model theory on the meta-
mathematical corral.
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We have described above various instances of model-theoretic problems
engendering new animals in the metamathematical corral. But they may also
serve a normative function in evaluating the alternatives. Shelah raised such a
possibility by making a distinction between axioms (apparently those with
“internal”39 justification) for set theory and the vast majority of extensions,
“semi-axioms” which are justified primarily by their consequences.
What are our criterions for semi-axioms? First of all, having many conse-

quences, rich, deep beautiful theory is important. Second, it is preferable that it is
reasonable and “has positive measure”. Third, it is preferred to be sure it leads to
no contradiction (so lower consistency strength is better). (Shelah, 2003).
While the first and third criteria are inexact, the general intent is clear. But,

“reasonable and has positive measure” need some explanation. In (Shelah, 2003),
“has positive measure” is an impressionistic phrase; roughly, the more conflicting
sentences a semi-axiom ϕ permits, the greater the measure of ϕ. The lack of
independence over V = L (given its canonical model) is the justification for saying
V = L has measure zero. Reasonability is a judgement based on the plausibility of
the consequences of the semi-axiom.
The work of Shelah discussed here emphasizes a subtlety in the nature of

dividing lines. Shelah’s Steele prize acceptance, quoted in the introduction,
asserted, “this means meaningful things are to be said on both sides of the divid-
ing line”. In the introduction I interpreted “to be said” as “consequence”. But the
examples here, particularly Section 2.1, weaken this condition to “consistent con-
sequence”. Shelah makes a similar comment in [Shelah, 2000, 5.2] (“poor man
ZFC answer”). And this weakening allows model theory to both motivate and
arbitrate among semi-axioms.
The entire discussion here depends on a fundamental contribution of modern logic;

it enables a new (twentieth century) tool in mathematics: Formalize a particular area
of mathematics as a (usually) first-order theory. Study the models of a complete first-
order theory by the model-theoretic methods discussed above. Or, for the incomplete
theory ZFC, study its models and the extensions of the theory using, in particular,
the method of forcing. Shelah has brilliantly integrated these two projects.
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