RESPIRATORY TRACT INFECTIONS

MARTIN SLÍŽEK

The most common indication for ATB therapy

The Structures of the Respiratory System (Anterior View)

Upper respiratory tract

- proportion of viral infections around 80% (adenoviruses, coronaviruses, rhinoviruses, enteroviruses, influenza, parainfluenza)
- naturally not sterile

FIGURE

Upper respiratory tract

- Streptococcus pneumoniae 0-50%
- Streptococcus pyogenes 0-9%
- Haemophillus influenzae 5-30%
- Staphylococcus aureus 35-40%
- Neisseria meningitidis 0-15%
- Moraxella catarrhalis 0-15%
- G- bacteria and anaerobes 3%

The Structures of the Respiratory System (Anterior View)

Unnor recoiratory tract

- Streptococcus pneumoniae 0-50%
- Streptococcus pyogenes 0-9%
- Haemophillus influenzae 5-30%
- Staphylococcus aureus 35-40%
- Neisseria meningitidis 0-15%
- Moraxella catarrhalis 0-15%
- G- bacteria and anaerobes 3%

The Structures of the Respiratory System (Anterior View)

Lower respiratory tract

- primarily sterile
- emphasis on correct material collection is essential (contamination with HCD flora)

Lower respiratory tract

- primarily sterile
- emphasis on correct material collection is essential (contamination with HCD flora)

THE USUAL SUSPECTS

- Streptococcus pneumoniae
 - Streptococcus pyogenes
 - Haemophillus influenzae
 - Staphylococcus aureus
- Moraxella catarrhalis
- Mycoplasma pneumoniae
 - Chlamydophila pneumoniae
 - Bordetella pertussis/parapertussis

DIRECT METHODS

-usually preferred in the diagnosis of respiratory infections
-high specificity
-early detection of the

causative agent

BUT

- inability to perform or low sensitivity, especially for some atypical agents

DIRECT METHODS

-usually preferred in the diagnosis of respiratory infections
-high specificity
-early detection of the

causative agent

BUT

- inability to perform or low sensitivity, especially for some atypical agents

DIRECT METHODS

-usually preferred in the diagnosis of respiratory infections
-high specificity
-early detection of the

causative agent

BUT

- inability to perform or low sensitivity, especially for some atypical agents

NON-DIRECT METHODS

-generally difficult to

interpret results

-often non-specific

positivity

-late onset of antibody production

- higher reliability when taking paired serum at a minimum of 10 days apart

- mainly to diagnose

atypical agents,

sometimes influenza,

herpes viruses in

immunocompromised

URT infections

Copyright ID 2004 Pearson Education, Inc., publishing as Elenjamin Cummings.

Tonsillopharyngitis

- Typical for streptococcal etiology:
 - age 5-15 years
 - winter season (or November-May)
 - fever
 - cervical lymphadenopathy
 - pharyngitis redness of tonsils, soft palate and uvula, petechiae on palate
 - Absence of other symptoms (rhinitis, cough, conjunctivitis)
 - epidemiological context
 - sudden onset,
 - Significant pain in the throat,
 - scarlatiniform exanthem
 - headaches,
 - vomiting and abdominal pain,
 - excoriations on the nose

- Viral tonsillopharyngitis - conjunctivitis, rhinitis, cough, hoarseness, stomatitis, small ulcerations in the oral cavity, diarrhea

Tonsillopharyngitis

- For streptococc

- age 5-15 years
- winter season
- fever,
- cervical lymph
- pharyngitis re
- Absence of CKI
- epidemiologica
- sudden onset,
- Significant pair
- scarlatiniform (
- headaches,
- vomiting and a
- excoriations or
- Viral tonsillophar

ns on the tonsils,

rations in the oral cavity, diarrhea

Tonsillopharyngitis

- For streptococc

- age 5-15 years
- winter season
- fever,
- cervical lymph
- pharyngitis re
- Absence of CKI
- epidemiologica
- sudden onset,
- Significant pair
- scarlatiniform
- headaches,
- vomiting and a
- excoriations or
- Viral tonsillophar

ns on the tonsils,

rations in the oral cavity, diarrhea

Tonsillopharypattic

- age 5-15 years
- winter season
- fever,
- cervical lymph
- pharyngitis re
- Absence of CKI
- epidemiologica
- sudden onset,
- Significant pair
- scarlatiniform (
- headaches,
- vomiting and a
- excoriations or
- Viral tonsillophar

Tonsillopharypaitie

- age 5-15 years
- winter season
- fever,
- cervical lymph
- pharyngitis re
- Absence of CKI
- epidemiologica
- sudden onset,
- Significant pair
- scarlatiniform (
- headaches,
- vomiting and a
- excoriations or
- Viral tonsillophar

- age 5-15 years
- winter season
- fever,
- cervical lymph
- pharyngitis re
- Absence of CKI
- epidemiologica
- sudden onset,
- Significant pair
- scarlatiniform (
- headaches,
- vomiting and a
- excoriations or
- Viral tonsillophar

- age 5-15 years
- winter season
- fever,
- cervical lymph
- pharyngitis re
- Absence of CKI
- epidemiologica
- sudden onset,
- Significant pair
- scarlatiniform (
- headaches,
- vomiting and a
- excoriations or
- Viral tonsillophar

- For streptococc

- age 5-15 years
- winter season
- fever,
- cervical lymph
- pharyngitis re
- Absence of CKI
- epidemiologica
- sudden onset,
- Significant pair
- scarlatiniform (
- headaches,
- vomiting and a
- excoriations or
- Viral tonsillophar

ons in the oral cavity, diarrhea

- For streptoco

- age 5-15 year
- winter seaso
- fever,
- cervical lymp
- pharyngitis -
- Absence of Cl
- epidemiologi
- sudden onset
- Significant pa
- scarlatiniform
- headaches,
- vomiting and
- excoriations c
- Viral tonsillopha

he tonsils,

in the oral cavity, diarrhea

- For strept

- age 5-15
- winter se
- fever,
- cervical ly
- pharyngi
- Absence
- epidemio
- sudden o
- Significan
- scarlatini
- headache
- vomiting
- excoriatio
- Viral tonsille

- For strept

- age 5-15
- winter se
- fever,
- cervical l
- pharyngi
- Absence
- epidemio
- sudden o
- Significan
- scarlatini
- headache
- vomiting
- excoriatio
- Viral tonsille

EUSTACHIAN TUBE COMPARISON

Otitis media acuta

- usually as a complication of other respiratory infections
- bacterial vs. viral 50/50, about 20% dual infection
- Bacterial
 - 80-90% *S.pneumoniae* and *H.influenzae*
 - Th.: amoxicillin, but 80% cure spontaneously even if untreated

Sinusitis acuta

- initially almost always viral, with time the likelihood of bacterial superinfection increases
- the change in the nature of the secretion may not indicate bacterial inflammation (desquamation of the epithelium and PMN)
- feared complications purulent meningitis, orbitocellulitis

Acute subglottic laryngitis and epiglottitis

- Epiglottitis
 - since the introduction of universal vaccination against *H.influenzae*
 - Th.: ATB, intensive care
- Laryngitis
 - Viral
 - Th.: oxygen, nebulization of adrenaline, corticosteroids

Characteristic	Epiglottitis	Croup
Appearance	toxic and unwell	well looking
Onset	abrupt onset	viral prodrome, slower onset
Fever	high fever (>38.5°C)	moderate fever
Stridor	usually moderate-severe	usually mild-moderate
Cough	minimal or absent	barking, seal-like quality
Speech	unable to speak	hoarse voice
Secretions	unable to swallow, drooling of saliva	able to swallow

titis

LRT infections

Copyright 2 2004 Pearson Education, Inc., publishing as Genjamin Cummings.

Normal bronchi

Bronchitis

Acute bronchitis

- 50-80% viral aetiology
- Bacterial
 - chlamydia, mycoplasmata, bordetella, haemophilus
 - mixed infections with pneumococci
- Th..:
 - corticosteroids, beta-mimetics, anticholinergics
 - ATB aminoPNC (with beta-lactamase inhibitors in COPD patients), macrolides or combinations

Acute bronchiolitis

- primarily viral 70-90% RSV
- Therapy
 - oxygen or ventilation, correction of the internal environment
 - KS and beta-mimetics usually without effect
 - ATB only for known superinfection

Med Intensiva, 2022:46:420-1

Diagnosing pneumonia

- Clinical
 - fever, cough, expectoration, auscultation findings only in max. 2/3 of patients
- laboratory and imaging
- Microbiology
 - ideally direct methods sputum, BAL, aspirate, haemoculture, urine antigens
 - Serology
 - even with the use of multiple methods, the aetiology is only clarified in a maximum of 50% of cases

Review > Lancet. 2011 Apr 9;377(9773):1264-75. doi: 10.1016/S0140-6736(10)61459-6. Epub 2011 Mar 22.

Viral pneumonia

Olli Ruuskanen ¹, Elina Lahti, Lance C Jennings, David R Murdoch Affiliations + expand PMID: 21435708 PMCID: PMC7138033 DOI: 10.1016/S0140-6736(10)61459-6 Free PMC article

Abstract

About 200 million cases of viral community-acquired pneumonia occur every year-100 million in children and 100 million in adults. Molecular diagnostic tests have greatly increased our understanding of the role of viruses in pneumonia, and findings indicate that the incidence of viral pneumonia has been underestimated. In children, respiratory syncytial virus, rhinovirus, human metapneumovirus, human bocavirus, and parainfluenza viruses are the agents identified most frequently in both developed and developing countries. Dual viral infections are common, and a third of children have evidence of viral-bacterial co-infection. In adults, viruses are the putative causative agents in a third of cases of community-acquired pneumonia, in particular influenza viruses, rhinoviruses, and coronaviruses. Bacteria continue to have a predominant role in adults with pneumonia. Presence of viral epidemics in the community, patient's age, speed of onset of illness, symptoms, biomarkers, radiographic changes, and response to treatment can help

Figures

Review	> Lancet. 20							I	n	
Epub 2011 I										
Viral p	oneumo	_	RS	vi	rus	ses	mc	st		
Olli Ruuska	nen ¹ , Elina La	se	evei	ce	COI	urse	∃,	5()	
Affiliations	+ expand	-	Rhi	Lnc	vi	rus(3S	—	-	
PMID: 2143	5708 PMCID	of	pr	leu	IMOI	nia	5			
Free PMC a	article	-	Inf	flu	len	za,	pa	ira	£	
		ba	acte	eri	al	CO	inf	lec	21	
Abstract	t l	-	Ade	enc	vi	ruse	ЭS	_	(
About 200 r children and understandi	million cases o	se	evei	ce	COI	urse	∋,	ne	9(
	ing of the role	-	Hur	nar	n me	etaj	⊃n∈	eur	ດເ	
pneumonia	has been und	cł	nara	act	er	ist	ics	; t]	
metapneumovirus, human bocavirus, and parainfluenza viru										
frequently in both developed and developing countries. Du										

frequently in both developed and developing countries. Dual viral infections are common, and a third of children have evidence of viral-bacterial co-infection. In adults, viruses are the putative causative agents in a third of cases of community-acquired pneumonia, in particular influenza viruses, rhinoviruses, and coronaviruses. Bacteria continue to have a predominant role in adults with pneumonia. Presence of viral epidemics in the community, patient's age, speed of onset of illness, symptoms, biomarkers, radiographic changes, and response to treatment can help

M

Figures

ATB treatment of community-acquired pneumonia
ATB treatment of community-acquired pneumonia

BETA-LACTAMS

• PENICILLINS

- AMOXICLAV+AMPICILLIN COMBINATION
- INH. BETA-LACTAMASE IN PATIENTS AT RISK (COPD)
- PNC-G IN PROVEN PNEUMOCOCCAL ETIO.
- CEPHALOSPORINS
 - MAINLY 2ND AND 3RD GEN.
 - RELATIVELY LOW RISK OF PNC ALLERGY

ATB treatment of community-acquired pneumonias

BETA-LACTAMS

• PENICILLINS

- AMOXICLAV+AMPICILLIN COMBINATION
- INH. BETA-LACTAMASE IN PATIENTS AT RISK (COPD)
- PNC-G IN PROVEN PNEUMOCOCCAL ETIO.
- CEPHALOSPORINS
 - MAINLY 2ND AND 3RD GEN.
 - RELATIVELY LOW RISK OF PNC ALLERGY

MACROLIDES

- TO COVER ATYPICAL AGENTS (MYCOPLASMA, CHLAMYDIA, LEGIONELLA)
- IN HIGH-RISK PATIENTS, COMBINATION WITH BETA-LACTAM
- HIGHER RISK OF RESISTANCE IN MONOTHERAPY (PNEUMOCOCCI, HAEMOPHILUS)
- CAVE: DRUG INTERACTIONS (LOWER RISK WITH AZITHROMYCIN)

ATB treatment of community-acquired pneumonias

BETA-LACTAMS

• PENICILLINS

- AMOXICLAV+AMPICILLIN COMBINATION
- INH. BETA-LACTAMASE IN PATIENTS AT RISK (COPD)
- PNC-G IN PROVEN PNEUMOCOCCAL ETIO.
- CEPHALOSPORINS
 - MAINLY 2ND AND 3RD GEN.
 - RELATIVELY LOW RISK OF PNC ALLERGY

FLUOROQUINOLONES

RESPIRATORY - MOXIFLOXACIN GOOD TISSUE PENETRATION, COVERAGE OF TYPICAL AND ATYPICAL AGENTS RISK OF FMD AND SELECTION OF RESISTANT STRAINS, NOT AS FIRST CHOICE

MACROLIDES

- TO COVER ATYPICAL AGENTS (MYCOPLASMA, CHLAMYDIA, LEGIONELLA)
- IN HIGH-RISK PATIENTS, COMBINATION WITH **BETA-LACTAM**
- HIGHER RISK OF RESISTANCE IN MONOTHERAPY (PNEUMOCOCCI, HAEMOPHILUS)
- CAVE: DRUG INTERACTIONS (LOWER RISK WITH AZITHROMYCIN)

ATB treatment of community-acquired pneumonias

BETA-LACTAMS

• PENICILLINS

- AMOXICLAV+AMPICILLIN COMBINATION
- INH. BETA-LACTAMASE IN PATIENTS AT RISK (COPD)
- PNC-G IN PROVEN PNEUMOCOCCAL ETIO.
- CEPHALOSPORINS
 - MAINLY 2ND AND 3RD GEN.
 - RELATIVELY LOW RISK OF PNC ALLERGY

FLUOROQUINOLONES

RESPIRATORY - MOXIFLOXACIN GOOD TISSUE PENETRATION, COVERAGE OF TYPICAL AND ATYPICAL AGENTS RISK OF FMD AND SELECTION OF **RESISTANT STRAINS, NOT AS FIRST CHOICE**

MACROLIDES

- TO COVER ATYPICAL AGENTS (MYCOPLASMA, CHLAMYDIA, LEGIONELLA)
- IN HIGH-RISK PATIENTS, COMBINATION WITH **BETA-LACTAM**
- HIGHER RISK OF RESISTANCE IN MONOTHERAPY (PNEUMOCOCCI, HAEMOPHILUS)
- CAVE: DRUG INTERACTIONS (LOWER RISK WITH AZITHROMYCIN)

TETRACYCLINES

- **BROAD SPECTRUM**
- BACTERIOSTATIC
- RISK OF ADVERSE EFFECTS

When to hospitalize?

CURB-65

- C confusion
- U urea (above 7mmol/l)
- R respiration (tachypnea above 30/min.)
- B blood pressure (BP below 90/DBP below 60)
- 65 age over 65

Predisposing factors in relation to the aetiology of CAP

- alcoholism S. pneumoniae, anaerobes, G- bacilli
- COPD S. pneumoniae, H. influenzae, M. catarrhalis, Legionella
- Senior centres and homes S. pneumoniae, G- bacilli, H. influenzae, S. aureus, anaerobes, Chl.

pneumoniae

- poor dental hygiene anaerobes
- epidemic occurrence Legionella
- influenza epidemics influenzae virus, S. pneumoniae, S. aureus, S. pyogenes, H. influenzae
- aspiration anaerobes
- bronchiectasis S. aureus, P. aeruginosa

Predisposing factors in relation to the etiology of CAP

- CF S. aureus, P. aeruginosa, B. cepacia
- i.v. drug addicts S. aureus, anaerobes, TB
- airway obstruction anaerobes
- contact with animals
 - Chl. psittaci
 - F. tularensis
 - C. burnetti
 - Histoplasmosis
- endemic area coccidiomycosis

Pneumonia unresponsive to treatment

- resistant pathogen (or unrecognised pathogen or polymicrobial flora)
- inadequate ATB treatment
- complications of pneumonia
- misdiagnosis
 - pulmonary embolism
 - cardiac failure
 - non-infectious pneumonia
 - vasculitis
 - malignancy
 - aspirations -

Pneumonia unrespr

- resistant pathogen (or unred
- inadequate ATB treatment
- complications of pneumonia
- misdiagnosis
 - pulmonary embolism
 - cardiac failure
 - non-infectious pneumo
 - Vasculitis
 - Malignancy
 - Aspirations

Pneumonia unresp

- resistant pathogen (or unred
- inadequate ATB treatment
- complications of pneumonia
- misdiagnosis
 - pulmonary embolism
 - cardiac failure
 - non-infectious pneumo
 - Vasculitis
 - Malignancy
 - Aspirations

Pneumonia unrespr

- resistant pathogen (or unred
- inadequate ATB treatment
- complications of pneumonia
- misdiagnosis
 - pulmonary embolism
 - cardiac failure
 - non-infectious pneumo
 - Vasculitis
 - Malignancy
 - Aspirations

Nosocomial pneumonia

EARLY

- BY THE 4TH DAY AFTER ADMISSION
- USUALLY RATHER ENDOGENOUS FLORA OF THE PATIENT
 - S.AUREUS
 - STR.PNEUMONIAE
 - H.INFLUENZAE
 - M.CATARRHALIS

• ATB USED TO TREAT COMMUNITY-ACQUIRED PNEUMONIA ARE USUALLY SUFFICIENT

Aspiration pneumonia

• risk groups

- alcoholics, i.v. addicts
- Seniors
- Children
- Patient with swallowing disorders
- often creeping onset, cough with purulent expectoration, weight loss
- X-ray: infiltration in the lower lobes, in S2 and S6
- etio.: flora of the oral cavity, anaerobes, G-bacteria, St.aureus, H.influenzae

on,

Pneumonia in children

Pneumonia in children

BACTERIAL

- CLINICAL FINDINGS
 - EXPECTORATION
 - THE ABSENCE OF OBSTRUCTIVE PHENOTYPES.
 - HIGH FEVERS, RAPID ONSET OF SYMPTOMS
- ELEVATION OF INFLAMMATORY PARAMETERS
 - NEUTROPHILIA ABOVE 9000/UL, MORE THAN 5% OF RODS
 - CRP ABOVE 80MG/L, PCT ABOVE 1UL/L
- RTG
 - ROUND, LOBULAR OR SEGMENTAL INFILTRATE
 - CAVITATION, FLUIDOTHORAX
- ATB
 - USUALLY AMINOPENICILLINS OR MACROLIDES
 - IN NEWBORNS AMPI+GEN OR CEF. 3RD GENE
 - TETRACYCLINES OVER 8 YEARS, QUINOLONES IN CHILDREN NO

Pneumonia in children

BACTERIAL

- CLINICAL FINDINGS
 - EXPECTORATION
 - THE ABSENCE OF OBSTRUCTIVE PHENOTYPES.
 - HIGH FEVERS, RAPID ONSET OF SYMPTOMS
- ELEVATION OF INFLAMMATORY PARAMETERS
 - NEUTROPHILIA ABOVE 9000/UL, MORE THAN 5% OF RODS
 - CRP ABOVE 80MG/L, PCT ABOVE 1UL/L
- RTG
 - ROUND, LOBULAR OR SEGMENTAL INFILTRATE
 - CAVITATION, FLUIDOTHORAX
- ATB
 - USUALLY AMINOPENICILLINS OR MACROLIDES
 - IN NEWBORNS AMPI+GEN OR CEF. 3RD GENE
 - TETRACYCLINES OVER 8 YEARS, QUINOLONES IN CHILDREN NO

VIRAL

• OFTEN OBSTRUCTIVE PHENOMENA

- WHISTLING, RETRACTING,
- PROLONGATION OF EXSPIRATION
- RATHER SUBFEBRILE
- SLOWER PROGRESSION

• RTG

- INDISTINCTLY DEMARCATED INFILTRATES
- INTERSTITIAL OR PERIBRONCHIAL
- INFILTRATES, SUBSEPTAL ATELECTASIS - BILAT. FINDING
- LOWER INFLAMMATORY PARAMETERS

Pneumonia

BACTE	
CLINICAL FINDINGS	WHEN TO DEFI
- EXPECTORATION	
- THE ABSENCE OF OB	
PHENOTYPES.	
- HIGH FEVERS, RAPID	• AGE UNDER 2 MOI
SYMPTOMS	• DISORDER OF CO
 ELEVATION OF INFLAW 	1
PARAMETERS	• RESTING STRIDO
- NEUTROPHILIA ABO	STGNTFTCANT RET
THAN 5% OF RODS	
- CRP ABOVE 80MG/L,	• CYANOSIS, SATU
• RTG	• SEVERE MALNUTR
- ROUND, LOBULAR O	F
INFILTRATE	• NON-COMPLIANCE
- CAVITATION, FLUIDC	• FATLURE OF OUTP
• ATB	
- USUALLY AMINOPEN	
MACROLIDES	
- IN NEWBORNS AMPI	
GENE	
- TETRACYCLINES OVE	R 8 YEARS,
QUINOLONES IN CHI	LDREN NO

NITELY HOSPITALIZE

- NTHS
- NSCIOUSNESS
- R, GRUNTING,
- RACTION
- RATION BELOW 928
- ITION, EATING DISORDER
- FAMILIES
- ATIENT TREATMENT

VIRAL TIVE PHENOMENA ETRACTING, N OF EXSPIRATION BRILE RESSION

DEMARCATED INFILTRATES DR PERIBRONCHIAL SUBSEPTAL ATELECTASIS G MATORY PARAMETERS

Whooping cough

- Bordetella pertussis and parapertussis
 - aerobic G- coccobacillus
 - growth on enriched medium
 - affinity for airway epithelium
 - virulence factors
 - adhesins
 - toxins (pertussis toxin, tracheal cytotoxin)

Whooping cough

- droplet infection
- used tol be a common infection epidemics in 2-5 year cycles
- decrease in incidence after vaccination, now increasing again (shift to higher age category)

Whooping cough

- definition cough for at least 2 weeks + 1 of the following symptoms (whooping cough, coughing fits, apnoic pauses in infants, gagging after a coughing fit)
- catarrhal, paroxysmal and convalescent stages
- complications asphyxia, encephalopathy, CNS haemorrhage, pneumothorax, secondary infection
- Therapy: clarithromycin for 7 days od Azithromycin for 5 days

Diagnosis of pertussis

Clinical symptoms and laboratory tests

Antivirals to treat influenza

M2 protein inhibitors (influenza A only)

- amantadine (Viregyt K tbl.) •
- rimantadine

Neuraminidase inhibitors

- <u>oseltamivir (Tamiflu tbl.)</u>
- zanamivir (Relenza inh.)

Available at

Unavailable

Amant	adi 1ibi
,	2
M	
L.	9
TH	0
Amanta	

OTHERS WITHIN 48 HOURS OF ARRIVAL AT OWN EXPENSE

CHRON. CV, RESPIRATORY DISEASE, DM, ETC.

> PREGNANT AND UP TO 2 WEEKS POSTPARTUM

OVER 65 YEARS OF AGE

WHO TO TREAT?

UNDER 2 YEARS OF AGE

SEVERE OR PROGRESSIVE COURSE

HOSPITALIZED FOR INFLUENZA, **REGARDLESS OF** THE DURATION OF SYMPTOMS

COVID-19

 \bigcirc

Q

Ο

()

Treatments for COVID-19

*In some countries health authorities advise against the use of molnupinavir during pregnancy; other countries have chosen not to authorize it at all.

(hydroxychloroquine, chloroquine, ivermectin, fluvoxamine, metformin, colchicine, lopinavir/ritonavir, interferons, convalescent

Drugs with insufficient evidence to recommend

(nitazoxanide, granulocytemacrophage colonystimulating factor inhibitors, anakinra, vitamins C, D, and

hydroxychloroquine coronavirus

Advanced

Search results

Save Email

> Clin Microbiol Infect. 2021 Jan;27(1):19-27. doi: 10.1016/j.cmi.2020.08.022. Meta-Analysis Epub 2020 Aug 26.

Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis

Thibault Fiolet ¹, Anthony Guihur ², Mathieu Edouard Rebeaud ², Matthieu Mulot ³, Nathan Peiffer-Smadja⁴, Yahya Mahamat-Saleh⁵

Affiliations + expand PMID: 32860962 PMCID: PMC7449662 DOI: 10.1016/j.cmi.2020.08.022 **Free PMC article**

Abstract

Background: Hydroxychloroquine or chloroquine with or without azithromycin have been widely promoted to treat coronavirus disease 2019 (COVID-19) following early in vitro antiviral effects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Objective: The aim of this systematic review and meta-analysis was to assess whether chloroquine or hydroxychloroquine with or without azithromycin decreased COVID-19 mortality compared with the standard of care.

Hydroxychlorochin
V.S.
Evidence Based Medicine

- one of the first drugs widely used against COVID-19
- Approved for use all around the world under pressure of public, but with very week evidence regarding efficacy and safety
- Very often used together with azithromycin (including Czechia)

hydroxychloroquine coronavirus

Advanced

Search results

Clin Microbiol Infect. 2021 Jan;27(1):19-27. doi: 10.1016/j.cmi.2020.08.022. Meta-Analysis Epub 2020 Aug 26.

Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis

Thibault Fiolet ¹, Anthony Guihur ², Mathieu Edouard Rebeaud ², Matthieu Mulot ³, Nathan Peiffer-Smadja⁴, Yahya Mahamat-Saleh⁵

Affiliations + expand PMID: 32860962 PMCID: PMC7449662 DOI: 10.1016/j.cmi.2020.08.022 **Free PMC article**

Abstract

Background: Hydroxychloroquine or chloroquine with or without azithromycin have been widely promoted to treat coronavirus disease 2019 (COVID-19) following early in vitro antiviral effects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Objective: The aim of this systematic review and meta-analysis was to assess whether chloroquine or hydroxychloroquine with or without azithromycin decreased COVID-19 mortality compared with the standard of care.

Hydroxychlorochin
V.S.
Evidence Based Medicine

- one of the first drugs widely used against COVID-19
- Approved for use all around the world under pressure of public, but with very week evidence regarding efficacy and safety
- Very often used together with azithromycin (including Czechia)
- Hydroxychloroquine alone does not reduce mortality in COVID-19 patients
- **Combination of hydroxychoroquine with** azithromycine increases mortality in hospitalized patients by up to 27%!!!

