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 THE BULLETIN OF SYMBOLIC LOGIC

 Volume 9, Number 2, June 2003

 MODEL THEORY:

 GEOMETRICAL AND SET-THEORETIC ASPECTS AND PROSPECTS

 ANGUS MACINTYRE

 In Memory of Maurice Boffa

 ?1. Introduction. I see model theory as becoming increasingly detached
 from set theory, and the Tarskian notion of set-theoretic model being no
 longer central to model theory. In much of modem mathematics, the set-
 theoretic component is of minor interest, and basic notions are geometric
 or category-theoretic. In algebraic geometry, schemes or algebraic spaces
 are the basic notions, with the older "sets of points in affine or projective
 space" no more than restrictive special cases. The basic notions may be
 given sheaf-theoretically, or functorially. To understand in depth the his-
 torically important affine cases, one does best to work with more general
 schemes. The resulting relativization and "transfer of structure" is incompa-
 rably more flexible and powerful than anything yet known in "set-theoretic
 model theory".

 It seems to me now uncontroversial to see the fine structure of definitions

 as becoming the central concern of model theory, to the extent that one can
 easily imagine the subject being called "Definability Theory" in the near
 future.

 ?2. Tarskian beginnings.

 2.1. Tarski's set-theoretic foundational formulations are still favoured by
 the majority of model-theorists, and evolution towards a more suggestive
 language has been perplexingly slow. None of the main texts uses in any
 nontrivial way the language of category theory, far less sheaf theory or
 topos theory. Given that the most notable interactions of model theory with
 geometry are in areas of geometry where the language of sheaves is almost
 indispensable (to the geometers), this is a curious situation, and I find it hard
 to imagine that it will not change soon, and rapidly.

 2.2. In Tarski's foundational scheme, everything happens within a (the?)
 universe of set theory. All the entities of the subject (semantic and syntac-
 tic) are sets (or, now and then, classes). Structures are defined as (rather

 Received January 15, 2002; accepted September 29, 2002.

 ( 2003, Association for Symbolic Logic
 1079-8986/03/0902-0005/$2.60

 197

This content downloaded from 
�����������78.128.191.46 on Mon, 18 Mar 2024 15:01:14 +00:00������������ 

All use subject to https://about.jstor.org/terms



 ANGUS MACINTYRE

 gruesome) tuples of relations, functions and points living on a set. Once
 one has fixed what configuration of arities, etc, one wishes to consider, one
 has an associated syntactical apparatus for that configuration The main
 "syntactic" notion is that of formula (perhaps infinitary). Structures and
 formulas are related by satisfaction, the basic notion being: M t= (I(a), M
 a structure, (I(v) a formula, and a a tuple from M. This notion is set-
 theoretically definable, uniformly for structures and formulas. (Here the
 restriction of structures to sets is relevant.) The approach covers various
 "semantics", such as first-order, infinitary, higher-order, Boolean-valued,
 Heyting-valued, and real-valued.
 2.3. While it is simply true that most "structures"of ordinary mathe-

 matics can be construed as Tarskian structures, few modeltheorists can have

 failed to notice how unappealing the formulation is to other mathematicians.
 Tarski clearly felt the need for a rigorous definition of truth, but I do not be-
 lieve that such formal rigour was ever a sine qua non for the development of a
 mathematical theory of models. There are parts of model theory, notably the
 monumental (model theory of) set theory, and the more ensembliste parts
 of the model theory of arithmetic, where truth definitions (both Tarskian,
 and those based on the technology of indiscernibles) are truly indispensable.
 However, in those parts of model theory with more relevance for algebra
 and geometry, the set-theoretical, "rigorous" formulations seems to me to
 have given practically nothing, and arguably to be currently inhibiting. Let
 me say at the outset that this cannot reasonably be taken to suggest that the
 Tarskian tradition has contributed little to the current repertoire of"applied
 model theory". Tarski's Limit Theorem, ultraproducts, indiscernibles, and
 Shelah's profound contributions to definability theory (detached from their
 ensembliste setting), are all ideas evolving from the set-theoretic tradition,
 and now constituting much of what every modeltheorist must know. But
 there are other ideas of Tarski, equally fertile, and not at all ensembliste,
 namely those around quantifier-elimination. As I will observe below, there
 is a puzzle as to why Tarski did not take these ideas further.

 2.4. Aside from the brutal formalism, there were various other (minor,
 but instructive) defects in early formulations. Structures could not be too
 large, and in particular the notion of functor did not easily fit (there is now
 a need for a "natural" fit). For no good reason, natural structures were
 forced into a one-sorted formulation (and by now it is a considerable nui-
 sance that there is no basic model-theory text in a many-sorted setting).
 This has an instructive ideological effect. When the needs of his research
 forced Shelah to many-sorted formulations, to accommodate imaginaries,
 this was (surprisingly) regarded as noteworthy. Algebraic geometers had
 much earlier come to terms with their definable equivalence relations (in the
 context of algebraic spaces). From the perspective of the traditionally pow-
 erful strategy of getting to the essential structure behind the presentations,
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 and the associated Kleinian ideology of the importance of invariance under
 symmetries, nothing could be more natural than the passage to Meq.

 Some of Tarski's early moves were well ahead of their time. He attached to
 structures their theories, syntactic entities, and made (various collections of)
 theories into spaces via what is essentially the spectral topology of algebraic
 geometry. G6del's Finiteness Theorem (Completeness Theorem) becomes
 the Compactness Theorem for these spaces, a still suggestive reformulation.
 However, nearly thirty years passed before Morley spelled out the functorial
 picture of the various type spaces (also spectral) associated to theories. This
 sheaf picture did not appeal to many modeltheorists even in the 1960's. It is
 to be noted that much of model theory can be formulated in terms of these
 type spaces, and/or their Boolean algebra duals, without even bringing in
 many models (just as the points aspect of schemes, in its old-fashioned set-
 theoretic sense, is only one of many aspects of modern algebraic geometry).
 One point I wish to make in this speculative paper is that the Tarskian
 semantics may easily lose its dominance in model theory.

 2.5. Tarski himself, in the 1950's, contributed to a more palatable version
 of model-theory. The work of his school, and later Shelah, allowed one to
 define "syntactical" notions, such as elementary equivalence, in terms of the
 (functorial) notion of ultraproduct (which is definable in category-theoretic
 terms, close to those in Grothendieck's definition of Spec). Apart from a
 few distinguished exceptions, the subject was relentlessly setified, and thus,
 as far as being suggestive to the outside world, stultified.

 But really Tarski's main contributions, though usually guarded by the
 formalism of set-theory, owe little to set theory. Elementary maps are clearly
 the right notion and his simple Direct Limit Theorem has a Grothendieckian
 inevitability about it.

 2.6. The Tarskian emphasis, enormously expanded by Shelah (but now
 somewhat neglected), makes no one first-order L, or L-theory X, privileged.
 What matters most is classification within Mod (E), the class of models of X,
 and then via cardinal invariants.

 There are, in fact, very few isomorphism theorems in real mathematics that
 depend only on cardinal invariants. A useful contribution of post-Morley
 model theory is to explain these extreme classifications in terms of a geo-
 metrical independence theory (ultimately of much greater importance - no
 one could reasonably argue that uncountable-categoricity is the fundamen-
 tal fact about algebraically closed fields). From these explanations one does
 understand why there are so few extreme classifications in algebra, and one
 understands some absolutely new things, for example that there are no such
 extreme classifications in ordered algebra.

 The relevance of the set-theoretic emphasis is much less clear in later
 developments (say, post 1980). The later highlights have little to do with the
 diversity (or otherwise) of models, but rather the fine structure of definitions.
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 2.7. What is the legacy of the Tarskian development?
 2.7.1. The general versions of Cantor's back-and-forth method remain

 useful, though nowadays they are rarely tied to cardinality considerations.
 Criteria for extendibility of maps, or characterizations of certain kinds of de-
 finability in terms of extension of maps (particularly Shoenfield's Criterion)
 are part of the basic repertoire of the subject.

 2.7.2. The Omitting Types Theorem (essentially the Baire Category The-
 orem in a certain type space) is normally construed as a method for con-
 structing models more complex than those provided by the basic Compact-
 ness Theorem. The right setting is surely Lo, , (or its fragments). The
 method has many presentations (forcing, consistency properties). There
 is no reason to think that the resources of the simple ideas involved have
 been exhausted. Hrushovski's subtle variant, involving a predimension con-
 straint, has already become a standard tool, and a startling insight of Zilber
 relates Hrushovski's "forcing" to Schanuel's Conjecture, the theory of the
 complex exponential, and diophantine geometry.
 2.7.3. Saturated and atomic models (and various associated relativized

 notions) remain fundamental, some 45 years after their first appearance.
 Saturation is a general model-theoretic version of the algebraic geometer's
 universal domain. Though the models in question are rarely explicitly con-
 structible, their utility is beyond doubt, not least in that one often gets simple
 proofs, via saturation, of nontrivial theorems about standard objects. One
 manifestation is in bounds in algebraic geometry, where nice results have
 appeared sporadically for over forty years.

 2.7.4. Historically, saturation, ultraproducts and automorphisms were
 studied together. How much saturation an ultraproduct has is a natural
 and difficult set-theoretic question, not, however, one fertile for geometric
 applications. That nonprincipal ultraproducts are (normally) saturated over
 countable subsets, combined with all the functorialities of the ultraproduct
 construction, is usually exactly what one needs in applications. That sat-
 urated models have enough automorphisms to support a primitive Galois
 theory remains an attractive and useful fact. That one cannot just read
 off automorphisms in ultraproducts is perhaps less well-known. Iteration
 makes them visible, but this has never been useful outside of set theory or
 models of arithmetic.

 2.7.5. The isolation, by Ehrenfeucht and Mostowski, of the notion of
 order-indiscernibles (and the underlying Ramsey technology), has always
 seemed to me a key event in the subject. Clearly the basic result about
 automorphisms remains isolated, but other uses of the idea have driven
 the subject. E-M models are of basic importance in Classification Theory,
 though very rarely in applications. But serious combinatorics of indepen-
 dence started here, and would dominate the pure side of the subject for 35
 years, eventually reaching a sophistication adequate for major applications.
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 I want to stress that the indiscernibles per se are important only for calcula-
 tion (or representation) in connection with various notions of dependence.
 (The same can fairly be said in algebraic geometry.)

 2.7.6. A very remarkable example of the impact of set theory on the
 finite combinatorics of model theory is Shelah's work on not having the
 Independence Property, which has turned out to be a version of finiteness
 of Vapnik-Chervonenkis dimension [20]. Shelah's original proof that not
 having IP in dimension one (for a given theory) implies not having IP in all
 dimensions, gave a result apparently beyond the means of the probabilists
 who looked at the notion in geometrical contexts. Shelah's methods give
 no bounds at all, Laskowski gave astronomical Ramsey bounds, and later
 in specific (and most interesting) geometrical situations a mixture of o-
 minimal model theory and differential topology gave optimal (and useful)
 bounds [16].

 The point is that in the hands of a master like Shelah, set-theoretic methods
 reveal finite combinatorial methods of great flexibility, but that different
 ideas, more adapted to algebra/geometry, are needed to make these tools
 give convincing applications.

 2.7.7. The model theories of set theory and arithmetic remain in the
 Tarskian foundational tradition. In the case of the former this seems natural.

 In the case of the latter one hopes that someday serious diophantine issues
 will be confronted, but the time is surely not ripe.

 Both these model theories are involved (and the rest of model theory is
 not) with notions of relative consistency. Typically, one constructs models
 to resolve problems of relative consistency (in set theory or computational
 complexity). There are exceedingly deep results and flexible methods. In
 both settings model theory should not be separated from recursion-theoretic
 definability (descriptive set theory in one case, subrecursive hierarchies in
 the other), giving these subjects a dimension missing in geometric model
 theory.

 2.7.8. To summarize, the legacy of the set-theoretic development is rich
 and obvious in the model theory of set theory and arithmetic. For the rest
 of model theory, many of the fine combinatorial ideas were distilled from set
 theory, and have become more geometrical. I have no sense at all as to how
 set theory may again influence the geometry.

 ?3. The early Tarski (definability theory).

 3.1. With his work on a decision method for elementary algebra and
 geometry, Tarski initiated a quite different development, which still flourishes
 and owes very little to the set-theoretic development.

 Here the basic object of study is the real ordered field. The formal lan-
 guage takes +, -, 0, 1, , < as primitive, and (at least from a modern perspec-
 tive) one's central concern is the structure of (parametrically) definable sets.
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 Other models of Th(R) are not of special interest at the outset. Tarski him-
 self showed that IR and the field of real algebraic numbers are elementarily
 equivalent (so, for example, n is not first-order definable), but only much
 later in the work of the Robinson school were other nonstandard models of

 real significance.

 3.2. There is a basic stock of definable sets, S, defined using polynomials
 over R, namely: Zero-sets, positivity sets, negativity sets, all sets in RW
 defined from f c IR[xl,... xn].

 Tarski did not address the issue (much later of basic importance for ge-
 ometers and computer scientists) of the topological structure of such sets
 (except in dimension one, where it is trivial). In some ways this is odd,
 given his close links to outstanding topologists. And it is a missed oppor-
 tunity, for Tarski's elementary methods are powerful enough to prove such
 basic Finiteness Theorems as Whitney's, that sets in S have finitely many
 connected components (with uniformity in families).

 Tarski's main concern was the effect of the logical operations of A, V,
 and 3. The latter is crucial, and is best viewed geometrically as projection.
 (An aside: the rather natural notion of cylindric algebra has never been
 popular with model theorists. What was missing?)

 From S one builds other sets, via repeated applications of

 (A) Boolean operations;
 (B) (A) and projections.

 Using (A) alone one gets the semi-algebraic sets, and (via their graphs) the
 semi-algebraic functions. There is an extensive and beautiful literature on
 the geometry and topology of such sets (with the same Finiteness Theorems
 as for S). The dominant fact is Tarski's result: (B) is redundant, that is,
 the class of semi-algebraic sets is closed under projection, or, maybe, the
 semi-algebraic category has direct images.

 Projection is a very powerful operation. In arithmetic, or other "Godelian"
 settings, it leads rapidly from the intelligible to the unintelligible. In semi-
 algebraic geometry, in contrast, we have closure under all the natural topo-
 logical constructions. It is popular nowadays to see the semi-algebraic
 universe as the first of the "tame" universes for geometry. The basic geomet-
 rical/topological structure of the sets and functions is intelligible and the
 fundamental geometrical/topological constructions may be carried out in
 this small universe. There is none of the pathology of set-theoretic topology.
 Here all sets are locally closed, and positive measure coincides with having
 nonempty interior. Maps are Ck, with k > 1, off sets of measure 0.

 Tarski stressed the (constructive nature of the) quantifier-elimination, and
 the characterization of definable sets in R1 as those with finite boundary
 (i.e., finite unions of intervals in the most general sense). No attempt was
 every made to characterize definable sets in Rk for k > 1 (far less to study
 definability on real algebraic manifolds). Why not?

 202  ANGUS MACINTYRE
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 Well over forty years were to pass before van den Dries realized that on
 the basis of Tarski's result for R1 one could axiomatically derive Finiteness
 Theorems in IRk for all k. He was certainly inspired by the work of Lo-
 jasiewicz and Gabrielov on subanalytic subsets of Rk, and realized that their
 inductive arguments by fibering were of potentially great generality. (The
 definitive treatment of the inherent uniformities is given by [31]). Note that
 aside from the semi-algebraic case the only known example of an o-minimal
 category (as these universes would be called) came from the subanalytic
 subsets of Ik (R) for varying k. But already people had reason to hope that
 the universe of sets in the Rk, definable from semi-algebraics and the graph
 of the global exponential, would be o-minimal (with as consequence that it
 was not G6delian, as Z has infinitely many connected components). And so
 it turned out, in Wilkie's landmark result of 1991 [36].

 I want to stress that here little model theory was involved, and essentially
 nothing from the set-theoretic tradition. Here one learned from examples
 outside logic, from real analytic geometry, an appropriate discretion in the
 choice of geometrical axioms. My impression is that there are many who
 think this is not model theory at all. But the depth of understanding achieved
 in real geometry by these methods is comparable to that achieved via high
 theory from the stability tradition. Nonstandard models are sometimes use-
 ful, mainly for obtaining uniformities in Finiteness Theorems. But elaborate
 methods of model construction have proved irrelevant till now.

 Van den Dries' insights are certainly close to those of Grothendieck in [9],
 though my feeling is that the potential of [9] is far from exhausted. According
 to [29] Grothendieck was known to Bourbaki as "logical". For my taste, he
 is unrivalled in terms of ability to select notions, axioms and theorems of
 maximum potential. The beginning quotation in Deligne's [5], and Deligne's
 corroboration, witness what I am hinting at. This is a kind of "atomic" model
 theory, where set theory is again largely irrelevant.

 3.3. By finding a "right" level of generality, the basic theory of o-
 minimality helped enormously in the discovery of deeper Finiteness The-
 orems. An o-minimal combination of the subanalytic universe with the
 global exponential function confirmed its interest by a major application
 in Lie theory (to characteristic classes of contructible sheaves). The same
 theory has a natural "algebraic" nonstandard model which is now a power-
 ful tool in asymptotics [34]. Wilkie [37], in a second tour-de-force found a
 new axiomatic method for establishing o-minimality from Khovanski-style
 Finiteness Theorems, thereby proving o-minimality of the Pfaffian universe.

 3.4. Another missed opportunity. The notion of VC-dimension was discov-
 ered around 1971 [20] and has proved fundamental in mathematical learning
 theory. Examples were at first very hard to come by, except in the (o-
 minimal) universe of linearly definable sets. Thus it is truly remarkable that
 in any o-minimal theory (and there are many of great geometric complexity)
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 all definable families of definable sets have finite VC-dimension. Set theory
 is not needed here, though it led to the first insights [20]. But the internal
 geometry of o-minimal theories leads to the best results, including some,
 on density, quite unknown to the probabilists [17]. But it should not be
 forgotten then even in the semi-algebraic case the result is not trivial, but can
 be deduced from Tarski's Theorem by elementary methods.

 3.5. Decidability vs definability. Tarski's primary purpose was surely to
 give a decision procedure for elementary algebra and geometry. Nowadays,
 while it it technically interesting (and typically rich in spinoffs) to prove
 decidability for some classical structure, this is no longer an end in itself.
 Rather one wants to find constraints on, or normal forms for, definable
 relations in the structure. This has been achieved for many basic structures
 since 1950, never by essential use of set-theoretic methods.

 In o-minimal structures, the ring Z is known not to be interpretable, thus
 showing that o-minimal structures are not G6delian. In contrast, in number
 theory simple definitions may lead to incomprehensible sets (e.g., in the
 ring Z projections of quantifier-free definable sets are exactly the recursively
 enumerable sets, the strong negative solution of Hilbert's 10th Problem). In
 Q one does not know any nontrivial constraint on existentially definable sets,
 but In sets are already incomprehensible.

 3.6. Other early Tarskian themes of an algebraic nature. Tarski had many
 ideas which link to ideas now current, 60 years on.
 The Tarski-Chevalley Direct Image Theorem, that projections of con-

 structible sets in algebraically closed fields are constructible, is surely of
 permanent importance. (It is much easier than his theorem for R). Nowa-
 days it occurs in advanced texts in commutative algebra [26], in a generalized
 scheme version, with a proof using induction on dimension. It is to be noted
 that a rearrangement of this proof occurs in the landmark Hrushovski-Zilber
 paper [15], there to derive co-stability from natural axioms including a Direct
 Image Theorem (and thereby initiating the model theory of complex analytic
 manifolds).

 Tarski was the first to point out a rigorous derivation of a Lefschetz Prin-
 ciple by means of his quantifier-elimination for algebraically closed fields.
 Nowadays there is much life left in Lefschetz Principles for other languages
 and structures.

 He stressed that the real algebraic numbers are exactly the absolutely
 definable elements of the real field, and constitute the "prime" or "atomic"
 model of the theory.

 General theory shows that o-minimal theories have prime models, but only
 in rare cases have these been explicitly characterized. The identification of
 suitably saturated models has been done too in some important cases, using
 generalized power series over groups defined using Hausdorffs trh-sets, and
 this representation has been suggestive.

 204

This content downloaded from 
�����������78.128.191.46 on Mon, 18 Mar 2024 15:01:14 +00:00������������ 

All use subject to https://about.jstor.org/terms



 MODEL THEORY: GEOMETRICAL AND SET-THEORETIC ASPECTS AND PROSPECTS 205

 ?4. Definability in "core" structures.

 4.1. The rings Z,Q, Q (x) are Godelian, and their logical definability
 theory is essentially recursion-theoretic.

 4.2. In contrast, Robinson took up the definability aspect of Tarski's
 work, and contributed some fundamental generalizations of quantifier-
 elimination. Over a long period he and his followers, often using very
 primitive methods, detected patterns of definability in many core structures
 of geometrical significance. I think the key notion is always that of a Direct
 Image Theorem (and it seems that it is only lately that we modeltheorists
 discovered the existence of deep examples of such theorems, for example
 Remmert's, out in the world of geometry). The pattern is always to identify
 a category of definable sets and functions, with sufficiently intelligible struc-
 ture that one may bring standard geometric techniques to bear, and such that
 one has a Direct Limit Theorem for the category. The basic category should,
 loosely, be "tame", i.e., devoid of the kinds of pathology that unrestricted
 set theory brings. Among the obviously basic structures for which one has
 a viable Direct Image Theorem are:

 (1) Various real analytic situations;
 (2) p-adic and rigid analytic structures, and Witt vectors with Frobenius;
 (3) the ring of algebraic integers;
 (4) many Henselian fields, including power series fields.

 (1) includes Gabrielov's famous theorem of the complement for suban-
 alytic subsets of projective space. The Direct Image result is basically the
 classical result that proper images of real subanalytic sets are subanalytic. A
 very different (series of) example(s) is provided by Wilkie's model complete-
 ness for the real exponential. Here the basic setting is as for Tarski except
 that one considers, instead of merely polynomials, (iterated) exponential
 polynomials. One does not have the naive analogue of Tarski's Theorem.
 The basic category is not that of quantifier-free definable sets and maps.
 Rather the basic sets are the projections of quantifier-free definable sets, and
 the basic result is now closure under complement. In fact one does not need
 arbitrary images of quantifier-free definable sets, but only etale ones.

 There are basic examples relating to (1) where one has something very
 constructive but not a Direct Image Theorem. The most interesting example
 is the Pfaffian category, shown by Wilkie to be o-minimal.

 (2) Here the starting result analogous to Tarski's is that one needs only
 the direct images under the (etale) power maps. Note that Tarski's original
 theorem falls into this pattern.

 Already elaborations of this yield important information on p-adic
 Poincare series. Later one was able to develop a p-adic analogue of the
 subanalytic theory [7], yielding important consequences in p-adic group
 theory, and even later one was able, in the face of major difficulties, to derive
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 a Direct Image Theorem in the rigid cases, using existing deep Direct Image
 Theorems.

 The Witt vector case, recently dealt with, subsumes the original 1976 result.
 Here one needs no pre-existing theorems. The model-theoretic patterns
 revealed since 1964 provide sufficient guide. One uses nonstandard models
 (via, as always, Shoenfield's Criterion). The main task is to find axioms
 permitting an elimination.

 In other cases, for example Wilkie's [36], it required substantial work [24]
 to figure out what axioms one was using. The bonus is a decidability result.
 In other cases, notably the p-adic exponential, one does not know what
 axioms one has used, though one has a Direct Image Theorem of Wilkie
 style.

 (3) is currently a result of sporadic type. There seems considerable scope
 for sharpening the presentation in [32], converting the quantifier-elimination
 to something more like a Direct Image Theorem, and for emphasizing, at
 the level of local-global, or sheaf-theoretic principles, the link between local
 and global definitions (a la Feferman-Vaught).

 (4) This development began with the work of Ax-Kochen-Ersov, beginning
 the model-theoretic analogy between the p-adics and the reals. Hensel's
 Lemma turned out to be the analogue of the signchange property, and this
 insight opened a whole new area relating definitions on Henselian fields to
 those in their value groups and residue fields. The ideas involved turned
 out to be very relevant for the study of real exponentiation, where a striking
 Direct Limit Theorem was obtained in which logarithms are central [33].

 4.3. Despite the beauty and clarity of [35], I feel that the model theory of
 analytic functions is somehow defective, in that it has no "local" formalism.
 It works perfectly well for compact manifolds (by crude patching), but there
 really ought to be a thoroughgoing sheaf semantics at work. In a similar
 spirit, one expects the needs of current work to force a new foundation of
 model theory, to support invariant formulations, and in particular to let us
 pass the stage when definable sets are given in terms of a redundant affine
 embedding.

 4.4. The overemphasis on decidability had the effect of deterring any
 serious study of the model theory of the global complex exponential (which
 Tarski knew to be undecidable). The decidability of the real exponential is
 bound up with (the real case of) Schanuel's Conjecture in transcendental
 number theory [24]. Intriguingly, Schanuel's Conjecture is bound up with
 the fine detail of definability for the complex exponential [38]. If one uses
 Hrushovski forcing "relative to Schanuel's Conjecture" one obtains a very
 natural "Robinsonian" theory of exponentiation, which may agree with the
 actual theory of exponentiation. One is operating here just outside first-
 order model theory, but in a realm that seems to me more category-theoretic
 than set-theoretic. The model theory of the complex exponential is ripe

 206
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 MODEL THEORY: GEOMETRICAL AND SET-THEORETIC ASPECTS AND PROSPECTS 207

 with problems and links to diophantine geometry. It is no doubt the prime
 example in geometry where decidability is out the question (it is Godelian)
 but a geometrical definability theory may exist.

 ?5. New theories.

 5.1. Robinson's emphasis on model completeness has led, over the years,
 to the discovery of certain theories, of basic current importance, but not
 having any "natural" models. (The theory of exponentiation mentioned in
 4.4 may turn out to be one such.)

 General nonsense gives the existence of existentially closed models of
 universal theories, but only rarely is the class of existentially closed models
 first-order axiomatizable. The core structures given in 4 almost always turn
 out to be existentially closed for a suitable formalism, and a crucial step
 in understanding them is to find the axioms expressing this (sign change,
 Henselian,... ).

 The first case of an interesting theory got this way is differentially closed
 fields. The class of (even natural) differential fields is Godelian, but the class
 of differentially closed fields is elementary (there are several possibilities in
 finite characteristic, linked to the theory of separably closed fields), and has
 a Direct Image Theorem (easy in characteristic 0). The definability theory is
 in a natural way an elaboration of that for algebraically closed fields. It seems
 fair to say that DCF, as studied by Robinson, contributes little to the study
 of ordinary differential equations. However, once it was realized that DCF
 is stable (w-stable in characteristic 0), nontrivial stability theory did allow
 the development of a theory of closures of definite interest to differential
 algebraists. But the real interest of DCF came with Buium's use of an
 essentially arbitrary model of DCFo in connection with the Mordell-Lang
 Problem in diophantine geometry, followed by Hrushovski's brilliant use of
 deep geometrical model theory of separably closed fields (or a variant of
 DCFp) to go beyond the algebraic geometers in the characteristic p case of
 Mordell-Lang [10]. I stress that it is the technology (here very advanced) of
 definability theory that matters, not at all any special model or set-theoretic
 construction.

 Another example, discovered surprisingly late [22], is ACFA, the theory
 of an existentially closed difference field (equivalently field with automor-
 phism, in this case). The theory was discovered because of an insight that it
 might have to do with Frobenius morphisms, as p varies (and so it turned
 out [14], [23]). The most striking feature of the axiomatization is that the
 axiom allowing the Direct Image Theorem has the shape of diagrams of Weil
 in the theory of varieties over finite fields.

 The theory is unstable, but a penetrating analysis of definitions in terms of
 geometric model theory [3] leads to yet another contribution to diophantine
 geometry, this time to the Manin-Mumford Conjecture [13]. Again, no
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 specific model is needed, but much technology from definability theory. The
 new theory comes from that of algebraically closed fields by a procedure
 analogous to that for differential fields. One may ask if there are other
 possibilities. Yes, but they are few [2], and the work on Witt vectors involves
 the only other case.

 5.2. Nonstandard finite fields, and Frobenius. Tarski had raised the prob-
 lem of the decidability of the theory of finite fields (and there is evidence he
 thought the answer would be negative). Ax [1] not only proved decidabil-
 ity but (much more importantly) characterized exactly, by geometric and
 Galois-theoretic axioms, the infinite ultraproducts K of finite fields. The
 Galois-theoretic condition is that Gal(K) - Z, i.e., K has exactly one exten-
 sion of each degree (and K is perfect), and of course implies that K is not
 algebraically closed. But, for the K in question, only just. From one of the
 great achievements of diophantine geometry, Weil's Riemann Hypothesis for
 curves over finite fields (precisely, from the Lang-Weil estimates), it follows
 that every absolutely irreducible variety over K has a K-valued point. This
 is an elementary condition. The miraculous result is that the conditions now
 displayed give exactly the theories of all possible K.
 While it is true that the K are scarcely visible without some (actually

 minimal) ultraproduct technology, the K occur in nature in the sense that
 Fix(a), for a a generic element of Aut(Ql'g) is a model of Ax's axiom
 (a "pseudofinite" field).
 The theory of pseudofinite fields has a Direct Image Theorem, formally

 very similar to those for R and Qp, and most suggestively presented in the
 Galois stratification of [8]. Here the basic entities are not quite classical
 formulas, rather such formulas with a Galois flavour. Moreover, all this
 fits the model completion picture. One is completing (theories of) procyclic
 fields, with only regular extensions considered (Ersov uses the notation
 "regularly closed").
 Much later, when ACFA was discovered, Hrushovski and I undertook

 the difficult task of lifting Ax's analysis from the Fq to (4Ilg, x e' xq), and
 showing that one gets exactly ACFA. This requires very serious diophantine
 geometry [14, 23]. A beautiful spin-off is Hrushovski's [12] application to a
 problem of Jacobi in difference algebra.

 5.3. In none of the above examples are specific models of much interest.
 What is fertile is to understand the definability theory. One uses geometric
 model theory to pass to applications in geometry.

 ?6. Geometric model theory.

 6.1. The transition from the Tarskian to the geometric emphasis came
 with the work of Morley. The most obvious new notion is that of (some kind
 of) rank for types (or their duals, formulas). The emphasis on the number
 of models, and the appearance of Ehrenfeucht-Mostowski models, certainly
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 made Morley's notion of co-stability (characterized in terms of the ordinal-
 valued Morley rank) an appealing generalization of the dimension theories
 of pure sets, or modules, or algebraically closed fields. Note however that
 real closed, or p-adically closed, fields have a dimension theory of obvious
 geometric importance, and these theories do not fit into any of the stability
 classifications that were to follow.

 The fifteen years after Morley's paper [27] were dominated by the work of
 Shelah, which produced numerous subtle ideas around dependence of types.
 These arose without obvious geometric antecedents, and were embedded in
 an uncompromisingly set-theoretic framework. As already stressed, what
 seems of most interest now are the (finite) combinatorial notions underlying
 the set theory. Shelah typically gave many different characterizations of his
 stability notions, and after revision by the French school these began to
 lead to such beautiful insights as Poizat's on the implications for differential
 Galois theory of the co-stability of DCF. But applications of pure stability
 theory were (and are) rare, principally because there appear to be very few
 interesting stable theories. Currently an old, and partially discarded, notion
 of Shelah, that of simple theory, has resurfaced, probably because ACFA is
 simple. The pure definability theory of simple theories has thrived [18], and
 there is some reason for optimism that the theory of nonabelian free groups
 is simple [30]. In any case that theory has a profound and beautiful Direct
 Image Theorem, due to Sela [30], whose discovery needed radical insights
 from low-dimensional topology.

 6.2. Geometric model theory is the study of notions of independence of
 types. Classification in set-theoretic terms is no longer the goal. "Geometry"
 here has the sense, say, of projective or affine geometry based on a notion
 of dimension. or of analogous notions in complex algebraic geometry.
 Coordinatization has the same interest as it has in projective geometry,
 where one can interpret a field in incidence-theoretic terms. Already from
 the work of Malcev one had interest in, and techniques for, interpreting in
 certain algebraic groups fields over which they are defined. So, quite early in
 the stability era, Cherlin and Zilber conjectured that simple groups of finite
 rank are algebraic groups over algebraically closed fields, an insight which
 has inspired much beautiful work, and which may well be correct.

 As the subject matured, one began to imagine an atomic theory for depen-
 dence (in co-stable situations). In this setting the analogue of the notion of
 irreducible algebraic curve (the basis of many inductions in algebraic geom-
 etry and etale cohomology) is strongly minimal set (definable set of Morley
 rank one and degree one), and Zilber was bold enough to imagine that the
 scarcity of examples of co-stable finite rank theories was because all strongly
 minimal sets (as "geometric" objects) were either

 i) essentially pure sets;
 ii) essentially like modules;
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 iii) algebraic geometric in the sense that they interpret algebraically closed
 fields.

 Modular situations had become prominent in the remarkable representa-
 tion theory of co-categorical theories of finite Morley rank [4], shown to be
 built, in a potentially intelligible way, from classical linear geometries over
 finite fields. This was a serious confirmation of the principle that logical
 stability hypotheses imply the involvement of classical geometric structures.
 Of course the cohomological issue of how to build the models from strongly
 minimal sets can be expected to be hard, as in real life.

 Hrushovski from the mid 1980's gave refined criteria for detecting inter-
 pretable groups (or fields) in more general structures. Then he came up with
 his new "forcing" method, a kind of Robinsonian procedure where subtle
 dimensional (or maybe cohomological defect) considerations limit the kind
 of extensions allowed. This yielded various quite new o-minimal structures,
 and refuted Zilber's "Trichotomy Conjecture". But Zilber's urge to represent
 rather general geometrical model theory situations as genuinely geometric
 was crucial for the last decade of the subject. Maybe one should limit the
 geometric model theory a bit? Perhaps the logical generality was limiting
 access to real world situations?

 In their marvellous paper [15] Hrushovski and Zilber axiomatize a notion
 of Zariski topology. Into it go something of a Direct Image Theorem, and
 some other dimension axioms peculiar to the classical geometries. Dimen-
 sion is defined as in noetherian spaces (i.e., as in Grothendieck's Founda-
 tions). In a tour-de-force they show that the strongly minimal sets in these
 Zariski geometries are of Zilber type, a marvellous generalization of the
 Fundamental Theorem of Projective Geometry.

 The denouement came when one succeeded in showing that Zariski geome-
 tries occur in DCF Together with a fundamental result of Hrushovski-Pillay
 on definitions in modular situations, this allowed Hrushovski to make the
 first really essential use of model theory in diophantine geometry, namely,
 Mordell-Lang in characteristic p [10].

 For a marvellous account of contemporary geometric model theory,
 see [11].

 ?7. Prospects.
 7.1. There are various hints in the literature as to categorical foundations

 for model-theory [21]. The type spaces seem fundamental [28], the mod-
 els much less so. Now is perhaps the time to give new foundations, with
 the flexibility of those of algebraic geometry. It now seems to me natural
 to have distinguished quantifiers for various particularly significant kinds
 of morphism (proper, etale, flat, finite, etc), thus giving more suggestive
 quantifier-eliminations. The traditional emphasis on logical generality gen-
 erally obscures geometrically significant features [19].
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 7.2. We seem to be missing a classification of "tame" theories that would

 give Th(R) and Th(Qp) the same status as their stable or simple cousins.
 7.3. I sense that we should be a bit bolder by now. There are many

 issues of uniformity associated with the Weil Cohomology Theories, and
 major definability issues relating to Grothendieck's Standard Conjectures.
 Model theory (of Henselian fields) has made useful contact with motivic
 considerations, including Kontsevich's motivic integration [6]. Maybe it has
 something useful to say about "algebraic geometry over the one element
 field" [25], ultimately a question in definability theory.

 7.4. We have, in elementary terms, cohomological invariants in o-
 minimality [31], and in some Henselian fields (not Qp though). Why not
 dare to be more motivic?
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