CATEGORICAL ALGEBRA AND SET-THEORETIC
FOUNDATIONS

SAUNDERS MAC LANE!

1. Introduction. This note will speculate on some of the ways in which the
current practice of category theory may suggest or require revisions in the use of
axiomatic set theory as a foundation for mathematical practice.

Categorical algebra has developed in recent years as an effective method of
organizing parts of mathematics. Typically, this sort of organization uses notions
such as that of the category G of all groups. This category consists of two collec-
tions: The collection of all groups G and the collection of all homomorphisms
t:G — H of one group G into another one; the basic operation in this category 1s
the composmon of two such homomorphisms. To realize the intent of this con-
struction it is vital that this collection G contain alf groups; however, if “collection”
is to mean “set” in any one of the usual axiomatizations of set-theory, this intent
cannot be directly realized. This raises the problem of finding some axiomatization
of set theory—or of some foundational discipline like set theory—which will be
adequate and appropriate to realizing this intent. This problem may turn out to
have revolutionary implications vis-a-vis the accepted views of the role of set
theory.

2. Categories via axioms. The definition and elementary properties of a
category involve no real foundational problems. This may be indicated by re-
formulating in axiomatic terms, free of set theory, one of the standard descriptions
of a category. (An introductory exposition of categories is given in an algebra
text by Mac Lane-Birkhoff [15]; the more extensive standard expositions are

1 The studies discussed here were supported in part under a grant from the Office of Naval
Research.
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those by Freyd [2], Mac Lane [14], and Mitchell [16].) A category C is a two-
sorted system, the sorts being called objects A of C and morphisms f of C. The
undefined terms, in context, are ““4 is the domain (or, the codomain) of f°, “k is the
composite of g with f7*, and “t is the identity morphism of 4. The first axiom
asserts that every morphism f has exactly one object 4 as domain and one object B
as codomain; when this is the case, we write f: 4 — B. Next, for all morphisms g
and f, there exists a composite k of g with fif and only if domain (g) = codomain (f);
when this is the case, the composite k is unique, and is written as k = gf.
Another axiom requires that this composition be associative [#(gf) = (hg)f]
whenever possible. Every object B has one and only one identity morphism, with
domain and codomain B, which is written as 1z:B-» B. Finally, 1pf = f for
every f: 4 — B and gl = g for every g: B— C.

A prime example is “the” category S of sets (more exactly, the category defined
from any (model of a) suitable set theory). In this category the objects are the
sets S and the morphisms are the functions f:S— 7, with the usual domain,
identity functions and composition. -Note explicitly that the notion of function is
not that customary in axiomatic set theory; indeed, for categorical purposes a
morphism (function) has both a given domain and a given codomain. This means
that a function must be described as a suitable set of ordered pairs p/us a suitable
set as codomain. For example, let S be a proper subset of Tand D < § x S the
set of all ordered pairs (s, s5) for s €.S. Then (S, D, S) is (the graph of) the usual
identity function 1g:S— S, while (S, D, T) is (the graph of) the injection
(“insertion’} ig 5:.S— T (that function which maps S as a subset into T). For
categorical purposes lg and ig ,» must be treated as different functions, essentially
because they behave differently under functors (for a detailed explanation, see
Mac Lane-Birkhoff [15, p. 3251).

A morphism of categories is called a functor. In detail, a functor F:C— D
assigns to each object 4 of C an object D = F(A4) of D and to each morphism

: A > B of C a morphism d = F(f): F(4) — F(B) of D. Here “assigns”, viewed
axiomatically, is a locution for the following undefined terms, D is the image of A
under F”’ and “‘d is the image of f under F”’. The axioms for a functor F require
that F(1) = 1zp for every B and that F(gf) = F(g)F(f) whenever the composite
gf is defined.

A morphism of functors is called a natural transformation. In detail, if C and
D are categories and F:C — D and F':C — D are functors, then a natural trans-
formation 6: F — F' “assigns” to each object 4 of C a morphism 0 ,: F(4) — F'(4)
in D in such fashion that the equality 0,F(f) = F'(f)6 4 (of composites in D)
holds for every morphism f: 4 — B of C. This equality is usually pictured by the
statement that the following square diagram commutes:

F4) 2 F(B)
F(A4) > F'(8)

This commutative diagram expresses the “naturality’” of §.
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A final basic notion is that of adjoint functor, due to Kan [8]. It may be
described in terms of the closely related notion of a “‘universal construction”, due
to Samuel {18] and Bourbaki. Given a function U:C — X, and an object XY of X, a
universal morphism from X under U is a morphism m: X — UR, with R an object of
C, such that every morphism f: X — U4 in X can be written as a composite f =
U(f")m for exactly one morphism f': R— A4 of C. The corresponding commutative
diagram is

X—= S~ UR

[ZE¢:8]

+_.....wun--;—-—

UA

A left adjoint of the given functor U:C—X is then described as a functor
F:X — C (in the opposite direction) for which there is a natural transformation
n:1— UF, I.X > X the identity functor, and such that each 7yx:X —~ UFX is
universal from X under U. The multiplicity of working examples of adjoint
functors is matched by the protean forms of their definitions, as given in the
standard references cited above.

3. Categories via sets and classes. In their original introduction of the notion
of a category [1], Eilenberg-Mac Lane noted that the category of all sets could not
be described legitimately as a set, and so proposed to describe it as a class within
a Godel-Bernays set theory (in which both “set” and “class’ are primitive notions,
as in Rubin [17]). Calf such a category “large”. In detail, then, a Jarge category
is a class of objects and a class of morphisms, with domain, composition, etc. all
such as to satisfy the axioms given above for a category. Take the set theory in the
version where sets are regarded as special classes, and call a category C smal/l when
. the class of all its morphisms is a set; since every object has an identity morphism,
this also implies that the class of all objects of C is a set. More generally, for any
pair of objects 4 and B in a large category the comprehension axiom for classes
constructs the class

homc (4, B) = {f| fa morphism of C and f: 4 — B}.

A (large) category is said to be locally small (Mitchell’s different and aberrant use
of this term is to be rejected) when each class homg (A4, B) is a set. Usually, the
definition of a category is given in terms of such “hom-sets”, and so defines only
these locally small categories. In particular, the category S of all sets {of our under-
lying Godel-Bernays set theory) is a large category which is locally small (given
sets S and T, hom (S, T) = T5 is a set).

The same small-large distinction may be drawn for other, more familiar,
algebraic objects. Thus a “large group™ is a class G equipped with a function
G X G -» G which satisfies the usual axioms for multiplication in a group, while a
“small group” is one for which this class ¢ is actually a set. Now the compre-
hension axiom of Goédel-Bernays set theory allows one to form the large category
of all small groups, in which the class of objects is the class of all (small) groups.
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Again, this is a locally small category. There are many other useful examples of
locally small categories with objects all (small) Mathematical systems of a fixed
sort and morphisms all homomorphisms of these systems. A detajled indication
of the construction of these categories by Godel-Bernays set theory is given in Mac
Lane-Birkhoff {15, Chapter XVI1.

Two such constructions of large categories are especially useful. One is
Cat: The category of all small categories; with objects all small categories and
morphisms all functors. For many purposes, as indicated below, one would like
to have a bigger cat, say the category of all large categories or of all categories
iiberhaupt. Another one is the functor category AP determined by a large category
A and a small category B. Its objects are all functors F: B — A and its morphisms
F— F’ are all natural transformations 6: F — F". Since the domain category B is
small, each functor F:B —> A can be represented Dy a set, say the usual graph of
F; hence one may form the class of all such F, making A® a locally small category.
There are, however, many propesties of large categories A and B which can be
effectively visualized in the (superiarge (D) category A"

4. Categories in wuniverses. Grothendieck and his followers have made
extensive use of categories in algebraic geometry and in this connection have
proposed an alternative way of treating large categories within Zermelo-Fraenkel
set theory. Define a universe to be a sct U whose elements x € U themselves form
a model of ZF (under the given membership relation). Add the axiom that every
set is a member of some universe (since the cardinal of a universe is inaccessible,
this amounts to assuming the existence of many inaccessible cardinals). A category
is now always described by sets; that is, it is a set of objects together with a set of
morphisms with the added structures which we have already described axiomatically.
If U is a universe then a category within U is a category whose set of objects is a
member of the universe U. Thusa category within U'is much like a small category.
Moreover, the usual comprehension axiom of ZF allows us to form Caty, the
category of all categories within U. This will be a category within some larger
universe.

There are a number of variants of this idea. In Gabriel [3] and Sonner [19] a
universe is described not as a model of ZF, but as a set closed under union, power
set, and several more elementary operations. The essential point is that one may
always form the functor category AP of two given categories—in general, by going
to a larger universe U’. All these large and superlarge categories are scts, subject
to the familiar manipulations of set theory. Given any universe U’, one can always
form the category of all categories within U ' This is still not that will-of-the-wisp,
the category of all categories #berhaupt. There are more subtle questions of the
following sort: If Risa ring within the universe U and U’ is some larger universe,
how is the category of all left R-modules which are elements of U related to the
category of all left R-modules which are elements of U’? One would like the
relation to be close, but little seems to be known on this point.

Instead of using universes, set-theorists may prefer to work with the familiar
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levels ¥, (all sets of rank less than «) of the cumulative hierarchy of sets (see e.g.
Kreisel-Krivine [8]). Both the approach by small and large categories and the
approach via universes can evidently be described within these levels. The cats
multiply; there appears (o be a category Cat, whose objects are all categories C
in which the set of morphisms is an element of V.

5. Basic questions. Our fundamental observation is just this: There is an
appreciable body of results about categories (a few indications are given below, in
§7) but the received methods of defining categories in terms of sets do not provide
any one single context (i.c. any one model of a standard set theory) within which
one can comprehensively state these results. Using universes, all the functor

categories are there, but there is no category of all groups. Using Gdodel-Bernays,
one has the category of all (small) groups, but only a few functor categories. This
situation raises a technical question and a philosophical question. The technical
question is that of rearranging categories or sets (or both) to get this body of theorems
whole. This question was explicitly formulated in Mac Lane [15}. Then Lawvere
in [10] and [11] raised the basic possibility that the attempted explication of cate-
gories (and of other Mathematical objects) by sets might be replaced by an ex-
plication in terms of some other “fundamental” concepts. In detail, he proposed
first an axiomatization of sets not in terms of the usual membership relation but in
terms of the category of sets, and he provided an elementary such axiomatization.
Going further, he proposed a list of axioms on Cat (the category of all categories) as
a potential foundation of Mathematics. This involves both technical difficulties
(Isbell {7]) and some exciting possibilities.

This also suggests a general philosophical question: Why should the “official”

foundations of Mathematics necessarily be couched in terms of set-theory
_axiomatized by a membership relation? This perhaps inconvenient question, once
clearly faced, raises the inescapable possibility of many alternative views of
foundations. For instance, “function” rather than “set” might be taken as the
fundamental notion. Both combinatory logic and von Neumann’s original
version of Gddel-Bernays may be regarded as axiomatizations of “functions”;
there is good reason to suppose that other and more efficient such axiomatizations
exist. Foundations in terms of sets make the most “primitive” Mathematical
notion the starting point; thereis considerable reason to suppose that the foundation
would fit the facts better if it started with some more highly structured notions
(set and function, category, or Mathematical structure). The set-theoretic approach
is often described in terms of the intuitively constructed hierarchy V, of cumulative
types; one can easily provide similar hierarchies built on different structural
concepts. In these ways, many alternative directions for investigation of the foun-
dations are opened. '

The prior situation in the foundations of Mathematics had in one respect a
very simple structure. One could produce one formal system, say Zermelo-
Fraenkel set theory, with the property that all the ordinary operations of practising
Mathematicians could be carried out within this one system and on objects of this
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system. Explicitly, this meant that “every” Mathematical object was or could be
defined to be a set, and that all of the arguments about these objects could be
reduced to the axioms of ZF set theory. In practise, this did not mean that the
arguments were actually so reduced; the working Mathematicians usually thought
in terms of a naive set theory (probably one more or less equivalent to ZF) and was
trained in describing everything as a set of this naive sort. This one-formal-system
“monolithic”” approach has also been convenient for specialists on foundations
ever since Frege and Whitehead-Russell. On the one hand, all the classical nine-
teenth century problems of foundations (the construction of integers, real numbers,
analysis; the properties of ordinal numbers; the axiom of choice and the continuum
hypotheses) could be stated in this one system. On the other hand, alternative
formal system could then be tested by comparison (as to strength or relative
consistency) with this one system. '

This happy situation no longer applies to the practice of category theory. Here
the Mathematician is working with a variety of objects (categories of all groups,
functor categories) which cannot all be described simultaneously as objects of any
one foundational system. What follows? One might hope for some one new
foundational system (the category of categories ?) within which all the desired objects
live; a practical requirement could be that this system could be used “naively” by
Mathematicians not sophisticated in foundational research. The alternative would
be the simultaneous use of several formal systems. This alternative is only fore-
shadowed by the Grothendieck use of universes. If the alternative is taken
seriously, it has drastic consequences; the next section will give only a very small
sample.

6. Multiple systems for foundations. Consider a formal foundation of Mathe-
matics which is multiple in the sense that there are a number of different basic
axiom systems 7, 7" which are collectively such that the objects of concern to the
working Mathematician can be interpreted in one or the other of these systems.
Recall also that the working mathematician usually regards the objects of his
study as if they were really rhere (in some realistic or platonistic sense). “Really
there” could be read as objects within a fixed interpretation M of one of the basic
axiom systems. Here “interpretation” has the intuitive force of “model” (but do
not take “model” in the usual technical sense of a model within some universe of
sets). For example, this suggests that one would speak of a set-system M, meaning
an interpretation (model) of ZF in exactly the same way that one speaks of an
“abstract group” as a model of the axioms of group theory. Inevitably, there will
be discussion of pseudo-set-systems and quasi-set-systems satisfying a variety of
weaker axioms or different axioms (some not stated in terms of €). The dogma
that there is just one set theory disappears.

To handle categories, one must speak of “all so and so’s” in some M. The
language necessary to do this might be a very simple two sorted language with sorts
items x, y, z (for things in M) and classes 4, B, C (for collections of items).
Primitive notions might be ordered pairs (x, y) of items and membership x € 4
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(only for an item x in a class 4). Axioms should include the expected axioms on
the equality of ordered pairs, extensionality for classes, the existence of the null
class, the singleton {x}, and the cartesian product 4 x B of classes, as well as a
comprehension axiom for classes. These axioms can be regarded as simple axioms
for a rudimentary fragment of class (or set) theory. In this language a category
(such as a category of all so-and-so’s in M) may be described as a class of objects
and a class of morphisms with the usual structural properties. For such categories,
we may then readily carry out the operations usual in elementary category theory;
for example, one may construct the opposite of a category C°P (reverse the direction
of all morphisms) and the cartesian product C X D of two categories. More
advanced constructions, such as that of functor categories, would require more
powerful axioms (say, for each class B, the existence of a right adjoint to
Ar> A x B). The essential point is that the original system T, with model M,
has been expanded by adjoining classes, in a way analogous to the passage from
Zermelo-Fraenkel to GOdel-Bernays set theory. This passage illustrates what we
mean by multiple systems of foundations, with varied notions of category (small,
large, or otherwise) within these systems.

7. The uses of large categories. We turn from speculation to a few indications
of the utility of extra large categories. '

The Yoneda Lemma (Freyd [2, p. 112], Mac Lane [14, p- 54]) has become a
fundamental tool of categorists. Let the large category C be locally small, so that
each hom (A4, B)is a set. Hold the object A fixed; then the function sending each
object to the set hom (4, B) can be made into a functor from C to the (large)
category S of (small) sets. This functor is usually written

hy =hom (4, —):C -8

and is called the covariant hom functor. Now let F:C — S be any other functor,
and consider the class Nat (44, F) of all natural transformations §: 4 . — F. By
definition, each such transformation assigns to every object B of C a morphism
bp:hom (4, B)—~ F(B) in the category S. In particular, the function
04:hom (4, A) — F(A) sends the identity morphism 1, onto an element 0,1 )€
F(A). This correspondence 8 +» #,(1,) is’itself a function

(0 p:Nat (h,, F) - F(A),

An easy argument shows that this function y is a bijection (is one-one onto). In
fact the Yoneda lemma states simply that p is a bijection and a natural trans-
formation.

The statement that y is natural means intuitively that the definition we have
given for v depends on no artificial choices. It should also be interpreted as a
natural transformation between functors. Indeed, if we regard the ordered pair
(4, F) of the object 4 and the functor F as an object of the product category
C x S%, then both sides F(4) and Nat (h 4, F) of (1) can be regarded as the values
on (A, F) of suitable functors C x S —8; it is then routine to check that Y as
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we have defined it is a natural transformation between these functors. The only
trouble is that the functor category S€ used here is not legitimate (for C large). If
we employ universes instead of classes, the category S does not stay put.

Completeness is a basic property of a category, and is defined by closure under
products and equalizers. First we define these terms. If fygid — B are two
morphisms with the same domain A and the same codomain B, an equalizer of
f. g is a morphism e:R— A such that (i) fe = ge; (i) whenever #:C— A has
fh = gh, there is a unique W:C— R such that # = eh’. This description clearly
makes e (the opposite of) a universal. Let I be a set and A, for i € I an I-indexed
family of objects of C (in other words, 4 is a function on I to the objects of C). A
product of the family {d,|ieI} consists of an object P of C and an I-indexed
family p;:P — A,, i€1, of morphisms of C with the following (opposite of a)
universal property: Whenever f;:C'— 4, for i € I, there is a unique f: C — P with
p.f=/f; for all iel For example, in the category of sefs, the usual cartesian
product I14; of the sets 4, equipped with its projections pi: 114, — A, to each of
the factors, is readily seen to be a product in the categorical sense we have described.
The corresponding cartesian products are also such products in the category of all
small groups or of all small topological spaces.

A large category C is said to be complete whenever (a) it contains an equalizer |
for any two of its morphisms f, g2 4 — B; (b) it contains a product for any set-
indexed family of its objects. The importance of these two conditions is that
together they imply that C contains (inverse) limits for all set-indexed systems .
(directed or not); technically, if J is any small category, every functor F:J —C
has a limit (see Freyd [2], where “1imit”’ is called “left root”). The discussion also
indicates that the categories of sets, of groups, and of topological spaces (like many
similar categories) are all complete. Observe that the set-class distinction enters
vitally here. Completeness is defined using sets (of indices) by way of products or
limits over sets; the familiar examples of complete categories are /arge categories
hence are classes (see Freyd [2, p- 78]).

Completeness is a vital assumption in the fundamental existence theorem for
adjoint functors due to Freyd. Let C be a complete locally small category and
C — X a functor which carries products and equalizers (in C) to products and
equalizers, respectively, in X Then U has a left-adjoint F provided U satisfies the

. following “solution-set condition™: For each object X of X there is a set J, alJ-
indexed family of objects R; of C and a J-indexed family of morphisms 71,1 X —>
UR; of X, such that to cach f:X -~ UdthereisajeJ and an f: R, — 4 such that
f=U(fym;:X — UA. (Note that this solution-set condition is like the definition
of an adjoint by a universal morphism, except that it specifies a set m; of such
morphisms which are “collectively” weakly universal.) For the proof of this
adjoint functor theorem (with some needless added hypotheses) see Freyd [2, p. 84].

This and related theorems raise the question: If a given category C is not
complete, can it be embedded in a complete category? Now C has a natural
(Yoneda) embedding

Y:C-—»SE,  Y(4)=ht
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into a functor category, where C°? is the opposite of C and A is the contravariant
hom-functor, with #%(B) = hom (8, 4). The completeness of § readily implies that

SC® is complete, at least for C small. Hence a natural way to complete C is to
embed C via Y in the closure of Y(C) under products and equalizers. This
procedure, however, is not immediately applicable if C is large. The best current
theorems in this direction (Isbeli {7]) make sophisticated use of set-theoretical
considerations.

To iilustrate the use of Cat we discuss fibered categories. Consider for instance
the category of all (small) modules, where by a module we mean a pair (R, 4)
with R a ring, and 4 a left R-module. A morphism (R, 4) > (R, 4") of modules
is a pair (s, f) consisting of a ring homomorphism s: R — R’ and a homomorphism
fiA— A" of (additive) abelian groups such that f{ra) = (sr)(fa) for all re R,
a€ A. Clearly this gives a category, and the assignments (R, A)— R, (s, f) > s
give a functor P on this category to the category of rings. We call P a fibered
category, and observe that for any one ring R the fiber P '(R) over R is itself a
category,

In general a fibered category is a functor P:A — C satisfying certain lifting
conditions about “cleavages’, too complex to state here (see Gray, [4]). Since P
is a functor, we have for each object C of C a category, the fiber over C, consisting
of all objects 4 with P(4) = C and all the morphisms f with P(f) = 1. Call this
category F(C). The cleavage conditions suffice to insure that each morphism
f:C — C’on the “base” C yields a functor F(f): F(C’) — F(C) backwards between
the corresponding fibers; moreover, F is a (contravariant) functor. Indeed, F is
a functor C°® — Cat. Effective treatment of the theory of fibered categories
requires a systematic use of these functors to Cat, where Cat ought to be at least
the category of all large categortes. For this—and for many similar cases such as
Benabou’s “profunctors”—we need a working foundation which will handle the
category of large categories.
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