
Additive Models, Trees, and Related Methods

Generalized additive models (GAMs) are automatic flexible statistical
methods that may be used to identify and characterize nonlinear regression
effects.
GAM has the form

E(Y |X1, . . . , Xp) = α + f1(X1) + . . . + fp(Xp)

where fj ’s are unspecified smooth functions
Xj predictors, Y the outcome.

We use a cubic smoothing spline, local polynomial regression or a kernel
smoother
we simultaneously estimate all p functions.
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GAM for non Gaussian distributions
Denote µ(X ) = P(Y = 1|X ) in a two class classification with 0-1 encoding
and recall the logistic regression

log
(

µ(X )
1− µ(X )

)
= α + β1X1 + . . . + βpXp,

Additive logistic regression model replaces the linear terms by the
smoothers

log
(

µ(X )
1− µ(X )

)
= α + f1(X1) + . . . + fp(Xp),

The conditional mean µ(X ) of a response Y is related to an additive function
of the predictors via a link function g

g [µ(X )] = α + f1(X1) + . . . + fp(Xp).
Examples of classical link functions are the following

g(µ) = µ the identity link, used for linear and additive models for Gaussian
response data.
g(µ) = logit(µ) as above
g(µ) = probit(µ) probit link function for modeling binomial probabilities is the
inverse of Gaussian cumulative distribution function probit(µ) = Φ−1(µ)
g(µ) = log(µ) for log-linear or log-additive models for Poisson count data.
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Models with Feature Interactions

The categorical variables are usually treated like identifiers (0-1 or -1,1)
in the logistic regression, it leads to a ’constant’ βj fitted for the variable
the slope β−j of others does not depend on the identifier
We can extend to a semiparametric model, that keeps the effect of the kth
predictor and the effect of the predictor Z additive

g(µ) = X T β + αk + f (Z).
To allow different slopes/shapes of Z based on qualitative variable V we
need an interaction term of two features

g(µ) = f (X) + gk(Z)
Generally, we may add a function gZW (Z , W ) of two or more features

g(µ) = f (X) + gZW (Z , W ).
Note: logit, probit, log, gamma and negative-binomial distributions belong
the an exponential family, therefore have some nice properties (fit together).
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Fitting Additive Model

The backfitting algorithm for additive models

1: procedure Generalized Additive model fitting:(X, y)
2: α̂ = 1

N
∑N

1 yi , f̂j ≡ 0 initialize ∀i , j .
3: repeat for j = 1, 2, . . . , p, . . . , 1, 2, . . .

4: f̂j ← Sj

[
{yi − α̂−

∑
j ̸=k f̂k(xij)}N

1

]
,

5: f̂j ← f̂j −
∑N

i=1 f̂j(xij).
6: until the functions f̂j change less than a prespecified threshold.
7: end procedure

Sj denotes the smoother, for example the smoothing spline with predefined
degrees of freedom.
All f̂j should have zero mean, the constant is fitted by α.
Re-normalization is recommended because of rounding errors.
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Generalized Additive Logistic Regression

1: procedure Additive logistic regression:(X, y in 0-1 encoding)
2: ŷ = 1

N
∑N

1 yi , α̂ = log( ŷ
1−ŷ ), f̂j ≡ 0 initialize ∀j .

3: η̂i = α̂ +
∑

j f̂j(xij) and p̂i = 1
1+exp(−η̂i )

4: repeat
5: Construct the working target variable

zi = η̂i + yi − p̂i
p̂i(1− p̂i)

.

6: Construct the weight wi = p̂i(1− p̂i).
7: Fit an additive model to the targets zi with weights wi , using a

weighted backfitting algorithm. This gives new estimates η̂j , f̂j ∀j
8: until the functions change less than a prespecified threshold.
9: end procedure
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Spam Example

Email classification as email/spam.
word frequency as X features.
Important features:302 9. Additive Models, Trees, and Related Methods

TABLE 9.2. Significant predictors from the additive model fit to the spam train-
ing data. The coefficients represent the linear part of f̂j , along with their standard
errors and Z-score. The nonlinear P-value is for a test of nonlinearity of f̂j.

Name Num. df Coefficient Std. Error Z Score Nonlinear
P -value

Positive effects

our 5 3.9 0.566 0.114 4.970 0.052
over 6 3.9 0.244 0.195 1.249 0.004
remove 7 4.0 0.949 0.183 5.201 0.093
internet 8 4.0 0.524 0.176 2.974 0.028
free 16 3.9 0.507 0.127 4.010 0.065
business 17 3.8 0.779 0.186 4.179 0.194
hpl 26 3.8 0.045 0.250 0.181 0.002
ch! 52 4.0 0.674 0.128 5.283 0.164
ch$ 53 3.9 1.419 0.280 5.062 0.354
CAPMAX 56 3.8 0.247 0.228 1.080 0.000
CAPTOT 57 4.0 0.755 0.165 4.566 0.063

Negative effects

hp 25 3.9 −1.404 0.224 −6.262 0.140
george 27 3.7 −5.003 0.744 −6.722 0.045
1999 37 3.8 −0.672 0.191 −3.512 0.011
re 45 3.9 −0.620 0.133 −4.649 0.597
edu 46 4.0 −1.183 0.209 −5.647 0.000

function is summarized by the coefficient, standard error and Z-score; the
latter is the coefficient divided by its standard error, and is considered
significant if it exceeds the appropriate quantile of a standard normal dis-
tribution. The column labeled nonlinear P -value is a test of nonlinearity
of the estimated function. Note, however, that the effect of each predictor
is fully adjusted for the entire effects of the other predictors, not just for
their linear parts. The predictors shown in the table were judged signifi-
cant by at least one of the tests (linear or nonlinear) at the p = 0.01 level
(two-sided).

Figure 9.1 shows the estimated functions for the significant predictors
appearing in Table 9.2. Many of the nonlinear effects appear to account for
a strong discontinuity at zero. For example, the probability of spam drops
significantly as the frequency of george increases from zero, but then does
not change much after that. This suggests that one might replace each of
the frequency predictors by an indicator variable for a zero count, and resort
to a linear logistic model. This gave a test error rate of 7.4%; including the
linear effects of the frequencies as well dropped the test error to 6.6%. It
appears that the nonlinearities in the additive model have an additional
predictive power.
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FIGURE 9.1. Spam analysis: estimated functions for
significant predictors. The rug plot along the bottom
of each frame indicates the observed values of the cor-
responding predictor. For many of the predictors the
nonlinearity picks up the discontinuity at zero.
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Decision Trees

Decision tree for a given goal at-
tribute G is a rooted tree with

a root and inner nodes labeled
by attributes; for each possible
value of the attribute there is an
outgoing edge from the node;
leaves are labeled with predicted
goal class g ∈ G assuming other
attributes have values as labeled
on the path from the root.
Attributes not present on the path from the root to the leaf

are irrelevant.
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FIGURE 9.5. The pruned tree for the spam example.
The split variables are shown in blue on the branches,
and the classification is shown in every node.The num-
bers under the terminal nodes indicate misclassification
rates on the test data.
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Construction

Tree construction idea:
select an attribute; create a node and split the data according the value of
the attribute
for each attribute value construct a subtree based on the appropriate part of
the data
stop if there is a unique value of the goal G in the data or no attributes to
split, create a leaf labeled by the most common class g ∈ G .

The criterion to select an attribute follows.
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Entropy

The entropy of an attribute A (’uncertainty’, negative information) we would like:
to be zero for the pure data (only one value of the attribute A)
the highest entropy for uniform distribution on values of A (no information at
all)
two step split leads to the same result as split at once:

H([2, 3, 4]) = H([2, 7]) + 7
9 · H([3, 4])

Definition

Entropy These properties has the entropy H([p1, . . . , pk ]) = −
∑k

i=1 pi log pi , the
base of the logarithm usually e, sometimes 2.
If we do not normalize we get the entropy multiplied by

∑k
i=1

pi .

The lower index A denotes the attribute to calculate the entropy HA, for the goal
attribute HG .
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The Entropy for a binary attribute
x axis: pi , y axis: entropy.
Gini = 1−

∑
i(pi)2
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ID3 algorithm
We select an attribute with the maximal information gain, defined for the data
and an attribute Xj :

Gain(data, Xj) = HG(data)−
∑

xj ∈Xj

|dataXj =xj |
|data| HG(dataXj =xj )

where dataXj =xj is a subset of data where Xj = xj , the entropy is defined

HG(data) =
∑
g∈G
−|dataG=g |
|data| · log2

|dataG=g |
|data| =

|G|∑
i=1
−pi · log2pi

where pi denotes the ratio of G = gi in the data.

It is equivalent to minimize the weighted entropy after the split, that is

arg min
Xi

∑
xj ∈Xj

|dataXj =xj |
|data|

∑
g∈G
−
|dataG=g&Xj =xj |
|dataXj =xj |

· log2
|dataG=g&Xj =xj |
|dataXj =xj |
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ID3 algorithm(data, G goal, Attributes attributes)

ID3

Create the root root
If all data have the same g , label the root g and return,
If no attributes Attributes, label the root

by the most frequent g in the data and return
otherwise

Xj ← the attribute from Attributes with the maximal Gain(data, Xj)
label root as Xj
for each possible value xj of Xj ,

add an edge from root labeled Xj = xj
dataXj =xj ← the subset of the data with Xj = xj
If dataXj =xj is empty, add a leaf labeled by

the most common class g in data and return
add a subtree ID3(dataXj =xj , G , Attributes \ {Xj})

return root
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Categorical Attribute Notes

CART in the sklearn DecisionTreeClassifier does not support categorical
attributes

uses just binary splits.
It is requires exponential complexity with respect to the number of categories
to find optimal binary split.

The recommended heuristic is to sort categories according to the goal class
probabilities and search the split in a linear time.

We should avoid the split into too many branches.
ID3 used penalization Gain∗(Xi , data) = Gain(Xi ,data)

H(Xi )

so for the identifier with unique values Gain∗(Xi , data) = Gain(Xi ,data)
log N .

min_samples_split, min_samples_leaf, min_weight_fraction_leaf can do it
too.
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Prunning Introduction

To avoid overfitting we try to remove unnecessary nodes
postprunning – build a tree, prune afterwards;

usuall way
preprunning – prune during the construction

This seems nice but we could prune two attributes combined by XOR since
both has information gain (close to) zero.

Postprunning
subtree replacement – select a tree and replace it by a leaf;

it increases the training error
it may decrease the error on validation data
step by step, we try to prune each subtree: we prune if we do not increase
validation error.

subtree raising – remove an inner node. Used in C4.5. The data samples
must be re-send to the remaining branch, it is time consuming.

Usually checked only for the most frequent branch in the tree.
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Reduced Error Pruning
Reduced Error Pruning

reduced error pruning –
we keep part of the data for
validation (pruning).
for each inner node compare

validation error with this
node as a leaf
validation error with the
(pruned) subtree of this
node

select whatever gives the
lower error.

there exist also a criterion based on
the training data
Reduced Cost Pruning CART -
few slides later.
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FIGURE 9.5. The pruned tree for the spam example.
The split variables are shown in blue on the branches,
and the classification is shown in every node.The num-
bers under the terminal nodes indicate misclassification
rates on the test data.
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Numerical attributes

64 65 68 69 70 71 72 75 80 81 83 85
yes no yes yes yes no no,yes yes,yes no yes yes no

we require a binary split
11 split points
for each split we calculate the information gain

H([9, 5]) − H([4, 2], [5, 3]) = H([9, 5]) − ( 6
14 · H([4, 2]) + 8

14 · H([5, 3]))

= 0.940 − 0.939 bits.
We allow multiple splits based on this attribute.
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Regression trees - numerical prediction

Model tree has linear fit in the
leaves

not so popular as regression
trees; increases complexity and
discontunuity

CART
use the decrease of the square
error loss to select an attribute
binary splits
predict the average value in the
leaves.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2X1 ≤ t3

X2 ≤ t4

FIGURE 9.2. Partitions and CART. Top right panel
shows a partition of a two-dimensional feature space by
recursive binary splitting, as used in CART, applied to
some fake data. Top left panel shows a general partition
that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.

Machine Learning Additive Models, Trees, and Related Methods 5 1 - 21 March 15, 2024 17 / 31



CART (Classification and) Regression Trees
Regions Rm, we predict a constant cm inside any region.

f (x) =
M∑

m=1
cmI(x ∈ Rm)

ĉm = 1
Nm

∑
xi ∈Rm

yi .

Single Regression Tree for CART

Start with all data in one region R0

Select the best attribute j and its value s for the split:

min
j,s

[minc1

∑
xi ∈R1(j,s)

(yi − c1)2 + minc2

∑
xi ∈R2(j,s)

(yi − c2)2]

Inner minimum is the average ĉ1 = ave(yi | xi ∈ R1).
iterate until stop (number of samples in the leaf ≤ n0).
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Reduced Cost Pruning

Split the data into K folds
For each fold k:

use all except fold k to train the tree T
Build a sequence of subtrees T k ⊃ T k

1 ⊃ T k
2 . . . ⊃ T k

|T |
always join two leaves with the minimal increase in the training error

use fold k do calculate the crossvalidation error of each tree
consider the error function Cα(T k) as a function of α

Select α← argminα

∑
k Cα(T k)

Build a tree on the full training data
Return the subree corresponding to the optimal α.

Average error on a leaf m

Qm(T ) = 1
Nm

∑
xi ∈Rm

(yi −
1

Nm

∑
xi ∈Rm

yi)2,

Cost of the tree with α penalty for the number of leaves

Cα(T ) =
|T |∑

m=1
NmQm(T ) + α|T |.
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Missing values,Class and Samples Weights

Trees can handle missing data well.
Often we cannot omit missing data since many samples have missing values.

Furthermore, missing values in unused attributes are irrelevant.
If the value is not missing at random then take the missingness as another
value of the attribute

example: very small and very high wages are more ofter missing
If the data are missing at random

split the instance
according the data ratio following each branch
weight and average the predictions on leaves.

Similarly, we use weighted information gain to select the attribute.
by setting setting class_weight
fit(X, y, sample_weight=None).
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Complexity considerations

CART

Let us have N instances with p attributes.
Assume a reasonably balanced tree with the tree depth O(logN).
To build the tree we need O(p · N2 · logN) time.

At each depth, each instance occurs exactly ones, logN depth levels, p
attributes on each level, the time O(p · N2 · log N).

Subtree replacement O(N), Subtree raising O(N(logN)2).
Naive tree construction comlpexity is O(p ·N2 · logN) + O(N(logN)2).
With sorted features and clever indexing

Overall tree construction comlpexity is O(p · N · logN) + O(N(logN)2).
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Decision Rules from Decision Trees

We can represent a tree as a set of rules
one rule for each leaf.

These rules may be improved by testing each attribute in each rule
Has the rule without this test a better precision than with the test?
Use validation data
May be time consuming.

These rules are sorted by (decreasing) precision.
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Loss Matix

The cost of missclassification may be dif-
ferent for each class. The general loss
specification is a loss matrix Lkk| , an el-
ement represent the cost of classifying k
as k |. Must be zero at the diagonal, non-
negative everywhere.

we can modify
Gini(m) =

∑
k ̸=k| Lkk| p̂mk p̂mk|

or weight the data samples k Lkk|

times (only in binary classification)
we classify according to
k(m) = argmink

∑
l Llk p̂ml in the

leaves.
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CART Weaknesses
the high variance

the tree may be very different for very similar datasets
ensemble learning addresses this issue

the cuts are perpendicular to the axis
the result is not smooth but stepwise.

MARS (Multivariate Adaptive Regression Splines) addresses this issue.
it is difficult to capture an additive structure

Y = c1I(X1 < t1) + c2I(X2 < t2) + . . . + ck I(Xk < tk) + ϵ

MARS (Multivariate Adaptive Regression Splines) addresses this issue.8.1 The Basics of Decision Trees 315
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8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

▲ Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

▲ Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

▲ Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

▲ Trees can easily handle qualitative predictors without the need to
create dummy variables.
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MARS Multivariate Adaptive Regression Splines

generalization of linear regression and decision trees CART
for each feature and each data point we create a reflected pair of basis
functions
(x − t)+ and (t − x)+ where + denotes non–negative part, minimum is zero.
we have the set of functions

C = {(Xj − t)+, (t − Xj)+}t∈{x1,j ,x2,j ,...,xN,j },j=1,2,...,p

that is 2Np functions for non–duplicated data points.
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FIGURE 9.9. The basis functions (x − t)+ (solid
orange) and (t − x)+ (broken blue) used by MARS.
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MARS – continuation

our model is in the form

f (X ) = β0 +
M∑

m=1
βmhm(X )

where hm(X ) is a function from C or a product of any amount of functions
from C
for a fixed set of hm’s we calculate coefficients βm by usual linear regression
(minimizing RSS)
the set of functions hm is selected iteratively.
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MARS – basis selections

We start with h0 = 1, we put this
function into the model M = {h0}.
We consider the product of any member
hℓ ∈M with any pair from C,

β̂M+1hℓ(X )·(Xj−t)++β̂M+2hℓ(X )·(t−Xj)+

we select the one minimizing training
error RSS (for any product candidate, we
estimate β̂).
Repeat until predefined number of
functions in M

Machine Learning Ensamble Methods 6 22 - 31 March 15, 2024 27 / 31



MARS – model pruning

The model is usually overfitted. We select (remove) iteratively the one
minimizing the increase of training RSS. We have a sequence of models f̂λ for
different numbers of parameters λ.
(we want to speed–up cross-validation for computational reasons)
we select λ (and the model) minimizing generalized cross-validation

GCV (λ) =
∑N

i=1(yi − f̂λ(xi))2

(1−M(λ)/N)2 .

where M(λ) is the number of effective parameters, the number of function
hm (denoted r) plus the number of knots K , the authors suggest to multiply
K by 3: M(λ) = r + 3K .
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MARS is a generalization of CART

We select piecewise constant functions I(x − t > 0) and I(x − t ≤ 0)
If hm uses multiplication we remove this function from the candidate list. It
cannot be used any more.

This guarantees binary split.
Its CART.

https://contrib.scikit-learn.org/py-earth/auto_examples/plot_classifier_comp.html
https://contrib.scikit-learn.org/py-earth/auto_examples/index.html

Machine Learning Ensamble Methods 6 22 - 31 March 15, 2024 29 / 31



Patient Rule Induction Method PRIM = Bump Hunting

Rule induction method
We iteratively search regions with
the high Y values

for each region, a rule is created.
CART runs of data after
aproximately log2(N)− 1 cuts.
PRIM can affort − log(N)

log(1−α) .
For N = 128 data samples and
α = 0.1 it is 6 and 46 respectively
29, since the number of
observations must be a whole
number.
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FIGURE 9.7. Illustration of PRIM algorithm. There
are two classes, indicated by the blue (class 0) and red
(class 1) points. The procedure starts with a rectangle
(broken black lines) surrounding all of the data, and
then peels away points along one edge by a prespecified
amount in order to maximize the mean of the points
remaining in the box. Starting at the top left panel, the
sequence of peelings is shown, until a pure red region is
isolated in the bottom right panel. The iteration number
is indicated at the top of each panel.
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PRIM Patient Rule induction Algorithm

PRIM

Consider the whole space and all data. Set α = 0.05 or 0.10.
Find Xj and its upper or lower boundary such that the cut of α · 100%
observations leads to the maximal mean of the remaining data.
Repeat until less then 10 observations left.
Enlarge the region in any direction that increases the mean value.
Select the number of regions by the crossvalidation. All regions
generated 1-4 are considered.
Denote the best region B1.
Create a rule that describes B1.
Remove all data in B1 from the dataset.
Repeat 2-5, create B2 continue until final condition met.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.8. Box mean as a function of number of
observations in the box.
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