Direct vs. indirect diagnostic methods

Microbiological analysis in bacteriology

Microscopy in bacteriology

MUDr. Anežka Gryndlerová

Content

- Theory
 - Microscope types
 - Stain types used in bacteriology
- Practicals

Compound microscope

- Bacteriology
 - Size of bacteria ~ μm
 - Objective lens 100x
 - Immersion oil
- Mycology
- Parasitology
- Virology?

Dark field microscopy

- https://www.youtube.com/watch?v=X9NQ8xJLy3E

Other microscope types

- Fluorescent microscope – mycology, TBC

- Electron microscopy
 - Not in routine practice

Light microscopy in bacteriology - indications

- Liquid samples from primarily sterile locations (CSF, synovial fluid, peritoneal cavity content, ...)
- Tissue
- Blood culture when positivity is detected
- Sputum, ...

- (Grown culture microscopy)

Stain types used in bacteriology

Gram stain

V – crystal violet

L – lodine solution

A – alcohol (ethanol), acetone

S – safranin

V – crystal violet

L – lodine solution

A – alcohol (ethanol), acetone

K - karbolfuchsin

+ Bacteria not stained by gram stain

Ziehl-Neelsen stain (Acid fast)

- Acid fast bacteria (Mycobacterium tuberculosis)
- Karbolfuchsin + heat
- Acid alcohol (ethanol + O HCI)
- Malachite green

Other stain types

- Burri stain (capsules)
- Wirtze-Conklin stain (spores)
- Albert stain (metachromatic granules)

Practical lesson

Part 1 – sputum validity assessment

- ▶ I0xI0x magnification (without immersion oil)
- Valid sample:
 - Leukocytes >25 /ZP
 - Squamous epitelial cells <10 /ZP</p>

Part 2 – native microscopic slide

- Native vs. stained slides
- Put one drop of ph.solution on the slide
- Take a part of a grown colony by I µI (green) loop and stirr in the drop of ph.solution
- Cover with coverslip
- Use 40x-60x obj.

Part 3 – Gram stain (from grown culture)

- Color (G+, G-)
- 2) Morphology
 - Cocci
 - In pairs (diplococci), in clusters, in chains
 - Rods
 - ...

Part 3 – Gram stain (from grown culture)

- Mark the slide with pencil
- Put one drop of ph.solution on the slide
- Take part of a grown colony by I μ I (green) loop and stirr in the drop of ph.solution
- Wait until the mixture is dry
- Fixation 3x above the flame
- Crystal violet \rightarrow I min, \rightarrow rinse by water
- Iodine solution \rightarrow 30s \rightarrow rinse
- Ethanol/acetone \rightarrow 30s \rightarrow rinse
- Safranin \rightarrow 30s \rightarrow rinse

Use objective lens 100x magn. → total magn. 1000x. Use immersion oil While using other objectives, don't use immersion oil! When your work with a micriscope is finished, please clean the objective with a bottle labeled "lihobenzín" and turn off the light.

Conclusion - micriscopy

- Fast method
- In bacteriology we use gram stain mostly
- Not possible to use for species identification (shows only morphology)
- Indications:

 primary sterile liquid materials
 tissue

 sputum validity
 positive blood cultures
 (grown cultures)

