Basis expansion and regularization, Splines

Linear and logistic regression assume linear function of X.

- Regression: We estimate $f(X) = \mathbb{E}(Y|X)$
- Classification: We estimate $f(X) = \log \frac{P(Y=1|X)}{P(Y=0|X)}$.

Linear basis expansion in X

- we replace the vector of inputs X with additional variables h_m ,
- $h_m(X) : \mathbb{R}^p \to \mathbb{R}, \ m = 1, \dots, M.$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(X).$$

- 'the only change' is a different matrix of the features X, further fit is the same.
- Usually, we search $f_j(X_j)$ for each dimension by a backfitting algorithm in a generalized additive model (GAM)

$$\mathbb{E}(Y|X_1,\ldots,X_p) = \alpha + f_1(X_1) + \ldots + f_p(X_p)$$

- where f_j 's are unspecified smooth functions
- X_j predictors, Y the outcome.
- For now, we consider one-dimensional feature X.

• We fit the model:

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(X).$$

• $h_m(X) = X_m$, m = 1, ..., M recovers the original linear model.

• $h_m(X) = X_j^2$ or $h_m(X) = X_j X_k$ polynomial terms to achieve higher-order Taylor expansions.

! The number of variables grows exponentially in the degreee of the polynomial.

- $h_m(X) = log(X_j), \sqrt{X_j}, ||X||, \dots$, other nonlinear transformations.
- $h_m(X) = I(L_m \le X_k < U_m)$, an indicator for a region of X_k .
 - piecewise constant contribution for $X_{\mathcal{K}}$.
 - With non-overlapping regions used in regression trees.
- $h_m(X) = max((X_i \xi_k)^3, 0)$ piecewise-polynomial spline basis

wavelet bases.

Piecewise Polynomials and Splines

- A **piecewise polynomial** function f(X) is obtained by
 - division the domain of X into continuous intervals by the knots ξ_1, \ldots, ξ_{M-1}
 - and representing f by a separate polynomial in each interval.
 - Examples:
 - Three basis functions:

$$h_1(X) = I(X < \xi_1), \ h_2(X) = I(\xi_1 \le X < \xi_2), \ h_3(X) = I(\xi_2 \le X)$$

Additional linear functions:

$$h_{m+3} = h_m(X) \cdot X, \ m = 1, \dots, 3.$$

• Additional cubic functions: $h_{m+6} = h_m(X) \cdot X^2$, $h_{m+9} = h_m(X) \cdot X^3$, m = 1, ..., 3.

Continuous functions

- We add the continuity restriction: the value in ξ_i is the unique.
- Continuous piecewise linear basis: $h_1(X) = 1, h_2(X) = X, h_3(X) = (X - \xi_1)_+, h_4(X) = (X - \xi_2)_+.$
- We have spared two parameters for two continuity conditions.

• For the cubic fit, the figure looks ugly, we need continous first and second derivative.

• Cubic spline is a piecewise cubic fit with continuous first and second derivatives at the knots ξ_i .

• The basis functions with knots ξ_1, ξ_2 are: $h_1(X) = 1,$ $h_2(X) = X,$ $h_3(X) = X^2,$ $h_4(X) = X^3,$ $h_5(X) = (X - \xi_1)^3_+,$ $h_6(X) = (X - \xi_2)^3_+.$

Continuous Second Derivative

• Parameter count:

(3 regions)x(4 pars per region)-(2 knots)x(3 constraints per knot)=6.

- Cubic spline is an order-4 spline.
- Generally, order-M spline with knots ξ_j , j = 1, ..., K is a piecewise-polynomial of order (M 1) and has continuous derivatives to order (M 2).
- General truncated basis functions are:

•
$$h_j(X) = X^{j-1}, j = 1, ..., M$$
,

•
$$h_{M+\ell} = (X - \xi_\ell)_+^{M-1}, \ \ell = 1, \dots, K.$$

• Regression splines

- splines with fixed knots
- usually at percentiles of the data X.
- the number of knots is specified by the degree an the degrees of freedom (df M). h_0 does not count.

B-splines

B-splines use other basis describing the same linear feature space.

- $\{h_i\}$ is a basis of a linear space of functions
- we may choose a different base to cover the same space of functions.
- B-splines are more stable numerically, useful for large number of knots K.
- B-splines have quite difficult recursive formula (not needed for the exam).

$$B_{i,1}(x) = \begin{cases} 1 & \text{if } \xi_i \le x \le \xi_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$B_{i,k+1}(x) = \omega_{i,k}(x)B_{i,k}(x) + [1 - \omega_{i+1,k}(x)]B_{i+1,k}(x)$$

$$\omega_{i,k}(x) = \begin{cases} \frac{x - \xi_i}{\xi_{i+k} - \xi_i} & \text{if } \xi_{i+k} \ne \xi_i \\ 0 & \text{otherwise.} \end{cases}$$

Spline fit time complexity

- (Standard) regression splines
 - *N* observations, K + M variables (basis functions) take $O(N(K + M)^2 + (K + M)^3)$.
- B-splines
 - sort values of X
 - Cubic B splines have local support, B is lower 4-banded.
 - order (M+1) B splines have local support, B is lower (M+1)-banded.
 - Cholesky decomposition $B = LL^T$ can be computed easily.
 - Solution of \hat{f} is in O(N(M+1)) operations.

B-splines implemented in scipy and statmodels.

Natural Cubic Spline

• Polynomial fit tends to be erratic near the boundaries.

- Natural cubic spline is a spline that the function is linear beyond the boundary knots.
- Basis functions N_i , i = 1, ..., K: $N_1(X) = 1, N_2(X) = X, N_{k+2}(X) = d_k(X) - d_{K-1}(X)$ for $d_k(X) = \frac{(X - \xi_k)_+^3 - (X - \xi_K)_+^3}{\xi_K - \xi_k}.$

Smoothing Splines

- Maximal number of knots: *N*, the number of examples.
- But, we need a penalty for model complexity.

$$RSS(f,\lambda) = \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- λ is smoothing parameter
 - $\lambda = 0$: can be any function that interpolates the data.
 - $\lambda=\infty:$ the simple least squares line fit, no nonzero second derivative is tolerated.
- Has a unique finite-dimensional minimizer, a natural cubic spline with knots at the unique values of the x_i , i = 1, ..., N.
- The solution is in the form: $f(x) = \sum_{j=1}^{N} N_j(x) \theta_j$.
- The criterion reduces for:

$$RSS(\theta, \lambda) = (\mathbf{y} - \mathbf{N}\theta)^{T} (\mathbf{y} - \mathbf{N}\theta) + \lambda \theta^{T} \Omega_{N} \theta$$

• where $\{\mathbf{N}\}_{ij} = N_j(x_i)$ and $\{\Omega\}_{jk} = \int N_j''(t)N_k''(t)dt$.

W

let $a = x_1 = 0$, $b = x_{101} = 1$, and knots $\xi_l = x_{l+1}$ for $l = 1, \ldots, K$ and K = 99. Also, the basis functions for a cubic spline M = 4 are

$$h_j(x) = x^{j-1}$$
 $j = 1, \dots, M,$
 $h_{M+l}(x) = (x - \xi_l)_+^{M-1}$ $l = 1, \dots, K.$

Then, $H = (h_j(x_i))_{N,M+K}$ where $h_j(x_i)$ is for the i-th row and the j-th column. Let $\Omega = (\omega_{i,j})_{M+K,M+K}$ be a symmetric matrix and the upper triangular $\omega_{i,j} = \int_a^b h''_i(t)h''_j(t)dt$ is

$$\begin{split} \omega_{i,j} &= 0 & \text{for } i < M, \\ \omega_{M,j} &= \frac{1}{3}b^3 - \frac{1}{2}b^2\xi_j + \frac{1}{6}\xi_j^3 & \text{for } j > M, \text{and} \\ \omega_{i,j} &= \frac{1}{3}(b^3 - \xi_0^3) - \frac{1}{2}(b^2 - \xi_0^2)(\xi_{i-M} + \xi_{j-M}) + (b - \xi_0)\xi_{i-M}\xi_{j-M} & \text{for } j \ge i > M, \\ \text{here } \xi_0 &= \max\{\xi_{i-M}, \xi_{j-M}\}. \end{split}$$

https://vardeman.public.iastate.edu/stat602/602x_hw4_sol.pdf

Smoothing Splines solution

• Smoothing spline solution is a generalized ridge regression

$$\hat{\theta} = (\mathbf{N}^{T}\mathbf{N} + \lambda\Omega_{N})^{-1}\mathbf{N}^{T}\mathbf{y}$$

• The fitted smoothing spline is given by:

$$\hat{f}(x) = \sum_{j=1}^{N} N_j(x)\hat{\theta}_j$$

Example

- Bone mineral density (BMD) in adolescents.
- Response: the change in BMD over two consecutive visits, typically about one year apart.
- coded by gender, females precedes growth spurt about two years.

•
$$\lambda \approx 0.00022$$
, $df_{\lambda} = 12$.

• Smoothing spline is a linear smoother:

$$\hat{f} = \mathbf{N} (\mathbf{N}^{\mathsf{T}} \mathbf{N} + \lambda \Omega_N)^{-1} \mathbf{N}^{\mathsf{T}} \mathbf{y} = \mathbf{S}_{\lambda} \mathbf{y}$$

- S_{λ} is known as smoother matrix.
- $df_{\lambda} = trace(\mathbf{S}_{\lambda})$
 - the sum of the diagonal elements
 - $\lambda \approx 0.00022$ derived numerically by solving $trace(\mathbf{S}_{\lambda}) = 12$.

smoothing splines only in R

- rows \mathbf{S}_{λ} ordered with x
- right: selected rows
- $\lambda \to 0$ means $df_{\lambda} \to N$ and $\mathbf{S}_{\lambda} \to \mathbf{I}$
- $\lambda \to \infty$ means $df_{\lambda} \to 2$ and $\mathbf{S}_{\lambda} \to \mathbf{H}$, the hat matrix for linear regression on \mathbf{x} .
- $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ since $(\hat{y} = Hy)$

Pollution data example

Example

- 128 observations of pressure and ozone.
- Two fitted smoothing splines.
- third to sixth eigenvectors of the spline smoother matrices u_k against x.
- eigendecomposition of S:
 eigenvaules d_k (right)

$$\mathbf{S}_{\lambda} = \sum_{k=1}^{N} \rho_k(\lambda) u_k u_k^{\mathsf{T}}$$

- $\rho_k(\lambda) = \frac{1}{1+\lambda d_k}$.
- Right: 3rd-6th eigenvectors as a function of x and smoothed df = 5 in red.

Selection degrees of freedom

- The degrees of freedom df (or the complexity penalty λ) are usually selected to minimize the expected prediction error.
- More specifically, the crossvalidation estimate of the error.

Example

- $f(X) = \frac{\sin(12(X+0.2))}{X+0.2}$
- $Y = f(X) + \epsilon$
- $X \sim U[0, 1], \ \epsilon \sim N(0, 1),$ N = 100.
- *df* selected by crossvalidation is 9.

Multidimensional Splines

- $X \in \mathbb{R}^2$
- $h_{1k}(X_1)$, $k = 1, \dots, M_1$ in the first coordinate
- $h_{2k}(X_2)$, $k = 1, \dots, M_2$ in the second coordinate.
- $M_1 \times M_2$ dimensional tensor product basis is defined by

 $g_{jk}(X) = h_{1j}(X_1)h_{2k}(X_2)$

• can be used for representing a two-dimensional function:

$$g(X) = \sum_{j=1}^{M_1} \sum_{k=1}^{M_2} \theta_{jk} g_{jk}(X)$$

• coefficients can be fitted by least squares.

Additive logistic regression vs. tensor product

- In higher dimensions, the number of basic functions and parameters grows rapidly.
- Consider to add the basic elements iteratively, as the additive MARS method introduced later.
- left: df=7, right df=16

Additive Natural Cubic Splines - 4 df each

Natural Cubic Splines - Tensor Product - 4 df each

Multidimensional smoothing splines

- Let us place the knot into each example
- and add a complexity penalty J (below).
- It can be generalized for an arbitrary dimension.
- The solution has the form:

•
$$f(x) = \beta_0 + \beta^T x + \sum_{j=1}^N \alpha_j h_j(x)$$

• where
$$h_j(x) = \eta(||x - x_j||)$$
 and $\eta(z) = z^2 2 \log z^2$.

complexity O(N³)
or O(NK² + K³) with K knots.

$$J[f] = \int \int_{\mathbb{R}^2} \left[\left(\frac{\partial^2 f(x)}{\partial x_1^2} \right) + \left(\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \right) + \left(\frac{\partial^2 f(x)}{\partial x_2^2} \right) \right] dx_1 dx_2$$

implemented in R and OpenCV

We learned about

- regression splines (one dimensional X) these formulas you should know
- B-splines for faster fit no formulas necessary
- natural splines linear on the borders
- smoothing splines complexity penalty for the second derivative
 - the solution is a natural spline.
- Generalizations to more dimensions
 - thin plate splines
 - multidimensional smoothing splines.

Kernel Methods

- estimate regression function $f(x) \in \mathbb{R}$
- a different but simple model separately at each query point x₀.
- The resulting $\hat{f}(X)$ is smooth in \mathbb{R}^{p} .
- Localization is achieved via a weighting function er kernel k_λ(x₀, x_i)
 - assigns a weight to x_i based on its distance form x₀.
- λ is a parameter that dictates the width of the neighbourhood.
- memory based methods
 - little or no training
 - the model is the entire training data set.

k-NN, Epanechnikov Kernel

- k-Nearest Heighbour kernel
 - $N_k(x)$ is the set of k points nearest to x in squared distance
 - all have equal weight

•
$$\hat{f}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

- $\hat{f}(x)$ is bumpy, discontinuous.
- Nadaraya-Watson kernel-weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{N} k_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{N} k_{\lambda}(x_0, x_i)}$$

• with the **Epanechnikov** quadratic kernel

$$k_{\lambda}(x_0,x) = D\left(\frac{|x-x_0|}{\lambda}\right)$$

with

$$D(t) = egin{cases} rac{3}{4}(1-t^2) & ext{if } |t| \leq 1 \ 0 & ext{otherwise}. \end{cases}$$

Example

- Red circles: data
- Blue: epanechnikov kernel for (-1.0)
- Predicted values: green dashed line
- predicted value $\hat{f}(-1.0) = 1.55.$

 $\frac{(0.63 * 2.18 + 0.56 * 1.38 + 0.48 * 1.26 + 0.38 * 1.15 + 0 * others)}{(0.63 + 0.56 + 0.48 + 0.38)} = 1.55$

Kernels - variable width, shapes

- The width λ may vary $h_{\lambda}(x_0)$ with x_0
- mo general formula for he kernel

$$k_{\lambda}(x_0,x) = D\left(\frac{|x-x_0|}{h_{\lambda}(x_0)}\right)$$

• for k-NN,
$$h_k(x_0) = |x_0 - x_{|k|}|$$

• where $x_{|k|}$ is the *k*th closest x_i to x_0 .

• Tri-cube kernel

 $D(t) = \begin{cases} (1 - |t|^3)^3 & \text{if } |t| \le 1\\ 0 & \text{otherwise.} \end{cases}$

- Gaussian kernel $D(t) = \frac{1}{\lambda} e^{-\frac{\|x-x_0\|^2}{2\lambda}}$
- Epanechnikov

$$D(t) = egin{cases} rac{3}{4}(1-t^2) & ext{if } |t| \leq 1 \ 0 & ext{otherwise.} \end{cases}$$

Local Linear Regression

- Locally-weighted averages can be badly biased on the boundaries of the domain
- or whenever X are not equally spaced.
- Fitting straight lines may help (a bit).
- Locally weighted regression

$$\min_{\alpha(x_0),\beta(x_0)}\sum_{i=1}^N k_\lambda(x_0,x_i)[y_i-\alpha(x_0)-\beta(x_0)x_i]^2$$

• The estimate is:
$$\hat{f}(x_0) = \hat{lpha}(x_0) + \hat{eta}(x_0)x_0$$
.

• For $x^T \rightarrow (1, x)$, **X** is $N \times (p + 1)$ matrix, **W** $N \times N$ diagonal matrix $k_{\lambda}(x_0, x_i)$. Then

$$\hat{f}(x_0) = x_0^T (X^T W(x_0) X)^{-1} X^T) W(x_0) y$$

• what is linear function of y.

Local Polynomial Regression

- Local linear fits can help bias dramatically at the boundaries.
- local quadratic fits tend to be most helpful in reducing bias due to curvature in the interior of the domain.
- Recommended to select the degree by the application, not to combine linear boundaries and quadratic interior.

- crossvalidation
- $\hat{f} = S_{\lambda} y$
 - $df = trace(S_{\lambda})$
- Right: comparison of the tri-cube local linear regression kernels (orange) and smoothing splines (blue) with matching degrees of freedom 5.86.

(Structured Local Regression in \mathbb{R}^p)

$$k_{\lambda}(x_0, x) = D\left(\frac{\|x-x_0\|}{h_{\lambda}(x_0)}\right)$$

• Structured local regression: a positive semidefinite matrix A to weigh the different coordinates:

$$k_{\lambda}(x_0, x) = D\left(\frac{(x-x_0)^T A(x-x_0)}{h_{\lambda}(x_0)}\right)$$

East-West

Kernel smoothing complexity

- Model is the entire training data set.
- The fitting is done at evaluation or prediction.
- Single observation x_0 fit is O(N),
- expansion in *M* basis functions O(M) for one evaluation, typically $M \sim O(logN)$.
- Basis function method have an initial cost at least $O(NM^2 + M^3)$.
- Smoothing parameter λ usually determined off-line by cross-validation, at cost of $O(N^2)$.
- Popular implementations of local regression *loess* is S-PLUS compute the fit exactly at M locations O(NM) and interpolate to fit elsewhere (O(M) per evaluation).

Table of Contens

- Overview of Supervised Learning
- Kernel Methods, Basis Expansion and regularization
- 3 Linear methods for classification
- 4 Model Assessment and Selection
- 5 Additive Models, Trees, and Related Methods
- 6 Ensamble Methods
- Clustering
- 8 Bayesian learning, EM algorithm
- Association Rules, Apriori
- 10 Inductive Logic Programming
- Undirected (Pairwise Continuous) Graphical Models
- Gaussian Processes
- 13 PCA Extensions, Independent CA
- 14 Support Vector Machines