Basis expansion and regularization, Splines

Linear and logistic regression assume linear function of X.
@ Regression: We estimate f(X) = E(Y|X)
o Classification: We estimate f(X) = Iog%.
Linear basis expansion in X
@ we replace the vector of inputs X with additional variables h,,,
@ hp(X):RPF R, m=1,...,M.

F(x) =Y Bmhm(X).

@ 'the only change’ is a different matrix of the features X, further fit is the
same.

@ Usually, we search f;(X;) for each dimension by a backfitting algorithm in a
generalized additive model (GAM)

E(Y|X1,...,Xp) = a+ A(X1) + ...+ f(Xp)

o where f;'s are unspecified smooth functions
e X; predictors, Y the outcome.
@ For now, we consider one-dimensional feature X.
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Simple derived features

o We fit the model: "
X) =" Bmhm(X
m=1

@ hp(X) =Xy, m=1,..., M recovers the original linear model.
@ hp(X) = Xj2 or hm(X) = X; Xk polynomial terms to achieve higher-order
Taylor expansions.
I' The number of variables grows exponentially in the degreee of the polynomial.
o hm(X) = log(X;), /X, ||X]|... .. other nonlinear transformations.
® hy(X) = I(Lm S Xk < Up), an indicator for a region of X.

e piecewise constant contribution for Xx.
e With non-overlapping regions used in regression trees.

o hm(X) = max((X; — &)3,0) piecewise-polynomial spline basis

@ wavelet bases.
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Piecewise Polynomials and Splines

@ A piecewise polynomial function f(X) is obtained by

e division the domain of X into continuous intervals by the knots &1,...,&{u-1
e and representing f by a separate polynomial in each interval.
o Examples:
@ Three basis functions:
h1(X) = I(X < &), ho(X) = 1(&1 < X < &), h3(X) = (&2 < X).
@ Additional linear functions:
Bmis = hm(X)- X, m=1,...,3.
o Additional cubic functions:
hmte = hm(X) - X2, Amio = hm(X) - X3, m=1,...,3.
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Continuous functions

@ We add the continuity restriction: the value in &; is the unique.

@ Continuous piecewise linear basis:
h(X) =1, h(X) = X, hs(X) = (X = &1)4, ha(X) = (X = &)+
@ We have spared two parameters for two continuity conditions.
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@ For the cubic fit, the figure looks ugly, we need continous first and second
derivative.
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Cubic spline

@ Cubic spline is a piecewise cubic fit with continuous first and second
derivatives at the knots &;.

Continuous Second Derivative

@ The basis functions with knots &7, & are:
hi(X) =1,
hh(X) =X,
h3(X) = X2,
ha(X) = X3,
hs(X) = (X = &1)3,
he(X) = (X — &)}

o Parameter count:
(3 regions)x(4 pars per region)-(2 knots)x(3 constraints per knot)=6.
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Order-M splines

@ Cubic spline is an order-4 spline.

@ Generally, order-M spline with knots &, j =1,..., K is a
piecewise-polynomial of order (M — 1) and has continuous derivatives to
order (M — 2).

@ General truncated basis functions are:

o hi(X)=X"1j=1,...,M,

° huyye :(X*&)yfl, (=1,... K.
@ Regression splines

o splines with fixed knots

e usually at percentiles of the data X.

o the number of knots is specified by the degree an the degrees of freedom
(df — M). ho does not count.
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B-splines

B-splines use other basis describing the same linear feature space.
e {h;} is a basis of a linear space of functions
@ we may choose a different base to cover the same space of functions.
@ B-splines are more stable numerically, useful for large number of knots K.
@ B-splines have quite difficult recursive formula (not needed for the exam).

, _ U G < x <&
Bialx) = {O otherwise
Biki1(x) = wik(x)Bik(x) +[1 = wiv1k(x)]Bit1,k(x)
e G A
. = Eirk—E&i i+k !
wik(x) { +O otherwise.

B-splines of Order 4
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Computational complexity

Spline fit time complexity

o (Standard) regression splines

o N observations, K + M variables (basis functions) take

O(N(K + M)* + (K + M)?).

@ B-splines
sort values of X
Cubic B splines have local support, B is lower 4-banded.
order (M + 1) B splines have local support, B is lower (M + 1)-banded.
Cholesky decomposition B = LL" can be computed easily.
Solution of  is in O(N(M + 1)) operations.

B-splines implemented in scipy and statmodels. )
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Natural Cubic Spline

@ Polynomial fit tends to be erratic near the boundaries.

©

Global Lint
——  Global Cubic Polynomial
o Cubic Spline - 2 knots
2 ——  Natural Cubic Spiine - 6 knots

Pointwise Variances
0.3

0.0

0.0 0.2 0.4 0.6 0.8 1.0

X

o Natural cubic spline is a spline that the function is linear beyond the
boundary knots.

@ Basis functions N;, i=1,... K:
Nl(X) = ].7 NZ(X) = X, Nk+2(X) = dk(X) — dK_l(X) for
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Smoothing Splines

Maximal number of knots: N, the number of examples.

@ But, we need a penalty for model complexity.

N
RSS(F,0) = S (i — Fx))? + A/(f"(t))%/t
i=1
@ )\ is smoothing parameter

e A = 0: can be any function that interpolates the data.
e )\ = oo: the simple least squares line fit, no nonzero second derivative is
tolerated.

@ Has a unique finite-dimensional minimizer, a natural cubic spline with knots
at the unique values of the x;, i=1,..., N.

The solution is in the form: f(x) = Zszl N;(x)0;.
@ The criterion reduces for:

RSS(0,)) = (y — N&) " (y — N&) + \0"Qp0

where {N}; = Nj(x;) and {Q}j = [ N/(t)N}/(t)dt.
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let a =x1 =0,b= 10 =1, and knots & = x;;; for l = 1,..., K and K = 99. Also, the
basis functions for a cubic spline M = 4 are
hi(z) = 297! j=1,...,M,
h,MJr](.T) = (7} = 51)1[71 l=1,....K.

Then, H = (hj(x;))nm+k where hj(x;) is for the i-th row and the j-th column. Let =

(wi,j)M+K,M+K be a symmetric matrix and the upper triangular w; ; = fb hy (t)R (t )dt is

wi; = 0 for i < M,
Wmy = %bst— %bfﬁj + %Ef for j > M, and
wyy = (08 =&) = 30 =) + &) + (b= E0)&im&5m  for j =i > M,

where & = max{&_nr, §j—n}-

https://vardeman.public.iastate.edu/stat602/602x_hw4_sol.pdf
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Smoothing Splines solution

@ Smoothing spline solution is a generalized ridge regression
6= (N"N+ Q) 'NTy
@ The fitted smoothing spline is given by:
N

Fx) = Ni(x)f;

j=1

. L ——  Male
@ Bone mineral density (BMD) in CT o remae
adolescents. val T

0.20
I

0.15
I

@ Response: the change in BMD over
two consecutive visits, typically
about one year apart.

Relative Change in Spinal BMD
0.05
|

0.0

@ coded by gender, females precedes
growth spurt about two years. :

e )\ = 0.00022, dfy = 12.
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Degrees of Freedom and Smoother Matrices

@ Smoothing spline is a linear smoother:
f = N(NTN+XQy) INTy
= Syy
@ S, is known as smoother matrix.
o dfy = trace(S,)

o the sum of the diagonal elements
e A\ = 0.00022 derived numerically by solving trace(S») = 12.

smoothing splines only in R )
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Smoother Matrix

rows S, ordered with x

right: selected rows

A — 0 means dfy — N and
S)\ — 1

@ )\ — oo means dfy — 2 and
S, — H, the hat matrix for

linear regression on x. e
o H=X(XTX)"IXT since -
(7 = Hy)

Machine Learning Kernel Methods, Basis Expansion and regularization 2
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Equivalent Kernels
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Pollution data example

30
I

@ 128 observations of pressure
and ozone.

20

@ Two fitted smoothing
splines.

Ozone Concentration

10

@ third to sixth eigenvectors
of the spline smoother
matrices uy against x.

@ eigendecomposition of S: 50 0 50 100

Daggot Pressure Gradient

=
\ N
1%

eigenvaules dj (right)

N
Sx =Y k(N

k=1

8 10 12

_ 1 \
° Pk(/\) = Trd,- . \\\ '\\ ‘‘‘‘‘‘‘ y \\ vAvA
@ Right: 3rd-6th eigenvectors '
as a function of x and ‘ T e w n

| T
- Order s 0 s 100 s 0 s 1
=5 in red.
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Selection degrees of freedom

@ The degrees of freedom df
(or the complexity penalty
A) are usually selected to
minimize the expected

prediction error.

@ More specifically, the
crossvalidation estimate of

the error.

° f-(X) _ Sin(1)2<(—~_X0~.i>20‘2))
o Y=Ff(X)+e

o X ~ U[0,1], e ~ N(0,1),

N = 100.

o df selected by
crossvalidation is 9.

Machine Learning

EPE()) and CV(\)
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Multidimensional Splines

o X e R?2
(] hlk(Xl)v k= 17...,/\/’1 in
the first coordinate

o h2k(X2), k = 1,...7/\/,2 in
the second coordinate.

@ M; x M, dimensional tensor
product basis is defined by

gik(X) = h1;(X1)hak(X2)

@ can be used for representing
a two-dimensional function:

M1 MQ
g(X) =" Ougu(X)
j=1 k=1 &
o coefficients can be fitted by & ‘&

least squares.

I Kernel Methods, Basis Expansion and regularization 2 1- 29 March 1, 2024 17 / 29



Additive logistic regression vs. tensor product

@ In higher dimensions, the number of basic functions and parameters grows
rapidly.

o Consider to add the basic elements iteratively, as the additive MARS method
introduced later.

o left: df=7, right df=16

Additive Natural Cubic Splines - 4 df each

Natural Cubic Splines - Tensor Product - 4 df each

Training Error: 0.23
TestEror:  0.28 Training Error: 0.230
Bayes Error: 021 TestEror:  0.282
Bayes Eror: 0.210
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Multidimensional smoothing splines

@ Let us place the knot into each example
@ and add a complexity penalty J (below).

@ It can be generalized for an arbitrary
dimension.
@ The solution has the form:
o F(x)=Bo+ B x+ >, ajhi(x)
e where h;j(x) = n(||x — x;||) and
n(z) = z°2log 2°.

e complexity O(N?3)
@ or O(NK? + K3) with K knots.

Systolic Blood Pressure

£l

1= [ L5)+ (Goo) (5 2o

implemented in R and OpenCV

)
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Summary

W

learned about

[¢)

regression splines (one dimensional X) - these formulas you should know
B-splines - for faster fit - no formulas necessary

natural splines - linear on the borders

smoothing splines - complexity penalty for the second derivative
o the solution is a natural spline.

Generalizations to more dimensions

e thin plate splines
e multidimensional smoothing splines.
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Kernel Methods

Nearest-Neighbor Kemel

@ estimate regression function e
f(x) eR o 7L S f(=e)
e a different but simple model o] 8 N
separately at each query point xp. A
o The resulting 7(X) is smooth in R, o
@ Localization is achieved via a <
weighting function er kernel
k)\(X07X,') oo 0z w Tons oa i

@ assigns a weight to x; based on its
distance form xg.

Epanechnikov Kernel

@ )\ is a parameter that dictates the o L F(za)
width of the neighbourhood. 2] o2
e memory based methods

o little or no training
o the model is the entire training
data set. "1
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k-NN, Epanechnikov Kernel

o k-Nearest Heighbour kernel

Nearest-Neighbor Kemel

o Ni(x) is the set of k points R .
nearest to x in squared distance e S (o)
° ﬂlhaveequalwdght 2
° f(x =z EX,eNk Vi .
o 7(x) is bumpy, dsconhnuous. 10 .«
o Nadaraya-Watson kernel-weighted :
average 1
N o o 0 L(ps o 1o
2 >i—1 ka(x0, Xi)yi
f(XO) = N
Zi:l k>\ (XO) XI) . 'Epanechnlkov Kernel

(o)

o with the Epanechnikov quadratic e

kernel 2485
kx(x0,x) = D (‘X;,\XOU
e with :
31—t iflt <1 #
—Ja = 1
b(t) = { 0 otherwise. VR 7R —
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Example

Weighted estimate at xo=-1

30 —
-~ smoothed
@ Red circles: data 2 =
@ Blue: epanechnikov "’2'1,8,,/‘"
kernel for (—1.0) 377
@ Predicted values: y
green dashed line
° E)redicted value
f(—1.0) = 1.55.
To 15 20

(0.63%2.18 + 0.56 * 1.38 + 0.48 * 1.26 + 0.38 * 1.15 + 0 * others)

=155
(0.63 + 0.56 + 0.48 + 0.38)
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Kernels - variable width, shapes

@ Tri-cube kernel
3)3
@ The width A may vary hy(xp) with xg D(t) = {(1 _(‘)t| ) if e <1

otherwise.

@ mo general formula for he kernel
kx(x0,x) =D (‘;,T(ff)')
o for k-NN, hk(Xo) = |X0 — X‘k‘|

@ Gaussian kernel
2

el

D(t) = Xe 2

e Epanechnikov

@ where x|, is the kth closest x; to xp. 3(1 _ t2) if [t <1
D(t) =44 -
(t) 0 otherwise.
Epanechnikov
© ———  Tri-cube
—~ @ Gaussian
8
S
8 <
< o
89
o
o T
3 2 1 0 1 2 3
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Local Linear Regression

@ Locally-weighted averages can be badly
biased on the boundaries of the domain

N-W Kernel at Boundary

@ or whenever X are not equally spaced.

o Fitting straight lines may help (a bit). | Bk \
@ Locally weighted regression “ ‘ \
v ] |
Minagsa) a0) D Ka (0, x5)[Yi—alx0)—Blro)xl 0
i=1
@ The estimate is: )A‘_(Xo) = d(Xo) + B(X())XO. ) Local Linear Regression at Boundary

o For xT = (1,x), X is N x (p + 1) matrix,
W N x N diagonal matrix kx(xo, X;)- : ‘
Then | J(d0)

F(x0) = xg (XTW(x0)X) "I XT)W(x0)y

@ what is linear function of y.

Lo o
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Local Polynomial Regression

Local Linear in Interior

@ Local linear fits can help bias o]

dramatically at the boundaries. . F(z0)
o local quadratic fits tend to be most N

helpful in reducing bias due to 1./

curvature in the interior of the A

domain.

@ Recommended to select the degree
by the application, not to combine
linear boundaries and quadratic
interior.

Local Quadratic in Interior

F(x0)

10

05

Constant

Linear
Quadratic o

Variance
00 01 02 03 04 05

0.0 0.2 0.4 0.6 0.8 1.0

T T T T T T
00 02 04 06 08 10
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Selecting the Width of the Kernel

@ crossvalidation
o f= S\y
o df = trace(S»)

@ Right: comparison of the tri-cube
local linear regression kernels
(orange) and smoothing splines
(blue) with matching degrees of
freedom 5.86.
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(Structured Local Regression in RP)

Velocity

ka(x0,x) = D (7|KZ$)‘|> \

@ Structured local regression: a
positive semidefinite matrix A to
weigh the different coordinates:

— X T X —X(
ka(x0,x) = D (L 31))(1\5) 0))

East-West

Velocity

RAN
Y
South-North

East-West
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Computational Consideration

Kernel smoothing complexity

Model is the entire training data set.
The fitting is done at evaluation or prediction.
Single observation xp fit is O(N),

expansion in M basis functions O(M) for one evaluation, typically
M ~ O(logN).
Basis function method have an initial cost at least O(NM? + M3).

@ Smoothing parameter A\ usually determined off-line by cross-validation,
at cost of O(N?).
@ Popular implementations of local regression loess is S-PLUS compute

the fit exactly at M locations O(NM) and interpolate to fit elsewhere
(O(M) per evaluation).
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