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DOES MATHEMATICS NEED NEW AXIOMS?

SOLOMON FEFERMAN, HARVEY M. FRIEDMAN, PENELOPE MADDY, AND JOHN R. STEEL

Does mathematics need new axioms? was the second of three plenary
panel discussions held at the ASL annual meeting, ASL 2000, in Urbana-
Champaign, in June, 2000. Each panelist in turn presented brief opening
remarks, followed by a second round for responding to what the others had
said; the session concluded with a lively discussion from the floor. The
four articles collected here represent reworked and expanded versions of
the first two parts of those proceedings, presented in the same order as
the speakers appeared at the original panel discussion: Solomon Feferman
(pp. 401–413), Penelope Maddy (pp. 413–422), John Steel (pp. 422–433),
and Harvey Friedman (pp. 434–446). The work of each author is printed
separately, with separate references, but the portions consisting of comments
on and replies to others are clearly marked.

Penelope Maddy

WHY THE PROGRAMS FOR NEW AXIOMS
NEED TO BE QUESTIONED

SOLOMON FEFERMAN

The point of departure for this discussion is a somewhat controversial
paper that I published in the American Mathematical Monthly under the
title Does mathematics need new axioms? [4]. The paper itself was based
on a lecture that I gave in 1997 to a joint session of the American Mathe-
matical Society and the Mathematical Association of America, and it was
thus written for a general mathematical audience. Basically, it was in-
tended as an assessment of Gödel’s program for new axioms that he had
advanced most prominently in his 1947 paper for the Monthly, entitled
What is Cantor’s continuum problem? [7]. My paper aimed to be an as-
sessment of that program in the light of research in mathematical logic in
the intervening years, beginning in the 1960s, but especially in more recent
years.
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In my presentation here I shall be following [4] in its main points, though
enlarging on some of them. Some passages are even taken almost verbatim
from that paper where convenient, though of course all expository back-
ground material that was necessary there for a general audience is omitted.1

For a logical audience I have written before about various aspects of the
questions dealt with here, most particularly in the article Gödel’s program
for new axioms: Why, where, how and what? [2] and prior to that in Infinity
in mathematics. Is Cantor necessary? (reprinted as Chs. 2 and 12 in [3]).
My paper [4] opened as follows:

The question, “Does mathematics need new axioms?,” is ambigu-
ous in practically every respect.
• What do we mean by “mathematics”?
• What do we mean by “need”?
• What do we mean by “axioms”? You might even ask, What
do we mean by “does”?

Amusingly, this was picked up for comment by The New Yorker in its issue
of May 10, 1999, in one of its little end fillers (op. cit., p. 50), as follows:

“New” apparently speaks for itself.

I had to admit, they had me there.
Part of themultiple ambiguities that we see in the leading question here lies
in the various points of view fromwhich it might be considered. The crudest
differences are between the point of view of the working mathematician
not in logic related fields (under which are counted, roughly, 99% of all
mathematicians), then that of the mathematical logician, and, finally, that of
the philosopher ofmathematics. Evenwithin each of these perspectives there
are obviously divergent positions. My own view is that the question is an
essentially philosophical one: Of course mathematics needs new axioms—we
know that from Gödel’s incompleteness theorems—but then the questions
must be: Which ones? andWhy those?
Let’s start by making some preliminary distinctions as to the meaning of
‘axiom’. The Oxford English Dictionary defines ‘axiom’ as used in logic and
mathematics by: “A self-evident proposition requiring no formal demonstra-
tion to prove its truth, but received and assented to as soon as mentioned.”
I think it’s fair to say that something like this definition is the first thing we
have in mind when we speak of axioms for mathematics: this is the ideal
sense of the word. It’s surprising how far the meaning of axiom has become
stretched from the ideal sense in practice, both by mathematicians and lo-
gicians. Some have even taken it to mean an arbitrary assumption and so
refuse to take seriously what status axioms are to hold.

1The parts taken from [4] are reprinted here with the kind permission of the American
Mathematical Monthly.
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When the working mathematician speaks of axioms, he or she usually
means those for some particular part of mathematics such as groups, rings,
vector spaces, topological spaces, Hilbert spaces, and so on. These kinds
of axioms have nothing to do with self-evident propositions, nor are they
arbitrary starting points. They are simply definitions of kinds of structures
which have been recognized to recur in various mathematical situations. I
take it that the value of these kinds of structural axioms for the organization
of mathematical work is now indisputable.
In contrast to the working mathematician’s structural axioms, when the
logician speaks of axioms, he or shemeans, first of all, laws of valid reasoning
that are supposed to apply to all parts of mathematics, and, secondly, axioms
for such fundamental concepts as number, set and function that underlie all
mathematical concepts; these are properly called foundational axioms.
The foundational axioms correspond to such basic parts of our subject that
they hardly need any mention at all in daily practice, and many mathemati-
cians can carry on without calling on them even once. Somemathematicians
even question whether mathematics needs any axioms at all of this type: for
them, so to speak, mathematics is as mathematics does. According to this
view, mathematics is self-justifying, and any foundational issues are local and
resolved according to mathematical need, rather than global and resolved
according to possibly dubious logical or philosophical doctrines.
One reason the working mathematician can ignore the question of need
of foundational axioms—and I think that we [members of the panel] are
all agreed on this—is that the mathematics of the 99% group I indicated
earlier can easily be formalized in ZFC and, in fact, in much weaker sys-
tems. Indeed, research in recent years in predicative mathematics and in the
ReverseMathematics program shows that the bulk of it can be formalized in
subsystems of analysis hardly stronger than Π11-CA,

2 and moreover the sci-
entifically applicable part can be formalized in systems conservative over PA
and even much weaker systems.3 So, foundationally, everyday mathematics
rests in principle on unexceptionable grounds.
Before going on to the perspectives of the mathematical logician and
the philosopher of mathematics on our leading question, let’s return to
Gödel’s program for new axioms to settle undecided arithmetical and set-
theoretical problems. Of course, the part of Gödel’s program concerning
arithmetical problems goes back to his fundamental incompleteness results,
as first indicated in ftn. 48a of his famous 1931 paper [6]. It was there that
Gödel asserted the true reason for incompleteness to be that “the formation

2For predicativemathematics, cf. [3], Chs. 13 and 14; forReverseMathematics, cf. Simpson
[19].
3Cf. [3], Chs. 13 and 14 for the claim about PA. Feng Ye has shown in his dissertation [20]

that substantial portions of scientifically applicable functional analysis can be carried out
constructively in a conservative extension of PRA.
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of ever higher types can be continued into the transfinite”; he repeated
this reason periodically since then, but did not formulate in print the exact
nature of such further axioms. An explicit formulation of the program in
pursuit primarily of settlingCHonly appeared in the 1947 article onCantor’s
Continuum Problem (and its 1964 revision in the light of subsequent events).
It was also there that Gödel made the distinction between new axioms based
on intrinsic reasons and those based on extrinsic reasons. Concerning the
former he pointed to axioms of Mahlo type, of which he said that “these
axioms show clearly, not only that the axiomatic system of set theory as
known today is incomplete, but also that it can be supplemented without
arbitrariness by new axioms which are only the natural continuation of those
set up so far.” ([7], p. 520) Since Gödel thought CH is false and recognized
that Mahlo-type axioms would be consistent with V = L, he proposed
other reasons for choosing new axioms; hopefully, these would be “based on
hitherto unknown principles . . . which a more profound understanding of
the concepts underlying logic and mathematics would enable us to recognize
as implied by these concepts”, and if not that, then one should look for
axioms which are “so abundant in their verifiable consequences . . . that
quite irrespective of their intrinsic necessity they would have to be assumed
in the same sense as any well-established physical theory.” ([7], p. 521)
My co-panelists are better equipped than I to report on the subsequent
progress on Gödel’s program in the case of set theory.4 Briefly, the research
in this direction has concentrated primarily on higher axioms of infinity,
also known as large cardinal axioms (LCAs). These are divided roughly
between the so-called “small” large cardinals such as those in the Mahlo hi-
erarchies of inaccessible cardinals, and the “large” large cardinals, a division
that corresponds roughly to existence axioms accepted on intrinsic grounds
(or consistent with V = L) and those accepted on extrinsic grounds. The
division is not a sharp one but falls somewhere below the first measurable
cardinal.5 By all accounts from the specialists, the high point in the develop-
ment of “large” large cardinal theory is the technically very impressive work
extending “nice” properties of Borel and analytic sets, such as Lebesgue
measurability, the Baire property, and the perfect subset property—via the
determinateness of associated infinitary games—to arbitrary sets in the pro-
jective hierarchy, all under the assumption of the existence of infinitely many
Woodin cardinals.6

But the striking thing, despite all such progress, is that—contrary to
Gödel’s hopes—the Continuum Hypothesis is still completely undecided,

4That was indeed stressed in the presentations of Maddy and Steel.
5Cf. Kanamori [11], p. 471.
6This is due, cumulatively, to the work of many leading workers in higher set theory; cf.

Martin and Steel [15] and Steel’s presentation to this panel discussion, for the history of
contributions.
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in the sense that it is independent of all remotely plausible axioms of infinity,
including all “large” large cardinal axioms which have been considered so
far.7 In fact, it is consistent with all those axioms—if they are consistent—
that the cardinal number of the continuum is anything it “ought” to be, i.e.,
anything which is not excluded by König’s Theorem.8 That may lead one to
raise doubts not only about Gödel’s program but its very presumptions. Is
the Continuum Hypothesis a definite problem as Gödel and many current
set-theorists believe?
Here’s a kind of test of one’s views of that: as has been widely publicized, a
ClayMathematics Institute that has recently been established in Cambridge,
Massachusetts is offering what it calls Millennium Prizes of $1,000,000 each
for the solution of seven outstanding openmathematical problems, including
P = NP, the Riemann Hypothesis, the Poincaré conjecture, and so on. But
the Continuum Problem is not on that list. Why not? It’s one of the few
in Hilbert’s list from one hundred years ago that’s still open. Would you
feel confident in going to the scientific board of that institute and arguing
that the Continuum Problem has unaccountably been left off, and that its
solution, too, should be worth a cool million?
My own view—as is widely known—is that the Continuum Hypothesis is
what I have called an “inherently vague” statement, and that the continuum
itself, or equivalently the power set of the natural numbers, is not a definite
mathematical object. Rather, it’s a conception we have of the totality of
“arbitrary” subsets of the set of natural numbers, a conception that is clear
enough for us to ascribe many evident properties to that supposed object
(such as the impredicative comprehension axiom scheme) but which cannot
be sharpened in any way to determine or fix that object itself. On my view,
it follows that the conception of the whole of the cumulative hierarchy, i.e.,
the transfinitely cumulatively iterated power set operation, is even more so
inherently vague, and that one cannot in general speak of what is a fact of
the matter under that conception. For example, I deny that it is a fact of the
matter whether all projective sets are Lebesgue measurable or have the Baire
property, and so on.
What then—on this view—explains the common feeling that set theory is
such a coherent and robust subject, that our ordinary set-theoretical intu-
itions are a reliable guide through it (as in any well accepted part of mathe-
matics), and that thousands of interesting and prima facie important results
about sets which we have no reason to doubt have already been established?

7Interestingly, the only detailed approach we know of to settle CH that Gödel himself
tried—first negatively and then positively—was not via axioms for large cardinals but rather
via proposed axioms on scales of functions between alephs of finite index. Whatever the
merits of those axioms qua axioms, his attempted proofs (c. 1970) using them proved to be
defective; cf. [8], pp. 405–425.
8Cf. Martin [14]. The situation reported there in 1976 is unchanged to date.
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Well, I think that only shows that in set theory as throughout mathematics,
a little bit goes a long way—in other words, that only the crudest features of
our conception of the cumulative hierarchy are needed to build a coherent
and elaborate body of results. Moreover, one can expect to make steady
progress in expanding this body of results, but even so there will always lie
beyond this a permanently grey area in which such problems as that of the
continuum fall.
While Gödel’s program to find new axioms to settle the Continuum Hy-
pothesis has not been—and will likely never be—realized, what about the
origins of his program in the incompleteness results for consistent formal
systems extending number theory? Throughout his life Gödel said we would
need new, ever-stronger set-theoretical axioms to settle open arithmetical
problems of even the simplest, purely universal form, problems that he fre-
quently referred to as of “Goldbach type”. But the incompleteness theorem
by itself gives no evidence that any open arithmetical problems—or equiva-
lently, finite combinatorial problems—of mathematical interest will require
new such axioms.
We’re all familiar with the fact that the Π01 statement shown undecidable
by the first incompleteness theorem for a given formal system S (containing
arithmetic) is cooked up by a diagonal construction, while the consistency
statement Con(S) shown independent by the second incompleteness theo-
rem is of definite metamathematical interest, but not of mathematical inter-
est in the usual sense. Also familiar is the work of Paris and Harrington
proving the independence from PA of a special finite version of Ramsey’s
Theorem, and, beyond that, the work of Harvey Friedman proving the in-
dependence of a finite version of Kruskal’s Theorem from a moderately
impredicative system and of an Extended Kruskal Theorem from the sys-
tem of Π11-Comprehension.

9 Each of these is a Π02 statement shown true
by ordinary mathematical means (i.e., in a way understandable to mathe-
maticians without invoking any mention of what axioms they depend on,
or of any metamathematical notions) and is established to be independent
of the respective S by showing that it implies (or is even equivalent to) the
1-consistency of S, 1- Con(S).10

For a number of years, Friedman has been trying to go much farther,
by producing mathematically perspicuous finite combinatorial statements ϕ
whose proof requires the existence of many Mahlo cardinals and even of
stronger axioms of infinity (like those for the so-called subtle cardinals), and

9Cf. Paris and Harrington [16] and, for results related to Kruskal’s Theorem, Simpson
[19], p. 408.
101-Con(S) is the statement of "-consistency of S restricted to Σ01 sentences; in other

words, it says that each such sentence provable in S is true.
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he has come up with various candidates for suchϕ.11 From the point of view
of metamathematics, this kind of result is of the same character as the earlier
work just mentioned; that is, for certain very strong systems S of set theory,
the ϕ produced is equivalent to (or is slightly stronger than) 1-Con(S). But
the conclusion to be drawn is not nearly as clear as for the earlier work, since
the truth of ϕ is now not a result of ordinary mathematical reasoning, but
depends essentially on accepting 1-Con(S). In my view, it is begging the
question to claim this shows we need axioms of large cardinals in order to
demonstrate the truth of such ϕ, since this only shows that we “need” their
1-consistency. However plausible we might find the latter for one reason or
another, it doesn’t follow that we should accept those axioms themselves as
first-class mathematical principles.
My point here is simply that there is a basic difference between accepting
systems such as ZFC + LCA, where LCA is the applicable large cardinal
axioms, andaccepting 1- Con(ZFC+LCA). As to the questionof the needof
large cardinal assumptions to settle finite combinatorial problems of the sort
produced by Friedman, there is thus, in my view, an equivocation between
needing a given axiom and needing its 1-consistency; it is only the latter that
is demonstrated by his work. But if one does not grant that there is a fact
of the matter whether statements LCA of various large cardinal axioms are
true, is there a principled reason for accepting 1-Con(ZFC+LCA) without
accepting ZFC + LCA itself ? Of course, if one does think that there is a
fact of the matter as to whether such statements LCA are true, then the
equivocation is a non-issue. But then, what is it that leads one to recognize
LCA rather than its negation to be true?
Returning to the question of mathematical interest, there is not a shred
of evidence so far that we will need anything beyond ZFC—or even much
weaker systems—to settle outstanding combinatorial problems of interest
to the working mathematician, such as those on the Millennium Prize list,
nor is there any evidence that the kind ofmetamathematical work we’ve seen
from Paris-Harrington to Friedman will bear any relevance to the solutions
of these problems, if they are ever solved at all.
Thus, as I said at the outset, I thinkwe are left to regard the question: Does
mathematics need new axioms?, as primarily a philosophical one. And if you
agree with me on that, then we have the discouraging conclusion that we can
expect asmany answers to the question as there are varieties of the philosophy
of mathematics; among those that have been seriously supported in one
quarter or another, we have the platonic-realist, structuralist, naturalist,

11In [4] I referred to Friedman [5] for his then most recent work in that direction. More
recently, Friedman has been promoting rather different statements derived from Boolean
relation theory; cf. my comments on Friedman’s Urbana presentation below.
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predicativist, constructivist, and formalist philosophies.12 In other words, if
the problem is indeed a philosophical one, we can hardly expect an answer
that will command anywhere near general assent.
But as a mathematical logician, if not as a working mathematician or
philosopher of mathematics, I can end with a bit more positive conclusion.
Even if mathematics doesn’t convincingly need new axioms, it may need for
instrumental and heuristic reasons the work that has been done and contin-
ues to be done in higher set theory. For example, in my own subject—proof
theory—analogues of large cardinal notions have proved to be very impor-
tant in the construction of recursive ordinal notation systems for the “ordinal
analysis” of various subsystems of analysis and admissible set theory.13 So
far, these just employ symbols that act in the notation systems like “small”
large cardinals, and do not depend on the assumption that such cardinals
actually exist. The widespread appearance of analogue large cardinal no-
tions (and, more generally, large set notions) also in admissible set theory,
constructive set theory, constructive type theory and my own systems of
explicit mathematics14 suggests that there should be a general theory of such
notions which includes all these as special cases. So far, these analogues
correspond mostly to “small” large cardinals. At any rate, without the con-
siderable work in higher set theory that led to such notions, these other areas
of mathematical logic might still be back where they were in the early 1960s.
It remains to be seen whether the bulk of that work, which is on “large” large
cardinals, can have similar applications, and if not—why not.

COMMENTS AND RESPONSES

Response to Maddy. Maddy argues from a position that she calls the
naturalistic point of view as to the philosophy of mathematics.15 According
to this, mathematical practice, and set-theoretical practice in particular, is
not in need of philosophical justification. “Justification . . . comes from
within . . . in . . . terms of what means are most effective for meeting the
relevant mathematical ends. Philosophy follows afterwards, as an attempt
to understand the practice, not to justify or to criticize it.” From that point
of view, the original panel question is “a bit off target”. Rather, “it would be
more appropriate to ask whether or not some particular axiom . . . would or
would not help this particular practice . . . meet one or more of its particular

12Perhaps one should even add the philosophy that is implicit in the view that category
theory provides the proper foundation of mathematics. What to call it?
13Cf., e.g., Pohlers [17] and Rathjen [18].
14For these, cf. Aczel and Richter [1], Griffor and Rathjen [9], and Jäger and Studer [10].
15Maddy has elaborated this position in [13]. That is incidentally a retreat fromher attempt

in [12] to formulate a compromise between Gödelian platonic realism and Quinean scientific
realism (one form of naturalism) that would justify current higher set-theoretical practice.
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goals.” The example given, from contemporary set theory, is the assumption
of many Woodin cardinals.
The naturalistic point of view in philosophy, as usually described, is that
the entities to be admitted are just those posited by and studied in the natural
sciences, and that the methods of justification and explanation are somehow
continuous with those of the natural sciences.16 One of the foremost expo-
nents of the naturalist position in this sense is Quine and, according to his
view, only so much of mathematics is justified as is indispensable to scientific
practice. Thus, Maddy’s use of ‘naturalism’ to describe her point of view is
strikingly contrary to that, since her aim, above all, is to account for and in
some sense give approbation to that part of current set-theoretical practice
which accepts various large cardinal axioms (that happen to be inconsistent
with V = L, among other things). This she does by taking mathematics in
general and set theory in particular as a “science” to be studied in its own
right, independently of its relationships to the natural sciences.
WhileMaddy keeps invokingmathematical practice in general in the scope
of her naturalism, she does not reflect on the many instances in its history
in which the question of what entities are to be admitted to mathematics
and what methods are legitimate had to be faced, leading to substantial
revisions from what’s OK to what’s not OK and vice versa. In binding
itself to mathematical practice, this kind of naturalism is in danger of being
unduly transitory. Even if one takes the proposed naturalistic point of view
and mathematical practice as exemplified in set theory for granted, there is
a crucial question as to what determines the “mathematical ends” for which
the “most effective” means are to be sought. And having chosen the ends,
in what sense does effectiveness justify the means? Why is it to be presumed
that the “good” properties of Borel and analytic sets should generalize to all
projective sets, given that they don’t hold for all sets?
Maddy says her naturalist needn’t concern herself with “whether the CH
has a determinate truth value in some Platonic world of sets” or “confront
the question of whether or not it is ‘inherently vague’.” Why then is it
assumed that there has to be a determinate answer to whether all projective
sets have the perfect subset property or the property of Baire, etc.? Is there
something essentially different about the character of these set-theoretical
problems that makes the latter determinate but not (necessarily) the former?
At any rate, admitting the possibility of some kind of indeterminateness for
CH seems to me to be a slippery slope for the naturalist.
As a final point, Maddy suggests that I’m in favor of limitingmathematics,
though “the essence of pure mathematics is its freedom.” Surely she does
not think that anything goes in mathematics. Old-style infinitesimals, Dirac
delta-functions, unrestricted comprehension? If not, what justifies what is to
be admitted to mathematics? Once it is agreed that there has to be some sort

16Cf. (R. Audi, ed.) The Cambridge Dictionary of Philosophy, 2nd ed. (1999), p. 596.
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of justification, intrinsic or extrinsic, then one is in the game of potentially
limiting mathematics in some way or other. I don’t hew to any sort of
absolute principle in favor of limiting mathematics.
Response to Steel. In his discussion of my contention that the continuum
problem is inherently vague, Steel says that “if the language of 3rd order
arithmetic [in which it is couched] permits vague or ambiguous sentences,
then it is important to trim or sharpen it so as to eliminate these . . . it may
be that, in the end, our solution to the Continuum Problem is best seen as
resolving some ambiguity.”
It is useful, in response, to elaborate my ideas about vagueness more
generally. These can be illustrated, to begin with, in the context of very
familiar, set-theoretically low down mathematics. The conception of the
structure N of the natural numbers is not a vague one (at least in my view);
statements about N have a definite truth value, and the axioms of PA are
among those and (on reflection) are evident for it. By comparison, the
notion of feasible (or feasibly computable) natural number is a vague one,
and inherently so; there is no reasonable way to make it definite. Though we
might well admit certain statements about feasible numbers as being evident,
e.g., if n and m are feasible, so is n +m, we cannot speak of truth or falsity
of statements about feasible numbers in general. Nevertheless, the notion of
feasibly computable number is sufficiently suggestive to act as a heuristic for
a reasonable mathematical theory. Similarly, the notion of random number
between 1 and 10 is vague, but the conception of it makes it evident that
the probability of such a number being less than 6 is 1/2. It is from such
vague beginnings that substantial, coherent, and even robust mathematical
theories can be developed—without committing oneself to a notion of truth
as to the notions involved.
In the case of set theory, it is at the next level (over N) that issues of ev-
idence, vagueness, and truth arise. Once the conception of the structure of
arbitrary sets of natural numbers is presented to us and we reflect on it, the
axioms of second-order arithmetic (“analysis”) become evident for it. Nev-
ertheless, in my view, the meaning of ‘arbitrary subset of N’ is vague, and so
I would strongly resist talking about truth or falsity of analytic statements.
In opposition to my view it might be argued that the structure of the con-
tinuum, when conceived geometrically, is not vague, and hence that analytic
statements have a definite truth value via the interpretation of analysis in the
real numbers. Probably if a poll were taken, fewmathematicians would agree
with me that the notion of arbitrary real number is vague, and so I would not
want tomake an issue of it. But I believe I would garner substantially greater
support of my consequent view that the notion of arbitrary subset of the real
numbers (existing independently of any human definitions or constructions)
is vague, since we no longer have the anchor of geometric intuition there.
Moreover, I would argue that it is inherently vague, in the sense that there
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is no reasonable way the notion can be sharpened without violating what
the notion is supposed to be about. For example, the assumption that all
subsets of the reals are in L or even L(R) would be such a sharpening, since
that violates the idea of “arbitrariness”. In the other direction, it is hard to
see how there could be any non-circular sharpening of the form that there as
many such sets as possible. It is from such considerations that I have been
led to the view that the statement CH is inherently vague and that it is mean-
ingless to speak of its truth value; the fact that no remotely plausible axioms
of higher set theory serve to settle CH only bolsters my conviction. From
the quote above, Steel is apparently willing to countenance an ambiguity in
the notions involved in CH. If, as he puts it, the best thing then to do would
be to resolve the ambiguity, it would showCH to be vague but not inherently
so; that is the nub of our disagreement.
Relatedly, Steel characterizes my views as being instrumentalistic, which
he takes to be a “dodge”, but he oversimplifies my position in that respect.
One kind of instrumentalism that I have espoused, to the extent that I have
done so in one place or another, is very much a Hilbertian one (in the
relativized sense): given a system S that one understands and accepts, if
another system T is reduced to S, conservatively in the language of S, then
that justifies the use of T , even if one does not grant definite meaning to
the language of T beyond that of S. As an example, the overwhelming
part (if not all) of scientifically applicable mathematics can be formalized in
certain higher order systems T which are conservative over PA, and in fact
much of it is already conservative over PRA; that thereby justifies the use
and applications of such T (cf. [3], Chs. 13, 14). Similar results hold for the
bulk of everyday mathematics (whether pure or applied) conservatively (for
certain analytic statements) over constructively justified systems (cf. [3], pp.
201 ff). This kind of instrumentalism is thus philosophically satisfactory.
I have also argued (e.g., in [3], p. 73), that one’s picture of the cumulative
hierarchy is clear enough as a whole to justify confidence in the use of
ZFC (and like theories) for deriving number-theoretical results. This is a
pragmatic instrumentalism which is not philosophically satisfactory since
there is thus far no philosophically satisfactory justification for ZFC, at least
none in my view. But the result of the case studies cited above shows that
though this kind of instrumentalism admits much more in principle than
the preceding, there is no real difference in practice (i.e., with respect to the
mathematics of the “99% of all mathematicians”.
Response to Friedman. The core of Friedman’s presentation consists of
two daring predictions about the effect of his new work on Boolean relation
theory, which it is claimed will eventually force the mathematical community
to accept fully (perhaps after a period of controversy) new large cardinal
axioms. Which those are is not specified, and in particular it is not said
whether these will just be “small” large cardinals (presumably palatable to



412 S. FEFERMAN, H. FRIEDMAN, P. MADDY, AND J. R. STEEL

mathematicians with a certain amount of encouragement) or also “large”
large cardinals. It is also not predicted how long this will take. If he is right,
time will tell. If not . . . ? The criteria a–g he proposes for the adoption of
new axioms set a very high bar (Olympic sized), but inmy view appropriately
so.
Finally, Friedmanaddressesmypoint that there is an equivocationbetween
needing a large cardinal axiom and needing the statement of its 1-consistency
(over ZFC). He says that the choices are essentially equivalent for the pur-
poses of proving Π02 statements. Of course. He also says that it is more
natural to develop such consequences of, say, Boolean relation theory under
the assumption of the axiom rather than the statement of its 1-consistency. I
also agree to that. But I do not agree with his conclusion that this will show
we “need” large cardinal axioms. It is neither here nor there that he means
by “ϕ needs large cardinals to prove” that “any reasonable formal system
that proves ϕ must interpret large cardinals in the sense of Tarski.” If ϕ is
equivalent to the statement of 1-consistency of a large cardinal axiom LCA
and PA ⊆ T and T proves ϕ then of course LCA is interpreted in T by the
formalized completeness theorem. But that doesn’t show that we need either
LCA or its consequence ϕ in the normal sense of the word.
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DOES MATHEMATICS NEED NEW AXIOMS?

PENELOPEMADDY

AsFefermanhasmade clear,17 we can’t begin to address our title question—
does mathematics need new axioms?—without first asking—need for what
purpose? If we begin with the purpose of providing tools for current science,
I think we must agree with him that ZFC is surely enough, and indeed that
weaker systems would probably do (p. 109). Granted, there are some linger-
ing worries about whether science could get by in practice on these weaker
systems; in the context of discovery, the more free-wheeling impredicative
and infinitary methods might be needed. But Feferman himself grants this
(p. 109). So, we agree that mathematics doesn’t need new axioms for its
practical uses in current science, and that it probably needs far fewer axioms
than it already has for its strictly formal uses in current science.
Still, there’s an odd bias implicit in the shape of this discussion, and in the
formulation of our title question. Why ask ‘does mathematics need such-and
such?’ When they were first developed, did mathematics need n-dimensional
spaces, non-Euclidean geometry, or abstract algebra? It surely didn’t need
them for the science of the time, though I’ve chosen examples that did later

17In his [2], from which his remarks in this panel discussion begin. Unreferenced page
numbers in the text refer to the printed paper.
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become essential to science. I think the moral of the story of the devel-
opment of mathematics in the 19th and 20th centuries is that attempts to
limit mathematics are a bad idea, that the essence of pure mathematics is
its freedom, that mathematicians should be allowed to follow their math-
ematical noses wherever they lead—and that this would be true even if all
we cared about were the usefulness of mathematics in science.18 Perhaps
we’d do better to replace the original question—does mathematics need new
axioms?—with the more open-ended question—would mathematics benefit
from new axioms?
I’ll come back to this in a moment, but for now let’s skip directly to the
broadest version of our title question: what is needed for all of modern
mathematics? Here, of course, we know that new axioms are needed to settle
basic questions of descriptive set theory, questions about the properties of
simple sets of real numbers, questions raised nearly a century ago by the
early analysts Luzin and Suslin. Though these new axioms don’t yet appear
on official lists at the beginnings of our textbooks, they are largely adopted,
sometimes without comment, by those working in the field. Thus it is
common, in these discussions, to assume the existence of an array of large
large cardinals, most often a generous store of Woodin cardinals.
Now anyone who works in the generous spirit of modern mathematics
touched on a moment ago, anyone moved by his faith that ‘the more math-
ematically interesting structures the better’, any such person would applaud
this development in set theory, but it seems that Feferman does not. Though
he insists that his ‘main concern’ is simply to determine ‘what, fundamen-
tally, is needed for what?’ (p. 109), we can hardly ignore his disapproval of
efforts to find new axioms to settle the CH. Though the problem of the CH
is more complex than the earlier problems in descriptive set theory and the
outcome of efforts to settle it is still doubtful, it is unclear why the effort to
settle CH should be fundamentally misguided in a way that the (successful)
efforts to settle the others were not. In fact, I suspect that Feferman is as
uncomfortable with the large cardinals needed to settle the old questions of
descriptive set theory as he is with current efforts to settle the CH. What I
want to do here is investigate two interrelated reasons that seem to me to lie
behind this distaste.
The first of these is his view that Platonism—which he rejects as ‘thor-
oughly unsatisfactory’ (p. 110)—provides the fundamental justification for
contemporary set theory (pp. 109–110). I take it Feferman has in mind
the use of Platonism to argue that statements like CH, though independent,
nevertheless have objective, determinate truth values.19 Feferman emphati-
cally rejects this point of view, insisting that ‘the Continuum Hypothesis is

18For more discussion of the role of applied mathematics, see [5].
19As in [3], p.260.
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an inherently vague problem’, and thus that ‘no new axiom will settle [it] in
a convincingly definite way’ (p. 109).
Now perhaps I don’t find Platonism as repugnant as Feferman does, but I
do agree with him on the operative claim: that Platonism cannot justify the
practice of set theory, in particular, the practice of seeking new axioms to
settle the CH. Where I disagree with Feferman is in the implicit assumption
that Platonism is the only possible justification for this set theoretic practice,
and thus, that any failure of Platonism leaves the practice unjustified.
What I propose is that philosophical considerations like those surround-
ing Platonism are largely irrelevant to the very real methodological questions
of set theoretic practice: is CH a legitimate mathematical question, despite
its independence?; what reasons could there be for accepting or rejecting
any given candidate for a new axiom of set theory? What matters for these
questions, I would argue ([4]), is a wide range of specifically mathematical
considerations, considerations directly linked to the goals of the particular
mathematical practice in question. To see how this played out in one his-
torical case, recall the debate over the Axiom of Choice. Much heat was
generated in metaphysical battles between Platonism and various versions
of Definabilism or Constructivism—a debate unresolved to this day—but
in the end, as Greg Moore demonstrates in his delightful case study ([8]),
the axiom was adopted because it is essential to achieving the mathematical
goals of a stunningly diverse array of practices. To take just one such goal,
close to home, if you want a well-behaved theory of transfinite numbers, you
will want your set theory to include the axiom of choice. This is one among
many mathematically sound reasons for preferring that our fundamental
theory of sets include the axiom.
The idea, then, is that set theoretic practice in particular, and mathemat-
ical practice in general, are not in need of justification from philosophical
quarters. Justification, on this view, comes from within, couched in simple
terms of what means are most effective for meeting the relevant mathemat-
ical ends. Philosophy follows afterwards, as an attempt to understand the
practice, not to justify or to criticize it. From this naturalistic point of view,
our original question—does mathematics need new axioms?—is a bit off
target. It would be more appropriate to ask whether or not some particular
axiom—say one asserting the existence of many Woodin cardinals—would
or would not help this particular practice—contemporary set theory—meet
one or more of its particular goals. In this case, the answer is yes: the
assumption of many Woodins provides a complete theory of the projective
sets of reals, something set theorists had sought for decades, and it does so
in a manner consistent with various other set theoretic goals. I won’t try to
spell out the details here; I just want to indicate the type of justification I
have in mind for this naturalistic approach to set theoretic method.
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What, then, does naturalism suggest for the case of the CH? First, that
we needn’t concern ourselves with whether or not the CH has a determinate
truth value in some Platonic world of sets; we needn’t confront the question
of whether or not it is ‘inherently vague’, assuming this involves some extra-
mathematical theory of the meaning of set theoretic vocabulary; we needn’t
even argue that the answer to the CH is somehow pre-determined, that there
is a pre-existing right answer out there for us to discover. Instead, we need to
assess the prospects of finding a new axiom that is well-suited to the goals of
set theory and also settles CH. As Feferman points out, we don’t currently
have such an axiom. Perhaps it will turn out that there is no such axiom,
perhaps for some reason of principle, but especially in light of recent work,
it seems to me premature to declare the case hopeless.
So, I suggest that Feferman’s first reason for discomfort over the search
for new set theoretic axioms is his mistaken belief that the only possible
justification for this practice must lie in philosophical Platonism. We can get
at the second reason if we ask ourselves why he should be so pessimistic so
soon.
To see this, notice that themathematical reasons for adding one or another
axiom to ZFC are often divided into two varieties: intrinsic and extrinsic.
Extrinsic reasons are easy to recognize; they involve the consequences of a
given axiom candidate, its fruits, if you will. Intrinsic reasons are described
in various ways by various writers, using terms like ‘self-evident’, ‘intuitive’,
and ‘part of the very concept of set’. The justifications I’ve gestured towards
so far have all been extrinsic.
Now Feferman says nothing directly against the notion of an extrinsic
justification, but I think it’s apparent that he’s less than impressed by them.
To begin with, he gives considerable attention to the OED’s definition of an
axiom as ‘a self-evident proposition’ (p. 100), which clearly excludes extrinsic
justifications for axioms, and he praises the Peano axioms for coming ‘as
close as anything we have to meeting the ideal dictionary sense of the word’
(p. 101). He continues

If [the axioms of ZFC] are to be considered axioms in the ideal,
dictionary sense, they should be evident for some pre-axiomatic
concept that we have in mind. (p. 102)

One candidate for this pre-axiomatic concept is Frege’s naı̈ve notion of the
extension of a property, but this falls prey to the paradoxes. The only other
option is Zermelo’s iterative conception, and this, according to Feferman,
involves us in the Platonism he finds so unpalatable (pp. 102–103). Notice
that the possibility of extrinsic supports for the axioms of ZFC isn’t even
raised.
Now, obviously, if Feferman is unmoved by extrinsic justifications, it’s
no surprise that he would disapprove the contemporary search for new set
theoretic axioms, which relies on them so heavily. So we must ask for the
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ground of this preference: what’s wrong with extrinsic justifications, and
what’s so good about intrinsic ones?
As a warm-up for this question notice that a Platonist might balk at
extrinsic justifications of the broad variety under consideration here. These
take the form: we want this particular mathematical theory to do such-
and-such; using method so-and-so is an effective way of achieving such-
and-such; therefore, it’s reasonable for us to use method so-and-so. A true
Platonist might well object that it isn’t enough that our mathematical theory
do all the things we want it to do, it must also be true—that is, true in the
objective world of mathematical objects that the theory purports to describe.
My naturalist doesn’t care about these philosophical niceties; what matters
are the intra-mathematical goals and the effectiveness of various means of
achieving them.
So a Platonist might object to our extrinsic justifications, but of course,
Feferman is no Platonist; he puts no stock in mathematical objects. Philo-
sophically, he takes the central question to be—What is the nature of math-
ematical concepts?—and these are

conceptions of certain kinds of ideal worlds, . . . . presented more
or less directly to the imagination, from which basic principles are
derived by examination ([1], p. 124).

Now if these concepts are taken to be objectively real, we could imagine an
objection to extrinsic reasons that runs parallel to the Platonist’s: it isn’t
enough that a theory be effective, it must also be true of those concepts!
But here again, Feferman rejects the realist line. Still, he attaches great
importance to teasing out ‘what is implicit in the concepts and principles’
([1], p. 122), so there does seem to be some objective content about which
we might go wrong if we trusted to merely justifications.
The question the naturalist can hardly help asking at this point is why it
matters so much what is and what isn’t part of our existing concept? Imagine
ourselves, for example, around 1870, working with Felix Klein or Sophus
Lie to isolate the notion of ‘group’. We would have various mathematical
goals in mind, and we would mold the axioms of group theory to meet those
goals as best we could. 20 What we would not do is stop and ask ourselves
if the existence of inverses is or is not part of our concept of ‘group’. Why
should set theory be any different? Why should a contemporary set theorist,
appreciative of the power of large cardinals, stop to ask himself whether or
not they are contained in the concept of set?
Here Feferman has a clear answer. The axioms of group theory are
‘structural axioms’; they aim to ‘provide a framework’ and their value ‘for
the organization of mathematical work is now indisputable’, but they ‘have
nothing to do with self-evident propositions’ (p. 100). More could be said
20For more discussion of this case, and its analogies and disanalogies with set theory, see

[5].
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here, for example, contrasting the way one set of structural axioms—the
definition of group—is used to bring out similarities between mathematical
structures that otherwise seemquite dissimilar, while another—the definition
of topological space—is used to isolate invariant properties, and so on. Each
case in which the mathematical community successfully settles on the ‘right’
definition of some concept shows once again how a concept was molded
to meet certain mathematical needs. Following Feferman’s line of thought,
we can fully agree that intrinsic considerations are largely irrelevant in such
cases. But, Feferman continues, the axioms of set theory are different; they
aren’t structural, but foundational, and he suggests, they are needed ‘to
justify’ mathematical practice ‘in the end’ (p. 100). He then proceeds with
the analysis sketched above, in which ZFC comes up short in the matter of
intrinsic justifications.
All this strongly suggests that Feferman regards intrinsic justifications as
essential and extrinsic justifications as inappropriate in the case of founda-
tional axioms like those of set theory. Now I fully agree that the set theoretic
axioms are (at least partly) aimed at satisfying a foundational goal; as a
naturalist I would argue that an appreciation of this foundational goal helps
us see why certain widespread set theoretic methods are rational. The irony
is that I see the effectiveness of an axiom candidate at helping set theoretic
practice reach its foundational goal as a sound extrinsic reason to adopt
it as a new axiom! Given that Feferman sees the foundational goal as re-
quiring intrinsic justification, there must be some stark difference in our
understandings of the foundational goal itself.
In fact, I think that difference lies fairly close to the surface. My own
understanding is that set theory seeks to provide a unified arena in which set
theoretic surrogates for all classical mathematical objects can be found and
the classical theorems about these objects can be proved. This sort of foun-
dation brings the various structures of mathematics onto one stage, where
they can be contrasted and compared; it provides a uniform answer to ques-
tions of mathematical existence and proof. I trust there is no disagreement
that these services are mathematically valuable. But set theoretic founda-
tions in this sense do not do two of the things that earlier thinkers had hoped
for: they do not reveal what mathematical entities really are, in some deep
metaphysical sense; and, more to the point for our present purposes, they do
not provide an epistemic foundation; they do not show us how to derive the
various truths of mathematics by transparent steps from absolutely certain
truths. This goal, it seems tome, is one that the development of mathematics
has forced us, however reluctantly, to abandon.
But suppose you have not surrendered this goal. Then it might make
perfect sense to insist that foundational axioms be conceptual truths of
some sort or other, and thus self-evident and absolutely certain. If you insist
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on beginning from indubitable premises, as a true epistemic foundationalist
must, you simply can’t allow extrinsic justifications of any kind.
My suggestion, then, is that the fundamental difference between Fefer-
man and my naturalist, the difference that leads to their disagreement over
the legitimacy of extrinsic justifications in set theory, and from there to a
disagreement over the viability of the search for new set theoretic axioms,
is simply this: Feferman cleaves to a foundational goal that the naturalist
regards as outmoded. On this point, I leave you to your consciences.

COMMENTS AND RESPONSES

Comments on Friedman and Steel. Hoping it might clarify the issues at
stake, I’d like to take a moment to lay out what I take to be the disagreement
between Steel and Friedman on our title question. It begins:

Steel: Of course mathematics needs new axioms. It needs them to settle
the outstanding questions of descriptive set theory, and it needs them if
there’s to be any hope of settling the CH.

Friedman: Given the goals of contemporary set theory, this is a perfectly
rational answer.

The naturalist might wonder why this isn’t the end of the story, but Fried-
man has more to say:

Friedman: But the goals of set theory are very different from those of
core mathematics.

Steel: So what? The algebraist’s goals are different from those of the
topologist. Both differ from the goals of the number theorist or the geometer.
We should expect that the set theorist would have his own goals.

Friedman: In the cases you cite, the various parties respect the others’
goals, even if they don’t share them. But the core mathematician thinks the
set theorist’s goals are outright wrong, not just different. In particular, the
core mathematician thinks the set theorist is too concerned with generality,
with pathologies, etc.

Steel: But surely these are irrational prejudices on the part of the core
mathematician. We should try to educate him.

At this point, I’m not sure which of two tacks best represents Friedman’s
response. Perhaps it is some amalgam of the two.

Friedman number one: No, the coremathematician’s reasons for rejecting
the set theorist’s goals are perfectly rational. They can only be countered by
some development like my Boolean relation theory, which will show the core
mathematician that he needs set theory to attain his own goals.
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Friedman number two: Even if the core mathematician is not rational in
his rejection of set theoretic goals, even if his objections are mere prejudices,
the set theoretic community needs to counter them with something like
Boolean relation theory. If it doesn’t, then as a matter of sociological fact,
set theory will go unsupported and eventually die out.

Notice that on either interpretation, Friedman is not arguing that the set
theorist is irrational to carry on as he does, given the goals of his practice.
Rather, Friedman is arguing that the set theorist should modify his goals,
either for rational or for practical reasons.
Comments onSteel. Steel suggests that philosophymay ‘have amore active
role to play’ than the naturalist allows, in particular, that philosophy may
be needed to spell out what counts as a solution to the Continuum Problem.
Perhaps. But it seems to me that Steel has masterfully outlined, as only a
discerning expert can, the purely mathematical reasons why adding many
Woodins (and hence PD) to ZFC counts as a solution to the old problems of
descriptive set theory, 21 and that he’s given us a tantalizing vision of purely
mathematical developments that might one day qualify as a solution to the
continuum problem. It’s hard to see what persuasive force philosophy could
add to this appealing (and purely naturalistic) picture. I fear Steel is too
modest!
Comments on Feferman. Feferman has raised several concerns about my
naturalism,22 perhaps the most troublesome of which are the suggestions
that it is ‘unduly transitory’ or ‘relativistic’ or ‘parochial’.23 Of course it
is true that our rational judgment of which mathematical principles and
methods are best will change as we learn more: we have less reason now
to embrace infinitesimals than we did before Cauchy and Weierstrass; we
have more reason now to embrace large cardinals than we did, for example,
when Ulam first defined measurables in 1930. I don’t see why this is any
more alarming than the fact that scientists have more reason now to believe
in atoms than they did before Einstein and Perrin; we learn new things,
acquire new evidence, modify our theories, in both mathematics and science.
So naturalistic justifications will shift as our understanding increases, but I
21The words ‘true’ and ‘believe’ crop up occasionally in Steel’s discussion, but I can’t see

that they do any serious philosophical work. In practice, he gives deflationary readings
of such terms, e.g., ‘to believe that there are measurable cardinals is to seek to naturally
interpret all mathematical theories of sets, to the extent that they have natural interpretations,
in extensions of ZFC+ “there is a measurable cardinal”’. (The discussion referenced in
footnote 26 concerns another such deflationary reading.)
22Feferman is right to note that my naturalism differs in some striking ways from Quine’s.

Those differences, and my reasons for continuing to use the word ‘naturalism’, are detailed
in [4]. (Those with further interest in this version of naturalism might also see [5], [6], and
[7].
23The last two descriptions come from an earlier version of Feferman’s remarks, which

was subsequently shortened for purposes of publication.
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don’t think this makes those justifications any more ‘unduly transitory’ than
our scientific theories.
Naturalism is ‘relativistic’, in the sense that the justification for a given
mathematical method is given in terms of the goals of the practice in which
it is embedded. Certainly it is true, as Friedman has emphasized, that
different groups of mathematicians will share different goals: a topologist
hopes to isolate invariants; an algebraist hopes to uncover hidden similarities
between widely varying structures; a set theorist hopes to provide a broad,
rigorous foundation for classical mathematics. And it is, as Feferman notes,
a delicate task to understand the implicit goals of a given practice.24 But this
doesn’t mean that anything goes (e.g., early infinitesimals offended against
the overarching mathematical goal of consistency)25 or that there is no such
thing as justifying a method in such terms (e.g., the rejection of V=L might
be justified in terms of the foundational goal of set theory).
Obviously, the constructivist has different mathematical goals from those
of the set theorist, goals in terms of which he adjudicates between various
methods for his practice (e.g., rejecting proof by reductio ad absurdum).
Analysis of these goals and justifications falls squarely within the naturalist’s
field of study; naturalism is not parochial to set theory, though set theory has
been my own focus. What falls outside naturalistic scruples is philosophical
incursions into mathematics (e.g., rejection of classical methods for reasons
of a priori semantic theorizing, as in Dummett).
Finally, one point of clarification: the naturalistic methodologist takes no
stand on whether or not either the CH or the questions of descriptive set
theory ‘have determinate answers’ despite their independence.26 The differ-
ence between the two is simply that we have attractive axiom candidates—
attractive when viewed in terms of the goals of the practice—that settle the
questions of description set theory, and we don’t have such candidates in the
case of CH. If there is a slippery slope here, as Feferman fears, the naturalist
doesn’t climb it in the first place.
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MATHEMATICS NEEDS NEW AXIOMS

JOHN R. STEEL

§1. Definitions. Let me begin by clarifying the question.
By new I shall simply mean: not a consequence of ZFC. This is of course
somewhat arbitrary. If one takes a long view, the full strength of ZFC appears
to be quite new; on the other hand, to a modern set theorist, large cardinal
hypotheses going well beyond ZFC are rather old hat. Some of the weaker
large cardinal hypotheses were actually discovered and studied before ZFC
itself was fully isolated.
By axiom I shall mean: assumption to be adopted by all, as part of a
broadest point of view. The “broadest point of view” proviso is meant to
exclude from attention the temporary adoption of restrictive assumptions as
a convenient device for avoiding irrelevant structure. V = L is often assumed
temporarily for such reasons by set theorists who do not believe it, just as
“all functions are C∞” is sometimes assumed by differential geometers who
do not believe it.
The old self-evidence requirement on axioms is too subjective, and more
importantly, too limiting. In the future, what “forces itself upon us as true”
is more likely to be a theory as a whole, and the process is more likely to be
gradual. We may very well never reach the level of confidence in the new
theory that we have in, say, Peano Arithmetic. Nevertheless, new axioms
may emerge, and be rationally justified. The self-evidence requirementwould
block this kind of progress toward a stronger foundation.
What is important is just that our axioms be true, and as strong as possible.
Let me expand on the strength demand, as it is a fundamental motivation in
the search for new axioms.
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It is a familiar but remarkable fact that all mathematical language can be
translated into the language of set theory, and all theorems of “ordinary”
mathematics can be proved in ZFC. In extending ZFC, we are attempting to
strengthen this foundation. Surely strength is better than weakness! Profes-
sor Maddy has labelled the “stronger is better” rule of thumbmaximize, and
discussed it at some length inher recent book [4]. Iwould say thatwhatwe are
attempting to maximize here is the interpretative power of our set theory. In
this view, to believe that there are measurable cardinals is to seek to naturally
interpret allmathematical theories of sets, to the extent that they have natural
interpretations, in extensions of ZFC+ “there is a measurable cardinal”.
Maximizing interpretative power entails maximizing formal consistency
strength, but the converse is not true, as we want our interpretations to
preserve meaning.
In this light we can see why most set theorists reject V = L as restrictive:
adopting it restricts the interpretative power of the language of set theory.
The language of set theory as used by the believer in V = L can certainly
be translated into the language of set theory as used by the believer in
measurable cardinals, via the translation ϕ "→ ϕL. There is no translation
in the other direction. While it is true that adopting V = L enables one to
settle new formal sentences, this is in fact a completely sterile move, because
one settles ϕ by giving it the same interpretation as ϕL, which can be settled
in anyone’s theory. If by “question” we mean interpreted formal sentence,
adoptingV = L settles no new questions. It simply prevents us from asking as
many questions, since we are then forbidden to ask about the world outside
L.
Of course, the Axiom of Foundation also has the appearance of being
restrictive. However, so far as we know, it is not in reality. We know of no
mathematical structure outside the class of wellfounded sets. On the other
hand, we know of plenty of interesting structure outside L.
It is sometimes maintained that one could obtain all the logical strength
of measurable cardinals in an extension of V = L by adopting ZFC + V =
L + “there is a transitive model of ZFC + “there are measurable cardinals”.
This is an example of what I would call the instrumentalist dodge. For any
theory T and class of sentences Γ, the instrumentalist version of T over Γ,
or Inst(T,Γ), is the theory: All theorems of T in Γ are true.27 Thus

Inst(T,Π01) ≡ Con(T ),
Inst(T,Π02) ≡ 1-Con(T ).

27I shall generally use “theory” to mean “axiomatizable theory in the language of set
theory extending ZFC”. It might be slightly more natural to let Inst(T,Γ) be axiomatized by
the schema “(F ! ϕ)→ ϕ”, for ϕ ∈ Γ and finite F ⊆ T , since the latter theory has precisely
the same Γ-consequences as T .
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One could obtain all the Σ12 consequences of measurables in

ZFC+ V = L+ Inst(There are measurables,Σ12).

(This is close to the theory ZFC + V = L + “there is a transitive model
with a measurable cardinal”, although the latter is slightly stronger.) One
could go even further, eliminating not just all the non-constructible sets, but
also all the infinite sets, and nevertheless obtain all the Π01 consequences of
measurables in

PA + Inst(There are measurables,Π01).

There are endless variations here. The theory Inst(T,Γ), used simply as
a device to avoid directly asserting T while retaining all its Γ-predictions,
is a mathematical parallel of the physical theory: “There are no electrons,
but mid-size objects behave as if there were.” That is, it is a parallel of this
theory as it might be used by a philosopher of today, not as it might have
been used by a physicist in 1900. Perhaps a cleaner parallel would be the
theory that the world popped into existence 5 minutes ago, looking exactly
as it would if there had been a past like the one we believe in. Mis-used
in this way, Inst(T,Γ) is no more than an odd way of asserting T ; it only
becomes more than that if one has a program for finding a tool for making
Γ predictions which is better than T , and incompatible with T in the realm
of non-Γ sentences. In evaluating a retreat from T to Inst(T,Γ), one should
ask whether its proponent has any such competing tool in mind.28

Finally, let memake a few remarks regardingmathematics and need. First,
it is true that most, if not all, of the mathematics applied in Physics, Chem-
istry, and the other sciences requires much less than ZFC. On the other hand,
Gödel’s incompleteness theorems guarantee this will never be more than a
report of the current state of affairs, for Con(ZFC) does lead to predictions
about the physical world (such as that no contradiction will be proved from
ZFC in the next 20 years) which we do not know how to derive using only
ZFC. Second, it is true that most, if not all, of the most active areas in pure
mathematics require much less than ZFC. Once again, Gödel’s theorems
guarantee this will never be more than a description of the current state of
affairs.
Professor Feferman has stated his belief that the famous open problems of
number theory, such as Goldbach’s conjecture or the Riemann Hypothesis,
can be settled in ZFC. I agree that this is probably the case. However, we
should recognize that until the problems are actually settled this will almost
certainly never be more than an educated guess.29 If our educated guesses

28I have included this brief discussion of instrumentalism because Professor Feferman
sometimes makes such a move. His class Γ of meaningful sentences does not seem to go
much further than the language of Peano Arithmetic. See for example [2], page 73.
29There is the very remote possibility that one could show ZFC settles the questions

without actually exhibiting the relevantZFC-proofs. Goldbach’s conjecture and theRiemann
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as to what techniques will be useful in solving a given problem were highly
reliable, mathematics would be less interesting than it is.
Of course, the permanent possibility that new axioms will be needed is
not the same as the reality of such a need. In this connection, we do know
that many natural, well known problems in the more theoretical parts of
pure mathematics, such as the Continuum Problem or Suslin’s Problem,
demonstrably require new axioms for their solution. The most concrete of
these are the problems about projective sets of reals from classical descriptive
set theory. These arose in the early 1900’s, in the work of Analysts like
Lebesgue and Luzin who were interested in the foundations of their subject.
In what follows I shall sketch some reasons for believing that we do have
the new axioms we need to settle all the classical questions about projective
sets. It is worth noting that Lebesgue and Luzin would probably have been
just as surprised to find that large cardinal axioms are useful in the theory
of projective sets as modern mathematicians would be to find that they are
useful in number theory.
Does mathematics really need this theory of projective sets we get from
large cardinal axioms? Does it need a decision on the Continuum Problem?
Let me just say that I prefer a different formulation of our question, namely:

Is the search for, and study of, new axioms worthwhile? Should
people be working in this direction?

It seems to me that this gets more directly at the practical question, and puts
it in a more positive way. It doesn’t matter so much whether we can make do
without this line of research; the more important question is whether we are
better off with it. And it doesn’t matter so much whether we call the subject
which is better off (ordinary, core, normal) mathematics, or something else.
It is this reformulated question which I shall now discuss.

§2. Some results in Gödel’s program. One of the chief inspirations of the
line of research we are discussing is Gödel’s paper [1], and so it is often
called Gödel’s program. How should we evaluate this program? As with any
line of research, we should look at what has been done, and what’s left to
do. Unfortunately, we are discussing at least 35 years of continuous work
by a reasonably large number of people. I shall settle, then, for a brief
enumeration of some of the main themes.
2.1. We have found natural new axioms, the large cardinal axioms. These
are strengthenings of the axiom of infinity of ZFC. They are expressions of
an intrinsically plausible informal reflection principle.
2.2. These axioms have proved crucial to organizing and understanding
the family of possible extensions of ZFC. Of course, there is nothing like a

Hypothesis are Π01 statements, so one cannot prove them independent of ZFC without also
proving them.
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systematic classification of all the possible extensions of ZFC, but there is
more order here than one might suspect:
(1) Many natural extensions T of ZFC have been shown to be consistent
relative to some large cardinal hypothesis H , via the method of forcing.
This method is so powerful that, at the moment, we know of no interesting
T extending ZFC which seems unlikely to be provably consistent relative
to some large cardinal hypothesis via forcing. Thus, at least if we allow
“Boolean-valued” interpretations, the extensions of ZFC via large cardinal
hypotheses seem to be cofinal in the part of the interpretability order on all
natural extensions of ZFC which we know about.
(2) Often, it has been shown that the consistency of the large cardinal hy-
pothesisH must be assumed, in that Con(T ) implies Con(H ). This involves
constructing a canonical inner model for H . These canonical inner mod-
els admit a systematic, detailed, “fine structure theory” much like Jensen’s
theory of L. Such a thorough and detailed description of what a universe
satisfying H might look like also provides good evidence that H is indeed
consistent.30

Here are some examples of relative consistency results obtained by these
methods. The first four are equiconsistencies.31

Con(ZF+All sets Lebesgue measurable)

↔ Con(ZFC+ There is an inaccessible),

Con(ZFC+ There is a total extension of Lebesgue measure

↔ Con(ZFC+ There is a measurable),

Con(ZFC+ GCH first fails at ℵ")
↔ Con(ZFC+ There is a measurable κ of order κ++),

Con(ZFC+All games in L(R) are determined)
↔ Con(ZFC+ There are infinitely many Woodin cardinals),

Con(ZFC+ There is a supercompact cardinal)

→ Con(ZFC+ Proper forcing axiom)

→ ∀n < " Con(ZFC+ There are nWoodin cardinals).

Of course, all the implications displayed are provable in Peano Arithmetic.
Concerning the last set of results, it is generally believed that the Proper
Forcing Axiom (PFA) is equiconsistent with the existence of supercompact
cardinals. We do not have a consistency strength lower bound on PFA better
than the one displayed because our tool for producing such lower bounds,

30The introduction to [7] contains an essay on the inner model program.
31These results are due to Baumgartner, Gitik, Mitchell, Schimmerling, Shelah, Solovay,

Steel, Todorcevic, and Woodin, building on earlier work of Dodd, Jensen, Kunen, Magidor,
Martin, Prikry, Silver, and others.
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the construction of canonical inner models for large cardinal hypotheses,
does not yet produce models with more than small numbers of Woodin
cardinals. Extending inner model theory so that it can produce inner models
with supercompact cardinals is one of the most important open problems in
Gödel’s program.
2.3. The pattern above extends to many more examples. It seems that ev-
ery natural extension of ZFC is equiconsistent with an extension axiomatized
by something like large cardinal axioms! If S and T are extensions of ZFC
by large cardinal axioms, then it is generally easy to compare the consistency
strengths of S and T ; moreover, the consistency strengths of large cardinal
extensions of ZFC fall into a wellordered hierarchy. Thus it seems that the
consistency strengths of all natural extensions of ZFC are wellordered, and
the large cardinal hierarchy provides a sort of yardstick which enables us to
compare these consistency strengths.32

The ordering of consistency strengths corresponds to the inclusion order
on the sets of Π01 (or in fact arithmetical, or even Σ

1
2) consequences of the

theories in question. That is, for any class Γ of sentences and any theory T ,
let

(Γ)T = {ϕ ∈ Γ | T ) ϕ }.

The linearity of the ordering of natural consistency strengths means that for
natural S and T extending ZFC,

(Π01)S ⊆ (Π01)T or (Π01)T ⊆ (Π01)S.

The fact that our relative consistency proofs actually produce reasonable in-
terpretations, and in particular, wellfounded models, means that for natural
S and T

(Π01)S ⊆ (Π01)T ↔ (Σ12)S ⊆ (Σ12)T .

Thus, at the level of Σ12 sentences, we know of only one road upward, and
large cardinal hypotheses are its central markers. Does this road lead to Σ12
truth? It is certainly our best guess at the moment; moreover, there is no
hint of a competing guess.
2.4. The phenomenon described in the last item extends to all sentences
in the language of second order arithmetic, provided we restrict ourselves
to consistency strengths which are sufficiently great. More precisely, for S
and T natural theories of consistency strength at least that of “There are n
Woodin cardinals with a measurable above them all”, we have

(Π01)S ⊆ (Π01)T ↔ (Σ1n+2)S ⊆ (Σ1n+2)T .

32We know of no way to compare the consistency strengths of PFA and the existence of
a total extension of Lebesgue measure except to relate each to the large cardinal hierarchy.
The same is true for most other comparisons: the large cardinal hierarchy is essential.



428 S. FEFERMAN, H. FRIEDMAN, P. MADDY, AND J. R. STEEL

Closely related to this is the phenomenon that any natural theory of consis-
tency strength at least that of PD33 actually implies PD. For example, the
Proper Forcing Axiom implies PD. So does the existence of a homogeneous
saturated ideal on "1. (Neither of these propositions has anything to do
with PD on its surface.)
Thus, at the level of sentences in the language of second order arithmetic,
we know of only one road upward. Large cardinal hypotheses are its central
markers; moreover, it goes through PD. We are led to this road in many
different ways. Along it lies our best guess at the truth for sentences in the
language of second order arithmetic, and we have no hint of a reasonable
competing guess.
2.5. The relationship between large cardinal hypotheses and PD is ex-
plained by the following theorem.34

Theorem 2.1 (Martin, Steel, Woodin). The following are equivalent:
(1) PD,
(2) For all n < ", every Σ1n consequence of ZFC + “there are n Woodin
cardinals” is true.

According to this theorem, PD is just the “instrumentalist’s trace” of
Woodin cardinals in the language of second order arithmetic.
2.6. The theory in the language of second order arithmetic based on large
cardinal axioms contains answers to all the questions about projective sets
from classical descriptive set theory. The theory of projective sets one gets
this way extends in a natural way the theory of low-level projective sets
developed by the classical descriptive set theorists using only ZFC; indeed,
in retrospect, much of the classical theory can be seen as based on open
determinacy, which is provable in ZFC. Virtually nothing about sets in the
projective hierarchy beyond the first few levels can be decided in ZFC alone,
but large cardinal hypotheses, via PD, yield a deep and powerful extension
of the classical theory to the full projective hierarchy. (Kechris, Martin,
Moschovakis, and Solovay are among the principal architects of this theory.)
By placing the classical theory in this broader context, we have understood
it better.
In this realm of evidence through consequences, I would like to mention a
class of examples pointed out byD.A.Martin in [5]. Namely, some theorems
are first proved under a large cardinal hypothesis, and then later the proof
is refined or a new proof given in such a way as to use only ZFC. Borel
determinacy is a prime example of this: originally it was proved assuming
there are measurable cardinals, and then later a more complicated proof

33PD is the assertion that all projective games are determined.
34The breakthrough results of Foreman, Magidor, and Shelah [3], and then Shelah and

Woodin [8], were a crucial step toward this theorem. See the introduction to [6] for a historical
essay.
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which uses only ZFC was found.35 Martin points out other instances of this
phenomenon, for example some cases of his cone theorem for the Turing
degrees which can be proved by direct constructions. Another nice example
down lower is Borel Wadge determinacy. This is an immediate consequence
ofBorel determinacy, but byworkofLouveauandSaintRaymond, it ismuch
weaker—in fact, provable in second order arithmetic. There are interesting
potential instances of this phenomenon in which we have a proof from a
large cardinal hypothesis, and at least some people suspect there is a proof
in ZFC, but that proof is yet to be discovered. The point here is that the use
of large cardinals to provide proofs of statements which can then be proved
true more laboriously by elementary means constitutes evidence for large
cardinals.36

It is sometimes claimed that there is an alternate, equally good, theory of
projective sets which we get from V = L. There are two replies here.
First, the central idea of descriptive set theory is that definable sets of
reals are free from the pathologies one gets from a wellorder of the reals.
Since V = L implies there is a ∆12 wellorder of the reals, under V = L this
central idea collapses low in the projective hierarchy, and after that there is,
in an important sense, no descriptive set theory. One has instead infinitary
combinatorics on ℵ1. This is certainly not the sort of theory that looks useful
to Analysts.
More importantly, even if there were a wonderful, useful theory of projec-
tive sets based on V = L, adopting large cardinal axioms would in no way
eliminate or devalue it. For the believer in large cardinals, this theory would
make perfect sense as a wonderful, useful part of the first-order theory of
L. On the other hand, the believer in V = L cannot give the appropriate
sense to the theory of projective sets we get from PD. (Hemay resort to some
version of the instrumentalist dodge, but that amounts to uttering the words
“V = L” while acting as if you believe something else.) Adopting V = L
brings with it a loss in this situation. Adopting measurable cardinals gives
us 0$, and with that, a much clearer view of L than we get if we are only
allowed to look at it “from inside”.
2.7. Large cardinal axioms seem to decide all natural questions in the
language of second order arithmetic. There is metamathematical evidence
of this completeness in the fact that no sentence in the language of second

35ByMartin. This proof uses the “small cardinal hypothesis” that the power set operation
can be iterated ℵ1 times. H. Friedman showed that such a hypothesis is needed for the proof.
Borel determinacy is a natural statement in the language of second order arithmetic which
cannot be proved without appealing to arbitrary sets of reals, sets of sets of reals, etc.
36Gödel’s result on speeding up proofs shows that some form of this phenomenon occurs

whenever one increases consistency strength, but it does not guarantee that any mathemati-
cally interesting theorems have shorter proofs in the stronger system.



430 S. FEFERMAN, H. FRIEDMAN, P. MADDY, AND J. R. STEEL

order arithmetic can be shown independent of existence of arbitrarily large
Woodin cardinals by forcing:37

Theorem 2.2 (Woodin). Suppose there is an iterable inner model satisfying
“there are " Woodin cardinals”; then ifM and N are set-generic extensions
of V , we have

L(R)M ≡ L(R)N .
There is only one theory with this kind of “generic completeness”:
Theorem 2.3 (Woodin). Suppose that whenever M and N are set generic
extensions of V , we have L(R)M ≡ L(R)N ; then there is an iterable inner
model satisfying “there are " Woodin cardinals”.
2.8. If we regard Theorem 2.2 as a key indicator of the completeness of
large cardinal axioms for sentences in the language of second order arith-
metic, then it is natural to ask whether this kind of completeness extends
to the language of third order arithmetic. There we immediately encounter
CH, which is a Σ21 statement. None of our current large cardinal axioms
decide CH, and consequently they do not yield a theory which is generically
absolute at the Σ21 level:
Theorem 2.4 (Levy, Solovay).
(1) None of the current large cardinal axioms decides CH.
(2) Let A be one of the current large cardinal axioms, and suppose V |= A.
Then there are set generic extensionsM andN of V which satisfyA, but
are not Σ21-equivalent.

Nevertheless, theremay be some natural extrapolation of our current large
cardinal axioms, some natural markers of still higher consistency strengths,
which yield a “complete” theory in the language of third order arithmetic,
with an accompanying generic absoluteness theorem. A second, better delin-
eated alternative is an extension of our current large cardinal axioms which
does not increase consistency strength, with an accompanying conditional
generic absoluteness theorem for sentences in the language of third order
arithmetic. Indeed, Woodin has shown that simply adding CH gives us such
a theory at the Σ21 level:
Theorem 2.5 (Woodin). Suppose V |= “There are arbitrarily large mea-
surable Woodin cardinals”. Let M and N be set-generic extensions of V
satisfying CH; thenM and N are Σ21-equivalent.
It is open whether if V |= “There are arbitrarily large supercompact
cardinals”, andM and N are set-generic extensions of V satisfying ♦, then
M and N are Σ22-equivalent. If so, this would indicate that in the presence

37The hypothesis of Theorem 2.2 follows from the existence of arbitrarily large Woodin
cardinals. Woodin and the author noticed independently that the weaker hypothesis used
here suffices. I have stated 2.2 this way in order to point out its converse. The converse is
closely related to work of the author.
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of large cardinal hypotheses, ♦ yields a complete theory at the Σ22 level, just
as CH does at the Σ21 level.
2.9. There are many interesting open problems bearing on Gödel’s pro-
gram. Here are two which seem particularly important to me.
(1) Develop a theory of canonical inner models satisfying “There is a su-
percompact cardinal”.

(2) Find conditional generic absoluteness theorems at the Σ2n level, for all
n < ".

COMMENTS AND RESPONSES

Reply to Feferman. Feferman states his belief that CH “does not express a
definite proposition”, that it is “inherently vague”. The trouble is supposed
to be that the set of all reals is not a “definite mathematical object”. But
if that is the trouble, it would seem that “there is a set of all real numbers”
does not express a definite proposition; indeed, mathematics would seem to
be shot through with vague statements. Worse than that, with inherently
vague statements, so that there is no hope of rectifying the situation, except,
I guess, by chucking the whole mess. Taken seriously, this analysis leads
us into a retreat to some much weaker constructivist language, a retreat
which would toss out good mathematics in order to save inherently vague
philosophy. Feferman himself does not seem to take that route; instead, he
adopts an instrumentalist stance, according to which higher set theory has
no definite meaning, but somehow has value nevertheless.38

Feferman’s instrumentalism comes to the fore in the following passage:
My point here is simply that there is a basic difference between
accepting systems such as ZFC+LCA, where LCA is the applica-
ble large cardinal axioms, and accepting 1-Con(ZFC+LCA). As
to the question of the need of large cardinal assumptions to settle
finite combinatorial problems of the sort produced by Friedman,
there is thus, in my view, an equivocation between needing a given
axiom and needing its 1-consistency; it is only the latter that is
demonstrated by his work.

To this I would reply: there certainly could be a basic difference between
accepting LCA and accepting 1-Con(LCA), but except for the fact that he
witholds the honorific “first-class mathematical principle” in the case of
LCA, Feferman hasn’t told us what the practical, behavioral content of the
difference would be in his case. He proposes no tools for generating Π02
truths which are not subsumed under some natural interpretation by axioms
of the form LCA, and indeed, as I have emphasized, there is presently no

38I refer here to what Feferman calls his pragmatic instrumentalism. Hilbert-style reduc-
tions to constructivist systems are not a dodge, they are a retreat which tosses out too much
good mathematics.
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hint of such a tool. The suggestion that we might retreat from LCA to
Inst(LCA,Π02), which is at least implicit in this passage, is an empty one, as
far as I can tell. No one’s mathematical behavior would change.
Feferman goes on to say:
But if one does not grant that there is a fact of the matter whether
statements LCA of various large cardinal axioms are true, is there
a principled reason for accepting 1-Con(ZFC + LCA) without
accepting ZFC + LCA itself ?

Feferman’s answer seems to be “no”, although he has suggested ([2], p.
73) that he believes ZFC itself is 1-consistent, presumably for unprincipled
reasons. But if 1-Con(ZFC+Mahlos) is simply an open problem, how does
Feferman propose we go about deciding it? Does the theory I have described
count as positive evidence? Should we look in some other direction for a
solution? Feferman does not answer these questions, except to say that they
are not important to most mathematicians.
There may be something to the idea that the language of third order
arithmetic is vague, but the suggestion that it is inherently so is a gratuitous
counsel of despair. If the language of 3rd order arithmetic permits vague
or ambiguous sentences, then it is important to trim or sharpen it so as to
eliminate these. This will likely involve mathematical andmetamathematical
investigations like those indicated above. It is hard to distinguish sharpening
the meaning of our language from discovering new truths, but it may be
that, in the end, our solution to the Continuum Problem is best seen as
resolving some ambiguity. That might be the case, for example, if we were
to find conditional generic absoluteness theorems for mutually incompatible
theories, each of them consistent with all the large cardinal axioms; it might
then be appropriate to regard the decision to adopt one of these theories as
analogous to the decision to speak one of some family of intertranslatable
languages. At the moment, however, these are simply speculations, and the
most important point is just that further investigation is needed.39

Feferman argues that the fact that the Continuum Problem doesn’t belong
on the Millenium Prize list indicates that CH does not express a definite
proposition. But of course, Con(supercompacts) doesn’t belong there either,
although only a hard-core formalist would deny that it expresses a definite
proposition. The true reason neither problem belongs on the list is that
neither is likely to be solved in one controversy-free swoop. Both involve
basic conceptual issues related tomathematical evidence. Toone interested in
the foundations of mathematics, that makes these problems more interesting

39In his argument that the concept of an arbitrary set of reals is inherently vague, Feferman
likens it to the “concept” of a feasible number. This analogy is far-fetched at best. The concept
of an arbitrary set of reals is the foundation for a great deal of mathematics, and has never
led into contradiction. The first two things of a general nature one is inclined to say about
feasible numbers will contradict each other.
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than many of theMillenium problems. It would be a shame if logicians, who
are specially equipped to deal with conceptual, foundational issues, were to
shy away from the Continuum Problem because it involves such issues.
Reply to Maddy. I share the Naturalist’s reluctance to trim mathematics
in order to make it fit some theory of mathematical knowledge. Neverthe-
less, a solution to the Continuum Problem may need some accompanying
analysis of what it is to be a solution to the Continuum Problem, and in this
way, Philosophy may have a more active role to play at the foundations of
mathematics than Maddy envisions.
Reply to Friedman. Applications are important; the more widespread and
concrete, the better. However, while there are basic issues left in pure large
cardinal theory, we should continue to develop it, regardless of applications.
This can only make eventual applications more likely. Friedman’s own
applications would never have been discovered by a combinatorist who knew
nothing about large cardinals.
Evidence for the truth of the large cardinal axioms being applied comes
from the theory I have sketched, not from their role in finitary combinatorics.
Concerning Friedman’s suggestion that absolute applications are espe-
cially important, one should note that “absolute” is a relative term. We now
have analogues of the Shoenfield Absoluteness Theorem at all levels of the
projective hierarchy, and beyond.
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NORMALMATHEMATICS WILL NEED NEW AXIOMS

HARVEYM. FRIEDMAN

I begin with the text of my presentation to the ASL meeting in Urbana,
June, 2000, as a member of the panel entitled “Does Mathematics Need
New Axioms?” I have added footnotes which point to extended remarks
that follow.
I include a brief account of the new Boolean relation theory (BRT), as well
as the even newer reduced form of BRT called disjoint cover theory (DCT).
These new theories have radically changed my perspective and outlook on
the topic at hand. Much of the discussion is predicated on the expectation
that the results are correct. Draft manuscripts exist containing proofs of key
initial results in BRT and DCT, but I caution the reader that none of the
proofs have yet been gone over by experts.

Text of presentation. The point of view of the set theory community is well
represented here [on this panel]. I want to concentrate on the perspective of
mathematicians outside set theory.

§1. Mathematicians’ viewpoint. New axioms are needed in order to settle
various mathematically natural questions. Yet no well known mathemati-
cians outside set theory are even considering adopting any new axioms for
mathematics, even though they are aware of at least the existence of the
independence results.40

The difference in perspective, of set theorists versus mathematicians who
are not set theorists, is enormous. Recall that mathematics goes back, say,
2,500 years—whereas set theory in the relevant sense dates back to the turn
of the 20th century.
For 2,500 years, mathematicians have been concerned with matters of
counting and geometry and physical notions. These main themes gave rise
to arithmetic, algebra, geometry, and analysis.
The interest in and value of mathematics is judged by mathematicians in
terms of its relevance to and impact on the main themes of mathematics.41

It is generally recognized by most mathematicians that set theory is the
most convenient vehicle for achieving rigor inmathematics. For this purpose,

40A large segment of the algebraic geometry community, following Grothendieck, has
already accepted and freely uses the relatively modest new axiom “there are arbitrarily large
strongly inaccessible cardinals”. They are fully aware that ZFC has been sufficient for their
concrete purposes, but nontheless find it very convenient.
41The relevance and impact of a range of topics in discretemathematics on themain themes

of mathematics, both realized and potential, is now generally recognized.
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there has evolved a more or less standard set theoretic interpretation of
mathematics, with ZFC generally accepted as the current gold standard for
rigor.42

It is simply false that number theorists are interested in and respect set
theory just as they are interested in and respect group theory, topology,
differential geometry, real and complex analysis, operators on Hilbert space,
et cetera.
The reason for this attitude is quite fundamental and extremely important.
A number theorist is of course interested in complex analysis because he
uses it so much. But not so with operators on Hilbert space. Yet there
is still a distant respect for this because of a web of substantive and varied
interconnections that chain back to number theory. Set theory does not have
comparable interconnections.
For the skeptical, the degree of extreme isolation can be subjected to
various tests including citation references—broken down even into their
nature and quality. Using a critical notion from statistics, set theory is an
extreme outlier.
Nor is set theory regarded as intrinsically interesting to mathematicians,
independent of its lack of impressive interconnections.43 Why?
For the mathematician, set theory is regarded as a convenient way to
provide an interpretation of mathematics that supports rigor. A natural
number is obviously not a set, an ordered pair is obviously not a set, a
function is obviously not a set of orderedpairs, anda real number is obviously
not a set of rationals.
For the mathematician, mathematics is emphatically not a branch of set
theory. The clean interpretation of mathematics into set theory does not
commit the mathematician to viewing problems in set theory as problems in
mathematics.
The mathematician therefore evaluates set theory in terms of how well it
serves its purpose—providing a clean, simple, coherent, workable way to
formalize mathematics.44

42Category theory is commonly used as a general framework for the presentation of a great
deal of mathematics, where the categorical formulations are incomparably more attractive
than direct set theoretic formulations. However, category theory does not (at this time) serve
as a satisfactory autonomous foundation formathematics as does set theory. Mathematicians
prefer to think of category theory in set theoretic terms, where categories are set theoretic
constructions.
43I leave open the possibility of mathematical areas which are regarded as intrinsically

interesting to mathematicians, without impressive interconnections with other areas. We
seem to be in a period where this is quite unusual, and certainly “advanced” set theory is not
such an example.
44I mean here that there has now been an abandonment of interest in new results in the

theory of sets, yet an acknowledgment of the power of set theory as a formalization of
mathematics. This is in contrast with how, for instance, new results in number theory are
evaluated.
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This point of view hardened as many mathematicians experimented for
several decades with what has come to be known as set theoretic problems
which turned out to be independent of ZFC.45

There was a growing realization that the cause of these difficulties was
excessive generality in the formulations of the problems which allowed for
pathological cases which were radically different in character from normal
mathematical examples. That if the problems were formulated in more con-
crete ways that still covered all known interesting cases, then the difficulties
completely disappeared.46

Furthermore, distinctions between these set theoretic problems causing
difficulties and the most celebrated theorems and open problems in mathe-
matics can be given formally. This is in terms of quantifier complexity and
the closely related matter of absoluteness. Thus set theory comes out as an
extreme outlier which can be documented formally.47

§2. The maligned axiom of constructibility—more is less and less is more.
The set theorist is looking for deep set theoretic phenomena, and so V = L
is anathema since it restricts the set theoretic universe so drastically that all
sorts of phenomena are demonstrably not present. Furthermore, for the set
theorist, any advantage that V = L has in terms of power can be obtained
with more powerful axioms of the same rough type that accommodate mea-
surable cardinals and the like—e.g.,V = L(%), or the universe is a canonical
inner model of a large cardinal.
However, for the normalmathematician, since set theory ismerely a vehicle
for interpreting mathematics so as to establish rigor, and not mathematically
interesting in its own right, the less set theoretic difficulties and phenomena
the better.48

45There is an alternative cynical point of view which asserts that this viewpoint hardened
against set theoretic problems or problems with a distinctly set theoretic flavor simply because
of the presence of the independence phenomena, rather than the excessive generality issues
as discussed in the next paragraph. I disagree.
46This is a major distinction between distinctly set theoretic problems and normal math-

ematics. Today, when a problem in normal mathematics is viewed as being difficult because
its generality goes beyond all known interesting cases, the community loses interest, and
attention is shifted towards less general formulations. However, an arbitrary integer or real
number is not considered to be excessive generality.
47The absoluteness mentioned here is a byproduct of the low quantifier complexity. My

impression is that the problems in, say, [1], [2] are easily seen to be provably equivalent to
two quantifier sentences in the analytic hierarchy, and mostly one, or even arithmetical. A
detailed survey and analysis along these lines is long overdue. Moreover, I suspect that even
when a significant open problem is formulated in higher terms, its solution can be naturally
separated into standard facts living at that higher level, together with new facts readily
expressed at a lower level—often with at most three arithmetic quantifiers, and frequently
one.
48For the set theorist, “the more set theoretic difficulties and phenomena the better.”
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I.e., less is more and more is less. So if mathematicians were concerned
with the set theoretic independence results—and they generally are not—
then V = L is by far the most attractive solution for them.
This is because it appears to solve all set theoretic problems (except for
those asserting the existence of sets of unrestricted cardinality), and is also
demonstrably relatively consistent.
Set theorists also say that V = L has implausible consequences—e.g.,
there is a PCA well ordering of the reals, or there are nonmeasurable PCA
sets.
The set theorists claim to have a direct intuition which allows them to view
these as so implausible that this provides “evidence” against V = L.49

However,mathematicians disclaim suchdirect intuitionabout complicated
sets of reals. Some say they have no direct intuition about all multivariate
functions from N into N!

§3. Question answered by classical descriptive set theory? The classical
descriptive set theory coming from large cardinals is most often cited by set
theorists as the reason why mathematics needs large cardinal axioms. I have
several objections to this claim.
(a) Part of the argument is that large cardinals are needed to establish
these results. But large cardinals are not needed to establish an alternative
series of such results. E.g., V = L provides another, entirely different, set of
answers to these questions. The set theorists answer saying V = L gives the
wrong answers and large cardinals give the right answers, citing their direct
intuition about projective sets of reals. I am very dubious about this direct
intuition. I don’t have it, and mathematicians in general disclaim it.
(b) Another part of the argument is that, in light of (a),

set theory needs large cardinals

and therefore

mathematics needs large cardinals.

But this inference depends on a reading of our question that makes this
tautological.
Reading the question this way simply avoids the really interesting ques-
tions, replacing them by much less interesting questions. For instance, it
avoids questions of how and under what circumstances the general math-
ematical community or individual mathematicians will adopt new axioms,
should adopt new axioms, and if so, how this will be manifested.
Here is the closest I can come to the set theorists’ point of view on our
question.

49Some set theorists have recognized the need to take a more subtle line and are experi-
menting with formal criteria such as generic absoluteness.
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There is an interesting notion of “general set theory in its maximal con-
ceivable form” and that V = L has no basis in this context. However, the
notion is at present virtually completely unexplained, and no work that I
have seen provides any serious insight into what this really means. I simply
do not know how to explicate any relevant notion of maximality.50

I agree that
“general set theory in its maximal conceivable form” needs large
cardinals axioms

is very likely to be true. But I can’t conclude even that
set theory needs large cardinal axioms

let alone
mathematics needs large cardinal axioms.

§4. General predictions. The picture is going to change radically with the
new Boolean relation theory (BRT) and related developments, joining the
issue of new axioms and the relevance of large cardinals in a totally new and
unexpectedly convincing way.
Because of the thematic nature of these developments, and the interaction
with nearly all areas of mathematics, large cardinal axioms will begin to
be accepted as new axioms for mathematics—with controversy. Use of
them will still be noted, at least in passing, for quite some time, before full
acceptance.51

§5. Circumstances surrounding actual adoption of new axioms. The cir-
cumstances that I envision are a coherent body of consequences of large
cardinals of a new kind.
(a) They should be entirely mathematically natural. This standard is very
high for a logician trying to uncover such consequences, yet is routinely
met in mathematics (set theory included) by professionals at all levels of
achievement.52

50The generic absoluteness approach in Theorems 2.2 and 2.3 of Steel’s contribution is an
interesting attempt in this direction. However, it has a way to go before being convincing as
a formal analysis of “general set theory in its maximal conceivable form”. In particular, it
needs to be appropriately extended beyond L(R). Also the use of generic extensions needs
justification.
51BRT provides compelling uses for Mahlo cardinals of finite order. These are generally

referred to as “small” large cardinals, which are compatible with V = L. I doubt whether
BRT in its present formwill tie up with larger cardinals. However, preliminary work indicates
that a more expressive form of BRT does tie up with larger cardinals, although it has yet
to be couched in the same kind of utterly elementary, natural, and familiar mathematical
terms. I conjecture that these more expressive forms will tie up with the entire large cardinal
hierarchy, and that it will ultimately be put into a form that satisfies criteria (a)–(g).
52The general form of BRT is very simple. It is based on multivariate functions, which

should be set up with some care. They are taken to be pairs (f, k), where f is a function
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(b) They should be concrete. At least within infinitary discrete mathe-
matics.53 Most ideally, involving polynomials with integer coefficients, or
even finite functions on finite sets of integers.54

(c) They should be thematic. If they are isolated, they will surely be
stamped as curiosities, and the math community will find a way to attack
them through an ad hoc raising of the standards for being entirely natural.
However, if they are truly thematic, then the theme itself must be attacked,
which may be difficult to do. For instance, the same theme may already be
inherent in well known basic, familiar, and useful facts.55

(as a set of ordered pairs), k > 0, and all elements of the domain of f are k-tuples. For
f = (f, k) and A, we define fA to be the set of all values of f at k-tuples from A. BRT is
based on pairs (V,K), where V is a set of multivariate functions andK is a set of sets. In the
critical case of two functions and three sets, BRT on (V,K) seeks to determine the truth or
falsity of all statements of the form

for all f, g ∈ V there exist A, B , C ∈ K such that a given “Boolean relation”
holds in A, B , C , fA, fB , fC , gA, gB , gC .

There are a number of relevant notions of “Boolean relation” among sets. Here I concentrate
on equational BRT, where I use Boolean equations among sets. These are equations between
Boolean terms, where the universal set U is taken to be the union of K .
53We have investigated equational BRT on (V,K) where V is the set of multivariate

functions from Z into Z of expansive linear growth and K is the set of all infinite subsets
of Z. Here f has expansive linear growth if and only if there exist rational constants
a, b > 1 such that a|x| ≤ |f(x)| ≤ b|x| holds for sufficiently large |x|, where |x| is
the sup norm of x. The main result is that for two functions and three sets, one of the
2512 instances is provably equivalent to 1-Con(MAH) over ACA0. Here MAH = ZFC +
(there exists an n-Mahlo cardinal)n. Furthermore, an instance is presented in a particularly
intelligible form. With K ′ = the set of bi-infinite subsets ofZ, the particular instance is yet
simpler. The main conjecture is that all of the 2512 instances are provable in ACA0, refutable
in ACA0, or provably equivalent to 1-Con(MAH) over ACA0. In addition, I conjecture that
whenever we can find nonempty finite A, B , C ⊆ Z, we can find A, B , C ∈ K ,or even A,
B , C ∈ K ′. Significant partial results on these conjectures have been obtained. The latter
conjecture implies 1-Con(MAH), and I conjecture that it is equivalent to 1-Con(MAH) over
ACA0.
54Preliminary indications are that I can instead use the integral piecewise linear functions

(finitely many pieces) subject to the inequality

for all x ∈ Zk, |F (x)| ≥ 2|x|,
where F is k-ary, and K or K ′ as before, and make the same claims and conjectures.
Preliminary indications are that when such piecewise linear functions are used, the sets in K
or K ′ can be represented as integral piecewise linear images of geometric progressions in N ,
where a triple exponential bound can be placed on this representation. This leads to a purely
universal arithmetic sentence provably equivalent to Con(MAH) over exponential function
arithmetic.
55Preliminary indications are as follows. For any interesting set V of multivariate

functions—even consisting of just unary functions—and interesting set K of sets substan-
tially related to V , BRT is interesting and delicate even for a single function and a single
set, let alone two functions and three sets. Note that many areas of mathematics are closely
associated with particular sets of multivariate functions and sets of related sets. As an indi-
cation of the power of the formalism, take V to be the set of all bounded linear operators
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(d) They should have points of contact with a great variety of mathemat-
ics.
(e) They should be open ended. I.e., the pain will never end until the
adoption of large cardinals.56

(f) They should be elementary. E.g., at the level of early undergraduate
or gifted high school. That way, even scientists and engineers can relate to
it, so it is harder for the math community to simply bury them.57

(g) Their derivations should be accessible, with identifiable general tech-
niques. This way, the math community can readily immerse itself in hands
on crystal clear uses of large cardinals that beg to be removed—but cannot.58

I have omitted an additional circumstance:
(h) They should be used in normal mathematics as pursued before such
thematic results.
For somemathematicians, h will be required before they consider the issue
really joined. I already know that for some well known core mathematicians,

on Hilbert space (a set of unary functions). Take K to be the set of all nontrivial closed
subspaces of Hilbert space. Then the particularly trivial looking instance of equational BRT
in one function and one set

for all f ∈ V there exists A ∈ K such that fA ⊆ A

expresses the famous open problem known as the invariant subspace problem for Hilbert
space.
56I conjecture that as BRT is developed for a wide variety of natural V , K , we will see a

variety of examples illustrating the power of large cardinals, even for just two functions and
three sets. There will also emerge elegant transfer principles that are provably equivalent to
the 1-consistency of large cardinals.
57There is an important reduction of BRT called disjoint cover theory (DCT), which is

easier to work with and is definitely more elementary. A disjoint cover relation between sets
is a triple of those sets indicating that the second and third sets are disjoint and their union
includes the first set. In the critical case of two functions and three sets, DCT on (V,K) seeks
to determine the truth value of all statements of the form

for all f, g ∈ V there exist A ⊆ B ⊆ C from K such that a given set of disjoint
cover relations hold in A, B , C , fA, fB , fC , gA, gB , gC .

Any set of disjoint cover relations is equivalent to a single Boolean equation and provides
particularly intelligible presentations of Boolean equations. All claims, preliminary indica-
tions, and conjectures made for BRT are made for DCT. In fact, for V , K of footnote 53,
three disjoint cover relations suffice, and for V , K ′, two disjoint cover relations suffice. In
the latter case of V , K ′, I have determined the truth values of all such statements with two
disjoint cover relations using Mahlo cardinals of finite order (necessarily).
58The derivations of the simple instances of BRT and DCT from Mahlo cardinals of

finite order are entirely accessible and familiar looking to mathematicians, where the large
cardinals are packaged in terms of a suitable Ramsey like property of some well ordered set.
A good account of these derivations can be given in a one hour talk to a general mathematical
audience.
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(h) is definitely not required—that the issue is already sufficiently joined for
them by Boolean relation theory.59

Implicit in criteria (a)–(g) is that the body of examples and the theme
launch a new area, with an eventual AMS classification number. This new
area will be accepted as part of the general unremovable furniture of contem-
porary mathematics whose intrinsic interest is comparable to other estab-
lished areas in mathematics. In this way, the issue of large cardinal axioms
will be joined for a critical number of important core mathematicians.60

§6. Large cardinals or their 1-consistency? The statements coming out of
Boolean relation theory are provably equivalent to the 1-consistency of large
cardinals. So instead of adopting the large cardinal axioms themselves, one
can instead adopt their 1-consistency.
When put into proper perspective, this is more of a criticism of form than
substance. Adopting large cardinals amounts to asserting

“every consequence of large cardinals is true.”

Adopting the 1-consistency of large cardinals amounts to asserting

“every Π02 consequence of large cardinals is true.”

The obviously more natural choice is to accept large cardinals, since the
latter is syntactic and not an attractive axiom candidate.
However, for the purposes of proving Π02 sentences, these two choices are
essentially equivalent.
Another consideration is more practical. When the working mathemati-
cian wants to develop Boolean relation theory, the proofs are incomparably
more direct and mathematically elegant when done under the assumption of
the large cardinal axioms themselves than under the 1-consistency.

59It is reasonable to expect that all open problems in discrete mathematics explicitly for-
mulated in the literature are provable or refutable in ZFC. Nevertheless, there is the question
of just how close an independent statement in discrete mathematics can be to the existing
literature. I look upon BRT and DCT as new classification subjects, which I suspect are
special cases of a wide family of yet to be uncovered classification subjects. In these clas-
sification subjects, one analyzes the logical form of standard mathematical theorems with
the eye towards varying certain chosen parameters. In the case of BRT I fixed on Boolean
relations, and varied them as parameters. But there are many other ways of looking at
mathematical theorems and identifying parameters that are to be varied. The key feature
one is looking for is spaces of mathematical statements with an appropriate finite number
of elements. I conjecture that such classification subjects can be attached to virtually any
simply stated mathematical theorem, resulting in a deep and interesting study which, with
some frequency, can and can only be carried out by going far beyond ZFC.
60I am testing the acceptance of BRT and DCT out in the field, both with prominent

mathematicians and in lectures for general mathematical audiences. Preliminary indications
are favorable.
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When I assert that “j needs large cardinals to prove” I formalize this as
“any reasonable formal system that proves j must interpret large cardinals
in the sense of Tarski.” This gives a precise sense to “needs.”61

There is an interesting point of some relevance here. Statements inBoolean
relation theory are also consequences of the existence of a real valued mea-
surable cardinal—a related kind of large cardinal axiom.
Let me put it somewhat differently. There is a substantial and coherent
list of nonsyntactic axiom candidates, including large cardinal axioms and
other axioms. In this list, only certain axiom candidates settle questions in
Boolean relation theory. The most appropriate ones from various points of
view are in fact the small large cardinal axioms. That is the obvious move to
make from the point of view of a working scientist. If they later prove to be
inconsistent, then we can undergo theory revision. The key advance is that
the issue of new axioms finally promises to get joined in a serious way for
the mathematics community.

§7. Appendix. Two open questions in set theory. The following are rele-
vant to the panel discussion.
(a) Prove that large cardinals provide a complete theory of the projective
hierarchy.
Here a major challenge is to come up with an appropriate definition of
“complete.”62

(b) Prove that there are no “simple” axioms that settle the continuum
hypothesis.
Here I mean “simple” in the same sense that the axioms of ZFC are
“simple.” For example, very short in primitive notation.63

61The objection has been raised that this precise sense of “needs” is not in accordance with
the usual sense of “needs”. Nevertheless our sense of “needs” is still appropriate as long as
large cardinals remain the accepted unified benchmark as they are now. Of course, there are
other kinds of statements that have the required consequences. E.g., projective determinacy
or the existence of an atomless probability measure on all subsets of [0, 1]. After BRT,
DCT, and the like are fully integrated into the normal mathematical environment, it then
makes sense to concentrate on just which of various mutually interpretable axiom candidates
are preferred by mathematicians. Footnote 40 gives favorable indications for the ultimate
acceptance of the large cardinal approach.
62One approach to this problem is given by Theorem 2.2 in Steel’s contribution. However,

there an arbitrary sentence in the language of second order arithmetic is regarded as a
statement about the projective hierarchy, and so there cannot be the kind of completeness
envisioned. In particular, we envision the set of true statements about the projective hierarchy
to be recursive.
63Since most people have given up on trying to find evident or obvious new axioms that

settle the continuum hypothesis, it seems important to develop theorems that demonstrate
or at least suggest senses in which this is impossible. I am optimistic about this program. In
particular, I conjecture that every statement of set theory that is as “simple” as the axioms
of ZFC is provable or refutable from ZFC.
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COMMENTS AND RESPONSES

I close with some specific comments on the contributions of Feferman,
Maddy, and Steel.
Comments on Feferman. Feferman cites “the work of Harvey Friedman
proving the independence of a finite version of Kruskal’s Theorem from a
moderately impredicative systemand of anExtendedKruskal Theorem from
Π11-Comprehension” as examples of independence results for statements of
mathematical interest. It is worth mentioning that my work on Extended
Kruskal’s theorem turned out to be a stepping stone to the subsequent work
on the Robertson Seymour graph minor theorem, which, along with its
corresponding finite forms, was also shown to be independent fromΠ11-CA0
(see [4]).
Near the beginning of Feferman’s essay, he writes
My own view is that the question [does mathematics need new ax-
ioms?] is an essentially philosophical one: Of course mathematics
needs new axioms—we know that from Gödel’s incompleteness
theorems—but then the question must be: Which ones? and Why
those?

I find this paragraph puzzling. First of all, I disagree that the question is
an essentially philosophical one, at least in the sense that it is going to be
decided by primarily philosophical considerations. More about this below.
But primarily, I do not see howGödel’s incompleteness theorems by them-
selves show that mathematics needs new axioms in the usual sense of the
word. After all, those theorems have been around and understood for nearly
70 years, and mathematicians do not yet feel the remotest need to add new
axioms because of them. (Contrast this with footnote 40.) It appears that
Feferman is using the word “need” in a sense that requires discussion.
The question is going to be decided by themathematical community firstly
by just how useful it is to be using axiom candidates outside ZFC as opposed
to staying within ZFC. But even if their use greatly simplifies proofs of
interesting results, if proofs can instead be given within ZFC, then they will
be regarded as an important heuristic rather than as accepted new axioms.
Granting that there is a sufficiently striking body of results in normal
mathematics that can and can only be obtained by using axiom candidates
outside ZFC, the issue will then be decided on whether particular axiom
candidates canbe identified that are particularly useful, intelligible, coherent,
and manageable, as judged by the mathematicians that use them. There also
must be some sort of confidence in their consistency.
The process of acceptance of axiom candidates could fail if there are
alternative axiom candidates from which opposite answers to interesting
mathematical questions can be derived. This might well be the case with
the continuum hypothesis and related problems of a set theoretic nature.
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However, experience indicates that this is not going to happen with normal
mathematical statements, which are characteristically much lower down in
the logical hierarchies. One expects to find that such statements, when
independent of ZFCor evenweak fragments of ZFC, are provably equivalent
to some sort of extended consistency of a standard system that is part of the
far reaching and coherent hierarchy of systems going from weak fragments
of arithmetic up through the large cardinal hierarchy.
I believe that within 20 years, the rich and varied development of Boolean
relation theory, disjoint cover theory, and offshoots, with points of contact
with virtually every area ofmathematics, will provide the required sufficiently
striking body of results, with the hierarchy of small large cardinals as the
preferred new axioms. Mathematicians will still note their use and look for
proofs within ZFC. But when the large cardinals are used, and it is shown
that the result implies their consistency, theywill consider the result as having
been settled positively, and full credit will be awarded for obtaining the result.
This process will be greatly bolstered by the emergence of other classifica-
tion programs with similar properties, but not involving Boolean relations
among sets. I expect these developments as well.
But what of the larger large cardinals such as measurable cardinals and
beyond? I have preliminary indications of an extended form of BRT that
corresponds to thesemuch higher cardinals as well. The apppropriate frame-
work for this with the same compelling nature has not yet been identified,
but I am confident that it will.
Comments on Maddy. Maddy and I agree that the question “does math-
ematics need new axioms?” is not going to be decided on primarily philo-
sophical grounds. However, let me extend my predictions a bit into a realm
where philosophical considerations are expected to play a highly significant
role.
Even though it appears that large cardinal axioms will be adopted as
new axioms by the mathematical community, two issues will remain of vital
concern.
Firstly, mathematicians will want forms of the axioms that are the most
normal looking and directly useful mathematically. For small large cardi-
nals, this may require relatively minor changes in presentation, but for the
larger cardinals, this requires more. I have already done things like this
in the restatement of cardinals around the level of elementary embeddings
from a rank into itself and higher in terms of infinitary combinatorics of a
straightforward kind.
More importantly, theywill want good indications that they are consistent.
Here is my prediction.
While the mathematics community is accepting that they really do sub-
stantially benefit from adopting large cardinal axioms, they will be unchar-
acteristically open to the development of new kinds of axioms based on
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general philosophical principles that can secure the consistency of large car-
dinals.
Theywouldn’twant touse suchnewkindsof philosophically basedaxioms,
but would greatly appreciate their use by logicians in proving the consistency
of large cardinals. Along these lines, I have in mind work I have done with
regard to axiomatizations of set theory (with and without large cardinals)
via two universes. See [5] and its references.
Finally, Maddy clearly recognizes that different communities may have dif-
ferent goals, and therefore may appropriately come to different conclusions
about axiom candidates. In particular, the general mathematical community
might well appropriately come to different conclusions than the set theory
or mathematical logic community.
But so far, Maddy and her associates have concentrated their naturalistic
investigations on the set theory community. I think it would be interesting
and timely for them to expand their investigations into the wider mathemati-
cal community. That community will be considerably more difficult to make
sense of from the naturalistic perspective, but this is well worth the extra
effort involved.
Comments on Steel. Steel’s section 3.3 could create the impression that
Boolean relation theory might be viewed as the applied side of large cardinal
research. That would be misleading.
Conceptually speaking, long before one gets to even the smallest of large
cardinals, one meets cardinals such as !2, !3, . . . , ℵ2, ℵ3, . . . . For the nor-
mal mathematician, these are enormous objects indeed. And so enormous
and far removed from their everyday concerns—especially in discrete and
continuous mathematics—that conventional wisdom has long set in to the
effect that there can be no substantial use of such objects for anything like
their purposes as a matter of principle.
If we go higher up into Borel mathematics, then Borel determinacy and
related statements provide necessary uses of such cardinals. In [3] it is shown
that it is necessary and sufficient to use uncountably iterations of the power
set operation (in effect, uncountably many uncountable cardinals) to prove

every symmetric Borel subset of the unit square contains or is
disjoint from the graph of a Borel function.

The crucial issue is whether even the tiniest of the infinite cardinals have any
significant role to play in discrete and continuous mathematics.
According to BRT and DCT, even larger cardinals have a significant role
to play in discrete mathematics. However, I would like much greater control
so that there would be results in suitably adjusted BRT and DCT that can be
proved in, say, Zermelo set theory, but not in bounded Zermelo set theory.
I am expecting to achieve such control with adjusted forms of BRT and
DCT.
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