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Exam

@ Oral exam on topics covered by lectures.

@ Most of it is covered by T. Hastie, R. Tishirani, and J. Friedman. The
Elements of Statistical Learning, Data Mining, Inference and Prediction.
Springer Series in Statistics. Corrected 12th printing 2017
https://web.stanford.edu/ hastie/ElemStatLearn/printings/ES-
LIl_print12_toc.pdf
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Statistical Decision Theory (for Regression)

@ Let X € RP denote a real valued random input vector, and Y € R a real
valued random output variable, with joint distribution P(X, Y).

@ We seek a function f(X) for prediction Y given values of the input X.

@ The theory requires a loss function (chybovou funkci) L(Y, f(X)) for
penalizing errors in predictions.

@ The far most common and convenient is squared error loss (kvadraticka
chybova funkce) L(Y, f(X)) = (Y — f(X))?

o this leads us to a criterion for choosing f, the expected (squared)
prediction error (otekavanou chybu) (EPE),

EPE(f) E(Y — f(X))?
= [ re02Plox.dy)

@ by conditioning on X we get
EPE(f) = ExEyx([Y — FOX)PIX)
@ and we see that it suffices to minimize EPE poinwise:
f(x) = argmin Eyx([Y — c?|X = x).

@ the solut|on is the conditional expectation also known as the regression
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k-NN and Conditional Expectation

@ We seek the conditional expectation:
f(x) = E(Y|X=x).

@ Thus the best prediction of Y at any point X = x is the conditional mean,
when the best is measured by the average squared error.
@ Assume we have a training set of data 7 = {(x;, y;)}V,.
@ The nearest neighbor methods attempt to directly implement this.
e Since there are typically at most one observation at any point x, we settle for

f(x) = mean(yi|x € Nk(x)),
o where mean denotes average, and Ni(x) is the neighborhood containing k
points in T closest to x.
e Under mild regularity conditions on P(X, Y’) one can show as k, N — oo,
such that £ — 0 then f(x) = E(Y|X = x).

@ The rate of convergence decreases as the dimension increases. The
problem is the speed of the convergence.
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Nearest-Neighbor Methods

@ The nearest-neighbor methods use those
observations in the training set 7 closest in

~

the input space to x to form f.

=3 Y v

XjeNk(X)

@ In classification, majority vote is used.

o Figures correspond to 15 nearest neighbor
and 1 nearest neighbor respectively.

@ Training error (usually) increases with
increasing k.

Effective number of parameters
The effective number of parameters of k

nearest neighbors is N/k and is generally Prediction complexity

bigger than p of the linear regression.
&8 P & 'Naive" O(Np).
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Overfitting

@ Our goal is the minimal expected

prediction error usually estimated by the S
error on the test data ( ). ﬁ v

o Usually, overfitting appears for complex e L3
models - an increase of the test error £
despite the decrease of the training g
error.

- Number of Nearest Neightiors

@ This is the reason for other models then
nearest neighbor model. PRSI

@ Possible improvements: N
Kernel methods

different weights for dimensions

local regression fits

linear models fit to a basis expansion
sums of non-linearly transformed linear
models.
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Curse of Dimensionality demonstration

Prediction

@ Assume x; uniformly generated form the interval (—1,1)P

@ We have Y = f(X) = e’s”x”z, without any noise, for x; we know exactly
f(X,').
We use 1-NN to estimate f(0) based on 1000 data sample.
Predicted value for x = (0, ...,0) is lower that 1 and in high dimensions p it
goes to 0.

@ Increasing k in k—NN does not help here.
1-NN in One Dimension 1-NN in One vs. Two Dimensions
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Empirical Nearest Neighbor Distance

@ Assume x; uniformly generated form the interval (—1,1)P
@ We use 1-NN to estimate 7(0) based on 1000 data sample.

Distance to 1-NN vs. Dimension
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Curse of dimensionality

Most points are close to the border
@ Consider N instances uniformly distributed in a p—dimensional unit ball.
@ Median distance of the nearest neighbor from the center is:

d(p,N) = (1 — ;N> p

@ The formula: 1 point inside: ‘11—:,7, outside: (1 — dP), N outside (1 — dP)V = 1.

e For N =500, p = 10, we get d(p, N) = 0.52, that is more than a half way to
the border.

e For N =10°, p = 200, we get d(p, N) =~ 0.93.

Close to the border, we must extrapolate, what is more difficult than
interpolation.
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Training data (and their notation)

We have
@ a set of random variables (features) Xi,..., X,
@ numerical goal variable Y (for regression)

e training data 7 = {(x1,)1),---, (Xn, ¥n)}

Goal attribute
XT = vector | (X; X; Xp) Y or G
x{
x] = vector | (x X Xp) yorg
T
Xy

e x and x; are p-dimensional column vectors
o X is the N x p matrix

e x; is the N vector consisting of all observations on variable X;.

@ y=(y1,...,yn)" denotes the vector of training goal data.
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Linear regression

@ Given a vector of inputs X7 = (Xi,..., X,) we predict the output Y via the

model f3, 3 € RPT!

p
Y =5(X) =5+ Xb

j=1

o Ay is the intercept, bias, (prisecik).

@ We include the constant variable 1 to X, include 3y in /3 to get the model in

vector form as an inner product

Jj=0

e The sum S°7_ X;/3; can be written as X7 3.
j=07"J~J
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Linear regression from the data

@ Let i range over the data samples, X be an N x p data matrix, y is a column
vector of the goal variable. We can write:

y=Xp

We search optimal 3 to minimize the residual sum squares RSS:

N

RSS(B) =Y (vi—x] B)> = (y — XB)"(y — XB) (1)

i=1
o Differentiating w.r.t. 5 we get normal equations
XT(y - X5) =0
@ If XTX is not singular, then the unique solution is given by
A= (XTX)"'XTy (2)

For a given x; the estimate y; is y; = y(x;) = X,TB.

From a singular XTX we should remove dependent features or filter the data
to make it invertible.
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Linear Regression

o Let us have a data N = 6, p = 2 (Fattll, Meatll), 1 column is for Sy, does

not count:
1 Fit711 Me5alt11 [ LeanMeat ]
1 17 49 gg‘g
X=|1 14 38 _ ’
y= 55.9
1 17 58 61.8
1 14 51 63.0
120 40 | | 546

@ We are searching parameters 3 = (3o, 1, 52) " to minimize:

N
RSS(B,X,y) = > (vi—x/B)>=(y—XB)T(y—Xp)

4 (58.6 — (1% By + 20 * By + 40 % 3,))?
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Linear regression from the data

e If XTX is not singular, then the unique solution is given by

B=(XTX)" !XTy

1 1 1 1 1 1
XT=1|17 17 14 17 14 20
51 49 38 58 51 40

6 99 287
XT™X =199 1659 4732
287 4732 14011

19.7320 —0.6714120 —0.1774305
(XTX)"! = | -0.6714 0.0392824  0.0004861
—0.1774  0.0004861  0.0035416
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Linear regression from the data

N

B =(XTX) !XTy

56.5
1 1 1 1 1 1 57.6
XT= |17 17 14 17 14 20 ~55.9
51 49 38 58 51 40 Y= |61.8
63.0
54.6
349.3498
XTy = | 5746.1340
16807.4663
19.7320 —0.6714120 —0.1774305] [ 349.3498 53.2097294 o
f=|—0.6714 0.0392824  0.0004861 | | 5746.1340 | = |—0.6653895| 3,

—0.1774  0.0004861 0.0035416 16807.4663 0.3343728 | B2
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Prediction

@ Linear regression predicts:

@ Prediction for training data:

58.95112
58.28237
56.60044
61.29173
60.94729
53.27685

§ = F(X) =XB = X(X™X)" !XTy =

o The hat matrix H = X(XTX)~1XT transforms y to y.

0.21 0.19 0.00 0.29 0.15 0.15
0.19 0.18 0.07 0.22 0.13 0.20
H— 0.00 0.07 0.78 —0.25 0.31 0.09
0.29 0.22 —0.25 0.55 0.22 —0.03
0.15 0.13 0.31 0.22 0.44 —0.25
0.15 0.20 0.09 —0.03 —0.25 0.84

@ You may notice that trace(H) = sum(diag(H)) = 3.
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Residual Sum of Squares

@ Residual Sum of Squares is

RSS(B,X,y) = Z(y;—x,-Tﬂ)ZZ(y—il)T(y—?)

[56.5 58.95112 56.5 58.95112
57.6 58.28237 57.6 58.28237
B 55.9 56.60044 55.9 56.60044
- 61.8|  |61.29173 61.8|  |61.29173
63.0 60.94729 63.0 60.94729
54.6 53.27685 54.6 53.27685
[—2.42637271\ | [ [—2.4263727
—0.7027914 —0.7027914
B —0.7105023 —0.7105023
- 0.5254632 0.5254632
2.0123528 2.0123528
| 1.3018505 1.3018505

= 12.9065
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Linear regression complexity

B =(XTX)"XTy

Linear Regression Complexity

Training complexity

@ The complexity of the direct approach to linear regression is

O(p°N + p?).

e XTX is O(p*N)

@ the result is p X p matrix,

e its inversion takes O(p?).
Cholevsky decomposition

e O(p*+ %ZN)
QR decomposition

o O(p*N)
Prediction complexity

e To calculate 87 x takes O(p).
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Improving Least Square Estimate

@ Reasons

e improve prediction accuracy
(decrease variance)
e improve interpret ability

@ methods

o Best Subset selection

o Forward- and Backward-Stepwise
Selection

o Forward-Stagewise Regression

as Forward-Stepwise
do not change previous
coefficients

slow convergence

may be useful in high
dimension p!

o Penalized methods.

e ) et

Residual Sum-of-Squares

Subset Size k

 Best Subset
Forward Stepwise
Backward Stepwise
Forward Stagewise

Subset Size k

February 23, 2024
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Centering, Standardization

Definition (Centering, Standardization)

@ To center the variables replace each feature to have zero mean,
XJ' <— XJ' — Xj

@ The sample variance of a variable x; is defined,

N
ZXU

U)

Both my sources use N. | know about N — 1 used in statistics.

@ Standardization performs the centering and divides features by their
standard deviation,
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Sample Covariance, Correlation

Definition (Sample Covariance, Correlation)

@ The sample covariance is a p X p symmetric matrix

S= NZ(X,_X (xi —x)7

@ with elements

N
Sjk = Z Xij — X/k _Xk)

@ The sample correlation of the columns x;, x is

Sj,k Nval(Xu X;)(Xik — Xk)

pj.k + corr(x;,

e \/ Z, 1 (6 —%;)? \/ Z, (X — Xk)?

.
o For standardized features, the correlation is just x’,\fk
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Penalized Methods

=

N P
= argming (Z(y,- — Bo —x/ B)* + /\Z |5j|q>
j=1

i=1

o We add the complexity penalty )\Zle |Bj]9 to the
RSS.

o Ridge regression g =2
o Lasso regression g =1
o

Elastic net penalty A Y%, (a[3j]* + (1 — a)|5;])
e a compromise between ridge and lasso
o selects variable like the lasso, and shirks together
the coefficients of correlated predictors like ridge.
o It also has considerable computational advantage
over the Lg penalties.

from sklearn import linear_model
linear_model.BayesianRidge() ’
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Rigde Regression

N

P
Bridee = argming (Z(y,. —Bo—x/ B)? + )\Z |»312>
j=1

i=1

@ The solution is

Tcavol

X <+ centered (N x p) input matrix

R 1 N 34
/8 e —_ y :5 ) /%ﬁi?‘
’ N :z:; l P %

B o= (XTX—A)~IXTy. : s

sklearn.linear_model.Ridge J
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Lasso Regression

N

p
B/asso = argming (Z(y,. — Bo — xl.Tﬁ)2 + )\Z BJ|>
=1

i=1

@ Solved by a quadratic programming
algorithm

sklearn.linear_model.Lasso )

@ or LARS modification, that calculates full
Lasso path in in O(p?N + p3). :

@ we use LARS on standardized data. 3

sklearn.linear_model.Lars )
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LARS Idea

For active set of parameters Ay the parameters 54,

consider current residuals ry =y — X 4,54,

and the correlation of each predictor with the residuals (x;, ry)
the correlations are equal for the predictors in the active set Ay
we change B4, < B4, + adk in the direction

0 = (X, X)) IXT 1

@ and the correlation X4, with residuals decreases.
@ Correlations of other features change linearly and we can calculate next

intersection point.

Absolute Correlations
0.

0 5 10 15
Ly Arc Length
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LARS Least Angle Regression

@ democratic version of forward stepwise regression
@ provides an extremely efficient algorithm for computing the entire lasso path.

Least Angle Regression

1. procedure LEAST ANGLE REGRESSION:(X, y)

2 B, ..., Bp < 0 initialize

3: r < y — y residuals

4 find the predictor x; most correlated with r

5 Move f3; from O towards its least-squares coefficient (x;, r) until some
other competitor x, has as much correlation with the current residual as
does x;.

6: A + {x;} active coefficients

7: for k=2,...,min(N—1,p) do

8: move current set of 34, by their joint least squares coefficient of
the current residual until some other competitor x; catches up.

9: Ay Ax_1 U {x¢} active coefficients

10: end for

11: end procedure
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Least Angle Regression Lasso

w 4 / w 4
2 L g L
— / — L
o 7\ o
n © w S
Lol | 2] ~
5w - 5w ~
g @1 i . — &2 7 i N ~_
k7] T k7] —
g o ~ g .
| \ O 9 \
\ \
E] \ E]
T \ T \}
o 5 10 15 o 5 10 15
Ly Arc Length Ly Arc Length

Lasso Modification of the Least Angle Regression

8a: If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.

Complexity of LARS

@ LARS requires the same order of computation as that of a single least
squares fit using the p predictors.

@ hidden in the p's in O(p?N + p3) or Cholevsky decomposition.
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Model Complexity

Effective Degrees of Freedom

Linear regression p
Ridge regression df(y) = tr(X(XTX — AI)~1XT).
LARS: after k steps, df(y) = k.

LASSO: roughly the number of predictors in the model (may take
more, some predictors drop out.

Overview of Supervised Learning 1 1-37 February 23, 2024 29 / 388



Summary

@ Introduction

classification and regression,
training data,

RSS,

expected prediction error,
overfitting,

effective number of parameters,
curse of dimensionality,

@ k Nearest neighbor model,

@ Linear regression and its modifications
Best subset

Ridge, BayesianRidge

Lasso

LARS.
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Pathwise Coordinate Optimization

o LARS modification, iteratively by the coordinates
o fix the penalty parameter A

@ optimize successively over each parameter, holding the other parameters fixed
at their current values.

@ Assume the predictors are all standardized to have mean zero and unit norm,

° Bk(/\) the current estimate for Sy at penalty parameter A

2
- 1 ~ <
R(B(N),B) = 5 Z Yi— inkﬁk()\) —xiB | + )\Z 1Bk(M] + Al
i—1 kA kA

@ this can be viewed as a univariate lasso problem with response variable the
partial residual

yi— 9 =yi - ZXikEk(/\).
k#j
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Pathwise Coordinate Optimization

@ this has an explicit solution, resulting in the update

Bi(A\) « S (Zx,-j(y,- - j/,-(j)),/\>

@ where S is the soft-thresholding operator

S(£,\) = sign(£)(It] = \)- (3)
Lasso
A
@ Estimators of §; in case of - GO
orthonormal columns of X. /"
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Grouped Lasso - not presented this year

Dummy variables for representing the levels of a categorical predictor.

Genes that belong to the same biological pathway.

Suppose that the p predictors are divided into L groups
e with py the number in group /.
e a matrix X; represents the predictors corresponding to the ¢th group
e with corresponding coefficient vector 5.

the grouped-lasso minimizes the convex criterion

L L
mingere <||y — Bl = > XeBelB+AD \/P1€|5£|2> (4)
=1 =1

[| - ||2 is the Euclidean norm (not squared)

\/pe¢ accounts for the varying group sizes.
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Example — Storch brings babies in Europa

¥ =0.0288% +225.03

5
2
o
Fi
g
g
£
B
E
@

Number of stork breeding pairs

Fig 1. How the number of human births varies with stork populations in 17 European countries.

Teaching Statistics.  Volume 22, Number 2, Summer 2000 o 37
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Linear methods for classification

We are given two features Xi, X5 and
the goal BLUE or

Later, we will see better ways. For now,
we encode BLUE =0 a =1,
and find a linear regression model.

The fitted values Y are converted to a

fitted class variable G as follows:
& BLUE for Y < 0.5

- for Y > 0.5
The hyperplane {x : xT3 = 0.5} is
called the decision boundary
(rozhodovaci hranice).

Better to use logistic regression, that
gives also a linear decision boundary.

Overview of Supervised Learning 1

Linear Regression of /1 Response

e L

FIGURE 2.1. A classification example in two di-
mensions. The classes are coded as a binary variable

=0, = 1), and then fit by linear re-
gression. The line is the decision boundary defined by
273 = 0.5. The orange shaded region denotes that part
of input space classified as
is classified as

, while the blue region

1-37 February 23, 2024

35 / 388



Two Scenarios

@ The training data in each class @ The training data in each class
were generated from bivariate came from a mixture of 10
Gaussian distribution with low-variance Gaussian distributions,
uncorrelated components and with individual means themselves
different means. distributed as Gaussians.

@ The linear model is (almost) @ The linear model is not optimal.
optimal.

Linear Regression of 0/1 Response 15-Nearest Neighbor Classifier

// Euih,

FIGURE 2.1. A classification example in two di- FIGURE 2.2. The same classification example in two

mensions. The classes are coded as a binary variable dimensions as in Figure 2.1. The classes are coded as

(i =0, = 1), and then fit by linear re- a binary variable ( =0, = 1) and then fit
gression. The line is the decision boundary defined by by 15-nearest-neighbor averaging as in (2.8). The pre-
278 = 0.5. The orange shaded region denotes that part dicted class is hence chosen by majority vote amongst
of input space classified as , while the blue region the 15-nearest neighbors.

is classified as
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