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Scand J Statist 8: 65-92, 1981 

Analysis of Covariance Structures' 

KARL G. JORESKOG 

University of Uppsala 

ABSTRACT. Most of the important models and techniques 
for analysis of covariance structures are reviewed and illu- 
strated with a few simple examples. Some general approaches 
to the problems of identification, estimation and testing of 
covariance structures are considered. The ACOVS-model 
and the LISREL-model are treated in some detail. Specific 
types of covariance structures described are variance and 
covariance components models, measurement models, path 
analysis models and simplex models. Simultaneous analysis 
of mean and covariance structures is also considered as well 
as the simultaneous analysis of data from several populations. 

Key words: covariance structure analysis, factor analysis, 
variance components, path analysis, structural equation 
models, autoregressive models 

1. Introduction 

Analysis of covariance structures is the common 
term for a number of techniques for analyzing multi- 
variate data in order to detect and assess latent (un- 
observed) sources of variation and covariation in 
the observed measurements. The techniques of 
covariance structure analysis are general and flexible 
in that they can handle many types of covariance 
structures useful especially in the behavioral and 
social sciences. Although these techniques can be 
used for exploratory analysis they have been most 
successfully applied to confirmatory analysis where 
the type of covariance structure is specified in ad- 
vance. A covariance structure of a specified kind 
may arise because of a specified substantive theory 
or hypothesis, a given classificatory design for the 
measures, known experimental conditions or be- 
cause of results from previous studies based on 
extensive data. Sometimes the observed variables 
are ordered through time, as in longitudinal studies, 
or according to linear or circular patterns, as in 
Guttman's (1954) simplex and circumplex models or 

according to a given causal scheme, as in path 
analysis. 

This paper reviews most of the important models 
and techniques for analysis of covariance structures 
and illustrates them with a few simple examples. 
The examples are introduced in section 2 together 
with the main types of covariance structures. General 
covariance and correlation structures are defined in 
section 3. Special cases of general covariance struc- 
tures are: the ACOVS-model (Jreskog, 1970a, 
1973 a, 1974) and the LISREL-model (Joreskog, 
1973b, 1977; Joreskog & Sorbom, 1978) and these 
are briefly described also. Approaches to the sta- 
tistical problems of identification, estimation and 
testing are also considered in section 3. The analysis 
of the examples are continued in section 4. Section 
5 discusses generalizations which permit simul- 
taneous analysis of mean and covariance struc- 
tures and simultaneous analysis of data from several 
populations. 

This paper draws on various material published 
previously by the author, in particular Joreskog 
(1973 a, 1974, 1978). Other important related material 
is contained in Bock & Bargmann (1966), Browne 
(1974, 1977), McDonald (1974, 1975, 1978) and 
Bentler & Weeks (1981). 

2. Some types of covariance structures 

2.1. Variance and covariance components 
Several authors (Bock, 1960; Bock & Bargmann, 
1966; Wiley et al., 1973) have considered covariance 
structure analysis as an approach to study differ- 
ences in test performance when the tests have been 
constructed by assigning items or subtests according 
to objective features of content or format to sub- 
classes of a factorial or hierarchical classification. 

Bock (1960) suggested that the scores of N sub- 
jects on a set of tests classified in a 2' factorial design 
may be viewed as data from an N x 2Y experimental 
design, where the subjects represent a random mode 

I The contents of this paper were presented in lectures held 
at the 8th Nordic Conference on Mathematical Statistics, 
Mariehamn, Finland, May 1980. The lectures were concluded 
with the discussion which is reported at the end of the paper. 
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66 K. G. Joreskog 

Table 1. Inter trial covariance matrix 

1 2 3 4 5 6 7 8 9 10 1l 12 

1 51.6 
2 -27.7 72.1 
3 38.9 -41.1 69.9 
4 - 36.4 40.7 - 39.1 75.8 
5 13.8 - 5.2 17.9 1.9 84.8 
6 -13.6 10.9 9.5 17.8 - 37.4 91.1 
7 21.5 -9.4 8.5 -13.1 59.7 -54.4 79.9 
8 -12.8 17.2 - 3.1 22.0 -43.3 52.7 -49.9 87.2 
9 11.0 - 8.9 19.2 -11.2 -12.6 21.9 -10.6 17.5 27.6 

10 -4.5 10.2 -7.6 12.7 20.4 -11.5 16.5 -14.8 -8.8 19.9 
11 9.2 -0.3 18.9 -13.6 - 3.9 19.0 - 8.3 13.1 17.7 -2.8 27.3 
12 - 3.7 7.5 -4.5 12.8 19.9 - 8.8 15.5 - 8.6 - 5.4 13.3 - 1.0 16.0 

of classification and the tests represent n fixed 
modes of classification. Bock pointed out that con- 
ventional mixed-model analysis of variance gives 
useful information about the psychometric prop- 
erties of the tests. In particular, the presence of non- 
zero variance components for the random mode 
of classification and for the interaction of the 
random and fixed modes of classification provides 
information about the number of dimensions in 
which the tests are able to discriminate among 
subjects. The relative size of these components 
measure the power of the tests to discriminate 
among subjects along the respective dimensions. 

The following example was given in an unpub- 
lished paper by Browne (1970). 

Example 1: The Rod and Frame (RF) tcst is used as 
a measure of field dependence. A subject is seated in a 
darkened room on a chair which may be tilted to the 
left or to the right. In front of him is a luminous rod 
located in a luminous square frame. The chair, frame, 
and rod are tilted to prespecified positions. By operat- 
ing push buttons connected to an electric motor the 
subject is to move the rod to the vertical position. The 
score on the trial is the angle of the rod from the 
vertical. This can assume positive and negative values. 
Each subject undergoes 12 trials. The last two columns 
of the design matrix A below give initial positions of 
the frame and chair for each trial. A value of +1 
denotes that the position of the frame or chair was 
at + 280 from the vertical, a value of -1 denotes 
that the angle was - 280 and a value of 0 denotes that 
the initial position was vertical. 

Table 1 shows a covariance matrix between trials of 
the RF-test obtained from a sample of 107 eighteen 
year old males. 

One would like to estimate the variance compo- 
nents associated with the general bias, frame effect, 
chair effect and error. 

1 1 1 

1 -1 1 

1 -1 -1 

A= 
1 -1 1 

1 1 -1 

1 -1 0 

1 -1 0 

1 -1 0 
1 -1 0 

Let a, b and c be uncorrelated random components 
associated with general bias, frame effect and chair 
effect, respectively, and let e denote an error compo- 
nent uncorrelated with a, b and c and uncorrelated 
over trials. Let 

UP = (av, b,,, cv) 

be the values of a, b and c for subject v. Then the 
scores on the twelve trials for subject v is 

x,, =Auv + eV 

with covariance matrix 
E = ANA' + 0-Ie (1) 

where 

4o diag aas ,Jc 

Equation (1) shows that all the 78 variances and 
covariances in E are linear functions of the four 
parameters Ma, is, r2c and ee. To see this explicitly, 
consider the covariance matrix generated by trials 
1, 2, 5 and 9: 
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Analysis of covariance structures 67 

-a,,, ++ W + Or 
2 2 2 2 

aa+ -b c aa + ua + 1 + O 

2 2 2ra (y2 2 2 2 1 2 2 

'ra+b 

+ 

ra+Ora mc Oab m Oc+eg 
2 2 ~~~2 2 '2 2 

This is an example of a linear covariance structure. 
If this structure holds, the four parameters can be 
solved in terms of the elements of E. For example, 
aa = (f41 + a42), 1 = &-(41 + O42 - a21 - a1), ci = a1 - 

a42, etc. There are many ways in which the four 
parameters can be solved in terms of the a's. If the 

In this case we can solve for a, = a21+ 3l), say, 
but it is impossible to solve for ai and 4 separately. 
Only the sum i + a4 is identified. This is an example 
of a non-identified model in which some parameters 
are underidentified and others are not. The reason 
for this is that the matrix A has rank 2 and not rank 3 
as in the previous case. The example will be con- 
tinued in section 4. 

In general, if A is of order p x r and of rank k, one 
may choose k independent linear functions, each 
one linearly dependent on the rows of A and esti- 
mate the covariance matrix of these functions. It is 
customary to choose linear combinations that are 
mutually uncorrelated but this is not necessary. Let 
L be the matrix of coefficients of the chosen linear 
functions and let K be any matrix such that A =KL. 
For example, K may be obtained from 

K = AL'(LL')-1. 

The model may then be reparameterized to full 
rank by defining u* = Lu. We then have x =Au + e = 
KYLu + e =Ku*+ e. The covariance matrix of x is 
represented as 

E - K*K' + 'F 

where V, the covariance matrix of u* is not neces- 
sarily diagonal and IF is the diagonal covariance 
matrix of e. The latter may be taken to be homo- 
genous, if desired. 

The above model assumes that all measurements 
are on the same scale. Wiley, Schmidt and Bramble 
(1973) suggested the study of a general class of 

ten equations are consistent, however, all solutions 
are identical. In this case the parameters are over- 
identified. 

Consider the covariance structure generated by 
the first four rows of A: 

components of covariance models which would 
allow different variables to be on different scales. 
The covariance matrix E will then be of the form 

E = AAA'A + O or E = A(AA'+ IF) A 
(2 a-b) 

The matrix A(p x k) is assumed to be known and 
gives the coefficient of the linear functions connecting 
the manifest and latent variables, A is a p xp dia- 
gonal matrix of unknown scale factors, ' is the 
k x k symmetric and positive definite covariance 
matrix of the latent variables and IF and e are 
p xp diagonal matrices of error variances. 

Within this class of models eight different special 
cases are of interest. These are generated by the 
combination of the following set of conditions: 

on A: { 

o0 is diagonal 
on 4>: 

0 is not diagonal 

'I or O=&2 I 
on IF or 0: 

' or e general diagonal. 

The classical formulation of the mixed model and 
its generalizations assume that A = I. This is appro- 
priate if the observed variables are in the same 
metric as for example when the observed variables 
represent physical measurements, time to criterion 
measures, reaction times or items similarly scaled 
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68 K. G. Joreskog 

such as semantic differential responses. However, if 
the observed variables are measured in different 
metrics then the classical model would not fit. In 
such cases the inclusion of A in the model as a 
general diagonal matrix of scaling factors would 
provide a useful alternative specification. It should 
be pointed out that the elements of A do not have 
to be related to the variances of the variables. 

The classical components of variance model 
assume that 4 is diagonal. However, there are 
usually no substantive reasons for assuming this. 

The two conditions on I' or e correspond to 
homogenous and heterogeneous error variances. If 
the variables are in the same metric and if the 
measurement situation is sufficiently similar from 
variable to variable then it would seem reasonable 
to hypothesize that the variances of the errors of 
measurement ought to be homogeneous, i.e., in (2a) 
we take A=I and e=a2l. 

If, on the other hand, the scale of measurement 
is the same but the meaurement situation from vari- 
able to variable is different enough to generate dif- 
ferent kinds of error structures, then the variances 
of the errors of measurement might differ systemati- 
cally from variable to variable. For this situation it 
would seem best to take A =I but leave 0 free in 
(2a). If the manifest fariables were in different 
metrics then clearly the error variances in the ob- 
served metric will most likely be heterogeneous. One 
useful hypothesis to test in this context would be 
that the standard deviations of the errors of measure- 
ment are proportional to the rescaling factors. This 
would correspond to taking IF = a2I in (2b). When 
both A and IF are free, (2a) and (2b) are equivalent. 

2.2. Measurement models 
Most measurements employed in the behavioral 
and social sciences contain sizeable errors of meas- 
urements and any adequate theory or model must 
take this fact into account. Of particular importance 
is the study of congeneric measurements, i.e., those 
measurements that are assumed to measure the same 
thing. 

Classical test theory (Lord & Novick, 1968) as- 
sumes that a test score x is the sum of a true score 
r and an error score e, where e and T are uncorre- 
lated. A set of test scores xl, ..., x_, with true scores 
r , ..., T. is said to be congeneric if every pair of 
true scores Ti and Tj have unit correlation. Such a 
set of test scores can be represented as 

x = L +PT +e, 

where x' =(xi, ..., xp), P' =(fl1, ..., f,l) is a vector of 
regression coefficients, e' = (el, ..., ep) is the vector of 
error scores, ,u is the mean vector of x and T is a 

true score, for convenience scaled to zero mean and 
unit variance. The elements of x, e and -r are re- 
garded as random variables for a population of 
examinees. Let 01, ..., 0o, be the variances of e1, ..., e, 
respectively, i.e., the error variances. The corre- 
sponding true score variances are Pf, ..., pp. One im- 
portant problem is that of estimating these quanti- 
ties. The covariance matrix of x is 

E =PP3'+O, (3) 

where E = diag (0, ..., 0). 
Parallel tests and tau-equivalent tests, in the sense 

of Lord & Novick (1968), are special cases of con- 
generic tests. Parallel tests have equal true score 
variances and equal error variances, i.e., 

#1 = lp *v = n,01= 0 

Tau-equivalent tests have equal true score variances 
but possibly different error variances. 

Parallel and tau-equivalent tests are homogenous 
in the sense that all covariances between pairs of 
test scores are equal. For parallel tests the variances 
are also equal. Scores on such tests are directly 
comparable, i.e., they represent measurements on 
the same scale. For tests composed of binary items 
this can hold only if the tests have the same number 
of items and are administered under the same time 
limits. Congeneric tests, on the other hand, need not 
satisfy such strong restrictions. They need not even 
be tests consisting of items but can be ratings, for 
example, or even measurements produced by dif- 
ferent measuring instruments. 

The previous model generalizes immediately to 
several sets of congeneric test scores. If there are q 
sets of such tests, with ml, M2, ..., mq tests respec- 
tively, we write x' = (x, x,..., x) where x', g =1, 
2, ..., q is the vector of observed scores for the gth 
set. Associated with the vector xg there is a true 
score rg and vectors fD and pa, defined as before so 
that 

Xq = ,Lg + Pgrg + eg. 

As before we may, without loss of generality, 
assume that 'rg is scaled to zero mean and unit vari- 
ance. If the different true scores r-r, T2 ..., r are all 
mutually uncorrelated, then each set of tests can be 
analyzed separately. However, in most cases these 
true scores correlate with each other and an overall 
analysis of the entire set of tests must be made. Let 
p = m1 + M2 + ... mq be the total number of tests. 
Then x is of order p. Let t& be the mean vector of x, 
and let e be the vector of error scores. Furthermore, 
let 

' = (T1, r2, ..., Tq) 
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Table 2. Lord's vocabulary test data covariance 
matrix (N = 649) 

xJl X2 YYi Y2 

xl 86.3979 
X2 57.7751 86.2632 
Yi 56.8651 59.3177 97.2850 
Y2 58.8986 59.6683 73.8201 97.8192 

and let B be the matrix of order p x q, paritioned as 

0 0 ... 0 

0 p2 ... 0 B=[J 
0 0 

Then x is represented as 

x -= , +B +e. 

Let r be the correlation matrix of '. Then the co- 
variance matrix E of x is 

E = BrB' + 03, (4) 

where e is a diagonal matrix of order p containing 
the error variances. 

The correlation coefficient corrected for attenua- 
tion between two tests x and y is the correlation be- 
tween their true scores. If, on the basis of a sample 
of examinees, the disattenuated correlation is near 
unity, the experimenter concludes that the two tests 
are measuring the same trait. 

The following example is based on some data 
from Lord (1957). 

Example 2: Two tests x1 and X2 are 15-item vocabu- 
lary tests administered under liberal time limits. Two 
other tests yl and Y2 are highly speeded 75-item 
vocabulary tests. The covariance matrix is given in 
Table 2. One would like to estimate the disattenu- 
ated correlation between x and y and to test whether 
this is one. One would also like to test whether the two 
pairs of tests are parallel. 

We set up the following measurement model 

/xl /fl1 0 / 
e\ 

I 
, 0s Il TY es?} h) 

with covariance matrix 

/ f1 0 

E 2 oj (1 e)(Pl P2 0 0) 

? fl3 e 0 ? f8 f44 

\ 01 0 ? ? \ 

E 02 ? 
0 

0 0 0 0? 

E l2+01 
21 + 01 

= PiP2 4+02 (5) 

P1 P3 Q 2fl32 QA +o + 0( 

AL1 4A QP2 P44 Q 8P4 4+04_ 

This is an example of a non-linear covariance 
structure in which the ten variances and covariances 
of the observed variables are non-linear functions 
of nine parameters. Each of these nine parameters 
are identified in terms of the a's, except possibly 
for the sign in some of them, as can easily be veri- 
fied. For example, P l= (a2l a31/a32), e2 (a31a42/ 
a21a43), 01 = a11 -fl, etc. 

In this model, xi and x2 are congeneric measures 
of i2, and Yi and Y2 are congeneric measures of T,. 
The disattenuated correlation e is the correlation 
between xr and y,. To analyze the data one can set 
up the four hypotheses: 

H1: 1 = P2, Pa =Pl4, 01=02, 03 = 04, e 

H2: P1 = P2, P3 - 4, 01 = 02, 03 = 04 

H3: a = 1 

H4: PI, P2, ff3, P4, 01, 02, 03, 04, and e unconstrained. 

and estimate the model under each of these. Under 
hypotheses Hi, H2 and H, the model involves equal- 
ity constraints imposed on the parameters of the 
base model H4. The analysis of the example will be 
continued in section 4. 

2.3. Path analysis models 
Path analysis, due to Wright (1934), is a technique 
to assess the direct causal contribution of one vari- 
able to another in non-experimental investigations. 
The problem in general is that of estimating the 
parameters of a set of linear structural equations 
representing the cause and effect relationships hypo- 
thesized by the investigator. Traditionally the vari- 
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ables in the structural equation system were directly 
observed variables but recently several models have 
been studied which involve hypothetical constructs, 
i.e., latent variables, which, while not directly ob- 
served, have operational implications for relation- 
ships among observable variables (see, e.g., Werts 
& Linn, 1970; Hauser & Goldberger, 1971; Jore- 
skog & Goldberger, 1975). In some models, the 
observed variables appear only as effects (indicators) 
of the hypothetical constructs, while in others, the 
observed variables appear as causes or as both 
causes and effects of latent variables. 

Suppose that two variables are used on two oc- 
casions, i.e., in a two-wave longitudinal design. 
Assume that the two variables measure the same 
latent variable n on two different occasions, i.e., yl 
and y. measure % on the first occasion and y3 and y4 
measure 872 on the second occasion. 

The equations defining the measurement rela- 
tions are 

Yi =t1 + 8I 

Y2 =A111 + 82 

Y3 272 + 83 

Y4 -A2732 +?8 

The main interest is in the stability of X7 over time. 
This can be studied by means of the structural 
equation 

12 = P1l +, 

the regression of 172 on X. In particular, one is 
interested in whether ,B is close to one and C is 
small. 

Let Q be the covariance matrix of (X1, 12) and let 
0 be the covariance matrix of (81, 82, 83, 84). If all the 
e's are uncorrelated so that E) is diagonal, the co- 
variance matrix of (Y1, Y2, y3, y4) iS 

_i + Oil 

Al (Oil 011 + 022 

0t)21 'Al (21 

A22 

+ 03 

+ 

_ 2 C)21 21 (021. -02 +203 022 + 044 

The matrix E has ten variances and covariances 
which are functions of nine parameters. The model 
is in fact a reparameterization of that discussed in 
the previous subsection. 

Often when the same variables are used repeatedly 
there is a tendency for the corresponding errors 
(the 8's) to correlate over time because of memory 
and other retest effects. Hence there is a need to 

generalize the above model to allow for correlations 
between el and 63 and also between 62 and s4. This 
means that there will be two non-zero covariances 
031 and 042 in 0. The covariance matrix of the ob- 
served variables will now be 

[ 11 + 011 

2Al11 2t a11 + 022 
= 

[ )21 + 031 Al (21 022 + 033 

- 22 ('21 Al1 2 (t21 + 042 A2 6022 2 O22 + 044- 

(6) 

This E has its ten independent elements expressed in 
terms of eleven parameters. Hence it is clear that the 
model is not identified. In fact, none of the eleven 
parameters are identified without further conditions 
imposed. The loadings Al and A2 may be multiplied 
by a constant and the co's divided by the same con- 
stant. This does not change a21, a32, a41 and a43. 
The change in the other a's may be compensated by 
adjusting the 0's additively. Hence to make the model 
identified one must fix one A or one co at a non-zero 
value or one 0 at some arbitrary value. However, 
the correlation between q and q2 iS identified without 
any restrictions, since 

Corr (1, q2) = (a01/a11a22)Y [(a322a41)/(a21 a4S)]' 

This model may therefore be used to estimate this 
correlation coefficient and to test whether this is one. 
To make further use of the model it is necessary to 
make some assumption about the nature of the 
variables. For example, if it can be assumed that 
the two variables on each occasion are tauequiva- 
lent we can set both A1 and A2 equal to one. Then the 
model can be estimated and tested with one degree 
of freedom. If A1=22 the model is just identified. 

While the above model is not identified as it 
stands it becomes so as soon as there is information 
about one or more background variables affecting 
l or 2 or both. To illustrate this an example of a 

longitudinal study analyzed in more detail by 
Wheaton et al. (1977) will be used. 

Example 3: This study was concerned with the stability 
over time of attitudes such as alienation and the rela- 
tion to background variables such as education and 
occupation. Data on attitude scales were collected 
from 932 persons in two rural regions in Illinois at 
three points in time: 1966, 1967 and 1971. The vari- 
ables used for the present illustration are the Anomia 
subscale and the Powerlessness subscale, taken to be 
indicators of Alienation. This example uses data from 
1967 and 1971 only. The background variables are 
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Analysis of covariance structures 71 

the respondent's education (years of schooling com- 
pleted) and Duncan's Socioeconomic Index (SEI). 
These are taken to be indicators of the respondent's 
socioeconomic status (SES). The sample covariance 
matrix of the six observed variables is given in 
Table 3. 

Let 

y, = Anomia 67 Ys = Anomia 71 
Y2 = Powerlessness 67 y, = Powerlessness 71 
xi = Education x2 = SEI 
e = SES = Alienation 67 

12 = Alienation 71 

The model is then specified as 

1i 1 0\8 

IY2 1 l 0 ~ 62 

Y3 0 1/ 77 

(xi) = )( 

(x2 ) (3 ) 2 

It is assumed that C, and C2 are uncorrelated and that 
the scales for l, 2 and 4 have been chosen to be 
the same as for Yl, y3 and xl, respectively. 

Let b =Var (4) and Yip = Var (? ), i = 1, 2 and let Q 
be the covariance matrix of (X1 N, 4). It is obvious 
that there is a one-to-one correspondence between 
the six co's in Q and (+, f,- S, V2, Vlh, VP2). In terms of 
Q2 the covariance matrix of (Yi, Y2, y3, Y4, X1, X2) iS 

A perfect simplex is reasonable only if the measure- 
ment errors in the test scores are negligible. A 
quasi-simplex, on the other hand, allows for size- 
able errors of measurement. 

Consider p fallible variables Yi, y2, ..., y. The 
unit of measurement in the true variables i may be 

Table 3. Covariance matrix for variables in the stabil- 
ity of alienation example 

Yi Y2 YS Y4 X1 X2 

Yi 11.834 
Y2 6.947 9.364 
Ys 6.819 5.091 12.532 
y'4 4.783 5.028 7.495 9.986 
xl - 3.839 - 3.889 - 3.841 - 3.625 9.610 
X2 - 21.899 - 18.831 - 21.748 - 18.775 35.522 450.288 

The upper left 4 x 4 part is the same as (6). It is 
clear that the two last rows of E determines Al, 42, 
A8, (31, (32, (033, 035 and 06s. With A,1 and 42 deter- 
mined, the other parameters are determined by the 
upper left part. Altogether there are seventeen para- 
meters to estimate. The example is continued in 
section 4. 

2.4. Simplex models 
Simplex models is a type of covariance structure 
which often occurs in longitudinal studies when the 
same variable is measured repeatedly on the same 
people over several occasions. The simplex model is 
equivalent to the covariance structure generated by 
a first-order non-stationary autoregressive process. 
Guttman (1954) used the term simplex also for 
variables which are not ordered through time but 
by other criteria. One of his examples concerns 
tests of verbal ability ordered according to increasing 
complexity. The typical feature of a simplex corre- 
lation structure is that the correlations decrease as 
one moves away from the main diagonal. 

J6reskog (1970b) formulated various simplex 
models in terms of the well-known Wiener and 
Markov stochastic processes. A distinction was 
made between a perfect simplex and a quasi-simplex. 

chosen to be the same as in the observed variables 
yi. The equations defining the model are then, 
taking all variables as deviations from their means, 

Yi = ?h + si, i = 1, 2, ... , p, 

011 + 011 

011Gt)l . 2 (011 + 022 

0)21 + 031 Al 0)21 (022 + 083 (8) 
}'2 @21 1 2 021 + 042 12 -22 02 )22 + 044 

Ct31 21 0)31 Cl)32 12 032 0833 + 055 

23 C31 2123 031 23 382 2423 (032 28 (033 23 (033 + 066 
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72 K. G. Joreskog 

Table 4. Correlations among grade point averages, 
high school rank and an aptitude test 

Yo YO Y2 Ys Y4 Yb Y6 Y7 Ys 

Yo 1.000 

yo .393 1.000 
Yi .387 .375 1.000 
Y2 .341 .298 .556 1.000 
ys .278 .237 .456 .490 1.000 
y4 .270 .255 .439 .445 .562 1.000 
y5 .240 .238 .415 .418 .496 .512 1.000 

ys .256 .252 .399 .383 .456 .469 .551 1.000 
Y7 .240 .219 .387 .364 .445 .442 .500 .5441.000 
y8 .222 .173 .342 .339 .354 .416 .453 .482 .541 1.000 

Note: yo is high school rank, y' ACT composite score, and 
Yi through y8 are eight semesters grade-point averages. 

where the ei are uncorrelated among themselves and 
uncorrelated with all the Xi and where Cj,j is un- 
correlated with qj, i = 1, 2, ..., p -1. The parameters 
of the model are cwi =Var (q), Oi =Var (ei), i = 1, 2, 
...,p and f2, fl3, ..., fp. The residual variance 
Var (?f+,) is a function of coj,+, oi and fli+1, namely 
Var(Ci+1)= -oj+1-ffl+joj, i=1, 2, ..., p - 1. The co- 
variance matrix of Yi, Y2, ..., yp is of the form, here 
illustrated with p=4. 

c,1+01 

= fl2 )l C02 + 02 (9) 

f2 fl3 1 fl3 2 ( + 03 J 

fl2 fl fl4 1 fl3 fl4 2 4 (3 (04 + 04 

Consider first the perfect simplex, i.e., the case 
Oi= 0, i=1, 2, ...,p. Then 

>-= 2 oc2 

0 A3 3 

0 O Al a4 

is tri-diagonal and it may be readily verified that 
there is a one-to-one correspondence between the 
parameters (C, (t)2, ()3, (0t)4, Ng, N%, flp) of E and the 
parameters (Lx1, OC2, L, 4, y2, y3, y4) of E-. Although 
E is non-linear, E-1 is linear. Covariance structures 
in which E or E-l has a linear structure was con- 
sidered by Anderson (1969, 1970). 

Now consider the quasi-simplex represented by (9). 
It is seen from. (9) that although the product fl201 = 

a21 is identified, 92 and c1 are not separately identi- 
fied. The product /9201 is involved in the off-dia- 

gonal elements in the first column (and row) only. 
One can multiply fl3 by a constant and divide a1 by 
the same constant without changing the product. 
The change induced by o, in a,, can be absorbed in 
01 in such a way that a,, remains unchanged. Hence 
O = Var (81) is not identified. For q,2 and J3 we have 

a32 a21 

a31 

43 32 

a542 

so that (02 and co.3, and hence also 02 and 03, are 
identified. With C(2 and c03 identified, fl3 and fl4 are 
identified by a32 and a43. The middle coefficient P. 
is overidentified since 

a31 a42 
fl3 2 = a=32. 

a41 

Since both (04 and 04 are involved in a44 only, these 
are not identified but their sum a44 iS. 

This analysis of the identification problem shows 
that for the "inner" variables Y2 and y3, the para- 
meters (02, (03, 02, 03 and PS are identified, whereas 
there is an indeterminacy associated with each of the 
"outer" variables y, and y4. To eliminate these 
indeterminacies one condition must be imposed on 
the parameters co,, 01 and fl2' and another on the 
parameters C(4 and 04. Perhaps the most natural 
way of eliminating the indeterminacies is to set 
01 =02 and 04 ==03. To illustrate a simplex model, 
some data published by Humphreys (1968) and 
analyzed by Werts et al. (1978) will be used. 

Example 4: The variables include eight semesters of 
gradepoint averages, high school rank and a compo- 
site score on the American College Testing tests for 
approximately 1 600 undergraduate students at the 
University of Illinois. The correlation matrix is given 
in Table 4. One would like to estimate the reliabilities 
of the gradepoint averages and to test whether the 
auto-regressive process is stationary. 

The example is analyzed in section 4. 

3. General approaches to analysis of 
covariance structures 

3.1. General covariance and correlation structures 
Any covariance structure may be defined by speci- 
fying that the population variances and covariances 
of the observed variables are certain functions of 
parameters 01, 0O, ..., Ot to be estimated from data: 
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ait = aij(O), or in matrix form E = E(o). It is assumed 
that the functions ai,(O) are continuous and have 
continuous first derivatives and that E is positive 
definite at every point 0 of the admissible parameter 
space. The distribution of the observed variables is 
assumed to be multivariate with an unconstrained 
mean vector ,u and covariance matrix E(O) and is 
assumed to be sufficiently well described by the 
moments of first and second order, so that additional 
information about 0 contained in moments of higher 
order may be ignored. In particular this will hold if 
the distribution is multivariate normal. The condi- 
tion that the mean vector p. is unconstrained will be 
relaxed in section 5 where also mean structures will 
be considered. 

A correlation structure is defined by specifying 
that the population correlations ei, of the observed 
variables are functions ei, = e,(0) of 0. Such a corre- 
lation structure is treated as a covariance structure 
by specifying that 

E= DOP(O)DO (10) 

where Da is a diagonal matrix of population standard 
deviations a1, a2, ..., a, of the observed variables, 
which are regarded as free parameters, and P(O) is 
the correlation matrix. The covariance structure (10) 
has parameters a1, a2,..., a,, 01, 02,..., Ot. The stand- 
ard deviations a1, a2, ..., a, as well as 0 must be 
estimated from data and the estimate of ai does not 
necessarily equal the corresponding standard devia- 
tion in the sample. 

3.2. Identification 
Before an attempt is made to estimate the para- 
meters 0, the identification problem must be re- 
solved. The identification problem is essentially 
whether or not 0 is uniquely determined by E. 
Every 0 in the admissible parameter space generates 
a E but two or more 0's may possibly generate the 
same E. The whole model is said to be identified if 
for any two vectors 01 and 02 in a region of the 
parameter space, locally or globally, 01602 implies 
that E(01)+E(02), i.e., if E is generated by one and 
only one 0. This means that all parameters are 
identified. However, even if the whole model is not 
identified some parameters can still be identified. 
Consider the set of all parameter vectors 0 generating 
the same E. If a parameter Oi has the same value in 
all such vectors, this parameter is identified. For 
parameters which are identified the methods to be 
described will yield consistent estimators. If a model 
is not completely identified, appropriate restric- 
tions may be imposed on 0 to make it so, and the 
choice of restrictions may affect the interpretation 
of the results of an estimated model. 

Identifiability depends on the choice of model. 
To examine the identification problem for a par- 
ticular model consider the equations 

aj = ai,(O), i 6j. (11) 

There are (J)p(p + 1) equations in t unknown para- 
meters 0. Hence a necessary condition for identi- 
fication of all parameters is that 

If a parameter 0 can be determined from E by solving 
the equations (11) or a subset of them, this para- 
meter is identified; otherwise it is not. Often some 
parameters can be determined from E in several 
ways, i.e., by using different sets of equations. This 
gives rise to overidentifying conditions on E which 
must hold if the model is true. Since the equations 
(11) are often non-linear, the solution of the equa- 
tions is often complicated and tedious and explicit 
solutions for all 0's seldom exist. In the previous 
section we discussed the identification problem in 
terms of some specific examples. 

There are various ways in which the computer 
program may be used to check the identification 
status of the model. If the GLS or ML methods are 
used for estimation (see the next subsection) the 
information matrix may be obtained and checked 
for positive definiteness. If the model is identified 
then the information matrix is almost certainly posi- 
tive definite. If the information matrix is singular, 
the model is not identified and the rank of the in- 
formation matrix may indicate which parameters are 
not identified. Another procedure which may also 
be used when other methods of estimation are used 
is the following. Choose a set of reasonable values 
for the parameters and compute E. Then run the 
program with this E as input matrix and estimate 0. 
If this results in the same estimated values as those 
used to generate E, then it is most likely that the 
model is identified. Otherwise, those parameters 
which gave a different value are probably not 
identified. 

3.3. Estimation 
The population is characterized by the mean vector 
1L, which is unconstrained, and the covariance 
matrix E which is a function of 0. In practice 0 is 
unknown and must be estimated from a sample 
of N independent observations on the random 
vector x of order p. Let S = (sij) be the usual sample 
covariance matrix of order p x p, based on n = N- 1 
degrees of freedom. The information provided by S 
may also be represented by a correlation matrix 
R = (re,) and a set of standard deviations s,S, s, S, sp 
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where si = (s1i)1 and rij = sil/sis,. In many applica- 
tions both the origin and the unit in the scales of 
measurement are arbitrary or irrelevant and then 
only the correlation matrix may be of interest. In 
such cases one takes S to be the correlation matrix 
R in what follows. 

Since the mean vector is unconstrained, and higher 
moments are ignored, the estimation problem may 
be regarded as a problem of how to fit a matrix E of 
the form E(O) to the observed covariance matrix S. 
Although a number of different methods of an ad 
hoc nature have been used in specific cases there 
appears to be only three methods which can be used 
in general. These are the unweighted least squares 
(ULS) method, which minimizes 

U = (i) tr (S - Z)2, (12) 

the generalized least squares (GLS) method, which 
minimizes 

G = (i) tr (I -S-1E)2, (13) 

and the maximum likelihood (ML) method, which 
minimizes 

M = tr (E-1S) -logI E-1SI -P. (14) 

Each function is to be minimized with respect to 0. 
All three functions U, G and M may be mini- 

mized by basically the same algorithm. The nota- 
tion F= F(S, E) will be used for any one of the 
three functions. The GLS and ML methods are 
scale-free in the sense that F(S, E) =F(DSD, DED) 
for any diagonal matrix of positive scale-factors; 
ULS does not have this property. With ULS, an 
analysis of S and of DSD yield results which may 
not be properly related. When x has a multivariate 
normal distribution both GLS and ML yield esti- 
mates that are efficient in large samples. Both GLS 
and ML require a positive definite covariance 
matrix S or correlation matrix R; ULS will work 
even on a matrix which is non-Gramian. 

Under the assumption that x has a multinormal 
distribution or that S has a Wishart distribution, 
M in (6) is a transform of the log-likelihood func- 
tion for the sample, hence its association to the 
maximum likelihood method. Joreskog and Gold- 
berger [1972] derived the expression for G from 
Aitken's [1934-35] principle of generalized least 
squares using estimated asymptotic variances and 
covariances of the elements of S under multinor- 
mality of x. Browne [1974] justified GLS under the 
slightly more general assumption that the elements 
of S have an asymptotic normal distribution. Since 
the variances and covariances in S are generally 

correlated and have unequal variances, it would 
seem that ULS uses the wrong metric in measuring 
deviations between S and E. Nevertheless, ULS 
produces consistent estimators under more general 
assumptions than those which have been used to 
justify ML and GLS. 

All three functions U, G and M are members of a 
general class of weighted least squares (WLS) func- 
tions (see Browne, 1974 and Lee, 1979). Let A be a 
symmetric positive definite weight matrix. Then 
WLS minimizes the function 

F = (J) tr {[(S - E(O)]A}2 

with respect to 0. 
In ULS, A=1. Browne (1974) showed, under 

general regularity conditions, that if A is a random 
matrix converging in probability to E` then the 
estimator 6 which minimizes F is consistent and 
asymptotically efficient. A convenient choice of A 
is A=S-1 yielding the GLS function G in (13). 
Maximum likelihood estimators will be obtained 
if A = E1 where E0 = E(0o), 00 being the true 0. 
Since 00 is unknown this is not operational. How- 
ever, ML estimates will be obtained if F is minimized 
iteratively and A = E-1(0) is updated in each iteration. 
The estimator of 0 which minimizes F in this way is 
identical to that which minimizes M in (14). Browne 
(1974) showed that the GLS and ML estimators 
are asymptotically equivalent. Computationally there 
is a slight advantage with GLS compared with 
ML since the weight matrix is constant through the 
iterations. When the covariance structure is linear, 
GLS has a great advantage for then the function G 
is exactly quadratic in 0 and can therefore be mini- 
mized in one step. 

The derivatives of F are 

aF/aOi = tr [A(E -S)AaE/,aOJ] (15) 

where A =I in ULS, A =S- in GLS and A =YJ-'in 
ML. Assuming that S converges in probability to 
E and ignoring terms of order E -S, the second 
derivatives are approximately 

,02 F00aOi -tr [ASE/,aOiAeE/aO1]. (16) 

Note that (15) and (16) require only the first deriva- 
tives of the covariance structure functions E(o). In 
ML and GLS, (16) yields the elements of the infor- 
mation matrix which is positive definite at every 
point 0 of the admissible parameter space, if 0 is 
identified. 

The function F(O) may be minimized numerically 
by Fisher's scoring method (see e.g. Rao, 1973, 
Section 5g) or the method of Davidon-Fletcher- 
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Powell (see Fletcher & Powell, 1963; see also Gru- 
vwus & J6reskog, 1970). Lee & Jennrich (1979) and 
Lee (1979) suggested that F can be minimized by 
the Gauss-Newton algorithm but this is equivalent 
to Fisher's scoring algorithm when the second-order 
derivatives are approximated by (16). 

The minimization starts at an arbitrary starting 
point 0(1) and generates successively new points 
0(2), 0(3), ..., such that F(O(S+') <F(O(s8) until con- 
vergence is obtained. 

Let g(s) be the gradient vector 3F/aO at 0 =o 
and let E(S) be the matrix whose elements are given 
by (16) evaluated at 0 = 0(8). Then Fisher's scoring 
method computes a correction vector 8(6) by solving 
the symmetric equation system 

E(S)S(S) = g(8) (17) 

and then computes the new point as 

(8+1) = O(S) _,V) (18) 

This requires the computation of E(S) and the solu- 
tion of (17) in each iteration which is often quite 
time consuming. An alternative is to use the method 
of Davidon-Fletcher-Powell, which evaluates only 
the inverse of E'1) and in subsequent iterations E-1 is 
improved, using information built up about the 
function, so that ultimately E1 converges to an 
approximation of the inverse of 82F/a0 80' at the 
minimum. 

In GLS and ML, (2/N) times the inverse of the 
information matrix E, given by (8) and evaluated 
at the minimum of F, provides an estimate of the 
asymptotic covariance matrix of the estimators 0 of 
0. The square root of the diagonal elements of 
(2/N)E-1 are large-sample estimates of the standard 
errors of the O's. 

Unfortunately no statistical theory is available for 
computing standard errors for ULS estimators. 
Such standard errors may be obtained by jackknifing 
but this requires extensive computation. 

3.4. Assessment of fit 
When the number of independent parameters in 0 
is less than the total number of variances and co- 
variances in E, i.e., when t < (J)p(p + 1), the model 
imposes conditions on E which must hold if the 
model is true. In GLS and ML, the validity of 
these conditions, i.e., the validity of the model, may 
be tested by a likelihood ratio test. The logarithm 
of the likelihood ratio is simply (N/2) times the 
minimum value of the function F. Under the model, 
this is distributed, in large samples, as a X2 distribu- 
tion with degrees of freedom equal to 

d -(J)p(p + 1) - t. (19) 

3.5. Tests of structural hypotheses 
Once the validity of the model has been reasonably 
well established, various structural hypotheses 
within the model may be tested. One can test hypo- 
theses of the forms 

(i) that certain 0's are fixed equal to assigned 
values and/or 

(ii) that certain 0's are equal in groups. 

Each of these two types of hypotheses leads to a 
covariance structure E(v) where v is a subset of 
u <t elements of 0. Let F, be the minimum of F 
under the structural hypothesis and let F0 be the 
minimum of F under the general model. Then 
(N/2)(Fp -F0) is approximately distributed as x2 
with t-u degrees of freedom. 

3.6. The use of X2 in exploratory studies 
The values of X2 should be interpreted very cautiously 
because of the sensitivity of X2 to various model 
assumptions such as linearity, additivity, multi- 
normality, etc., but also for other reasons. In most 
empirical work many of the models considered may 
not be very realistic. If a sufficiently large sample 
were obtained, the test statistic would, no doubt, 
indicate that any such model is statistically unten- 
able. The model should rather be that Z(O) repre- 
sents a reasonable approximation to the popula- 
tion covariance matrix. From this point of view the 
statistical problem may not be one of testing a given 
hypothesis (which a priori may be considered false) 
but rather one of fitting various models with dif- 
ferent numbers of parameters and to decide when 
to stop fitting. In other words, the problem is to 
extract as much information as possible out of a 
sample of given size without going so far that the 
result is affected to a large extent by "noise". It is 
reasonable and likely that more information can be 
extracted from a large sample than from a small one. 
In such a problem it is the difference between X2 
values that matters rather than the X2 values them- 
selves. In an exploratory study, if a value of X2 is 
obtained which is large compared to the number of 
degrees of freedom, the fit may be examined by an 
inspection of the residuals, i.e., the discrepancies 
between observed and reproduced values. Often the 
results of an analysis, an inspection of residuals or 
other considerations will suggest ways to relax the 
model somewhat by introducing more parameters. 
The new model usually yields a smaller x2. If the 
drop in X2 is large compared to the difference in 
degrees of freedom, this is an indication that the 
change made in the model represents a real improve 
ment. If, on the other hand, the drop in X2 is close 
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to the difference in number of degrees of freedom, 
this is an indication that the improvement in fit is 
obtained by "capitalizing on chance" and the added 
parameters may not have any real significance or 
meaning. 

Often it is not possible, or even desirable, to 
specify the model completely since there may be 
other models which are equally plausible. In such a 
situation it is necessary to have a technique of analysis 
which will give information about which of a num- 
ber of alternative models is (are) the most reasonable. 
Also, if there is sufficient evidence to reject a given 
model due to poor fit to the data, the technique 
should be designed to suggest which part of the 
model is causing the poor fit. The examples of sec- 
tion 4 illustrate the assessment of fit of a model and 
strategies for model modification. 

3.7. The ACO VS model 

The approach to analysis of covariance structures 
described in sections 3.1-3.6 is completely general 
in the sense that any covariance structure can be 
handled. This approach has not been used much in 
practice because it requires the specification, by 
means of programmed subroutines, of the functions 
cri,(O) and SaijlaO for each application. Another 
approach, which has been found to be extremely 
useful in practice, is to assume a definite form for 
E but one which is still so general and flexible that 
it can handle most problems arising in practice. 
Two such approaches have been developed: the 
ACOVS-model and the LISREL-model. 

The ACOVS-model (J6reskog, 1970a, 1973a, 
1974) assumes that E has the following form 

E = B(A4 A'" + 2)B' + 02, (20) 

where B(p x q), A(q x r), the symmetric matrix 
4(r x r) and the diagonal matrices ''(q x q) and 
0(p xp) are parameter matrices. The covariance 
structure (20) will arise if the vector of observed 
variables x(p x 1) has the form 

x = +BAg+B +e (21) 

where jL is the mean vector of x and 4, (, and e are 
uncorrelated random vectors of latent (unobserved) 
variables with zero means and covariance matrices 
4?, %2 and 02, respectively. 

When applying the model (20), the number of 
variables p is given by the data, and q and r are given 
by the particular application that the investigator 
has in mind. In any such application any para- 
meter in B, A, (D, IF, or E may be known a priori 
and one or more subsets of the remaining para- 
meters may have identical but unknown values. 

Thus, parameters are of three kinds: (a) fixed para- 
meters that have been assigned given values, (b) con- 
strained parameters that are unknown, but equal to 
one or more other parameters, and (c) free para- 
meters that are unknown and not constrained to be 
equal to any other parameter. The advantage of 
such an approach is the great generality and flexi- 
bility obtained by the various specifications that 
may be imposed. Thus the general model contains a 
wide range of specific models. The examples con- 
sidered in section 2 are all of the form of (20) or can 
be reparameterized to be of this form. Model (1) 
uses B =I, 1E = 0, A =A and equality constraints on 
the diagonal elements of TI. Models (2a-b) use 
B =A in addition. Models (3) and (4) use A =I and 
IF =0. Model (6) is of the form (20) with B =1, 
IF =0 and 

O A2 

011 ~ '01 ) 

? 022 

031 0 033 

? 042 ? 044 

The path analysis model (8) and the simplex model 
(9) require reparameterization before they can be 
written in the form of (20), see Joreskog (1970b). 
One disadvantage with the reparameterization is 
that one will not get estimates of the original para- 
meters. Although estimates of the original para- 
meters can easily be computed afterwards it is more 
difficult to obtain standard errors of the original 
parameters. For this reason the LISREL model has 
been developed to accomodate the original para- 
meters of path models and simplex models, but as 
will be seen, the ACOVS-model is a submodel of 
the LISREL-model, so that many other models 
may also be fitted. 

3.8. The LISREL model 
The LISREL model (Joreskog, 1973b, 1977; Jore- 
skog & Sorbom, 1978) considers random vectors 
1' =(41s, r2, ..., ?1m) and 9' =($1, 229 - J) of latent 

dependent and independent variables, respectively 
and the following system of linear structural rela- 
tions 

Byj-rg+4 (22) 
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where B(m x m and r(m x n) are coefficient matrices 
and E(B) =0. It is furthermore assumed that C is 
uncorrelated with E and that B is nonsingular. 

The vectors -q and E are not observed but instead 
vectors y' = (yi, Y2, ..., yp) and x' = (xl, x2, ..., x) are 
observed such that 

y = Ayn 1+ el (23) 

x =Axg+6 (24) 

where c and 8 are vectors of errors of measurement 
in y and x, respectively. We take y and x to be 
measured as deviations from their means. The 
matrices Ay1(p x m) and Ax(q x n) are regression 
matrices of y on 73 and of x on g, respectively. It is 
convenient to refer to y and x as the observed vari- 
ables and -n and g as the latent variables. The errors 
of measurement are assumed to be uncorrelated 
with -q, E and C but may be correlated among them- 
selves. 

Let 4)(n x n) and 'F(m x m) be the covariance 
matrices of g and 4, respectively, and let 0, and 0, 
be the covariance matrices of e and 8, respectively. 
Then it follows, from the above assumptions, that the 
covariance matrix E [(p + q) x (p + q)] of z = (y', x')' is 

(A 4 B AQ Ay B1Tr)A+ ) (25) 
\ =Ax 

' -)I A'A A., 4)A' + 061-a 

where 

Q=Ar(B-Ir4 r'B'-1?+B-"%FB'-')4A +0, 

The elements of Z are functions of the elements of 
Ayi Ax. B, r, , IF, 0 and 0,. In applications some 
of these elements are fixed and equal to assigned 
values. In particular, this is so for elements of A., 
AX, B and r, but we shall allow for fixed values in 
the other matrices also. For the remaining nonfixed 
elements of the eight parameter matrices one or more 
subsets may have identical but unknown values. 
Thus, the elements in Ay, Ax, B, r, ), 'F, 0, and 
0, are of three kinds: 

(i) fixed parameters that have been assigned given 
values 

(ii) constrained parameters that are unknown but 
equal to one or more other parameters and 

(iii) free parameters that are unknown and not 
constrained to be equal to any other parameter. 

Equations (22), (23) and (24), with the accompany- 
ing assumptions, definee the general LISREL model. 
Equations (23) and (24) constitute the measure- 
ment model and equation (22) constitutes the struc- 
tural equation model. 

The computer program for LISREL (see Jbreskog 
& Sorbom, 1978) is structured in such a way that 

one can handle all kinds of reasonable submodels 
in a simple manner. For example, by specifying 
that there are no y- and n-variables, the model 
becomes 

x -Axg +8, (26) 

which is the classical factor analysis model. By 
specifying that there are no x- and no $-variables, 
the model reduces to 

y = An + (27) 

B-n = J 

With this model we also have an ordinary factor 
analysis model, but in this case we can handle rela- 
tions among the factors by specifying a structure of 
the B-matrix. For example, by specifying a B which 
generates an autoregressive structure one can handle 
simplex models of the form (9) and more general 
ones, see e.g. Joreskog & Sorbom (1977) and Jore- 
skog (1979). 

By specifying that there are no x-variables and 
that B is an identity matrix we get 

==rg+ } (28) 

y=Ay + e 

or equivalently, cf. (21) 

y - A,(rg + k) +,E, (29) 

which is a second-order factor analysis model equiva- 
lent to the ACOVS model (J6reskog, 1974). In a 
similar manner we can get a model for interdepend- 
ent systems by specifying that the Ay and A. ma- 
trices are identity matrices and that & and e are 
zero, i.e., the model 

By= rx+, (30) 

often used in econometrics. 

4. Analysis of the examples 

4.1. Example 1: Repeated trials of the rod 
and frame test 

Estimation of the variance components according to 
model (1) gives 

6e = 4.08 6 = 13.83 ec = 28.64 62 = 21.60 

However, examination of the fit of the model to the 
data, reveals that the fit is very poor: x2 = 319.4 
with 74 degrees of freedom. We shall therefore seek 
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Table 5. Summary of analyses 

Hypothesis No. par x2 d.f. p 

H1 4 37.33 6 0.00 
H2 5 1.93 5 0.86 
H3 8 36.21 2 0.00 
H4 9 0.70 1 0.40 

Table 6. Tests of hypotheses 

Parallel Congeneric 

e = l X26 = 37.33 x2= 36.21 2 = 1.12 

Q$1 X25 = 1.93 X2h= 0.70 X4 =.23 

XI' = 35.40 x2 -X 35.51 

an alternative model which accounts for the data 
better. This is obtained by structuring the error 
component e. 

There are six distinct experimental conditions 
among the twelve trials, each one repeated twice. 
Let ri, i = 1, 1, ..., 6 be random components associ- 
ated with these experimental conditions. Then 

Xja = ri + ei, 

where oc =1, 2 indexes the two replications. This 
simply means that one should allow the error vari- 
ances to be different for different experimental con- 
ditions but still equal within replications of the same 
condition. An analysis according to this model 
gives x2 = 179.6 with 69 degrees of freedom. The 
reduction in X2 clearly indicates that the error vari- 
ances depend on the experimental condition. 

The ML-estimates of the variance components are 
now, with standard errors below the estimates, 

2= 4.18 62 = 11.26 6c=27.10 
(0.75) (1.72) (4.24) 

e1 =22.17 6e = 34.61 6e3 =29.07 62e = 37.32 
(2.71) (3.89) (3.34) (4.30) 

de, = 11.74 e,, 5.09 
(1.41) (0.67) 

The results indicate that most of the variance in the 
trials is associated with the chair effect. The vari- 
ance due to the frame effect is less than half of this 
and the variance due to general bias is still smaller. 
The error variances are generally quite large except 
for the two experimental conditions in which the 
chair is already vertical. 

4.2. Example 2: The disattenuated correlation 
between two vocabulary tests 

The measurement model set up in section 2 is 
specified as a LISREL model with no y- and no 
n-variables as in (26). All four models H1, H2, H3 
and H4 can be estimated in one run. 

The results are shown in Table 5. Each hypo- 
thesis is tested against the general alternative that E 
is unconstrained. To consider various hypotheses 

that can be tested, the four X2 values of Table 5 
are recorded in a 2 x 2 table as in Table 6. Test of 
H1 against H12 gives X2 = 35.40 with 1 degree of free- 
dom. An alternative test is H13 against H,, which 
gives x2 = 35.51 with 1 degree of freedom. Thus, 
regardless of whether we treat the two pairs of tests 
as parallel or congeneric, the hypothesis e = 1 is 
rejected. There is strong evidence that the unspeeded 
and speeded tests do not measure the same trait. 
The hypothesis of parallelness of the two pairs of 
tests can also be tested by means of Table 6. This 
gives X2 = 1.12 or X2 = 1.23 with 4 degrees of freedom, 
depending on whether we assume e = 1 or e * 1. Thus 
we cannot reject the hypothesis that the two pairs 
of tests are parallel. It appears that H2 is the most 
reasonable of the four hypotheses. The maximum 
likelihood estimate of e under H2 is 0 =0.899 with a 
standard error of 0.019. An approximate 95% con- 
fidence interval for e is 0.86 <e <0.94. The sub- 
stantive matter is discussed further in Joreskog 
(1974). 

4.3. Example 3: The stability of alienation 
The model (7) is an example of the general LISREL 
form (22), (23) and (24). We distinguish between the 
two models 

(A) 031 = 042 = 0 

(B) 031 and 042 free 

The maximum likelihood estimates of the para- 
meters with standard errors in parenthesis are given 
in Table 7. The stability of alienation over time is 
reflected in the parameter ,B. The influence of SES 
on Alienation at the two occasions is significant in 
model A. The coefficient for 1967, y7, is -0.614 with 
a standard error of 0.056 and for 1971, Y2, it is 
-0.174 with a standard error equal to 0.054. The 

negative sign of the A-coefficients indicates that for 
high socioeconomic status the alienation is low and 
vice versa. However, the overall fit of the model A 
is not acceptable: X2 with six degrees of freedom 
equals 71.5. Model B is intuitively more plausible. 
As can be seen from Table 7 the inclusion of On 
and 043 results in a model with an acceptable overall 
fit. A test of the hypothesis that both 031 and O4 are 
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Table 7. Maximum likelihood estimates for models 
A and B 

The standard errors of the estimates are given within paren- 
thesis 

Parameter Model A Model B 

.Al 0.889 (.041) 0.979 (.062) 
12 0.849 (.040) 0.922 (.060) 
A3 5.329 (.430) 5.221 (.422) 
p 0.705 (.054) 0.607 (.051) 
VI - 0.614 (.056) - 0.575 (.056) 
Y2 -0.174 (.054) -0.227 (.052) 
VPI 5.307 (.473) 4.846 (.468) 
V2 3.742 (.388) 4.089 (.405) 
0 6.666 (.641) 6.803 (.650) 
Oil 4.015 (.343) 4.735 (.454) 
022 3.192 (.271) 2.566 (.404) 
033 3.701 (.373) 4.403 (.516) 
044 3.625 (.292) 3.074 (.435) 
031 - 1.624 (.314) 
042 - 0.339 (.261) 
055 2.944 (.500) 2.807 (.508) 
066 260.982 (18.242) 264.809 (18.154) 
X 2 71.470 4.730 
d.f. 6 4 

zero yields X2=66.8 with 2 degrees of freedom so 
that this hypothesis must be rejected. 

4.4. Example 4: A simplex modelfor academic 
performance 

The quasi-simplex model underlying the covariance 
structure (9) is a LISREL model of the form (27) 
with no x- and no i-variables and with A =I and 

1 0 0 0\ 

B= -f2 1 0 0 

0- 93 1 0 

0 0 -l44 1 

Using first only the measures of grade-point 
averages in Table 4, estimation of a quasi-Markov 
simplex gives the following correlations between the 
true academic achievements 2, 273, ..., q. These cor- 
relations are 

72 273 24 176 16 77 

1)2 1.000 

113 0.838 1.000 
114 0.812 0.969 1.000 
t6 0.724 0.865 0.892 1.000 
276 0.677 0.809 0.834 0.935 1.000 
177 0.619 0.740 0.763 0.855 0.914 1.000 

Here every correlation eij with li-jl >1 is the 
product of the correlations just below the diagonal. 

For example, e(q5, 72) = 0.838 x 0.969 x 0.892 = 0.724. 
These correlations form a perfect Markov simplex. 
The goodness of fit test of the model gives x2 = 

23.91 with 15 degrees of freedom. This represents 
reasonably good fit considering the large sample 
size. The reliabilities of the semester grades Y2, Y3, 
..., y7 can also be obtained directly from the solu- 
tion in which the q's are standardized. The reliabili- 
ties are 

Y2 Y3 Y4 Yc yB Y7 

0.569 0.575 0.562 0.584 0.581 0.608 

A test of the hypothesis that these are equal gives 
X2= 2.17 with 5 degrees of freedom, so that this 
hypothesis is not rejected by the data despite the 
large sample size. 

In this example the correlations (%, n,), j == and 
eQ(q, f8), i$8 and the reliabilities of Yi and y8 are 
not identified. However, in view of the above test of 
equality of reliabilities it seems reasonable to assume 
that all reliabilities or equivalently all error variances 
in the standardized solution are equal for Yi through 
Y.. This assumption makes it possible to estimate the 
intercorrelations among all the q's. 

Assuming that x0 and x are indicators of pre- 
college academic achievement i7 which is assumed 
to influence the true academic achievement in the 
first semester i71, one can estimate again the quasi- 
Markov simplex and show how this use of x0 and 
xo helps identify the parameters of the model. The 
only parameter which is now not identified is 08, the 
error variance in YB. This gives a X2 = 36.92 with 28 
degrees of freedom. If we assume that the reliabili- 
ties of all the semester grades are equal, all para- 
meters are identified and the goodness of fit becomes 
45.22 with 34 degrees of freedom. The difference 
8.30 with 6 degrees of freedom provides another 
test of equality of the reliabilities. Finally a test of 
the hypothesis that the whole process is stationary, 
i.e., that 

2 =PS=... Cfl8 

02 =03... =08 

gives X2 =12.82 with 11 degrees of freedom so that 
this hypothesis cannot be rejected. There is good 
evidence that the whole Markov process is stable 
over time. 

5. Generalizations 

In this section we consider two different generaliza- 
tions of the models and methods discussed in the 
previous sections. One generalization allows for 
mean structures as well as covariance structures; the 
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other concerns the analysis of data from several in- 
dependent samples. 

5.1. Mean structures as well 

Suppose that not only the covariance matrix E but 
also the mean vector IL is a function of the para- 
meter vector 0. The easiest way to generalize the 
development 3.1-3.5 to this situation is to consider 
the augmented vector x*'= (x', 1) where the last 
variable is a fixed variable which is constant equal 
to one for all observations, and use matrices of 
moments about zero instead of covariance matrices. 
Let M[(p + 1) x (p + 1)) be the sample moment matrix 
of x*, i.e., 

M=(Ax x) (S+xx' x) 

where, as before, x is the sample mean vector of x 
and S the sample covariance matrix of x and 

N 

Mxx =(1/IN) x,, 
' 

x. being the octh observation of x. 
The corresponding population moment matrix is 

tLI 1 

Estimates of 0 may be obtained by fitting Q to M 
using F(62 M) where F is anyone of the three fitting 
functions (12), (13) and (14). Joreskog and Sorbom 
(1980) showed that (14) leads to maximum likelihood 
estimates in the usual sense. 

5.2. The LISREL-model with structured means 
In section 3.8 the LISREL model was defined by 
(22), (23) and (24) in which all random variables 
were assumed to have zero means. This assumption 
will now be relaxed and it will be shown that the 
LISREL IV computer program can be used also to 
estimate the same three equations even if they in- 
clude constant intercept terms. This is possible if 
we introduce a fixed variable whose observations are 
all equal to one and analyze the sample moment 
matrix instead of the sample covariance matrix. 

The LISREL model is now defined by the follow- 
ing three equations corresponding to (22), (23) and 
(24), respectively: 

Brn =a +rg+~, (31) 

Y=V +A yq +e' (32) 

x =v +A g+b, (33) 

where a, vY and vx are vectors of constant intercept 
terms. As before, we assume that C is uncorrelated 
with g, e is uncorrelated with -n and that & is uncor- 
related with E. However, it will not be necessary to 
assume that e is uncorrelated with & as we did in 
section 3.8. We also assume, as before, that E(,) = 

0, E(e) = 0 and E(s) = 0, but it is not assumed that E(9) 
and E(-n) are zero. The mean of g, E(0) will be a para- 
meter denoted by x. The mean of -n, E(n) is ob- 
tained from (31) as 

E(@n) = B-'(a + rx) (34) 

By taking expectation of (32) and (33) we find the 
mean vectors of the observed variables to be 

E(y) = vy + AyB-1(a + rx) (35) 

E(x) = vs + Alxx. (36) 

In general, in a single population, all the mean para- 
meters vyi, v, a and x will not be identified without 
further conditions imposed. However, in simul- 
taneous analysis of data from several groups (see 
next subsection), simple conditions (see e.g. Jore- 
skog & Sorbom (1980)) can be imposed to make all 
the mean parameters identified. We shall not be 
concerned with identification here but merely con- 
fine ourselves to show how the model (31)-(33) can 
be written in the form of (22}-(24) which is the 
form used by the program. 

The LISREL specification of (31)-(33) is as 
follows. We treat y and x as y-variables and -q and E 
as ti-variables in LISREL sense. In addition, we use 
a single fixed x-variable equal to 1. This variable 1 
is also used as the first -variable. We can then write 
the model in the form of (22) and (23) as 

0o B -r = a 1 1+1 (37) 
\ O O E x l - E(g / 

0x) ( O Ax ) (A)+(S) (38) 

Note that the mean parameter vectors a and x 
appear in the r-matrix in LISREL and vy and v. 
appear in the first column of Ay in LISREL. 

The matrix E in (25) should now be interpreted as 
the population moment matrix of the vector (y', 
x', 1) - (z', 1), say, where z corresponds to y-vari- 
ables in LISREL and 1 corresponds to an x-variable. 
The LISREL estimates are obtained by minimizing 
the function F(O), where S is now the sample mo- 
ment matrix. 
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5.3. Simultaneous analysis in several groups 
The LISREL model (31), (32) and (33) can be used 
to analyze data from several groups simultaneously 
according to LISREL models for each group with 
some or all parameters constrained to be equal over 
groups. Examples of such simultaneous analysis 
have been given by Joreskog (1971), McGaw & 
J6reskog (1971), Sorbom (1974, 1975, 1976, 1981) 
and J6reskog & Sorbom (1980). 

Consider a set of G populations. These may be 
different nations, states or regions, culturally or 
socioeconomically different groups, groups of indi- 
viduals selected on the basis of some known or 
unknown selection variable, groups receiving dif- 
ferent treatments, etc. In fact, they may be any set 
of mutually exclusive groups of individuals which 
are clearly defined. It is assumed that a number of 
variables have been measured in a random sample 
of individuals from each population. 

It is assumed that a LISREL model of the form 
(31), (32) and (33) holds in each group. The model 
for group g is defined by the parameter matrices 
A() A(2) B'?' r(g) (4), 9'2(g) I 0 

(9 g where the 
superscript (g) refers to the gth group, g = 1, 2, ..., G. 
Each of these matrices may contain fixed, free and 
constrained parameters as before. If there are no 
constraints between groups, each group can be 
analyzed separately. However, if there are constraints 
between groups, the data from all groups must be 
analyzed simultaneously to get efficient estimates of 
the parameters. For example, if the measurement 
properties of the observed variables are the same 
in all groups one would postulate that 

= (2) A(G) 

A^1 =,(2) = =AG) 

and perhaps also that 

-(1) O(2) - (G) 

e(l)= (2)= (.(G) 

The possible differences between groups would then 
be represented by differences in the distributions 
of the latent variables, i.e., by e0'? and '2'. By 
postulating 

BM = B2' = B(G) 

r(l) = r(2) - = r(G) 

one can test the hypotheses that also the structural 
relations are invariant over groups. 

In general, any degree of invariance can be tested, 
from the one extreme where all parameters are 
assumed to be invariant over groups to the other 
extreme when there are no constraints between 
groups. 

To estimate the models simultaneously we mini- 
mize the fitting function 

G 

F= 2 (Ng/N) F(Sg, Eg) 
g=1 

where F, as before, is anyone of the functions (12), 
(13) and (14) and where Ng is the number of observa- 
tions in group g and N= N1 + N. +... + NG. When 
G=1, this reduces to the same fitting function as 
before. When the observed variables have a multi- 
normal distribution, F is minus (N/2) times the 
logarithm of the likelihood function except for an 
additive constant. 

The X2 goodness-of-fit measure is defined as 
before. This is a test of the hypotheses that the 
LISREL model holds in each group including all 
constraints, against the general alternative that all 
E(') are unconstrained positive definite, g = 1, 2, ..., G. 
The degrees of freedom are 

d =(D)Gp+q)(p+q+1)-t, 

where t is the total number of independent para- 
meters estimated in all groups. 

While this approach to simultaneous analysis in 
several groups has been formulated in terms of 
LISREL models with unconstrained mean vectors 
it can be generalized in the same way to models 
with constraints on the means. In fact, the LISREL 
IV computer program (Joreskog & Sorbom, 1978) 
cand handle models combining the features of sec- 
tions 5.2 and 5.3. 
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DISCUSSION OF K. G. JORESKOG'S PAPER 

Erling B. Andersen (University of Copenhagen 

My comments on Professor Joreskogs excellent and 
clear presentation will consist of three parts. Firstly 
I shall briefly mentioned the parallel theory for 
discrete data, with is now known under the name 
"latent structure analysis". Secondly I shall discuss 
a number of problems connected with model selec- 
tion and model checking. Thirdly and finally I shall 
present two examples, which I hope can give rise 
to a fruitful discussion. 

1. Several of Professor Joreskogs models are based 
on the interplay between latent variables and ob- 
served or manifest variables. The statistical problems 
is characterizes by the fact, the we have a relatively 
simple structure in the latent space and a somewhat 
more complex structure in the observed variables. 

Without pretending to be a complete list, we have 
at least four important type of models, which are 
essential both for the continuous models, as for 
example LISREL, and their discrete counterparts. 

(i) Simple latent structure models; for example 
one-factor models. 

(ii) Models for comparison of several popula- 
tions. (Section 5.3 of the paper.) 

(iii) Models for correlated latent variables. (Ex- 
amples 2 and 3 of the paper.) 

(iv) Longitudinal models. (Example 4 of the 
paper.) 

All these models are also treated in latent struc- 
ture analysis for discrete data. Andersen (1980) gives 
a survey of the field. 

2. Two quotations from Professor Joreskogs pa- 
per seem to suggest that the model is primarily 
checked by checking that the empirical covariance 
matrix has the structure prescribed by the model. 
On page 75 it is claimed that: if the covariance 
structure is accepted, the model is valid. And on 
p. 75 it is said that: "The result of an analysis, an 
inspection of the residuals or other considerations 

suggest ways to relax the model." (Here an analysis 
means an analysis of the covariance matrix.) Thus 
main emphasize seems to be on the covariance 
matrix. This among other things raises the question 
of where the modelling take place in the covariance 
matrix or in the original data. Not only where the 
modelling start but also where it ends. 

From the examples given in the paper one gets 
the impression that remodelling to give a better fit 
is performed as reformulations of the covariance 
matrix. Many applied statisticians would un- 
doubtedly feel it more relevant to go back to the 
original data for example by means of a analysis 
of the residuals in order to discover possible model 
reformulations. 

The ambiguity in the formulation of a model is 
illustrated by the heavy attention one has to pay to 
identificationproblems. Personally I do not like the 
idea of computerized identification as described on 
p. 73 and feel that the identification of the model 
should be an integral and quite natural part of the 
process of formulating the model. 

That the models are closely connected to the 
assumption of a normal distribution is very obvious 
To claim that only the first two moments are con- 
sidered is in reality the same thing. In some cases 
this assumption does not seem appropriate. One 
point in case in example 3, where one could question 
whether the variable "Education" is normally 
distributed. 

A relevant question could be: Is the model choice 
based on the type of data at hand? Has it thus been 
considered to transform the data before the covari- 
ance matrix is computed? 

3. Finally the two examples: The first example 
are constructed data, where two of the models fit 
the same data. (The data is constructed in such a 
way that we have a complete fit.) In Table 1 is 
shown the covariance matrix between the amount 
of iron, copper, silver and gold found in the tombs 
after 37 of Nebuchadnezzar's generals. 
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Table 1. Covariances between the metal found in 37 
ancient tombs 

Variable Iron Copper Silver Gold 

I Iron 104.4 81.9 46.1 62.9 
2 Copper 81.9 109.8 47.6 65.0 
3 Silver 46.1 47.6 80.0 74.7 
4 Gold 62.9 65.0 74.7 127.2 

These data are fit by the model with two correlated 
latent variables p. 69 (P1 = 8.9, fl2 = 9.2, P3 - 7.4, 
A4=10.1, 01=02=03=04= 25.2, e = 0.7). The theory 
is here that the activities of war and peace take place 
at different times and require different-although 
correlated-talents. Since iron and cobber are 
usually found in weapons and silver and gold in 
coins or juwelry, variables 1 and 2 relate to war and 
variables 3 and 4 to peace. The data thus bears 
evidence that this theory is correct. 

But the data are also fitted by the longitudinal 
model p. 71 (fl2=1.03, fl3=0.56, fl,4=1.36, 01=02= 
03 = 04 = 25.2, co1 = 79.2, o2 = 84.6, c3= 54.8, o4=- 

102.0). Here one can theorize that a general goes 
through four phases: First a lowel rank officer, then 
a high ranking officer, then a business man and 
finally a influential person at court. The four types 
of metal seem to associate naturally to these four 
phases. Since the model fit the data, also this theory 
is confirmed by the data. If the two theories are 
alternative and the metal found is the evidence 
available, how should we then choose or judge 
between the two theories. 

The point I would like to make is that different 
models may fit the same set of data and statisticians 
would general tend to claim that they have verified 
or confirmed a theory if the derived statistical model 
fit the data collected to check the theory. 

The second example is given in Table 2. The table 
shows the empirical covariances between examina- 
tion average after high school and examination 
average after one and two years of study in econ- 
omy at the University of Copenhagen. The figures 
are based on a random sample of 27 students. 

For these data I have tried to fit the longitudinal 
simplex model of p. 71. Since we have 6 variances/ 

Table 2. Covariances between examination averages 
for 27 economy students 

Average 

Average High school 1st year 2nd year 

High school 0.792 0.600 0.137 
1st year 0.600 1.265 0.600 
2nd year 0.137 0.600 1.030 

covariances and 6 parameters in the model (as- 
suming 01 = 02 = 03) we can fit directly. We get, when 
the model is 

[(1+01 
fl2a1 (02+0 

fl2fl31 f3at2 co8+0- 

the following estimates 

f8 = 0.137/0.600 0.228 

(02 =0.600/0.228 = 2.631 
0 =1.265 - 2.631 = - 1.367!! 

Hence the estimates does not belong to the range of 
the parameters pace. 

The maximum likelihood estimates are un- 
doubtedly given by (although I did not check) 

0 
= = 0.792 

/2 = 0.600/0.792 = 0.758 

A2 = 1.265 
Cl3 = 1.030 

f3 = 0.600/1.265 = 0.474. 

Since these are real data I do not know what to 
do and how to estimate in, and, therefore, how to 
check my model. The example also raises the question 
on what to do when the likelihood function is 
maximizes (or equivalently some convenient distance 
measure is minimizes) at the boundary of the per- 
missible range of the parameters. 

Reference 

Andersen, E. B. (1980): Latent Structure Analysis. A Survey, 
Research Report. Department of Statistics University of 
Copenhagen. 

Harri Kiiveri (University of Western Australia) 

Most of my comments will be concerned with co- 
variance structures which arise from models with un- 
observed variables. 

1. The Lisrel model without means can be written 
as 

I . -. ? y- e 

i.e. U"Z =e 
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0,, 0- 

and Cov (e) = EI 

[0 1D 
-A (say). 

Assuming that B and A are nonsingular and 
denoting the covariance matrix of Z by E we get: 

E-1 _UA-1UT. 

If all the variables were observed and had a joint 
Gaussian distribution, it is not difficult to see that 
the structure on E-1 gives rise to the following fac- 
torization of the joint density. 

f(z) = g0(9)g1(x, 9)g2(n, 9)g3(Y, vj) 

which can be put into the form 

f(z) '= f()f1(x I Af 2(lI )fM3(Y j TI) 

where the terms on the right hand side are con- 
ditional densities. This will be abbreviated as 

f = (O(xIOnI (YIn) 

Depending on the structure in A and U further fac- 
torization is possible. For example, the model for 
study of stability of alienation with correlated 
"errors" has a structure which gives 

f = (0) (XI I O) (Xg2I10 (nl 10t (n2 I nl $) (YlY.3 1771 42) 

x (Y2Y41i 71772). 

Such factorizations can be described by means of 
graphs and rules given for reading off the resulting 
conditional independences (Kiiveri & Speed, 1980). 

There is also a connection with other conditional 
independence models for contingency tables and 
Gaussian data (Speed, 1978); Wermuth, 1976; 
Dempster, 1972). Viewing the Lisrel model in this 
light gives a means of extending the model to other 
types of data (i.e. discrete or mixtures of discrete and 
continuous). For example, the discrete version of a 
simple test score model for tests Xl, ..., Xp, (having 
levels ri, r2, ..., rv respectively) assumed to be meas- 
uring an underlying trait T might be specified as 

p 
P(XI = X1, ..., Xp = Xp, -r = t) = po(t rI AM( = Xi I t) 

i=1 

where T could be discrete or continuous. This type 
of model for discrete data has been discussed by 
Goodman (1973, 1974). 

2. The added complication of unobserved vari- 
ables could be handled using incomplete data theory 

(Sundberg, 1974; Dempster et al., 1977). The com- 
plete data would be 

Sly SYx 

S1 

] [Y] 

sgy SEx sg S 9 

if the means were included. Only Syy Sxy, Sx X, Y 
are observed. Function evaluations and derivative 
calculations can be done in a nice way using in- 
complete data theory and expressions for 2nd deriva- 
tives can also be given. The E-M algorithm (Demp- 
ster et al., 1977) although slow can be used to find 
a local maximum of the likelihood function of the 
observed data even if all the parameters are not 
identified. However it would be quicker to use this 
to produce initial values for some other algorithm. 

3. From the examples given by Professor Jore- 
skog it appears that the one to oneness of the 
mapping 0 -+ E(O) must be checked on a case by case 
basis or in a crude way numerically. It would be nice 
to have a more general procedure and perhaps the 
matrix calculus of (McDonald & Swaminathan, 
1973) along with incomplete data theory can be 
exploited in this direction. A numerical determina- 
tion of the rank of OE/a0 can determine a set of 
parameters which need to be fixed to obtain (local) 
identifiability (McDonald & Krane, 1979.) 

4. Finally I would like to touch on some theo- 
retical points. There do not seem to be any exist- 
ence or uniqueness results for the maximum likeli- 
hood estimates, and one wonders whether the special 
sort of incompleteness and structure could be used 
to produce some results in a curved exponential 
family context. 

It seems as if testing a model should be possible 
without arbitrarily fixing unidentified parameters, 
since any parameter in the equivalence class of the 
maximum point gives the same value of the likeli- 
hood. Also I am not clear on the effect of the par- 
ticular fixed values chosen on the relative magni- 
tudes of the parameters or the standard errors. 

In closing I would like to thank Professor J6reskog 
for his survey and particularly for his examples on 
the application of the theory to data. I like the trick 
used to estimate means in Lisrel and wonder what 
other "devious" means may be employed to fit 
seemingly "non-Lisrel" models. 
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Petter Laake (University of Oslo) 

1. First of all I want to thank Professor Jbreskog 
for his inspiring lectures on application and estima- 
tion in covariance structures. They certainly con- 
tained a lot of interesting and useful ideas. I have 
got my interest and experience in covariance struc- 
ture analysis from cooperation with social scientists, 
and my discussion is probably influenced by that. 

2. There can be no doubt that measurements in 
the social sciences may contain measurement errors. 
The statistical model ought to take this into con- 
sideration, especially, of course, when the para- 
meters of interest are related to the true variables. 
Models which relate every measurement with its 
true, latent, variable and an error term, and relate 
the latent variables in a structural form are extremely 
useful. This is for instance the case in the quasi- 
simplex models. Then, the interpretation of the 
results is easy since the units of measurement in 
the observed variable are the same as in the latent 
variable, and there is no question of validity. This is 
not necessarily the case in the more advanced co- 
variance structures. 

To be more specific I will comment on one of 
Professor Joreskog's examples, namely Example 3 
which is an application of the LISREL-model. The 
model specifies the relationship between latent vari- 
ables (socioeconomic status (SES') and alienation) 
and relates the latent variables and the measure- 
ments in a factor analysis model. The parameters 
of main interest are those of the relation between the 
latent variables, namely the parameters describing 
the influence of SES on alienation in 1967 and 1971 
and the parameter describing the influence of 
alienation 1967 on alienation 1971. Since all the 
relations are given explicitly the analysis seems to be 
confirmatory or in statistical terms that we want 
to estimate parameters of a given structural rela- 
tionship. Then, the social scientists will be interested 
in the estimated size of the parameters regardless of 
their statistical significance. This is so because the 
parameters are included in the model according to 
our interest in them and because the question of 
statistical significance may be a question of a 
sufficiently large sample size. To interpret the esti- 
mated size of the parameter we usually relate it to the 
scale of the variables and their distributions and not 
to the standard error of the estimate. But latent 
variables are in general not related to any scale. 
So how do we interpret some of the main results of 
Example 3, for instance that the coefficients for SES 
on alienation 1967 and 1971 are-0.575 and-0.227, 
respectively? One possibility is to make the scale of 
the latent variable equal to the one of a measurement 
by fixing one element of the factor loading matrix 
equal to 1. This solves the problem of identification, 
but the problem of interpretation is not fully solved 
since the latent variable still influences other measure- 
ments. Another possibility, which could be studied 
in more detail, is to use the factor model for estima- 
tion of factor scores (see for instance Lawley & 
Maxwell (1971, p. 106)). Then, the interpretation of 
the coefficients can be related to the empirical 
distribution of the factor scores. Further, it is pos- 
sible to relate the coefficients directly to the measure- 
ments through the factor model. 

Professor Joreskog's opinion on the application of 
covariance structure analysis seems to be that they 
most successfully have been applied to confirmatory 
analysis, but that they also can be used for explora- 
tory analysis (Joreskog, p. 75). I certainly agree with 
him that for instance the LISREL-model is useful 
when a well-established theory of the problem exists. 
This is so because we in some way must have de- 
monstrated the validity of the factor model, for 
instance by earlier use of the latent variables in 
similar context. If the validity fails, the analysis of 
the structural relationship among the latent vari- 
ables may be meaningless. On the other hand it is 
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indicated that LISREL may be used for exploratory 
analysis. This use of it may be doubtful. Let us say 
that the relationship among the latent variables is 
given, but for a given vector of measurements we 
are free to choose the factor model. It is well known 
that every orthogonally rotated factor loading 
matrices are statistically identical with regard to 
the model. The interpretation of the factors and the 
coefficients of the main relationship will, however, 
depend upon the chosen factor loading matrix. This 
can make it difficult for the social scientist to get 
an understanding of the structure of the measure- 
ments. Further, the factor model itself will not de- 
monstrate the validity of the latent variables re- 
sulting from the exploratory analysis. To give a 
latent variable a name is, of course, not necessarily 
enough to make it useful. 

Social scientists often deal with complex social 
theories and try to build complex statistical models. 
I believe that it not necessarily will give us an un- 
interesting or unrealistic analysis of a problem even 
if we disregard structural relationships which are 
known to exist. This may be especially relevant in an 
exploratory analysis, when the aim is to get an 
understanding of the structure of a given set of 
measurements. Interesting information that is easy 
to interpret may, for instance, be gained if multi- 
variate regression analysis, which disregards measure- 
ment errors, is considered. If we go back to Example 3, 
it will be interesting to know if conclusions similar 
to those of J6reskog are gained if a multivariate 
regression model is studied instead of the LISREL- 
model? 

3. Example: Predicting the labour force in Norway 
(Helgeland, 1980). Next I will give an example of 
the use of a covariance structured model related to 
the simplex model which is being studied at the 
Central Bureau of Statistics of Norway. To be 
specific let rt be the unobservable labour force at 
time t. In the Bureau rt has to be estimated by a 
sample survey. Let therefore 

Yt " t + St, 

where et is the sampling error, be the estimated 
labour force. Var et can be found using the design 
of the sample survey. We now assume that {rt} is 
a ARMA-process 

P a 

77t Efljt_-i+ ejat-j, 

with a. = 1 and at's independent. The observations 
are the estimated labour force Yi, Y2, ..., YT. Since the 
units of measurement in the latent variable X is the 

same as in the observed variable y, the interpretation 
is straightforward. The aim of the study is not only 
estimate the cx's and ,B's, but to predict 

E11lT I Yl1 Y2, * t-, YT} - 

This is actually a LISREL-specified model, and 
numerical methods similar to those described by 
Joreskog can be used for estimation. The asymptotic 
theory does not carry over, however, since no repli- 
cations are made at time t. It is easy to imagine that 
models like this may be relevant in Central Bureaus 
of Statistics. 

4. I have now a few more technical comments on 
Joreskog's lectures. An important problem for the 
applicability of the LISREL specification is the 
efficiency of the numerical technique for maximum 
likelihood estimation of the parameters. It is well 
known that the efficiency depends upon the start 
value for iteration, but we may never know if we 
actually have reached a global maximum of the likeli- 
hood function. It is easy to imagine situations where 
this may be difficult, especially when the sample sizes 
are small and multiple solutions to the likelihood 
equations exist. In situations like these I think it may 
be a good idea to try different start values for itera- 
tion and hope for every iteration to give the same 
solution. 

Another problem is the one of restricted para- 
meter estimation. Some parameters of the covariance 
structure are known to be greater or equal to zero. 
A numerical technique can in general produce an 
iterate which lies outside the constraint space. 
When for instance a variance estimate tends to zero 
the approach is usually to fix the variance at a given 
level during the following iterations. This may be a 
questionable procedure since it may cause the 
procedure to converge to a point that is not even a 
local maximum (Bard, 1974, p. 151). Thus, the 
problem is whether it is possible to consider nu- 
merical techniques that take the constraint into con- 
sideration and still iterate efficiently. 

5. There exist alternatives for parameter esti- 
mations in the models. The most commonly used 
seem to be maximum likelihood estimation (ML) 
and generalized least squares estimation (GLS). I 
certainly agree with Professor J6reskog in that GLS 
is computationally easier and thus probably more 
attractive from a practical point of view. They both 
produce asymptotically efficient estimates. Both 
Joreskog & Goldberger (1972) and later Browne 
(1974) report numerical results that could indicate 
that there is a bias in the GLS-estimates compared to 
the ML-estimates. This could indicate that GLS- 
estimates really are biased in small samples or that 
they may have larger variances. To make the compu- 
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tationally more attractive GLS-method even more 
attractive to the user I think their small samples 
properties ought to be studied in some more de- 
tail. 

6. The choice of a model is always a difficult 
problem. In a confirmatory analysis the model fitting 
is to me of minor interest and the only relevant 
testing seems to be the one of testing for correlation 
in residuals to detect any possible shortcoming of 
the model. In an exploratory analysis the model 
fitting is important and controversial. Professor 
Joreskog uses the likelihood ratio test in his model 
choice. The properties of the test may be question- 
able. The test is likely, for example, even in large 
samples, to be sensitive to departures from norma- 
lity. This is in my opinion not necessarily an im- 
portant objection since the teststatistic is mainly used 
to study the drop in fit when alternative models 
are introduced. I think, however, there may be some 
objections to it from a practical point of view. 

Firstly, a straightforward use of the likelihood 
ratio test gives preference to models with many para- 
meters. A model with many parameters will give a 
nice fit, which may be of importance to the sta- 
tistician, but not necessarily to the social scientist 
who then will get a more complex structure to 
explain. Thus, I think, some kind of penalty 
function to keep the number of parameters at a 
low level could be introduced in addition to the 
maximum likelihood function. This is done by for 
instance Hannan & Quinn (1979) and Schwarz 
(1978), mainly for application in time series analysis. 
The procedures can, however, be used for any model 
choice when maximum likelihood estimation is used. 

Secondly, the likelihood ratio test is not dia- 
gnostic which may be an important drawback to the 
use of it. When we reject a model we usually want 
to know where it is misspecified. In Example 3 we 
will, for instance, probably observe that the ele- 
ments of (S -?) at the position of the covariances 
of Yi, ys and Y2, y4 are large. Thus, without predis- 
tinguishing between the models A and B, the analysis 
of the residuals will guide us to respecify to model B. 
To conclude, I think other test statistic which may 
be based on the residuals could contain more infor- 
mation on why models are rejected. 

7. Finally, I will once more thank Professor Jore- 
skog for his fine overview. In my daily work I find 
it extremely useful that Professor Jioreskog has 
cleared up concepts which were in actual use in 
sociology and psychology and expressed them in a 
language natural to the statisticians. Together with 
his work on estimation methods, Professor Joreskog 
has certainly made the covariance structured models 
valuable for statistical analysis in the social sci- 
ences. 
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D. R. Cox (Imperial College, London) 

I congratulate Professor Joreskog both on this 
impressively lucid and comprehensive paper and 
also on the important body of work which it sum- 
marizes. 

Three questions follow. Have Bartlett correction 
factors been evaluated for any of the likelihood 
ratio tests involved? Such corrections may appreci- 
ably improve the large-scale chisquared approxima- 
tions. Can marginal likelihoods be found for any 
of the problems with structure in the means as well 
as in the covariances? Has Professor Joreskog sug- 
gestions on how to examine whether information on 
dependency is adequately summarized in a covariance 
matrix? The suggestion of Cox & Small (1978) for 
finding two derived directions corresponding to 
maximum curvature seems reasonable although its 
implementation is cumbersome computationally. 

If the full data for Example 1 became available 
the possibility would arise of an analysis based on 
standard factorial contrasts and their interaction 
with subjects. 

Reference 

Cox, D. R. & Small, N. J. H. (1978). Testing multivariate 
normality. Biometrika 65, 263-272. 

Tore Schweder (University of Troms0) 

The following comment is not ment to reduce the 
value of the very clear and informative exposition 
Joreskog has given of the analysis of covariance 
structure. My intention is actually not to focus on 
the analysis of covariance structure as such, but 
rather to fix the attention for a while on the diffi- 
cult concept of "causality" which you have touched 
upon repeatedly. 
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not disease disease 

not menopause 

menopause |zii< 
Fig. I 

The causal relationships which are modelled in 
path analysis may be called static as opposed to 
dynamic causal relationships. The causal variables 
in your models have for each individual a fixed 
value. The variation is over individuals, not also 
over time. And your concern is in some sense to 
estimate the correlation between the cause variable 
and the effect variable. Typical such static causal 
variables are sex and intelligense, the latter being a 
latent variable. 

This static concept of causality is quite limited. 
In ordinary language, causality is often used in a 
more dynamic sense. And also in a sense more open 
for human action. The type of concept I have in 
mind is exemplified in the statement "smoking 
does cause lung cancer", rephrased "the probability 
of getting lung cancer increases when smoking is 
increased". It is hard to change your own sex or 
intelligence, but your level of smoking should be a 
matter of choice. 

Such a dynamic concept of causality must be de- 
fined in the framework of stochastic processes. This 
has been done by Aalen et al. (1979) in their study 
of the relationship between menopause and the skin 
disease pustulosis planetaris. They modeled causa- 
lity in terms of the transition intensities in the two- 
dimensional stochastic process with state space indi- 
cated in Fig. 1. 

Menopause being a cause of the disease is defined 
as the transition intensity of getting the disease 
being dependent on having had menopause or not. 

As opposed to correlation, the concept of transi- 
tion intensity-or drift in a continuous state space- 
is defined in a time context, and is a non-sym- 
metric concept. When the situation may be modelled 
as a multivariate stochastic process-or rather one 
separate multivariate stochastic process for each 
individual of the population, it may be possible to 
formulate various hypothesis of causation in terms 
of the component transition intensities. In Schweder 
(1970) the concept of local dependence was in- 
troduced for this purpose. Statistical methodology 
has been developed by Aalen et al. (1979) for the 
two-dimensional situation mentioned above, and 
may be further developed along those lines. 

As mentioned above, my intention with this com- 
ment has been to focus attention on a conceptual 
framework and a statistical methodology for "causal 
analysis" which in many situations-I believe, is 
more appropriate than path analysis or other 
methods based on correlation. 

References 
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Reply by K. G. Joreskog 

I want to thank all the discussants for their con- 
structive comments on my paper. The discussants 
have raised several issues which are important in 
the practical applications of covariance structure 
analysis and I will therefore state my position on 
these issues here. 

Model specification and purpose of analysis. The 
model should be based on a substantive theory or 
hypothesis, on a given design for known experi- 
mental conditions or on known results from previ- 
ous studies. The model is supposed to explain or 
account for the jointly dependent variables and their 
interrelationships. The purpose of the analysis is 
to test the validity and adequacy of the model and 
to estimate its parameters. If the model is misspeci- 
fied the analysis should indicate this and suggest 
how the model should be modified. 

Identification. Before the model is estimated by 
means of data the identification of the model must be 
examined. Although the computer program LISREL 
IV can estimate models which are not identified, I 
recommend to deal with non-identified models by 
adding appropriate conditions so as to make all the 
parameters identified. In interpreting the results of 
an analysis it is necessary to have a complete 
understanding of the identification status of each 
parameter of the model. Since no general and practi- 
cally useful necessary and sufficient conditions for 
identification are available for the general LISREL 
model, I suggest that the identification problem be 
studied on a case by case basis by examining the 
equations (11). General necessary and sufficient con- 
ditions for identification has been given for some 
special classes of LISREL models, namely for factor 
analysis models by Howe (1955), Dunn (1973), 
Jennrich (1978), see also Jbreskog & Sorbom (1979) 
pp. 40-43, for simultaneous structural equation 
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models, see e.g. Goldberger (1964) pp. 306-318 and 
for structural equation models with measurement 
errors by Geraci (1976). These conditions may be 
applied to the measurement model part (23) and (24) 
and to the structural equation model part (22) 
separately. It is a good idea to check these condi- 
tions. 

For many users of LISREL IV the identification 
problem may be too difficult to resolve. There may 
be a tendency to run the model even though the 
identification of it is unclear. Therefore it is a good 
thing that the computer program checks the positive 
definiteness of the information matrix. One should 
be aware, however, that this check is not hundred 
percent reliable although experience indicates that 
it is nearly so. The check depends on the estimated 
point in the parameter space at which the informa- 
tion matrix is evaluated and on the numerical 
accuracy by which the information matrix is in- 
verted. 

One and the same model, whether it is completely 
identified or not, may have two or more equivalent 
parametrizations even within the class of LISREL 
models. Which parametrization to use is a matter 
of preference and is related to the interpretation of 
the result. One example of this is Professor Ander- 
sen's first example and it is instructive to consider 
this in some detail. As demonstrated elsewhere 
(J6reskog, 1974, p. 52) the two models (5) and (9) are 
equivalent when the number of observed variables is 
four. To see this let me write (5) with A's instead of 
P's and sp's instead of 0's: 

A1 + VPl 

AZ113 e 223 e A3++ /3 

_ A 1A14 e0 A 4 e- '43 A4 4 + V,4_ 

This model is identified and has nine independent 
parameters, i.e., the model has one degree of free- 
dom. The parameter values Al = 8.9, A2= 9.2, A3 = 7.4, 
A4 = 10.4, V. = V2 = V.3 = V4 = 25.2, e = 0.7 given by 
Professor Andersen are therefore unique. 

As explained in the paper, model (9) is not 
identified. The three parameters P2, Co, and 01 are 
only determined by two equations: 

a11 =(A) + 01 

a21- 2 COi 

and the two parameters co, and 0, are only deter- 
mined by the single equation: 

a44 = -4 + 04. 

All the other parameters are uniquely identified. 
The parameter values given by Professor Andersen 
are to some extent arbitrary. For example the fol- 
lowing set of parameter values fl2 = 1.00, f3l = 0.56, 

4= 1.36, 01=22.5, 02=03 =25.2, 04 = 10.0, c1 = 81.9, 
(02= 84.6, c(3 = 54.8, c(4 = 117.2 will also reproduce 
identically the same E. 

That the two models are equivalent may be seen 
for example by fixing /32 at one and absorbing 0, 
into C04. This gives the covariance structure 

(01+011 

Co[ C4)2 + 02 

f/33(01 /33(02 (03+03 

-3 334(01 /33/34(02 /3403 (04- 

Then it may be easily verified that there is a one- 
two-one relation between the two sets of para- 
meters, assuming, of course, that the variances coi, 
i=1, 2, 3, 4, are positive: 

/3=A23e/22, /4 =A4/I(3 01=Ab, C2 2, (03= 3, (04= 

)24 + V4, 01 = A2 + At1- 122, 02 = V2, 03 = 3 

and 

2A l=(01/V2, )2 = V2, 3 = 4/3, 24 =f4j(03, 

Lo = sgn (f3) (Ct)2 1 fl3 1 /Ct)SY, I =t) V1+0 10s2 = 02, 

V3 = 03, /4 = C04 44(03 

It should be noted that in both models the single 
overidentifying constraint is that a41/a31 =a4&32. 

Which of the two parametrizations is to be pre- 
ferred? If one is interested in the correlation e be- 
tween two latent variables then model 1 is the one. 
On the other hand, if one is interested in the auto- 
gregression coefficients /3l and /34 then model 2 is 
the one. The reason why these two seemingly dif- 
ferent models are equivalent in this case is that the 
quasi-Markov-simplex model is not really meaning- 
ful until one has at least five time points. Since there 
is an indeterminacy associated with the first and the 
last variable one must have at least three variables 
in between these to be able to test the first-order 
Markov property. 

Checking the data. In addition to the structural 
assumptions imposed by the model specification the 
analysis makes the ususal assumptions of linearity 
and additivity, independence of observtions and 
homoskedasticity of error terms. Another crucial 
question is whether second-order information is 
sufficient. Usually one needs to assume that the 
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observed variables are approximately multinormal. 
There is one important exception to this, however, 
namely when the x-variables are fixed variables. 
Then these variables may be any variables including 
dummy categorical variables. We are then only 
concerned with conditional distribution of y for 
given x which should be approximately multinormal. 
Before estimating the model, the assumption of 
multinormality should be assessed, including a 
check on outliers. If the observed distributions devi- 
ate far from the multinormal I recommend that the 
variables be transformed and/or that robustified 
estimates of variances and covariances be used. For 
methods of assessing multinormality and computing 
robust estimates see e.g. Gnanadesikan (1977). 

Checking the model. The first and most obvious 
test of the model is whether the parameter estimates 
are reasonable. If some parameters fall outside the 
admissible range, either the model is fundamentally 
wrong or the data is not informative enough. An 
example of this is Professor Andersen's second 
example and I shall consider this below. 

The fit of the model may be assessed by various 
means. One is the use of the overall X2-measure and 
its associated degrees of freedom and probability 
level. However this does not indicate which part 
of the model is wrong. A more detailed assessment 
of fit can be obtained by an inspection of the nor- 
malized residual covariances. The normalized re- 
sidual covariance is si - 6i divided by the square 
root of its asymptotic variance which is estimated as 
(a6ii + 6di)IN. A Q-plot of these residuals gives a 
very effective summary. Residuals which are larger 
than two in magnitude are indicative of a specifica- 
tion error in the model and the corresponding 
indices i and j usually give a hint as to where this 
error is. 

Another alternative is to look at the first-order 
derivatives of the fitting function with respect to 
the fixed and constrained parameters, these being 
the Lagrangian multipliers corresponding to the 
constraints of the model, see Sorbom (1975). One 
problem with this approach, however, is that these 
derivatives depend on the magnitude of the data 
and the parameter values. In principle, one must 
assess each derivative in relation to its standard 
error. But the computation of these standard er- 
rors requires the inversion of a matrix of the order 
of all elements in all parameter matrices and this is 
obviously not feasible in most cases. A reasonable 
compromise may be to consider the ratio of the 
first-order derivative to the corresponding second- 
order derivative. The fixed parameter corresponding 
to the largest such index is probably the one which 
when relaxed will improve fit maximally. I recom- 
mend this procedure only when relaxing this para- 

meter makes sense from a substantive point of 
view and when the values of this parameter can be 
clearly interpreted. 

Multiple solutions and non-admissible solutions. It 
may happen that there are several local minima of 
the fitting function. The only way to avoid this is 
to have a model which is appropriate for the data 
and a large random sample. Experience indicates, 
however, that multiple solution seldom occur, and 
when they do, it is usually with solutions on the 
boundary of or outside the admissible parameter 
space, as in Professor Andersen's second example 
The computer program does not constrain variances 
to be positive, correlations to be less than one in mag- 
nitude etc. The only constraint imposed by the pro- 
gram is that the matrix E reproduced by the model 
is positive definite. Apart from this there is nothing 
that prevents the program from going outside the 
admissible parameter space. Although constrained 
estimation would be possible, the minimization 
algorithm for this would be much more time-con- 
suming even in the case when the solution is admis- 
sible. In my opinion, this would not be worth while. 
If the solution is in the interior of the parameter 
space one will just spend more computer time to 
find it. If, on the other hand, the solution is inad- 
missible, the current program will find the solution 
outside the parameter space whereas a program 
which uses constrained estimation will find the solu- 
tion on the boundary of the parameter space. In both 
cases the conclusion will be that the model is wrong 
or that the sample size is too small. 

Using LISREL it is often possible, though not 
always, to use various tricks to force the program 
to stay within the admissible parameter space. Let 
me demonstrate this using Professor Andersen's 
second example. This covariance structure is gene- 
rated by the following simplex model 

Yt =7t +st, t = 1, 2, 3 (1) 

7t =fltnt-t + Ct, t= 2, 3 (2) 

with Var(rt)=ct and Var(et)=0, t=1, 2, 3. Let 
Vt = Var (Ct). Then there is a one-to-one correspond- 
ence between (1, ?2, v)3) and (COb, C2, Ct)3) (Vl = (01, 

VP2 = (02 - 2 = l30)2) so I will use ipt instead 
of ct, t + 1, 2, 3. The trick is to write (1) and (2) for 
LISREL as 

/Y1 /1 0 0 1 0 0 N2 /0 

Ys e,0 1 0 0 1 0) I h + () 

\y8\0 0 1 0 0 1/ \0I 
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/1 0 0 ? ? ? \ /1\ 

f2 1 0 0 00 12 

0 - f3 1 0 0 0 778 

0 O 0 1 0 0 St 
0 0 0 0 1 0 E2 

\0 0 0 0 0 1 / 3 

0 0 0 0 0 0) 

0 O 0 0 0 O 

corresponding to (27) with Cov ($) =I. LISREL can 
then be used to estimate P2, fl3, 1Vi, V1 /v, 1 and j/. 
The square roots may actually come out negative or 
zero but, when squared, these yield maximum likeli- 
hood estimates of VY V2, V.,3 and 0. The maximum 
likelihood estimates of Cwt are then computed as 

1? =1a, a2 =9fl2 +112 and w3 = 2+ t3. The actual 
values come out as (O =0.792, c 2= 1.26, (3 =1.03, 
fl2=0.758, 9.3=0.476, 0=0.00 so that Professor 
Andersen's conjecture is indeed correct. 

Causality. I agree with Dr Schweder that causality 
cannot be inferred from just any correlational study. 
On the other hand, I would not go so far as to say 
that causal effects can only be demonstrated by 
means of carefully controlled experiments. In the 
social sciences, notably in econometrics, causal in- 
ference is obtained by means of tightly specified 
models. In most cases these models are dynamic and 
estimated from time-series or cross-sectional data. 
Such models can also be estimated by LISREL. For 
an example where both time-series and cross-sec- 
tional data are used, see Joreskog (1978). 

Other models and methods. As pointed our by Dr 
Kiiveri there are alternative model formulations 
which are both more general and more compact 
in the sense of requiring fewer parameter matrices. 
While such an approach is mathematically elegant 
and makes it possible to include models for cate- 
gorical variables in the same framework, I think, the 
computational algorithm for such an approach will 
be more extensive since it will have to deal with very 
large matrices. The E-M algorithm provides a mean 
for iterating in very simple steps but my experience 
with the E-M algorithm for factor analysis estima- 
tion is that it requires an extremely large number of 
iterations to converge. 
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