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Weather Forecasting for Weather Derivatives 
Sean D. Campbell and Francis X. Diebold 

We take a simple time series approach to modeling and forecasting daily average temperature in U.S. cities, and we inquire systematically 
as to whether it may prove useful from the vantage point of participants in the weather derivatives market. The answer is, perhaps surpris 

ingly, yes. Time series modeling reveals conditional mean dynamics and, crucially, strong conditional variance dynamics in daily average 

temperature, and it reveals sharp differences between the distribution of temperature and the distribution of temperature surprises. As we 

argue, it also holds promise for producing the long-horizon predictive densities crucial for pricing weather derivatives, so that additional 

inquiry into time series weather forecasting methods will likely prove useful in weather derivatives contexts. 

KEY WORDS: Financial derivatives; Hedging; Insurance; Risk management; Seasonally; Temperature. 

1. INTRODUCTION 

Weather derivatives are a fascinating new type of security, 

making prespecified payouts if prespecified weather events oc 
cur. The market has grown rapidly. In 1997, the market for 

weather derivatives was nonexistent. In 1998, the market was 

estimated at $500 million, but it was still illiquid, with large 
spreads and limited secondary market activity. More recently, 

the market has grown to more than $5 billion, with better liq 
uidity. Outlets such as the Weather Risk (e.g., 1998, 2000) sup 
plements to Risk Magazine have chronicled the development. 

Weather derivative instruments include weather swaps, op 

tions, and option collars (see, e.g., Geman 1999; Dischel 2002 
for definitions and descriptions). The payoffs of these instru 

ments may be linked to various "underlying" weather-related 

variables, including heating degree days, cooling degree days, 
growing degree days, average temperature, maximum tem 

perature, minimum temperature, precipitation (rainfall, snow 

fall), humidity, and sunshine, among others?even the National 

Weather Service's temperature forecast for the coming week. 

Most trading is over the counter, but exchange-based trading is 

gaining momentum. For example, temperature-related deriva 

tives, are traded on the Chicago Mercantile Exchange (CME) 
for major U.S. cities. 

A number of interesting considerations make weather deriva 

tives different from "standard" derivatives. First, the underlying 
object (weather) is not traded in a spot market. Second, unlike 
financial derivatives, which are useful for price hedging but not 
for quantity hedging, weather derivatives are useful for quantity 
hedging but not necessarily for price hedging (although the two 
are obviously related). That is, weather derivative products pro 

vide protection against weather-related changes in quantities, 

complementing extensive commodity price risk management 

tools already available through futures. Third, although liquid 
ity in weather derivative markets has improved, it will likely 
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never be as good as in traditional commodity markets, because 

weather is by its nature a location-specific and nonstandardized 

commodity, unlike, say, a specific grade of crude oil. 

Interestingly, weather derivatives are also different from in 

surance. First, there is no need to file a claim or prove damages. 

Second, there is little moral hazard. Third, unlike insurance, 

weather derivatives allow one to hedge against comparatively 

good weather in other locations, which may be bad for local 
business (e.g., a bumper crop of California oranges may lower 

the prices received by Florida growers). 
Weather forecasting is crucial to both the demand and the 

supply sides of the weather derivatives market. Consider first 
the demand side; any firm exposed to weather risk on either 
the output (revenue) side or the input (cost) side is a candi 
date for productive use of weather derivatives. This includes 
obvious players, such as energy companies, utilities, and insur 

ance companies, and less obvious players, such as ski resorts, 

grain millers, cities facing snow-removal costs, consumers who 

want fixed heating and air-conditioning bills, and firms seek 

ing to avoid financial writedowns due to weather-driven poor 

performance. The mere fact that such agents face weather fluc 

tuations, however, does not ensure a large hedging demand, be 

cause even very large weather fluctuations would create little 

weather risk if they were highly predictable. Weather risk, then, 
is about the w/ipredictable component of weather fluctuations? 

"weather surprises," or "weather noise." To assess the potential 
for hedging against weather surprises, and to formulate the ap 

propriate hedging strategies, one needs to determine how much 

weather noise exists for weather derivatives to eliminate. This 

requires a weather model. What does weather noise look like 

over space and time? What is its distribution? Answering such 

questions requires statistical weather modeling and forecasting, 
the topic of this article. 

Now consider the supply side: sellers of weather derivatives 
who want to price them, arbitrageurs who want to exploit situ 

ations of apparent mispricing, and so on. How should weather 

derivatives be priced? It seems clear that standard approaches to 

arbitrage-free pricing (e.g., Black and Scholes 1973) are inap 
plicable in weather derivative contexts. In particular, there is in 

general no way to construct a portfolio of financial assets that 

replicates the payoff of a weather derivative. Hence, the only 

way to price options reliably is by using forecasts of the under 

lying weather variable, in conjunction with a utility function, 
as argued by, for example, Davis (2001). This again raises the 
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crucial issue of how to construct good weather forecasts (not 

only point forecasts, but also?and crucially?complete den 

sity forecasts), potentially at horizons much longer than those 

commonly emphasized by meteorologists. Hence, the supply 
side questions, like the demand-side questions, are intimately 
related to weather modeling and forecasting. 

Curiously, however, it seems that little thought has been 

given to the crucial question of how best to approach the 
weather modeling and forecasting that underlies weather deriv 

ative demand and supply. The meteorological weather forecast 

ing literature focuses primarily on short-horizon point forecasts 

produced from structural physical models of atmospheric con 

ditions (see, e.g., the overview in Tribia 1997). Although such 
an approach is best for helping one decide how warmly to dress 

tomorrow, it is not at all obvious that it is best for producing 
the long-horizon density forecasts relevant for weather deriva 

tives. In particular, successful forecasting does not necessarily 

require a structural model; over the last 30 years statisticians 

and econometricians have made great strides in using nonstruc 

tural models of time series trend, seasonal, and cyclical compo 
nents to produce good forecasts, including long-horizon density 
forecasts (for a broad overview, see Diebold 2004). 

In this article, then, motivated by considerations related to 

the weather derivatives market, we take a nonstructural time 

series approach to temperature modeling and forecasting, sys 

tematically asking whether it proves useful. We are not the 

first to adopt a time series approach, although the literature 
is sparse and inadequate for our purposes. The analyses of 

Harvey (1989), Hyndman and Grunwald (2000), Milionis and 
Davies (1994), Visser and Molenaar (1995), Jones (1996), and 

Pozo, Esteban-Parra, Rodrigo, and Castro-Diez (1998) suggest 

its value, for example, but they do not address the intrayear 

temperature forecasting relevant to our concerns. Seater (1993) 

studied long-run temperature trend, but little else. Contempora 
neous and independent work by Cao and Wei (2001) and Torro, 
Meneu, and Valor (2001) considered time series models of aver 

age temperature, but their models are more restrictive and their 

analyses more limited. 

We contribute by providing insight into both conditional 
mean dynamics and conditional variance dynamics of daily av 

erage temperature, as relevant for weather derivatives. Strong 
conditional variance dynamics are a central part of the story. 

We also highlight the differences between the distributions of 
weather and weather innovations. Finally, we evaluate the per 

formance of time series point and density forecasts as relevant 

for weather derivatives. The results are mixed but ultimately 

encouraging, and they point toward directions that may yield 
future forecasting improvements. 

We proceed as follows. In Section 2 we discuss our data and 
our focus on modeling and forecasting daily average tempera 

ture, and we report the results of time series modeling. In Sec 

tion 3 we report the results of out-of-sample point and density 

forecasting exercises. In Section 4 we offer concluding remarks 

and highlight some pressing directions for future research. 

2. TIME SERIES WEATHER DATA AND MODELING 

Here we discuss our choice of weather data and its col 

lection. We are interested in daily average temperature (T), 

which is widely reported and followed. Moreover, the heat 

ing degree days (HDDs) and cooling degree days (CDDs) 
on which weather derivatives are commonly written are sim 

ple transformations of daily average temperature. We directly 
model and forecast daily average temperature, measured in 

degrees Fahrenheit, for each of four measurement stations 

(Atlanta, Chicago, Las Vegas and Philadelphia) for 1/1/60 

through 11/05/01, resulting in 15,285 observations per mea 
surement station. Each of the cities is one of the 10 for which 

temperature-related weather derivatives are traded at the CME. 

In earlier and longer versions of this article (Campbell and 
Diebold 2002, 2003), we report results for all 10 cities, which 
are qualitatively identical. We obtained the data from Earth 
Satellite (EarthSat) corporation; they are precisely those used 
to settle temperature-related weather derivative products traded 

on the CME. The primary underlying data source is the Na 
tional Climactic Data Center (NCDC), a division of the Na 
tional Oc?anographie and Atmospheric Administration. Each 
of the measurement stations supplies its data to the NCDC, and 
those data are in turn collected by EarthSat. 

Before proceeding to detailed modeling and forecasting re 

sults, it is useful to get an overall feel for the daily average 
temperature data. Figure 1 plots the daily average tempera 
ture series for the last 5 years of the sample. The time se 

ries plots reveal strong and unsurprising seasonality in average 

temperature; in each city, the daily average temperature moves 

repeatedly and regularly through periods of high temperature 
(summer) and low temperature (winter). Importantly, however, 

the seasonal fluctuations differ noticeably across cities in terms 

of both amplitude and detail of pattern. 
Figure 2 shows how the seasonality in daily average tempera 

ture manifests itself in unconditional temperature densities. The 
densities are either bimodal or nearly so, with peaks character 

ized by cool and warm temperatures. Also, with the exception 
of Las Vegas, each density is negatively skewed. The distribu 
tional results are in line with those of von Storch and Zwiers 

(1999), who noted that although daily average temperature of 

Las Vegas Philadelphia 

Figure 1. Time Series Plots, Daily Average Temperature. Each panel displays a time series plot of daily average temperature, 1996-2001. 
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Atlanta Chicago LasVegas Philadelphia 

Figure 2. Estimated Unconditional Distributions, Daily Average Temperature. Each panel displays a kernel density estimate of the unconditional 

distribution of daily average temperature, 1960-2001. In each case we use the Epanechnikov kernel and select the bandwidth using Silverman's 

rule, h = .9&N~-2. 

ten appears Gaussian if studied over sufficiently long times in 
the troposphere, daily average surface temperatures may have 

different distributions, and with Neese (1994), who documented 
skewness and bimodality in daily maximum temperatures. 

The discussion thus far suggests that a seasonal component 

will be important in any time series model fit to daily average 
temperature, because average temperature displays pronounced 

seasonal variation, with the seasonal patterns differing notice 

ably across cities. We use a low-ordered Fourier series to model 

this seasonality, the benefits of which are twofold. First, it pro 
duces a smooth seasonal pattern, which accords with the ba 

sic intuition that the progression through different seasons is 

gradual rather than discontinuous. Second, it promotes parsi 

mony, which enhances numerical stability in estimation. Such 

considerations are of relevance given the rather large size of 

our dataset (roughly 15,000 daily observations for each of four 

cities) and the numerical optimization that we subsequently per 
form. 

One naturally suspects that nonseasonal factors may also be 

operative in the dynamics of daily average temperature. One 

such factor is trend, which may be relevant but is likely minor, 

given the short 40 year span of our data. We therefore simply 
allow for a simple low-ordered polynomial deterministic trend. 

Another such factor is cycle, by which we mean any sort of per 

sistent covariance stationary dynamics apart from seasonality 

and trend. We capture cyclical dynamics using autoregressive 

lags. 

The discussion thus far has focused on conditional mean 

dynamics, with contributions coming from trend, seasonal, 

and cyclical components. We also allow for conditional vari 

ance (volatility) dynamics, with contributions coming from 
both seasonal and cyclical components. We approximate the 
seasonal volatility component using a Fourier series, and we 

approximate the cyclical volatility component using a gener 

alized autoregressive conditional heteroscedasticity (GARCH) 

process (Engle 1982; Bollerslev 1986). 

Assembling the various pieces, we estimate the following 
daily average temperature model for each of our four cities: 

L 

Tt = Trend t + Seasonal + Y^ pt-iTt-i + crter, (1) 
l=\ 

where 

M 

Trendt=^?mf\ (la) 
m=0 

365, 

(lb) 

d(t)X\ 

Seasonal = 
2_. ( ?cp cos 

( 2np- } + gs^ sin 
( Inp 

p=\ 

R S 

+ 
J2ar(?t-rSt-r)2 

+ 
^jM,-s, (lc) 

r=l 5=1 

?r-iid(0, 1), (ld) 

and ?/(?) is a repeating step function that cycles through 
1,..., 365 (as we drop February 29 in all leap years). In all that 

follows, we set L = 25, M = 1, P = 3, Q = 3, R = 1, and S = 1, 
which both the Akaike and Schwarz information criteria indi 
cate are more than adequate for each city. Maintaining the rather 

large value of L = 25 costs little given the large number of avail 
able degrees of freedom, and it helps capture long-memory 

dynamics, if present, as suggested by results such as those 

of Bloomfield (1992). Following Bollerslev and Wooldridge 
(1992), we consistently estimate this regression model with 

GARCH disturbances by Gaussian quasi-maximum likelihood. 
Now let us discuss the estimation results, starting with the 

conditional-mean model [(1), (la), and (lb)]. First, and per 
haps surprisingly, most cities display a statistically significant 
trend in daily average temperature. In most cases, the trend is 

much larger than the increase in average global temperature 
over the same period. For example, the results indicate that the 

daily average temperature in Atlanta has increased by 3?F in 
the last 40 years. Such large trend increases are likely a conse 

quence of development and air pollution that increased urban 

temperatures in general, and urban airport temperatures in par 

ticular, where most of the U.S. recording stations are located, 

a phenomenon often dubbed the "heat island effect." Second, 

the conditional mean dynamics display both statistically sig 
nificant and economically important seasonality. Third, condi 

tional mean dynamics also display strong cyclical persistence. 
The estimated autoregressions display an interesting root pat 

tern, common across all four cities, regardless of location. The 

dominant root is large and real, around .85; the second and 

third roots are a complex conjugate pair with moderate mod 

ulus, around .3; and all subsequent roots are much smaller in 

modulus. 

Figure 3 shows kernel estimates of residual densities. Four 
features emerge. First, average temperature residuals are much 

less variable than average temperature itself; that is, weather 
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Atlanta Chicago LasVegas Philadelphia 

Figure 3. Estimated Unconditional Distribution, of Residuals, Daily Average Temperature. Each panel displays a kernel density estimate of 

the distribution of the residuals from our daily average temperature model, Tt 
- 

Trendt 
- 

Seasonalt 
- 

Y^?iP?Tt-?- In each case we use the 

Epanechnikov kernel and select the bandwidth using Silver man's rule, h = .9oN~-2. 

surprises are much less variable than the weather itself, with 

residual standard deviations only one-third or so of the average 

temperature standard deviations. Second, again as expected, all 

residual densities are unimodal as opposed to bimodal, with 
contrast to the unconditional densities examined earlier, due 

to the model's success in capturing seasonal highs and lows. 

Third, the spreads of the residual densities vary noticeably 
across cities, indicating that weather risk is much greater in 
some cities than in others. Fourth, all of the residual densi 

ties have only moderate negative skewness and moderate excess 

kurtosis; the average residual skewness and kurtosis coefficients 

are-.36 and 4.10. 

All told, the conditional mean model [(1), (la), and (lb)] 
fits quite well, with R2 typically above 90%. Figure 4 shows 
model residuals (cjtst) over the last 5 years of the estimation 

sample, which provide a first glimpse of an important phenom 
enon: pronounced and persistent time-series volatility dynamics 

(conditional heteroscedasticity) in the temperature shocks. In 

particular, weather risk, as measured by its innovation variance, 

appears to be seasonal, as the amplitude of the residual fluctua 

tions varies over the course of each year, widening in winter and 

narrowing in summer. It seems that such seasonal conditional 

heteroscedasticity in temperature was first noted, informally, in 

an economic context by Roll (1984). Our volatility model (lc) 
is designed to approximate the conditional heteroscedasticity 
formally and flexibly. 

To gain additional insight into the strength and pattern of the 
conditional heteroscedasticity, Figure 5 displays correlograms 
of the squared residuals, taken to a maximum displacement 
of 800 days. There is clear evidence of strong nonlinear residual 

dependence, driven by strong conditional variance dynamics. 

This contrasts sharply with the correlograms of the residuals 

(not shown, to conserve space), which are indicative of weak 

white noise. 

In keeping with the results of the correlogram analysis of 

squared residuals, and in parallel to the aforementioned results 

for the estimated conditional mean function, the estimated con 

ditional variance function (lc) reveals both significant seasonal 

(Fourier) and cyclical (GARCH) components. The Fourier part 
appears to capture adequately all volatility seasonality, whereas 

the GARCH part captures the remaining nonseasonal volatility 
persistence. The seasonal volatility component is the relatively 
more important; it is significant and sizeable for all cities. The 
nonseasonal GARCH volatility component has a smaller effect, 

and there is considerable range in the estimates of nonseasonal 

volatility persistence, as determined by the GARCH parame 
ter, ?, implying different half-lives of nonseasonal volatility 
shocks across cities. For example, the half-life of a Las Vegas 
nonseasonal volatility shock is approximately 1 day, whereas 
the half-life of a Chicago nonseasonal volatility shock is ap 
proximately 7 days. 

Figure 6 plots the estimated residual conditional standard 
deviation from 1996 through 2001. The basic pattern is one 
of strong seasonal volatility variation, with additional GARCH 

volatility effects, the persistence of which varies across cities. 

For each city, seasonal volatility appears to be highest during 
the winter months. Among other things, this indicates that cor 

rect pricing of weather derivatives may in general be crucially 
dependent on the season covered by the contract. Some cities 

display a great deal of seasonal volatility variation; the condi 
tional standard deviation of Atlanta temperature shocks, for ex 

ample, roughly triples each winter, whereas seasonal volatility 
varies less in other cities, such as Las Vegas. 

It is interesting to note from Figure 6 that the GARCH 

volatility effects appear more pronounced in winter, when the 

volatility seasonal component is high, which might suggest the 

desirability of a multiplicative volatility specification. Nelson's 

(1991) exponential GARCH(1, 1) is one such attractive specifi 
cation, replacing the volatility specification for of in (lc) with 

Atlanta Chicago LasVegas Philadelphia 

Figure 4. Estimated Model Residuals, Daily Average Temperature. Each panel displays the residuals from an unobserved-components model, 
Tt = Trendt + Seasonal + Ylf=iPiTt-i + ?t?t, for 1996-2001. 
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Figure 5. Correlogram of Squared Residuals, Daily Average Temperature. Each panel displays sample autocorrelations of the squared residuals 

from our daily average temperature model, (Tt 
- Trend t 

- Seasonal t 
- 

J2f=i pJt-?f, together with Bartlett's approximate 95% confidence intervals 

under the null hypothesis of white noise. 

an alternative but related specification for In a}. Estimation of 

exponential GARCH models produced fitted conditional vari 
ance series nearly identical to those of the original GARCH 

models, however. 

We also estimated the densities of the standardized residuals, 

(Tt 
? 

Tt)/ot, where Tt is the fitted value of daily average tem 

perature (not shown, to conserve space). They still display neg 

ative skewness, and the average across cities is ?.45. Modeling 

the conditional heteroscedasticity does, however, reduce (but 
not completely eliminate) residual excess kurtosis; the average 
across cities is now 3.74. Finally, we also computed the correl 

ograms of squared standardized residuals (again not shown, to 

conserve space); there was no significant deviation from white 

noise behavior, indicating that the fitted model (1) is adequate. 

3. TIME SERIES WEATHER FORECASTING 

Armed with a hopefully adequate time series model for daily 
average temperature, we now proceed to examine its perfor 

mance in out-of-sample weather forecasting. We begin by ex 

amining its performance in short-horizon point forecasting, 

despite the fact that short horizons and point forecasts are not 

of maximal relevance for weather derivatives, to compare our 

performance to that of a very sophisticated leading meteorolog 

ical forecast. One naturally suspects that the much larger infor 

mation set on which the meteorological forecast is based will 
result in superior short-horizon point forecasting performance, 

but even if this is so, of great interest is the question of how 

quickly and with what pattern the superiority of the meteoro 

logical forecast deteriorates with forecast horizon. 

We then progress to assess the performance of our model's 

long-horizon density forecasts, which are of maximal interest 

in weather derivative contexts, given the underlying option pric 

ing considerations, and which let us explore the effects of using 

a daily model to produce much longer-horizon density fore 

casts. Simultaneously, we also move to forecasting HDDt rather 

than Tt, which lets us match the most common weather deriva 

tive "underlying." 

3.1 Point Forecasting 

We assess the short-term accuracy of daily average temper 

ature forecasts based on our seasonal + trend + cycle model. 

In what follows we refer to those forecasts as "autoregressive 

forecasts," for obvious reasons. We evaluate the autoregressive 

forecasts relative to three benchmark competitors, ranging from 

rather naive to very sophisticated. The first benchmark forecast 

is a no-change forecast. The no-change forecast, often called 

the "persistence forecast" in the climatol?gica! literature, is the 

minimum mean squared error forecast at all horizons if daily 
average temperature follows a random walk. 

The second benchmark forecast is from a more sophisticated 

two-component (seasonal -f trend) model. It captures (daily) 
seasonal effects via day-of-year dummy variables, in keeping 

with the common climatological use of daily averages as bench 

marks, and captures trend via a simple linear deterministic func 

tion of time. We refer to this forecast as the "climatological 
forecast." 

The third benchmark forecast, unlike benchmarks one and 

two, is not at all naive; on the contrary, it is a highly sophis 
ticated forecast produced in real time by EarthSat. To produce 
their forecast, EarthSat meteorologists pool their expert judge 

ment with model-based numerical weather prediction (NWP) 
forecasts from the National Weather Service, as well as with 

forecasts from European, Canadian, and U.S. Navy weather 

services. This blending of judgement with models is typical of 

best-practice modern weather forecasting. 

Chicago Las Vegas Philadelphie 

Figure 6. Estimated Conditional Standard Deviations, Daily Average Temperature. Each panel displays a time series of estimated condi 

tional standard deviations (&t) of daily average temperature, where of 
= 

Y,q=i (Yc,qCos(27zq^) + yS)qSin(27rq^)) + ?(ot-i?t-if + ?^f-v 
for 1996-2001. 
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Table 1. Point Forecast Accuracy Comparisons Daily Average Temperature 

1-day-ahead 3-day-ahead 5-day-ahead 7-day-ahead 9-day-ahead 11-day-ahead 

Atlanta 
Persistence 

Climatological 
Autoregressive 
EarthSat 

Chicago 
Persistence 

Climatological 
Autoregressive 
EarthSat 

Las Vegas 
Persistence 

Climatological 
Autoregressive 
EarthSat 

Philadelphia 
Persistence 

Climatological 
Autoregressive 
EarthSat 

4.50 
6.93 
4.12 
2.74 

6.73 
8.74 
6.06 
3.22 

3.78 
5.99 
3.57 
2.54 

5.53 
7.12 
4.95 
2.61 

8.00 
6.88 
6.45 
3.84 

10.50 
8.72 
8.38 
4.70 

6.15 
5.85 
5.20 
3.28 

8.83 
6.95 
6.74 
3.91 

8.72 
6.84 
6.69 
5.10 

11.06 
8.72 
8.57 
6.31 

7.08 
5.80 
5.58 
4.19 

9.83 
7.27 
7.23 
5.35 

9.07 
7.04 
7.03 
6.04 

11.54 
8.50 
8.45 
7.46 

7.71 
6.02 
5.92 
5.32 

9.87 
7.19 
7.15 
6.26 

8.99 
6.93 
6.89 
6.65 

11.74 
8.88 
8.84 
8.48 

7.96 
5.97 
5.97 
5.81 

9.55 
6.98 
6.95 
7.24 

9.28 
6.59 
6.59 
7.00 

11.99 
8.55 
8.53 
8.92 

7.93 
5.80 
5.78 
6.04 

10.18 
7.19 
7.08 
8.37 

NOTE: Each forecast's RMSE, measured in degrees Fahrenheit. 

We were able to purchase approximately 2 years of fore 

casts from EarthSat. The sample period runs from 10/11/99 

(the date when EarthSat began to archive their forecasts elec 

tronically and make them publicly available) through 10/22/01. 

Each weekday, EarthSat makes a set of /z-day-ahead daily av 

erage temperature forecasts, for h = 1, 2,..., 11. EarthSat does 

not make forecasts on weekends. 

We measure accuracy of all point forecasts using /z-day 

ahead root mean squared prediction error (RMSPE). We assess 

point forecasting accuracy at horizons of h? 1,2, ...,11 days, 

because those are the horizons at which EarthSat's fore 

casts are available. We compute measures of the accuracy 

of our model and the EarthSat model relative to that of the 

persistence and climatological benchmarks. RMSPE ratios 

relative to benchmarks are called skill scores in the meteoro 

logical literature (Brier and Allen 1951) and U-statistics in 

the econometrics literature (Theil 1966). Specifically, in an 

obvious notation, the skill score relative to the persistence 

forecast is Skilfh 
= 

V?(T,+M 
- 

Tt+h)2/ ZVf+h.t 
~ 

T>+h)2> 
where T^,h t = Tt is the persistence forecast and Tt+h,t is ei 

ther the autoregressive forecast or the EarthSat forecast. The 

skill score relative to the climatological forecast is Skillch 
= 

VXX?h-a,, 
- 

Tt+h)2/ Y.(Tct+h,t 
- 

Tt+h)2, where Tct+hJ denotes 

the climatological forecast, Tct+h t 
= ?o + ?\(t + h) + 

J2i=i $iDi,t+h, and D?t is a daily dummy. 
A number of nuances merit discussion. First, for each of our 

time series models, we estimate and forecast recursively, us 

ing only the data available in real time. Thus at any time our 
forecasts use no more average temperature information than do 

EarthSat's. In fact, our forecasts are based on less average tem 

perature information; our forecast for day t + 1 made on day t is 
based on daily average temperature through 11:59 PM of day t, 
whereas the EarthSat forecast for day t + 1, which is not re 
leased until 6:45 AM on day t + 1, potentially makes use of 
the history of temperature through 6:45 AM of day t + 1. Sec 

ond, we make forecasts using our models only on the dates that 

EarthSat made forecasts. In particular, we make no forecasts 

on weekends. Hence our accuracy comparisons proceed by av 

eraging squared errors over precisely the same days as those 

corresponding to the EarthSat errors. This ensures a fair com 

parison. 
Table 1 reports RMSPEs at horizons of h = 1, 3, 5, 7, 9, and 

11 days, for all cities and forecasting models. In addition, skill 
scores are graphed as a function of horizon, against the persis 
tence forecast in Figure 7 and against the climatological fore 
cast in Figure 8, for all cities and horizons. The results are the 
same for all cities, so it is not necessary to discuss them in 

dividually by city. The results most definitely do differ across 

Chicago Las Vegas Philadelphia 

Figure 7. Forecast Skill Relative to Persistence Forecast, Daily Average Temperature Point Forecasts. Each panel displays the ratio of a forecast's 

RMSPE to that of a persistence forecast, for 1-day-ahead through 11-day-ahead horizons. The solid line represents the EarthSat forecast, and the 

dashed line represents the autoregressive forecast. The forecast evaluation period is 10/11/99-10/22/01. 
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Atlanta Chicago LasVegas Philadelphia 

Figure 8. Forecast Skill Relative to Climatological Forecast, Daily Average Temperature. Each panel displays the ratio of a forecast's RMSPE to 

that of a climatological forecast, for 1-day-ahead through 11-day-ahead horizons. The solid line represents the EarthSat forecast, and the dashed 

line represents the autoregressive forecast. The forecast evaluation period is 10/11/99-10/22/01. 

models and horizons, however, as we now discuss. We first dis 

cuss the performance of the time series forecasts, then discuss 

the EarthSat forecasts. 

We first consider the forecasting performance of the persis 

tence, climatological, and autoregressive models across the var 

ious horizons. First, consider the comparative performance of 

the persistence and climatological forecasts. When h = 1, the 

climatological forecasts are much worse than the persistence 

forecasts, reflecting the fact that persistence in daily average 

temperature renders the persistence forecast quite accurate at 

very short horizons. As the horizon lengthens, however, this re 

sult is reversed; the persistence forecast becomes comparatively 

poor, because the temperature today has rather little to do with 

the temperature, for example, 9 days from now. 

Second, consider the performance of the autoregressive fore 

casts relative to the persistence and climatological forecasts. 

Even when h ? 1, the autoregressive forecasts consistently out 

perform the persistence forecast, and the relative superiority of 

the autoregressive forecasts increases with horizon. The autore 

gressive forecasts also outperform the climatological forecasts 

at short horizons, but their comparative superiority decreases 

with horizon. The performance of the autoregressive forecast is 

commensurate with that of the climatological forecast roughly 
by the time h = 4, indicating that the cyclical dynamics cap 
tured by the autoregressive model via the inclusion of lagged 

dependent variables, which are responsible for its superior per 

formance at shorter horizons, are not very persistent and thus 

are not readily exploited for superior forecast performance at 

longer horizons. 

We now compare the forecasting performance of the au 

toregressive model and the EarthSat model. When h ? 1, the 

EarthSat forecasts are much better than the autoregressive fore 

casts (which in turn are better then either the persistence fore 
cast or the climatological forecast, as discussed earlier). Figures 

7 and 8 make clear, however, that the EarthSat forecasts outper 

form the autoregressive forecasts by progressively less as the 

horizon lengthens, with nearly identical performance obtaining 

by the time h. = 8. One could even make a case that the point 

forecasting performances of EarthSat and our three-component 

model become indistinguishable before h = 8 (say, by h ? 5) 
if one were to account for the sampling error in the estimated 

RMSPEs and for the fact that the EarthSat information set for 

any day t actually contains a few hours of the next day. 

Thus far we have examined our model's performance in 

short-horizon point forecasting, to compare it with competitors 

such as EarthSat, who produce only short-horizon point fore 

casts. Its point forecasting performance is not particularly en 

couraging; although it appears no worse than its competitors at 

horizons of 8 or 10 days, it also appears no better. The nature 

of temperature dynamics simply makes any point forecast of 

temperature unlikely to beat the climatological forecast at long 
horizons, because all point forecasts revert fairly quickly to the 

climatological forecast, and hence all long-horizon forecasts are 

"equally poor." 
On reflection, however, our model's point forecasting perfor 

mance is also not particularly discouraging, insofar as the cru 

cial forecasts for weather derivatives are not point forecasts, but 

rather density forecasts. That is, a key object in any statistical 

analysis involving weather derivatives?indeed, the key object 
for the central issue weather derivative pricing?is the entire 

conditional density of the future weather outcome. The point 
forecast is the conditional mean, which describes just one fea 
ture of that conditional density, namely its location. Hence the 
fact that the long-horizon conditional mean estimate produced 

by our model is no better that produced by the climatological 
or EarthSat models does not imply that our model or frame 
work fails to add value. On the contrary, a great virtue of our 

approach is its immediate and simple generalization to provide 
entire density forecasts via stochastic simulation. In particular, 
the main feature of average temperature conditional density dy 

namics, apart from the seasonal conditional mean dynamics, is 

the highly seasonal conditional variance dynamics, which we 

have modeled parsimoniously and successfully. This facilitates 

simple modeling of time-varying scale of the conditional den 

sity, and it is as relevant for very long horizons as for very short 

horizons. 

All of this adds up to a simple, yet potentially powerful 
framework for producing density forecasts of weather variables, 

to which we now turn. It is telling to observe that in what fol 
lows we must evaluate the performance of our density forecasts 

in absolute terms, rather than relative to EarthSat density fore 

casts, because EarthSat, like most weather forecasters, does not 

produce density forecasts. 

3.2 Density Forecasting 

In this section we shift our focus to long-horizon density 
forecasting and to cumulative heating degree days, all of which 
is of crucial relevance for weather derivatives. Heating degree 

days for day t is simply HDDt = max(0, 65 ? Tt). We use 
our model of daily average temperature to produce density 
forecasts of cumulative HDDs {Cum HDDs) from November 1 
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through March 31, for each city and for each year between 
1960 and 2000, defined as CumHDDyA 

= 
J2]l\ HDDt,y.i, for 

y 
= I960,..., 2000, / ? 1,..., 4. Because we remove Febru 

ary 29 from each leap year, each sum contains exactly 151 days. 
We use full-sample as opposed to recursive parameter esti 

mates, as required by the very small number of CumHDD ob 

servations. To avoid unnecessarily burdensome notation, we 

often drop the y and / subscripts when the meaning is clear from 
context. 

We focus on CumHDD for two important reasons. First, 

weather derivative contracts are often written on the cumulative 

sum of a weather-related outcome over a fixed horizon, as with 

the cumulative HDD and CDD contracts traded on the CME. 

Second, and related, the November-March HDD contract is one 

of the most actively traded weather-related contracts and hence 

is of substantial direct interest. 
On October 31 of each year, and for each city, we use the es 

timated daily model to produce a density forecast of CumHDD 
for the following winter's heating season. We simulate 250 re 

alizations of CumHDD, which we then use to estimate the den 

sity, as follows. First, we simulate 250 151-day realizations of 

the temperature shock, eu by drawing with replacement from 

the empirical distribution of estimated temperature shocks, st. 

Second, we run the 250 151-day realizations of temperature 

shocks through the estimated model (1) to obtain 250 simu 
lated 151-day realizations of daily average temperature. Third, 

we convert the 250 simulated 151-day realizations of daily av 

erage temperature into 250 simulated 151-day realizations of 

HDD, which we cumulate over the November-March heating 

season, CumHDDs = 
J2ll\ HDDt^s, 5=1,2,..., 250. Finally, 

we form the empirical distribution function of CumHDD based 
on CumHDDs, 5=1,..., 250. 

After passing through the entire sample, we have 41 assessed 
distribution functions, Fy(-),y= 1960,..., 2000, with 1 func 

tion governing each of CumHDDy, y 
? 

1960,..., 2000. We 

assess the conditional calibration of those distributional fore 
casts via the probability integral transform, as suggested by 
Rosenblatt (1952) and extended by Dawid (1984), Diebold, 
G?nther, and Tay (1998), and Diebold, Hahn, and Tay (1999). 
In particular, if the estimated distribution and true distribution 
coincide year by year, then the series of assessed distribu 

tion functions, Fv(-), evaluated at the corresponding series 

of realized values of CumHDDy should be approximately iid 
and uniformly distributed on the unit interval. Formally, zy = 

Fy(CumHDDy) 
? 

U(0, 1). For each city, we check uniformity 
by examining histograms of z and check independence by ex 

amining correlograms of the first four powers of z- The sample 
of size 41 is of course small, but the framework has been previ 
ously applied successfully in small samples, as by, for example, 
Diebold, Tay, and Wallis (1999). 

First, consider assessing uniformity. We estimate the density 

of z using simple four-bin histograms, presented in the left 
most column of Figure 9, accompanied by 95% pointwise er 
ror bands under the iid U(0, 1) null hypothesis. Interestingly, 
the z series differ rather noticeably from uniformity, and more 

over they display a common pattern; too many large CumHDD 
realizations occur relative to the assessed distributions, as ev 

idenced by the increase in the histograms when moving from 
left to right. The common nature of uniformity violations may 

indicate a neglected common temperature component, due to, 

for example, El Ni?o, La Ni?a, changes in the jet stream, or 

various other global factors. 

Now consider assessing independence. The last four columns 

of Figure 9 show the correlograms of the first four powers of z, 
taken to a maximum displacement of 10 years, together with 

asymptotic 95% Bartlett bands under the iid null hypothesis. 
The results are mixed, but a common pattern of some positive 
serial correlation is often apparent. 
We view our CumHDD distributional forecasting perfor 

mance as encouraging, although there is clear room for im 

provement. Evidently the effects of small specification errors in 
the daily model, which have negligible consequences for near 
term forecasting, cumulate as the horizon lengthens, produc 

ing large consequences for longer-term forecasting. The error 

in forecasting CumHDD is of course the sum of the many com 

ponent daily errors, and the variance of that sum is the sum of 

the variances plus the sum of all possible pairwise covariances. 

Hence tiny and hard-to-detect but slowly-decaying serial cor 

relation in 1-day-ahead daily average temperature forecasting 
errors may cumulate over long horizons. In future work be 

yond the scope of this article, it will be of interest to attempt 
to address the specification error issue by modeling and fore 

casting CumHDD directly. In contrast, currently we fit only a 

single (daily) average temperature model, which we estimate 

by minimizing a loss function corresponding to 1-day-ahead 
mean squared prediction error, then use the model to produce 
forecasts at many different horizons, all of which feed into our 
CumHDD forecasts. 

4. CONCLUDING REMARKS AND DIRECTIONS 
FOR FUTURE RESEARCH 

Weather modeling and forecasting are crucial to both the de 
mand side and the supply side of the weather derivatives mar 

ket. On the demand side, to assess the potential for hedging 
against weather surprises and formulate the appropriate hedg 

ing strategies, one needs to determine how much "weather 

noise" exists for weather derivatives to eliminate. This requires 
weather modeling and forecasting. On the supply side, standard 

approaches to arbitrage-free pricing are irrelevant in weather 

derivative contexts, and so the only way to price options reliably 
is again by modeling and forecasting the underlying weather 
variable. Rather curiously, it seems that little thought has been 

given to the crucial question of how best to approach weather 

modeling and forecasting in the context of weather deriva 

tive demand and supply. The vast majority of extant weather 

forecasting literature has a structural "atmospheric science" 

feel, and although such an approach is surely best for fore 

casting at very short horizons, as verified both by our own 

results and those of many others, it is not obvious that it is 
best for the longer horizons relevant for weather derivatives, 

such as 12 weeks or 6 months. Moreover, density forecasts, 

but not point forecasts, are of maximal relevance in the deriv 

atives context. Good distributional forecasting does not neces 

sarily require a structural model, but it does require accurate 

approximations to stochastic dynamics. 
In this article we took an arguably naive nonstructural time 

series approach to modeling and forecasting daily average tem 

perature in four U.S. cities, and we inquired systematically as 
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Atlanta 
Estimated Distribution Correlogram of Z Correlogram of ZA2 Correlogram of ZA3 Correlogram of ZA4 

Chicago 
Estimated Distribution Correlogram of Z Correlogram of ZA2 Correlogram of ZA3 Correlogram of ZA4 

Las Vegas 

Estimated Distribution_ Correlogram of Z Correlogram of ZA2 Correlogram of ZA3 Correlogram of ZA4 

Philadelphia 
Estimated Distribution_ Correlogram of 

Z_ Correlogram of ZA2_ Correlogram of ZA3_ Correlogram of ZA4 

Figure 9. z-Statistics Distributions and Dynamics, Daily Average Temperature Distributional Forecasts. Each row displays a histogram for z 
and correlograms for four powers of z, the probability integral transform of cumulative November-March HDDs, 1960-2000. Dashed lines indicate 

approximate 95% confidence intervals in the iid U(0, 1) case of correct conditional calibration. 

to whether it proves useful. The answer, perhaps surprisingly, 
was a qualified yes. Our point forecasts were always at least as 

good as the persistence and climatological forecasts, but were 
still not as good as the judgementally adjusted NWP forecast 

produced by EarthSat until a horizon of 8 days, after which 
all point forecasts performed equally well. Crucially, we also 
documented and modeled strong seasonality in weather surprise 
volatility, and we assessed the adequacy of long-horizon distri 

butional forecasts that accounted for it, with mixed but encour 

aging results. Moreover, we found an interesting commonality 
in the patterns of cross-city deviations from perfect conditional 

calibration, indicating possible dependence on common latent 

components, due perhaps to El Ni?o or La Ni?a. 
The key insight is that the losses associated with the non 

structural approach, which bypasses atmospheric data and 

science in favor of statistical extrapolation, although surely 
important for very short-term forecasting, may be largely ir 

relevant when forecasting several months ahead, as is typically 

required for weather derivatives. Instead, time and money may 
be better spent developing simple statistical models useful for 

density forecasting, because it appears that simple, yet sophis 
ticated time series models and forecasts perform at least well 

enough to suggest the desirability of additional exploration. The 
time series models are: 

1. Parsimonious and simple. Only a few parameters need to 

be estimated, and only standard statistical methods are 
used. 

2. Flexible. The model can capture dynamics that may or 

may not contain trend, seasonality, and cycles. 
3. Extensible. The model may readily be modified to accom 

modate additional features if desired?even "structural" 

features related for example to occurrence of El Ni?o or 

La Ni?a. 

4. Inexpensive. Analysis and forecasting with the model re 

quires only standard, widely available, and inexpensive 
software and data and minimal human maintenance and 
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oversight, facilitating not only model and forecast con 

struction, but also replication of results. 

5. Intrinsically stochastic and focused on the entire con 

ditional distribution, not just on the conditional mean. 
Hence the approach is naturally suited to the construction 

and interpretation of the long-horizon climatological fore 

casts, stated as complete densities, as needed in weather 

derivatives contexts. 

Hence we believe that a strong case exists for their use in the 

context of modeling and forecasting as relevant for weather 

derivatives. 

We would also assert that our views are consistent with the 

mainstream consensus in atmospheric science. For example, in 

his well-known text, Wilks (1995, p. 159) noted that "Statis 
tical weather forecasting methods" are still viable and useful 
at very short lead times (hours in advance) or very long lead 
times (weeks or more in advance) for which NWP information 
is either not available with sufficient promptness or accuracy, 

respectively." Indeed, in many respects our results are simply 
an extensive confirmation of Wilks' assertion in the context of 

weather derivatives, which are of great current interest. 

Ultimately, our present view on weather forecasting for 

weather derivatives is that climatological forecasts are what 

we need, but that traditional point climatological forecasts? 

effectively little more than daily averages?are much too 

restrictive. Instead, we seek "generalized climatological fore 

casts" from richer models tracking entire conditional distrib 

utions, and modern time-series statistical methods may have 

much to contribute. We view this article as a "call to action," 

with our simple model representing a step toward a fully gener 
alized climatological forecast, but with many important issues 

remaining unexplored. Here we briefly discuss a few that we 
find particularly intriguing. 

One of the contributions of this article is our precise quan 

tification of daily average temperature-conditional variance dy 
namics. But richer dynamics might be beneficially permitted in 
both lower-ordered conditional moments (i.e., the conditional 

mean) and higher-ordered conditional moments (e.g., the con 

ditional skewness and kurtosis). In regard to the conditional 

mean, we could introduce explanatory variables, as was done 

by Visser and Molenaar (1995), who condition on a volcanic 

activity index, sunspot numbers, and a southern oscillation in 

dex. Relevant work also includes that of Jones (1996) and 
Pozo et al. (1998), but those authors used annual data and thus 
missed the seasonal patterns in both conditional mean and con 

ditional variance dynamics so crucial for weather derivatives 

demand and supply. We could also allow for nonlinear effects, 

most notably stochastic regime switching in the tradition of 
Hamilton (1989), which might aid in, for example, the detec 
tion of El Ni?o and La Ni?a events (see Richman and Montroy 
1996; Zwiers and von Storch 1990). In terms of the conditional 
skewness and kurtosis, we could model them directly, as for ex 

ample, with the autoregressive conditional skewness model of 

Harvey and Siddique (1999). Alternatively, we could directly 
model the evolution of the entire conditional density, as was 

done by Hansen (1994). 
Aspects of multivariate analysis and cross-hedging also hold 

promise for future work. Cross-city correlations may be cru 

cially important, because they govern the potential for cross 

hedging. Hedging weather risk in a remote Midwestern location 

might, for example, be prohibitively expensive or even impos 

sible due to illiquid or nonexistent markets, but if that risk is 

highly correlated with Chicago's weather risk, for which a liq 
uid market exists, then effective hedging may still be possible. 
Hence an obvious and important extension of the univariate 

temperature analysis reported this article is multivariate model 

ing of daily average temperature in a set of cities, allowing for 
a time-varying innovation variance-covariance matrix. Of par 

ticular interest would be the fitted and forecasted conditional 

mean, conditional variance, and conditional covariance dynam 

ics; the covariance matrices of standardized innovations; and 

the impulse response functions (which chart the speed and pat 
tern with which weather surprises in one location are transmit 

ted to other locations). 
Another interesting multivariate issue involves weather 

related swings in earnings and share prices. It will be of interest 
to use the size of weather-related swings in earnings as a way 

to assess the potential for weather derivatives use. In particu 

lar, we need to understand how weather surprises translate into 

earnings surprises, which then translate into stock price move 

ments. Some interesting subtleties may arise. As one example, 
note that only systematic weather risk should be priced, which 
raises the issue of how to disentangle systematic and nonsys 

tematic weather risks. As a second example, note that there 

may be nonlinearities in the relationship between prices and the 
weather induced via path dependence; for example, if there is 
an early freeze, then it does not matter how good the weather 

is subsequently; the crop will be ruined, and prices will be high 
(see Richardson, Bodoukh, Sjen, and Whitelaw 2001). 

[Received December 2002. Revised January 2004.] 
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