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Abstract. The Norwegian company EWOS AS produces fish feed for the salmon
farming industry, supplying approximately 300 customers spread along the coast of

Norway. The feed is produced at three factory locations and distributed by a fleet

of 10 dedicated vessels. The high seasonality of the demand and the large number of
customers make the distribution planning a substantial challenge. EWOS handles

it by operating a system of mostly fixed routes with decentralized planning at each

factory. The distribution can be described as a multi-depot vehicle routing problem
with time windows, multiple vehicle usage, inter-depot routes, heterogeneous fleet

and a rolling horizon. The paper presents a mathematical model for this problem,
which is solved by heuristics and meta heuristics. Based on detailed historical data

collected by EWOS during the autumn of 2010, the model has proposed a dynamic

set of routes with a significant reduction of travelled distance – close to 30% – and an
increase of average vessel fill-rate – from 60% up to 95%. This implies a substantial

fuel saving, with a positive environmental impact, and also a potential for down-

scaling the fleet, with additional considerable cost savings for the company.

1. Introduction

This paper presents an application of optimization techniques to a real-world rout-
ing problem, which, given its characteristics, ranges among the most advanced
vehicle routing problems. The problem appears at the company EWOS AS, which
supplies a wide portfolio of aqua feed products for the international aquaculture
industry. The Norwegian branch of the company has three production plants situ-
ated along the west and north coasts of Norway in Florø, Halsa and Bergneset. Its
customer base consists of local fish farms spread along the Norwegian coastline.
The company has a heterogeneous fleet of vessels that serve the customer demand.
Individual customer orders are normally known at least 10 days in advance. How-
ever, customers are allowed to change order amounts (within reason) up to vessel
departure time.

The demand profile exhibits seasonality with high peak in summer, which is
preconditioned by the biological life cycle of the fish. The distribution planning is
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a task with rolling horizon where the fleet operates on fixed routes and customer
orders define the filling of the vessels.

The characteristics of the distribution problem as present in EWOS are de-
scribed in Section 3, a formal mathematical model is presented in Section 4 and
the solution methods are discussed in Section 5.

During autumn 2010, the company was collecting their operational data, in-
cluding customer orders and the exact delivery routes of their vessels. This data
made it possible to carry out a very accurate comparison where we let the algo-
rithm overtake the route planning at given moments of the history. The results
are presented and discussed in Section 6.

2. Literature review

Transportation optimization problems were introduced more than 50 years ago
[12]. Many papers and monographs have been published on the topic since then.
Vehicle routing problems (VRPs) generally involve an assignment of vehicles to
trips in order to minimize travel costs. This section presents sources relevant
to the EWOS distribution problem, i.e., papers on variants of VRP and solution
techniques, and survey papers which provide classifications of VRPs and literature
overviews. The listing is by no means exhaustive.

An excellent introduction to VRP, its variants and existing solution procedures
can be found in [31]. Also [4, 5, 18] contain chapters relevant for the problem. [8]
gives a detailed review and classification of maritime transport models – namely
strategic decision models focusing on fleet composition and tactical and operational
planning models dealing with scheduling of deliveries and travel-cost minimization
for short-term problems. In [20] a survey can be found of sources on road and mar-
itime transportation and fleet composition for various variants of VRP including
time windows, heterogeneous fleet and multiple depots. [24] presents a recent lit-
erature survey on the fleet size and mix problem in maritime transportation. An
extensive comparison of different solution methods for VRP with heterogeneous
fleet is presented in [3].

Due to the complexity of the VRPs, heuristics are commonly used to solve
real-sized problem instances. Across the literature, we can discern several basic
heuristics classes. Constructive heuristics build routes by sequentially adding cus-
tomers to a partially constructed feasible solution. Two-phase heuristics perform
clustering of customers before or after route construction. Improvement heuristics,
e.g. inter-route exchanges, can be applied to each of the cases, see [21]. Insertion
heuristic variants arise as a result of the decision about which unrouted customer
to pick and where to insert it into the partial solution in each iteration. Clustering
relates to identifying the groups of customers to be served within the same area
at approximately the same time. Each cluster is then served by one vehicle which
reduces the problem to a set of independent instances of the classical travelling
salesman problem (TSP), see [19]. In the early paper [30], various heuristics for
solving time-constrained VRPs were considered, and the best performance was
reported with insertion heuristics. The efficiency of the insertion methods was
reported proportional to the number of time window constraints and their tight-
ness. This result is due to the lower number of possible feasible insertions in such
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problems. However, this paper dealt only with homogeneous fleets. [23] consid-
ered the combined fleet-design, ship-scheduling and cargo-routing problem with
limited availability of ships and proposed a clustering procedure together with
a genetic algorithm. [7] presented a hybrid genetic algorithm for the multi-trip
vehicle routing problem, in which each vehicle can perform several trips during
the working day. [2] introduced adaptive large neighbourhood search for the ve-
hicle routing problem consisting in determining the routing of a fleet of vehicles
when each vehicle can perform multiple routes during its operations period. [26]
proposed a mathematical formulation for the multi-depot vehicle routing problem
with heterogeneous vehicles which was solved by a variable neighbourhood search
algorithm. [32] developed two meta-heuristics based on neighbourhood exploration
for multi-depot vehicle fleet mix problems. [27] used a heuristic and an ant-colony
meta-heuristic in their decision support system to generate routes over city trans-
portation network and incorporated detailed individual vehicle routes to Google
Maps.

There are approaches which combine heuristic and exact optimization tech-
niques. [14] developed a three-phase routing strategy for VRP with heterogeneous
fleet, multiple depots and time windows. The first phase aims at identifying a set
of cost-wise effective feasible clusters, the second phase assigns clusters to vehicles
and sequences them on each tour. Ordering of nodes within clusters and schedul-
ing of vehicle arrival times at the nodes is performed in the third phase. In [22],
feasible routes are generated first, then a reduction algorithm based on dominance
rules is applied to reduce the number of feasible routes and finally the routes
for each ship are selected based on solving an exact optimization problem. The
tabu search technique, introduced by Glover [16], has been highly successful when
applied to the VRP, see [11]. Evolutionary algorithms, i.e. genetic and memetic
algorithms, were also used to solve various VRP.

In the delivery problem of EWOS, the customers decide about placing the orders
independently. Another strategy, so called vendor-managed inventory, allows the
supplier to choose the timing and size of deliveries, ensuring that the customers
do not run out of stock. Such problems are called inventory routing problems,
see e.g. [8,28,29]. There is an increase in papers considering stochastic aspects of
logistic planning, see [25] for a review.

3. Problem description

The downstream distribution ship planning in EWOS is currently done manually
and within a system of fixed routes, where current customer orders define the fill-
ing of vessels before leaving the factory. Usually, each route visits many customers
where the duration can range from a few hours up to several days. Because of high
seasonal demand variations in customer demands, the (manually set) fixed routes
normally vary between the peak (summer) season and off-peak (winter) season.
The distribution is decentralized so that each factory is responsible for the vessel
transportation to cover the demand in their specified customer region. EWOS are
fully aware of the fact that their distribution planning can be improved by us-
ing an operations research methodology, dynamic routes and centralized planning
where one planning unit is responsible for covering all the company customers’
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demand from the three company-owned factories. The goal of this project is to
analyze the possibilities for improvements in fill rates of vessels by utilizing a VRP
methodology.

The mathematical model formulation must take into consideration the following
aspects. Ships usually visit many customers and perform continuous routes with
varying travel time. One single ship can perform multiple trips during the planning
horizon – returning to the depot, loading new products and going for another trip.
For each customer order, there is the earliest and latest possible delivery time
specified. The model must, therefore, incorporate time windows. EWOS supplies
a large variety of products, however, there is no real limit as to the number of
product kinds loaded on a vessel because they can be transported in bags. The
EWOS fleet is heterogeneous in terms of vessel size and travelling speed. Naturally,
he travel costs are different for each vessel, too. Orders must always be satisfied
with a single complete delivery (i.e. no delivery splitting is allowed). The three
factories of EWOS play the role of depots in the VRP, hence the problem is
a multi-depot one. EWOS requested that the model shoould allow for inter-depot
routes. Loading and unloading times are significant compared to travelling times
and they are proportional to the cargo amount. Dynamic scheduling principle
takes into account that some ships can be still operating at the beginning of the
planning horizon, i.e., not all ships are available at once and we only know the
time when a ship will arrive to the depot, thus, it will be available for loading.
Considering this, routes optimization can be started at any time when the orders
for the following planning horizon are known. We can hardly find any paper which
considers all of the above mentioned aspects together.

The problem under consideration is NP hard – it is a generalization of VRP
with time windows which is itself a generalization of TSP with time windows. See
[15] for computational complexity and transformations between problems.

4. MIP model

In this section we present the distribution problem of EWOS formulated as a mixed
integer [33] linear program. The model can be described as a multi-depot vehicle
arc routing model with delivery time windows, heterogeneous fleet, and multiple
inter-depot routes. The time in the formulation is continuous (not discretized).
We use the following index sets:

• V – vessels ν,
• J – factory visits j,
• Q – customer orders q,
• Qν – customer orders which can be satisfied by vessels ν,
• J ∪ Q = N ,
• J ∪ Qν = Nν – nodes feasible for vessels ν,
• N o

ν = Nν ∪ {o(ν)}, N d
ν = Nν ∪ {d(ν)}, N od

ν = Nν ∪ {o(ν), d(ν)}.

Elements q of the set Q represent the individual customer orders. Two different
orders may be placed by the same customer. The customer locations are reflected
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in the Tnn′ν time-distance coefficients defined below. The ordered quantity is de-
noted by Dq and the requested time-window is given by Tminq and Tmaxq .

Elements of the set J represent visits of the vessels to the factories. As opposed
to the set Q, which is given, the set J must be pregenerated. That is, for each
physical factory, a number of visit elements must be created. The set should be
big enough to cover the expected number of visits (in our case |J | ≈ 30). The fac-
tory corresponding to each j ∈ J can be again distinguished by the time-distance
parameter Tnn′ν . The model formulation is such that not all of the visit nodes
available must necessarily be used.

The initial and final vessel positions are denoted by o(ν) and d(ν), respec-
tively, and can be regarded as geographical positions. When dealing with routing
sequences, we use the term node and employ the indices n or n′ for orders q,
factory-visits j and any of o(ν) or d(ν). A visit to node n is also called a service,
meaning the unloading of goods at a customer or a vessel loading at a factory.

We use the following decision variables:

• xnn′ν ∈ {0, 1}, n ∈ N o
ν , n

′ ∈ N d
ν , ν ∈ V – whether vessel ν services node n′

directly after node n or not,
• tn ≥ 0, n ∈ N od

ν – the time at which service at node n starts,
• yνn ≥ 0, n ∈ N o

ν , ν ∈ V – on-board inventory of vessel ν after servicing
node n,
• aνn ≥ 0, n ∈ N o

ν , ν ∈ V – amount loaded/unloaded to/from ship ν at node
n.

The parameters that come into the model are:

• cnn′ν – cost of vessel ν going from n to n′,
• Dq – requested quantity in customer order q,
• Un – (un)loading (service) time per product unit at node n,
• Kν – capacity of vessel ν,
• T – time horizon,
• Tnn′ν – time distance between service nodes n and n′ for vessel ν,
• Tminn , Tmaxn – time window for service n, Tmaxn ≤ T ,
• o(ν) – start node of vessel ν,
• d(ν) – end node of vessel ν.

The cost parameter cnn′ν can be set equal to the travel distances or to the con-
sumed fuel amount, provided that the vessel fuel consumptions are known. The
time horizon T represents the planning period and imposes an upper bound on the
visiting times. Unless Tminn < T for each n, the order must be disregarded or the
planning period prolonged. We are now ready to give an exact mathematical for-
mulation of the operational planning problem. A discussion of possible extensions
accompanies the formulation.

4.1. Objective function

min
∑
ν∈V

∑
n∈No

ν

∑
n′∈Nd

ν

cnn′νxnn′ν + α
∑
ν∈V

td(ν). (4.1)
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The objective function (4.1) seeks to minimize the sum of transportation costs.
This is the first term in the objective. The second term, which may be viewed
as a penalty, is an approximation of the true cost structure involved in ships not
finishing their routes in due time. Establishing this true cost structure turned out
to be a too complex task in this setting, so for practical usability, a parameter
α allows the user to add parametric weight on this part. By adjusting the α
coefficient, the times at which ships finish their routes may be given appropriate
importance.

4.2. Vessel flow constraints∑
ν∈V

∑
n∈No

ν

xnjν ≤ 1, j ∈ J , (4.2)

∑
ν∈V

∑
n∈No

ν

xnqν = 1, q ∈ Qν , (4.3)

∑
n∈Nν

xo(ν)nν = 1, ν ∈ V, n ∈ Nν , (4.4)

∑
n∈No

ν

xnn′ν =
∑
n∈Nd

ν

xn′nν , ν ∈ V, n′ ∈ Nν , (4.5)

∑
j∈J

xjd(ν)ν = 1, ν ∈ V, (4.6)

∑
q∈Q

xqd(ν)ν = 0, ν ∈ V. (4.7)

Equation (4.2) ensures that each factory-visit node is used by at most one
vessel. Equation (4.3) prescribes that each order be served by exactly one vessel.
The constraints (4.4), (4.5), (4.6), (4.7) describe the routing flow and represent
vessel starts at o(ν), their routing and end at d(ν). The vessels are required to
pass through one of the factories before ending in the (possibly dummy) end-node
d(v), see equations (4.6), (4.7).

4.3. Vessel time constraints

xnn′ν(tn + Unaνn + Tnn′ν − tn′) ≤ 0, n ∈ N o
ν , n

′ ∈ N d
ν , ν ∈ V, (4.8)

Tminn ≤ tn ≤ Tmaxn , n ∈ N , (4.9)

to(ν) = 0, ν ∈ V. (4.10)

The non-linear time constraints (4.8) include travel and service times. The
starting time of the service at node n cannot be less than the sum of the starting
time and the service time at node n′ and the sailing time from n to n′ with ship ν,
if ship ν is really sailing between those two nodes. The constraint can be linearised
as:

tn + Unaνn + Tnn′ν − tn′ ≤ (1− xnn′ν)T.

It is active only if order n′ is served directly after order n. To make the formulation
tighter, it is possible to decrease the upper bound T using time-window reduction
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algorithms, see [13]. Hard time windows, which cannot be violated, are given by
(4.9). Finally, starting time is initialized in (4.10).

4.4. Cargo flow constraints

xnjν(yνn + aνj − yνj) = 0, n ∈ N o
ν , j ∈ J , ν ∈ V, (4.11)

xnqν(yνn − aνq − yνq) = 0, n ∈ N o
ν , q ∈ Qν , ν ∈ V, (4.12)

aνo(ν) = 0, ν ∈ V, (4.13)

yνo(ν) = 0, ν ∈ V, (4.14)

yνj ≤ Kν

∑
n∈No

ν

xnjν , j ∈ J , ν ∈ V, (4.15)

aνj ≤ yνj , j ∈ J , ν ∈ V, (4.16)

yνq + aνq ≤ Kν

∑
n∈Nd

ν

xqnν , q ∈ Qν , ν ∈ V, (4.17)

Dq ≤
∑
ν∈V

aνq, q ∈ Qν . (4.18)

Since the ships usually perform multiple trips during the time horizon, it is
necessary to include ship inventory balance constraints explicitly. Equations (4.11)
correspond to loading at a depot and (4.12) to unloading at a customer, if ship ν
arrived to node j, or q respectively. The constraints can be linearised as:

yνn + aνj − yνj ≤ (1− xnjν)Kν ,

yνn + aνj − yνj ≥ −(1− xnjν)Kν ,

yνn − aνq − yνq ≤ (1− xnqν)Kν ,

yνn − aνq − yνq ≥ −(1− xnqν)Kν .

We assume that the ships are empty at the beginning, i.e., the initial load condition
for each ship is given by (4.13), (4.14). Constraints (4.15) ensure that ship ν can
be loaded only at a depot and the amount loaded must respect the ship capacity.
Constraints (4.16) serve as valid inequalities, i.e., they can be omitted from the
model, and impose a condition that the amount after loading is higher than the
amount loaded. The sum of the unloaded amount and the amount left on the ship
after that must not exceed the ship capacity by condition (4.17). Constraint (4.18)
ensures that each order is satisfied; the combination with equation 4.3 guarantees
that each order be covered by exactly one delivery, i.e., no split deliveries are
admissible in the model.

5. Solutions methods

Solving the model directly with a MIP solver turned out to be possible for instances
not larger than around 15 nodes. This can be understood given the number of
binary variables and the NP-hardness of the problem. We have formulated the
model in the GAMS modelling environment and used the CPLEX Solver.

In order to solve the real-sized EWOS case, we have resorted to heuristic ap-
proaches. We have gradually developed three heuristics – a construction heuristic,
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a heuristic based on tabu search and a clustering heuristic. They are described in
Sections 5.1, 5.2 and 5.3 below. We have first developed the construction heuristic,
with the aim to obtain solutions which are both feasible (if such solutions exist)
and good. The quality, however, was not completely satisfactory and we could see
that further improvements of the solution were necessary. We have implemented
the tabu search heuristic and used the construction heuristic to create the initial
solution. Eventually, we replaced the construction heuristic with the clustering
heuristic, which was faster and performed better in combination with the tabu
search.

5.1. Construction heuristic

The main idea is to construct routes for vessels by sequential insertion of orders
to the end of open (not finished) routes. If the capacity of a ship is depleted, the
closest depot is found and the ship can be refilled and restarted at this depot.
The heuristic algorithm flow is described in Table 1 below. In the first step, all
orders with a common time window are selected. After that, we try to find the
best insertions to the end of the open routes. The first used criterion (marked by 1

in Table 1) is equal to the time distance between the customer with an unsatisfied
order and the last node of the current open route. The second criterion (marked by
2 in Table 1) is based on the best and the second best possible insertions according
to the first criterion. If no second insertion is possible for some nodes, then all
nodes with second possible insertion are omitted in this step. Then, the node with
the smallest distance is inserted. This criterion corresponds to some kind of regret
when urgency plays an important role.

5.2. Tabu Search

Tabu search [17] is a meta heuristic originally proposed by Glover in 1986 [16] that
has proved to be successful in tackling many hard optimization problems. It is an
iterative neighbourhood search procedure which tries to escape local optima by
temporarily accepting moves towards worse solutions and banning returning (im-
proving) moves. The meta heuristic internally uses two main heuristic elements
– an initial solution heuristic and a neighbourhood heuristic. The initial solution
heuristic (e.g. construction, greedy, etc.) is used to find a starting point. The
neighbourhood heuristic, usually given by a set of “moves”, defines the neighbour-
hood of each point in the solution space.

Several tabu search heuristics have been proposed for the different variants of
VRPs, see e.g. [1, 6, 9–11]. [6] gives a comprehensive overview of various tabu
search heuristics for VRP with time windows together with their initial solution
and neighbourhood heuristics. However, given the rich set of features which the
VRP under our investigation exhibits (cf. Section 3), it was necessary for us to
come up with a custom tabu search heuristic. The principles of our implementation
are outlined below. We use the notation of Section 4 unless stated otherwise.

Every implementation of tabu search requires a data model of the solution, and
an evaluation of the constraints and optimization criteria. The main data-concept
in our model is a voyage, which is a combination of vessel (ν) and route (r). A
route is a sequence of node (n) visits, r = (n1, n2, . . . , nm). The firstand last nodes
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Table 1. Construction heuristic.

0. Initialize open routes O:

Use starting depot for each ship
and earliest time when it become available

Unsatisfied orders U = ∅
Finished (closed) routes C = ∅
Sort orders Q w.r.t. time windows

Sort ships V w.r.t. capacities

1. While Q is not empty do:

Select all nodes with the same Time Windows: QTW

Set Q = Q \ QTW

2. For each q ∈ QTW do:
For each o ∈ O do:

If insertion of q to the end of open route o is feasible
with respect to time windows and ship capacity:

If the insertion is the best with respect to the selected criterion1:

Set o(q) = o and the used ship v(q) = v
End For

End For

3. If no feasible insertion exists:
Put the remaining orders into the set of unsatisfied customers: U = U ∪ QTW

and set QTW = ∅
Else:

Find the best feasible insertion q̂ among all insertions o(q) with respect to the

selected criterion2 and insert the order to the end of the route o(q̂)

4. If the capacity tolerance of ship v(q̂) is reached after insertion:

Finish the route: find the closest depot and insert it to the end
Insert the finished route into the set of closed routes C = C ∪ {o(q̂)}
and remove it from open routes O = O \ {o(q̂)}
Initialize new open route from the final depot with corresponding starting time

End While

1, 2 Two different criteria can be used.

are depots, not necessarily identical. Each of the intermediate nodes corresponds
to one customer order and has the associated time-window [Tminn , Tmaxn ], which
defines the requested earliest and latest arrivals.

Each node maintains four different time instants: the earliest arrival ten, earliest
departure oen, latest arrival tln and latest departure oln. The earliest departure is
obtained as earliest arrival plus unloading time

oen = ten + Unan, (5.1)

and symmetrically, the latest arrival is obtained as latest departure minus the
unloading time

tln = oln + Unan. (5.2)
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The parameter an denotes the delivered quantity (order size). It corresponds to
the anν parameter of the MIP model; the ν index was dropped here, since it was
only necessary within the MIP formulation for modelling reasons. If nodes n and
n′ immediately follow each other, the earliest arrival to n′ cannot be earlier than
the earliest departure from n plus the necessary travel time

ten′ = max{Tminn′ , oen + Tnn′ν}. (5.3)

Symmetrically, the latest departure from node n cannot come later than the latest
arrival to n′ minus the necessary travel time

oln = min{Tmaxn + Unan, e
l
n′ − Tnn′ν}. (5.4)

In this way, the earliest arrival and departure times are propagated from the first
node forward, repeatedly using equations (5.1) and (5.3). The latest arrival and
departure times are propagated from the last node backward, using equations (5.2)
and (5.4). If the node sequence is such that ten ≤ tln for all nodes n, then it is
time-wise feasible. This time constraint is equivalent to the equations (4.8) and
(4.9) in the MIP model.

The solution consists of a set of follow-up voyages for each vessel – when the
vessel ends one voyage in a certain depot, it can either stop there completely, or
load new cargo in this depot and start the next voyage from this depot. The routes
corresponding to the follow-up voyages are linked for the forward and backward
propagation of arrival and departure times (as explained above) to be performed
along the entire node sequence from the first to the last route. The solution,
feasible or infeasible, is always complete – i.e. every order-node is part of exactly
one voyage (depot-nodes occur multiple times).

For notation purposes, we view the solution as a set of routes, where each route
r has an associated vessel νr. We denote by Lr the total length of route r. The
value of the solution is given by∑

r

Lr + β1
∑
r

max
{

0,
∑
n∈r

an −Kνr

}
+ β2

∑
r

∑
n∈r

max
{

0, ten − tln
}
.

The first term gives the total length of the routes in the solution. The second term
is a penalty for violating the vessel capacity constraints, and the third term is a
penalty for violating the time-constraints. The parameters β1 ≥ 0 and β2 ≥ 0 are
penalty coefficients (see also below).

The neighbourhood of each solution is defined by the following moves:

Split voyage: Try to split every voyage on each position by each of the depots.
That is, divide the voyage into two parts, make the vessel return to the chosen
depot after the first part, and then let it start from the depot and finish the second
part of the voyage. This move can be beneficial in restoring the feasibility when
the voyage is currently infeasible due to the capacity constraint – when too many
nodes are visited and too much cargo is carried.

Merge voyages: Try to combine each consecutive pair of follow-up voyages into
one. That is, remove the visit to the depot between the two voyages and serve all
the nodes of both voyages in one go.
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Move node: For each node, take it out from its current position/voyage and try
to insert it to all other positions in all voyages. Moves of this type make it possible
to converge to voyages which are time-wise feasible (time windows are obeyed).

The flow of the tabu search algorithm is governed by tabu tenures and penalty
coefficient adjustments. We use individual tabu tenures for each of the moves.
The tabu tenure for split and merge of individual voyages is 20 iterations, the
tabu tenure for moving each node is randomized, with the mean value equal to
one third of the number of nodes. In each iteration, the penalties β1 and β2 are
increased by 20% or decreased by 80% if the corresponding constraints are violated
or satisfied, respectively.

As the initial heuristic, we at first used the construction heuristic described in
Section 5.1, but eventually switched to the clustering heuristic, where nodes closest
to given depot are initially distributed among voyages originating from that depot.
For details on the heuristic see Section 5.3 below.

The neighbourhoods which we use are rather large (complexity O(n2)). This is
due to the fact that the typical number of nodes to be served in the EWOS case
is about 100 – 200, which is a rather small number compared to large-scale VRP
problems solved nowadays. The large neighbourhoods make our solutions barely
sensitive to the initial solution (as also commented upon in [6]).

5.3. Clustering heuristic

The steps of the heuristic are as follows:

(i) For each vessel, we find out its starting depot and the first time it becomes
available in this depot. Create an “empty” voyage for the given vessel,
starting at a given time in a given depot and returning immediately back
to the same depot. The starting depots encountered in this step form the
set of active depots.

(ii) We partition all order-nodes into disjoint sets, one set for each active depot,
based on the distance to the closest active depot.

(iii) For each depot, we gather all voyages created in (i) starting in this depot
and order them by departure time. The number of such voyages is denoted
by Nd.

(iv) For each depot, we take the cluster of order-nodes belonging to this depot
and order them by earliest arrival. We split the linearly ordered set into
Nd consecutive groups of an approximately equal size and then assign the
first group to the first voyage from (iii), the second group to the second
voyage, etc.

Such a solution might not be feasible, both the time and capacity constraints might
be violated. It did however turn out to cooperate very well with the tabu search
heuristic presented above.

6. Testing with historical data

The main aim of our work was to use our solution methods with real-world data
and find/quantify improvements to the routing. The EWOS company has devoted
a considerable effort to collecting their historical routing data. Based on the
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collected data, we reconstructed the entire voyage sequences of the EWOS fleet
realized in Q2–Q4 2010. We carried out the following simulation.

We picked a particular time instant, let the ongoing (real recorded) voyages
finish one-by-one, and let the tabu search heuristic overtake the control of the
routing. The individual vessels became available at times and at depots corre-
sponding to the ends of the real routes which were intercepted by the chosen time
instant. As the set of orders, we chose all the unsatisfied orders within a 10 days
horizon. Additionally, we added all the orders beyond the 10 days horizon which
were part of any historically recorded route containing orders from the base order
set. Finally, we compared the set of historically recorded routes to the routes
proposed by the heuristic. The summary of the results for four different cases is
given in Table 2. Improvements in travelled distance close to 30% were achieved.
The solution times for the test cases were approximately 2 hours (2.53GHz Intel
Core 2 Duo, 4GB RAM, MAC OS).

Table 2. Test case summary.

Start Horizon Served Optimized Historical Improvement
[days] orders distance [km] distance [km]

2010-10-14 10 118 8680.7 12923.3 32.8%
2010-10-24 10 124 10405.6 14595.3 28.7%
2010-11-06 10 139 9935.9 13753.4 27.8%
2010-11-15 10 113 9015.7 12679.5 28.9%

The fleet consists of 10 vessels. Apart from the vessel M/S RUBIN with a
capacity of 350 tons, the vessel capacities range nearly uniformly from 600 to 1650
tons, with an average capacity of about 1200 tons. The traveling speeds range
from 17 to 24 km/h. The sizes of the customer orders are units of tons up to
about 200 tons, with few exceptions of 500 tons. The average order size is about
80 tons. The distances traveled between consecutive locations are tens to hundreds
of kilometers.

For one of the test cases, we present a more detailed comparison of the real
recorded historical routes and the proposed optimized routes in Tables 3 and 4.
It is interesting to compare the achieved vessel fill rates, which are mostly above
90%, compared to the historical fill rates, which were significantly lower. The three
factories (depots) Florø, Halsa and Bergneset are abbreviated as F, H and B. The
Arrival and Departure columns use a compacted date format where the year 2010
and month 11 are omitted. For example, read “17 11:10” as “2010-11-17 11:10”.

Table 3. Proposed optimized routes.

Vessel From To Departure Arrival Fill-rate Days Dist. [km] Visited

M/S ARTIC FJORD F F 17 11:10 24 11:12 0.98 8.1 1512.0 28
M/S ARTIC LADY F F 17 21:46 23 13:48 0.94 7.9 1522.6 16
M/S ARTIC SENIOR F F 19 20:00 23 02:14 0.55 5.7 76.1 4
M/S FEED BALSFJORD H H 15 23:14 22 16:17 0.99 7.3 1398.1 14
M/S FEED TROMSØ B B 16 08:19 22 05:53 0.90 6.9 1037.0 15
M/S HOLMEFJORD F F 17 10:22 21 19:34 0.84 3.7 521.3 9
M/S MIKAL WITH H H 16 14:04 24 00:16 1.00 6.5 2038.1 20
M/S RUBIN B B 18 18:13 20 20:02 0.91 5.5 535.6 3
M/S SAFIR B B 18 13:10 23 01:53 1.00 5.6 375.0 4



DOWNSTREAM LOGISTICS OPTIMIZATION AT EWOS NORWAY 139

Table 4. Recorded historical routes.

Vessel From To Departure Arrival Fill-rate Days Dist. [km] Visited

M/S ARTIC FJORD F F 17 07:10 19 18:15 0.47 2.5 888.4 14
M/S ARTIC FJORD F F 20 21:10 22 16:11 0.77 1.8 667.4 12
M/S ARTIC FJORD F F 22 21:04 24 00:55 0.31 1.2 267.4 6
M/S ARTIC SENIOR F F 18 02:10 21 13:15 0.77 3.5 1045.0 5
M/S ARTIC SENIOR F F 22 08:15 24 02:20 0.74 1.8 616.5 12
M/S FEED BALSFJORD H H 15 15:48 18 15:38 0.63 3.0 848.1 7
M/S FEED BALSFJORD H H 18 19:47 21 08:16 0.45 2.5 795.1 6
M/S FEED TROMSØ B H 15 15:00 18 19:00 0.40 3.2 719.5 6
M/S FEED TROMSØ H B 19 07:55 22 15:41 1.16 3.3 1188.2 14
M/S HOLMEFJORD F F 18 04:52 20 12:10 0.17 2.3 492.1 4
M/S MIKAL WITH H H 17 19:55 21 09:30 0.36 3.6 1287.8 5
M/S MIKAL WITH H H 21 23:20 24 00:45 0.49 2.1 1422.7 10
M/S RUBIN B B 15 08:18 22 07:09 0.29 7.0 650.0 1
M/S SAFIR B B 17 17:00 19 23:00 0.55 2.2 614.9 6
M/S SAFIR B B 20 14:00 24 07:30 0.35 3.7 1176.3 5

One particular route listing is presented in table 5 below.

Table 5. M/S ARTIC FJORD, Fill-rate: 0.98, Days: 8.1, Distance: 1512.0 km.

Dist. [km] Travel [h] Wait [h] Arrival Departure Deliv. [tons] Destination

- - - 16 09:20 17 11:10 - Florø
35.9 1.7 0.0 17 12:51 17 14:19 80.0 FUREVIKA
60.9 2.9 0.0 17 17:10 17 18:36 77.5 BÅRØYOSEN

135.2 6.3 0.0 18 00:56 18 01:34 34.0 HOLKAHOLO
158.6 7.4 0.0 18 09:01 18 09:28 25.0 SMALSKAR

7.4 0.3 0.0 18 09:49 18 11:30 92.5 NAUTVIK
6.0 0.3 0.0 18 11:47 18 12:09 20.0 KJERRINGA

162.8 7.6 0.0 18 19:48 18 20:54 59.6 HÅGARDSNESET
40.4 1.9 0.0 18 22:47 19 00:00 65.6 HÅVIK
23.2 1.1 8.2 19 09:19 19 10:03 40.0 ALDALEN
22.6 1.1 0.0 19 11:07 19 12:47 91.4 MIDTFLUA
0.0 0.0 0.0 19 12:47 19 12:47 0.0 MIDTFLUA

130.0 6.1 0.0 19 18:54 19 19:52 53.4 LEIHOLMANE
25.4 1.2 0.0 19 21:04 19 22:49 95.8 KJERRINGNESET
21.0 1.0 0.0 19 23:49 20 00:00 10.0 JUVIKA
51.3 2.4 17.7 20 20:07 20 20:32 22.0 EIDESBERGET
15.8 0.7 0.0 20 21:16 21 00:00 148.6 MJØLSVIK

129.4 6.1 4.4 21 10:26 21 12:05 90.0 OSPENESET, AUSTFJ.
5.0 0.2 0.0 21 12:19 21 13:19 55.0 REKEVIKI, AUSTFJ.

137.4 6.5 0.0 21 19:46 21 22:07 127.8 DJUPEVIKA
2.3 0.1 0.0 21 22:14 22 00:00 96.3 TOBBHOLMANE

36.1 1.7 38.9 23 16:32 23 16:54 20.0 ALDALEN
15.1 0.7 0.0 23 17:37 23 18:10 30.0 NYGÅRD
21.1 1.0 0.0 23 19:09 23 19:42 30.0 DJUPEDALEN
8.9 0.4 0.0 23 20:07 23 20:40 30.0 SKÅTAVÅGEN

16.9 0.8 0.0 23 21:28 23 22:01 30.0 MJÅNES
42.1 2.0 0.0 24 00:00 24 00:55 50.0 USHOLMSVIKA
19.8 0.9 0.0 24 01:50 24 01:57 6.0 FIKSNESET
93.4 4.4 0.0 24 06:20 24 07:04 40.0 BÅRØYOSEN
88.1 4.1 0.0 24 11:12 - - Florø

The algorithm seemed to find a very good overall solution in terms of the total
traveled distance and the fill rate. It uses fewer routes which are longer, compared
to the reality where a bigger number of shorter routes were used. The algorithm
may propose a route with a waiting time in the middle (e.g. the 38.9 hour waiting
time in the route above). This could be counter-intuitive for a human planner, but
in this case it still results in a more effective coverage of the sequence of customer
requests. The waiting times are of course a consequence of the time windows on
the customer orders.

7. Conclusions and further research

We have presented a MIP model, a construction heuristic, a clustering heuristic
and a tabu search heuristic for a rich vehicle routing problem, which arises in
distribution planning of the Norwegian company EWOS AS; a fish feed producer
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for the salmon farming industry. The size of the problem made it impossible to
use exact solution methods, it mde it possible, however, to implement a tabu
search heuristic with a rather large neighbourhood search. The obtained results
are satisfactory from the practical viewpoint – the solution resulted in a significant
reduction of the travelled distance (close to 30%) and an increase of average vessel
fill-rate (from 60% up to 95%), as compared to the real company data. The results
also indicate a potential for down-scaling the fleet, with additional considerable
cost savings for the company.
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