
Math. Meth. Oper. Res. (2005) 62: 281–295
DOI 10.1007/s00186-005-0001-0

ORIGINAL ARTI CLE

Thomas Lindner · Uwe T. Zimmermann

Cost optimal periodic train scheduling

Received: January 2003 / Revised version: February 2005 / Published online: 8 October 2005
© Springer-Verlag 2005

Abstract For real world railroad networks, we consider minimizing operational
cost of train schedules which depend on choosing different train types of diverse
speed and cost. We develop a mixed integer linear programming model for this
train scheduling problem. For practical problem sizes, it seems to be impossible
to directly solve the model within a reasonable amount of time. However, suitable
decomposition leads to much better performance. In the first part of the decompo-
sition, only the train type related constraints stay active. In the second part, using
an optimal solution of this relaxation, we select and fix train types and try to gener-
ate a train schedule satisfying the remaining constraints. This decomposition idea
provides the cornerstone for an algorithm integrating cutting planes and branch-
and-bound. We present computational results for railroad networks from Germany
and the Netherlands.

1 Introduction

The train schedule constitutes the backbone of public rail transport planning.A train
schedule consists of the arrival and departure times of the lines at certain points of
the network. Different purposes require information on different levels of aggre-
gation of network structure. In particular, data points may include stations (high
degree of aggregation) or switches and important signal points (low degree of

T. Lindner
Siemens AG, Ackerstraße 22,
D-38126 Braunschweig, Germany
E-mail: thomas.dr.lindner@siemens.com

U. T. Zimmermann (B)
Institut für Mathematische Optimierung, Technische Universität Braunschweig,
Pockelsstraße 14, D-38106 Braunschweig, Germany
E-mail: u.zimmermann@tu-bs.de

282 T. Lindner, U. T. Zimmermann

aggregation). For the German railroad network depending on the degree of aggre-
gation, we have to handle 8000–27000 data points. In general, schedules for public
transport are periodical, i.e., the schedule is repeated after a certain time period.

Different departments of the railroad companies formulate various goals in con-
nection with schedule planning. The sales and marketing departments give priority
to travelers’ requests, e.g., short travel time, direct connections and, if necessary,
switching of trains on the same platform with short waiting time. The controlling,
management and logistics departments pay much more attention to cost related
aspects and ask for efficient management of rolling stock and personnel resources.
Rolling stock is a scarce resource, rules implied by contracts and legal requirements
set tight limitations for planning. High traffic load at critical points in the network
and security requirements add a lot of operational constraints. Goals and require-
ments are obviously in conflict. Moreover, external factors like political decisions
influence the planning process.

2 Model

A railroad network is usually modeled by a graph G = (V , E), where V denotes the
set of nodes and E denotes the set of edges. Nodes represent stations or important
network points like switches, and edges represent railroad tracks connecting these
points. Train scheduling is based on a known line plan that defines the lines, i.e., the
paths in the network that have to be served by trains within some fixed period T .
This set of lines is denoted by R. For a fixed line plan, we have to construct a
train schedule which assigns feasible departure and arrival times to the nodes of
all lines, cf. Figure 1.

2.1 Feasibility

Many requirements on train schedules can be modeled by so-called “periodical
interval constraints”. Here is a short example. At some station travelers want to

Fig. 1 Network, line plan, and schedule for one line

Cost optimal periodic train scheduling 283

change from line 1 to line 2. Therefore, in a feasible train schedule the difference
between the arrival of a train of line 1 and the departure of the corresponding train
of line 2 has to stay within a certain interval. If the difference is too small travelers
may fail to reach the train of line 2. On the other hand, if the difference is too
large, the waiting time at the station will be inconvenient. Let the schedule period
be T = 60 min. If 8–15 min are considered to be acceptable, then 68–75 min are
acceptable as well since arrivals and departures repeat every hour. We model such
a periodical interval constraint in the following way. If aS

1 is the arrival time (in
minutes) of some train of line 1 at station S then we know that the arrival time of
any train of line 1 at station S is aS

1 +z ·60 for some z ∈ Z. Similarly, the departure
time dS

2 of some train of line 2 at station S fixes the departure times of all trains of
line 2. Therefore, the time difference requirement for all trains can be modeled by

8 ≤ dS
2 − aS

1 − z · 60 ≤ 15, z ∈ Z. (1)

Many other requirements can be modeled in a similar way, e.g., headway times
between trains on the same track and travel times of trains between stations. The
problem of finding a feasible schedule, i.e., a schedule satisfying a set of periodical
interval constraints is called periodical event scheduling problem (PESP) and was
introduced by Serafini and Ukovich (1989). There are several different algorithmic
approaches for solving PESPs, e.g., implicit enumeration methods (Schrijver and
Steenbeek 1994; Serafini and Ukovich 1989) and a cutting plane method by Odijk
(1996). Voorhoeve (1993) is based on constraint propagation.

2.2 Cost optimization

So far we have considered only the feasibility of a schedule. Such feasibility models
present several problems for a practical application:

• Practical instances may be infeasible. From a theoretical point of view, this is not
a problem but in practice some schedule has to be generated, even in this situa-
tion. In order to make the instance feasible some constraints have to be relaxed.
However, it is neither clear which constraints should be relaxed nor how they
should be relaxed. Any practical algorithm requires rules for such decisions.

• Furthermore, generating feasible schedules does not provide information on the
quality of the found schedules. In practice there are many criteria for evaluating
feasible schedules (Cordeau 1998).

One criterion of increasing importance is cost. A model for evaluating operational
costs of line plans is introduced by Claessens (1994), Claessens et al. (1998). We
propose an adaptation of this model for operational costs of train schedules. The
model includes the following cost:

• Fixed cost per schedule period, per motor unit, and per coach: This includes
depreciation cost, capital cost, fixed maintenance cost or cost for overnight park-
ing.

• Cost per distance, per motor unit, and per coach: Examples are energy and
maintenance cost.

The model is quite flexible and allows to cover further cost aspects.

284 T. Lindner, U. T. Zimmermann

In our model, we consider operational cost depending on the type of the train
assigned to a line. We assume that the railroad company wants to find a low cost
assignment. A solution of our model proposes a minimum cost assignment of train
types to lines. A train type is characterized by:

• cost, capacity of coaches, bounds on the number of coaches; and
• speed

Let T denote the set of train types. Since train types run at different speed, feasibility
of a schedule depends on the assigned train types. A solution of our model provides
a minimum cost assignment of different train types with a feasible schedule.

We propose a mixed integer linear programming (MIP) model containing the
following classes of variables:

wr,�,c Line r ∈ R uses train type � ∈ Tr with c ∈ {W, . . . , W } coaches (binary
variable) ,

av
r,µ Arrival time of one train of line r , with direction µ, at station v,

dv
r,µ Departure time of one train of line r , with direction µ, at station v,

z Vector of integers for the PESP constraints.

Here, Tr denotes the set of train types that can be assigned to a line r ∈ R. W is
the minimal number of coaches of a train, W the maximal number. The direction
µ can either be 0 or 1, corresponding to the two directions of each line. The com-
plete model, referred to as minimum cost scheduling problem (MCSP), is shown
in Figure 2.

Fig. 2 Mixed integer linear program for minimum cost scheduling

Cost optimal periodic train scheduling 285

We will now explain the parts of the model in detail. The objective function
summarizes all costs for the chosen trains. Its first part contains the fixed costs.
The estimated cycle time (i.e., the time required for a train to run from one end of
the line to the other end and back) of train type � along line r is denoted by t̂r,�.
The actual number of trains of type � needed to operate line r is then given by
�t̂r,�/T �. Cfix

� denotes the fixed cost for one engine of type �, CfixC
� the fixed cost

for one coach. The second part of the sum contains the mileage cost. Ckm
� denotes

the cost per km (1 km = 1000 m) for one engine of type �, CkmC
� the cost per km

for one coach. Here, dr denotes the length of line r .
With the first constraint class, we assure that the capacity of trains is sufficiently

large to carry all travelers. The capacity of one train of type � is the capacity of one
coach, denoted by ��, multiplied by the number of coaches c · wr,�,c of the train.
Summation over all trains describes the available capacity, which must be at least
the required capacity Ne for a network edge e.

With the second class of constraints, we assure that exactly one train type and
one number of coaches is chosen for each line. These two classes of constraints
involve only train types and numbers of the coaches of these trains, but no time
variables.

The third constraint class ensures a feasible travel time for the trains of line r .
Here, the minimum travel time for a train of type � from a station v to the next

station v′ is denoted by �vv′
� , the maximum time by �

vv′

� .
All other constraints are periodical interval constraints describing a PESP. For

each such constraint an integer variable models the periodicity of the schedule as
in inequality (1). All these and all further integer variables in the remaining PESP
constraints (e.g., waiting times at stations, headway etc.) are collected in a vector z.

The MCSP contains subproblems that are very difficult to solve. The optimal
choice of train types and the optimal choice of numbers of coaches are both NP-
hard problems, and the generation of a feasible schedule (the PESP) is NP-complete
(Garey and Johnson 1979; Lindner 2000; Serafini and Ukovich 1989). On the other
hand, the MIP model precisely states which train schedule we consider as feasible
and which cost we want to minimize. Moreover, the MIP formulation enables easy
addition of other requirements, e.g., the available number of engines and coaches
of a certain type, without destroying the structure of the model. The high flexibility
of MIP models is very helpful when modeling and solving real world applications.

3 Solution algorithm

The MCSP model is intended for strategic and tactical railroad planning, i.e., for
long or medium term decisions rather than for day-by-day operations. In order to
provide a helpful evaluation tool for different network or train type scenarios, only
short computation times, say some minutes, are acceptable when solving the model
for real world MCSP instances. Furthermore, the planner can only use standard
computer equipment. For our test data like the InterCity or the InterRegio network
of Germany and the Netherlands, the direct application of some commercial MIP
solver resulted in several hours or even days of computation time on a 400 MHz
Pentium II PC. For some instances, its main memory of 256 MB was not sufficient.
In the following, we present a more sophisticated approach for solving MCSP.

286 T. Lindner, U. T. Zimmermann

3.1 Decomposition

Our approach is based on decomposition of the MCSP as proposed by the structure
of the matrix of all objective function coefficients and all constraint coefficients in
Figure 3. Only shaded blocks contain nonzero entries for the respective variables
and the corresponding class of constraints.

With the exception of the w-variables in the travel time data constraints, the
matrix has two-block diagonal structure. The first block represents the problem
of minimizing costs subject to requirements on the trains that can be assigned to
lines. This subproblem has only binary variables and is called minimum cost train
problem (MCTP). Its optimal solution assigns train types to the lines and defines
the number of coaches in each assigned train or, shortly, it assigns trains to lines.
However, it is not clear whether a feasible train schedule for these trains exists at
all. In fact, for some fixed train type assignment, the remaining constraints form
the second subproblem, called the feasible schedule problem (FSP). FSP is a PESP.

For solving MCSP we propose a branch-and-bound method based on these two
subproblems. In particular, the MCTP is used as relaxation of the MCSP.

3.2 Branch-and-bound method

In our branch-and-bound tree, each node represents an MCSP for which only a cer-
tain subset of train type assignments is allowed. We will now describe the resulting
method in detail.

Choice of the relaxation: As a relaxation in each branch-and-bound node, we use
the MCTP instance corresponding to the allowed train type assignments. At the
root node, for each line r , all train types � ∈ Tr are allowed. By using some ideas
described below, we are able to solve the MCTP instance for practical networks
with a commercial MIP solver in a few seconds.

Feasibility check: Let the optimal solution of the relaxation be given by the vec-
tor w of the train types and numbers of coaches. We now need to find out whether
the FSP constraints can be satisfied for w. Since this problem is a PESP, we will
address solution methods for PESP instances later in this section.

Fig. 3 Structure of objective function and constraints of the MCSP

Cost optimal periodic train scheduling 287

Choice of division/partition: If the FSP instance is infeasible, we need to change at
least one of the train types. Let �r be the train type for line r ∈ R, and let ρ := |R|.
An obvious way to divide the set T1 × · · · × Tρ of possible (but not necessarily
feasible) combinations for train types is given by

T1 × · · · × Tρ\(�1, . . . , �ρ) = (T1\{�1}) × T2 × · · · × Tρ ∪ · · · ∪ T1

× · · · × Tρ−1 × (Tρ\{�ρ}). (2)

According to this scheme, |R| new problems have to be generated in this case.
In order to keep the size of the branch-and-bound tree small we would prefer to
replace R by a “smaller” set of lines R̂ ⊂ R which is still causing the conflict.
The identification of a minimal set is NP-hard again, but some heuristical approach
turned out to be helpful for our practical instances. We will shortly address it later.

An algorithmic description of the branch-and-bound method is given as Algo-
rithm 1. We remark that this decomposition requires solving an NP-hard relaxation
as well as an NP-complete feasibility check at every node. Moreover, even for
practical MCSP instances, no polynomial bound for the number of nodes is known.

Algorithm 1 Branch-and-bound algorithm for the MCSP
c∗ := ∞; L := {{T1 × · · · × Tρ}}; lT1×···×Tρ

:= −∞
loop

if L = ∅ then
Stop. If c∗ = ∞, the problem is infeasible. Otherwise, an optimal solution is given by
w∗, a∗, d∗, z∗.

end if
Choose T ′ ∈ L.
L := L\{T ′}
if the MCTP for T ′ is infeasible then

continue
end if
Let an optimal solution of the MCTP be defined by the vector w with optimal value c.
if c ≥ c∗ then

continue
end if
if the FSP for w is feasible with solution vectors a, d, z then

c∗ := c; w∗ := w; a∗ := a; d∗ := d; z∗ := z
L := L\{T̂ | lT̂ ≥ c∗}
continue

end if
Let R̂ be a set of lines leading to the infeasibility of the FSP for w and let �i be the train
type for line ri ∈ R in the MCTP solution defined by w.
for i = 1 to ρ do

if ri ∈ R̂ then
Let T ∗ denote T1 × · · · × Ti−1 × Ti\{�i} × Ti+1 × · · · × Tρ .
lT ∗ := c
L := L ∪ {T ∗}

end if
end for

end loop

288 T. Lindner, U. T. Zimmermann

4 Solving MCTP instances

Unfortunately, when directly applied to MCTP of real world size, commercial
solvers may require too much computation time. For its repeated use within the
branch-and-bound scheme we propose adding suitable classes of cutting planes.
We will now present such a class.

Proposition 1 For n ≥ 2, let e ∈ E be an edge served by the lines r1, . . . , rn ∈ R.
We consider δ1, . . . , δn−1 ∈ {1, . . . , Ne − 1} with δ := ∑n−1

i=1 δi < Ne. Then

n−1∑

i=1

∑

�∈Tri

∑

c∈{W�,... ,W�}, c·��≥δi

wri ,�,c

 +

∑

�∈Trn

∑

c∈{W�,... ,W�}, c·��>Ne−δ

wrn,�,c ≥ 1

(3)

is a valid inequality for the MCTP.

Proof Let w denote a feasible binary solution of MCTP. If the binary variables
in (3) sum up to less than 1, each of them has value 0. Therefore any line ri , i < n,
can only contribute a capacity less than δi , and the line rn can contribute at most
the capacity Ne − δ. This results in

∑

r∈R
r�e

∑

�∈Tr

W�∑

c=W�

c · �� · wr,�,c =
n∑

i=1

∑

�∈Tri

W�∑

c=W�

c · �� · wri,�,c

<

n−1∑

i=1

δi + Ne − δ = Ne, (4)

which is a contradiction to the traveler capacity inequality of the MCTP. �

For our practical instances many of these cuts are violated by the respective
LP relaxation, although the edges are mostly served only by a few lines. Even for
n = 2, there are too many such violated inequalities to add all of them. However,
for n = 2, we can restrict our attention to a smaller set of cuts. Let �1

i < · · · < �ki

i

denote all potential train capacities which can be assigned to line ri , i = 1, 2, i.e.,
all values c · �� for some train c, �. The following proposition shows, that it is
sufficient to consider cuts for k1 values of δ1.

Proposition 2 Let e ∈ E be an edge only served by the two lines r1 and r2 and
let w denote a feasible solution for the LP relaxation of the MCTP. If w violates a
cut from (3) for some δ1 ∈ {1, . . . , Ne − 1} then it also violates a cut from (3) for
some δ̂1 ∈ {�1

1 + 1, . . . , �k1
1 + 1}.

Proof Obviously, δ1 > �1
1 (otherwise no w can violate a cut from (3)). Therefore

either δ1 ≥ �k1
1 + 1 or �i

1 + 1 ≤ δ1 ≤ �i+1
1 for some index i ∈ {1, . . . , k1 − 1}.

Cost optimal periodic train scheduling 289

In the first case, let δ̂1 := �k1
1 + 1. Then w violates the corresponding cut as

∑

�∈Tr1

∑

c∈{W�,... ,W�}, c·��≥δ̂1

wr1,�,c +
∑

�∈Tr2

∑

c∈{W�,... ,W�}, c·��>Ne−δ̂1

wr2,�,c

=
∑

�∈Tr2

∑

c∈{W�,... ,W�}, c·��>Ne−δ̂1

wr2,�,c ≤
∑

�∈Tr2

∑

c∈{W�,... ,W�}, c·��>Ne−δ1

wr2,�,c < 1.

Otherwise, choose δ̂1 := �i
1 + 1. Then w violates the corresponding cut as

∑

�∈Tr1

∑

c∈{W�,... ,W�}, c·��≥δ̂1

wr1,�,c +
∑

�∈Tr2

∑

c∈{W�,... ,W�}, c·��>Ne−δ̂1

wr2,�,c

=
∑

�∈Tr1

∑

c∈{W�,... ,W�}, c·��≥δ1

wr1,�,c +
∑

�∈Tr2

∑

c∈{W�,... ,W�}, c·��>Ne−δ̂1

wr2,�,c

≤
∑

�∈Tr1

∑

c∈{W�,... ,W�}, c·��≥δ1

wr1,�,c +
∑

�∈Tr2

∑

c∈{W�,... ,W�}, c·��>Ne−δ1

wr2,�,c

< 1.

�

For larger values of n, Proposition 2 lists a reasonable subset of the cuts. In the
following, we discuss the quality of the cuts from (3).

In particular, we consider a small graph Ĝ consisting only of two nodes and one
connecting edge e served by only two lines r1 and r2.We list all potential train capac-
ities for line ri according to variables wri,�,c in increasing order as �1

i ≤ · · · ≤ �k1
i .

Here, contrary to the definition used in Proposition 2, some successive values will
be identical when the same capacity can be obtained from different combinations
of train types and numbers of coaches.

Proposition 3 For the small graph Ĝ the polyhedron P described by the con-
straints

∑

�∈Tr1

W�∑

c=W�

wr1,�,c = 1,
∑

�∈Tr2

W�∑

c=W�

wr2,�,c = 1, w ≥ 0

and the cuts from (3) for all values of δ̂1 as described in Proposition 2 is integral.

Proof We show that the constraint matrix is an interval matrix and thus is totally
unimodular (Nemhauser and Wolsey 1988). Since the right hand sides of the con-
straints are integral, the proposition follows.

We reorder the columns of the constraint matrix by ordering the corresponding
variables for line r1 by increasing capacities �i

1 and the corresponding variables
for line r2 by decreasing capacities. The reordered constraint matrix is an interval

290 T. Lindner, U. T. Zimmermann

matrix (bound constraints are omitted):

�1
1 �2

1 . . . �k1
1 �k2

2 . . . �2
2 �1

2
1 1 1 . . . 1 1 0 0 . . . 0 0 0
0 0 0 . . . 0 0 1 1 . . . 1 1 1
0 1 1 0 . . . 0
0 0 1 1 0 0

etc.

∑
�

∑
c wr1,�,c = 1∑

�

∑
c wr2,�,c = 1

from Proposition 2
from Proposition 2
from Proposition 2

�
We can compare P with the polyhedron P ′ defined by the LP relaxation of the

corresponding MCTP instance. Due to the full set of cut constraints, every inte-
ger point of P satisfies the traveler capacity constraints of the MCTP. Thus it is a
feasible solution of the MCTP and its relaxation P ′. Vice versa, all integer points
from P ′, i.e., all feasible solutions of the MCTP belong to P since the cuts are valid
for MCTP (cf. Proposition 1). Therefore, for the small graph Ĝ, the integral poly-
hedron P is the convex hull of the feasible solutions of the MCTP. In other words,
the cuts as described by Proposition 2 are sufficient to obtain a linear description
of the convex hull of the MCTP.

For general instances, we may only conclude that if there is an edge served by
exactly two lines, there are no “better” cuts for the MCTP which can be derived
from the required edge capacity and the potential train capacities assignable to the
two lines serving that edge.

In general, we can only refer to some positive experience for practical problems.
In our implementation of the solution algorithm for MCTP, violation of all cuts from
Proposition 1 for n = 2 is checked (which can be no more than |E| · |R| · (|R|−1)
inequalities).

5 Solving FSP instances

Solving an FSP instance is equivalent to finding an integral solution to a set of lin-
ear inequalities. Again, the straightforward application of some commercial MIP
solver leads to unacceptably large computation times. On the other hand, we already
observed that FSPs are PESPs. We already mentioned that there are several algo-
rithms for solving PESP instances known from the literature. However, these algo-
rithms also seem to be too slow for instances of practical sizes.

One such method is the algorithm proposed by Serafini and Ukovich (1989).
We have developed a modified version of this algorithm which enables us to solve
much larger PESP instances and in particular those instances arising from our
practical problems. We now describe a generalized version of the algorithm given
in Serafini and Ukovich (1989). We then point out the differences between the
original algorithm and our version.

The algorithm of Serafini and Ukovich works on the so-called PESP event
graph. This directed graph G = (V , A) is defined as follows: For each periodical
event such as the arrival or departure of a line at a station there is a node v ∈ V ,
and for each periodical interval constraint, there is an arc a ∈ A. The goal of the

Cost optimal periodic train scheduling 291

algorithm is now to assign a potential π ∈ R|V | to the nodes such that for each arc
the corresponding interval constraint is satisfied. Let � be the node arc incidence
matrix of the graph, and let l and u be the vectors of lower and upper (periodical)
interval bounds. Then a solution of the PESP instance is represented by a pair (π, z)
such that

l ≤ �T π − T z ≤ u, (π, 2) ∈ R|V | × Z|A|. (5)

For an arc a ∈ A, the value za is called the modulo parameter of a.
Let T be an arbitrary spanning tree of G. In Serafini and Ukovich (1989) it is

shown that if there is a solution to (5), then there is also a solution to (5) where all
components of z corresponding to T are equal to 0. Note that by fixing z |T = 0,
the number of possible values of za for a non-tree arc a is bounded. Therefore, it is
possible to enumerate all values of z with z|T = 0. The algorithm of Serafini and
Ukovich is, in some sense, such an enumeration procedure. A generalized version
of this method is shown as Algorithm 2.

Algorithm 2 Generalized Serafini-Ukovich algorithm
Choose a spanning tree T . Set S := A(T).
za := 0 for all a ∈ S
Determine a feasible potential π for the graph (V , S) with the fixed modulo parameters.
loop

Choose non-tree arc a ∈ A\S.
Za := {za | za is a feasible modulo parameter for a if only arcs a′ ∈ S are considered, but
with their fixed modulo parameters}
if Za �= ∅ then

Choose a z ∈ Za .
za := z
S := S ∪ {a}
Determine a feasible potential π for the graph (V , S) with the fixed modulo parameters.
if S = A then

Stop. π is a feasible potential for the PESP instance, and z is a corresponding vector
of modulo parameters.

end if
else

Perform backtracking: Choose another value from za′ for the arc a′ whose modulo param-
eter was fixed in the iteration before. If this is not possible, perform further backtracking.
Delete the corresponding arcs from S. If there are no more modulo parameters for the
arc whose modulo parameter was fixed in the first iteration, stop. The PESP instance is
infeasible.

end if
end loop

Some steps of the algorithm should be discussed more carefully. A feasible
initial potential for (V , S), S being the arc set forming the spanning tree, always
exists and can be found trivially. Determining a feasible potential for (V , S) after
adding some arcs to S is done by solving a shortest path problem with a modified
Dijkstra procedure (for details, see Serafini and Ukovich 1989).

A crucial part of the algorithm is the selection of an arc a ∈ A\S in order to fix
the modulo parameter za . This choice has much influence on the structure of the
enumeration search tree and thus on the solution time of the algorithm. In order
to get small values for |za| and thus only few subproblems in the enumeration tree

292 T. Lindner, U. T. Zimmermann

one should try to identify the ‘most restrictive’ constraints and choose these arcs
as soon as possible. Serafini and Ukovich (1989) suggested sorting the arcs by the
interval width ua − la at the initialization and then always choosing an arc a with
the smallest value ua − la .

For our problem instances we have changed this selection rule: we recall that
after choosing a spanning tree T , the inequalities of (5) imply bounds on the num-
ber of possible modulo parameters for each non-tree arc and thus on the number
of subproblems in the enumeration tree. In fact, added to the tree each non-tree arc
induces a unique cycle. Along the cycle, one may exploit the inequalities of (5)
together with the fact that z |T = 0 in order to compute such bounds on za . Let
ba be the bound on the number of modulo parameters for arc a. We propose to
choose an arc a∗ with

ba∗ = min
a∈A\S

ba

for modulo parameter fixing. This reduces the enumeration tree remarkably and
thus leads to the required speedup. Another possibility is to calculate more exact
bounds ba during the algorithm and re-sort the arcs according to the new bounds.
A detailed discussion of arc selection rules is presented in Lindner (2000).

In view of the use of the FSP in the branch-and-bound method, it is important
to analyze infeasible FSP instances. Infeasibility leads to a branching step with the
generation of new subproblems. In order to keep the size of the branch-and-bound
tree as small as possible, it seems to be preferable to generate only few subprob-
lems. Therefore, when identifying an infeasible FSP instance, we try to generate a
small set of lines that already causes the infeasibility. The main idea of the heuristic
approach is to use the following observation: when some initial tree leads to an
infeasible non-tree arc then only changes for lines between the root of the tree and
the end points of the infeasible arc may resolve the conflict. For a more detailed
information on the approach we have to refer to Lindner (2000).

6 Computational results

Test data for our algorithms are real networks from the German railroad company
Deutsche Bahn (DB) and from the railroad company of the Netherlands Neder-
landse Spoorwegen (NS). For the German railroad, we used network data, line
plans, origin destination matrices, and cost data for the InterCity (IC) and InterRe-
gio (IR) networks. For the Dutch railroad, we obtained the respective data for the
InterRegio (IR), InterCity (IC), and AggloRegio (AR) supply networks.

Some characteristics of these instances are displayed in Table 1. For all in-
stances, four different train types are considered.

As an example, the InterCity network of the Netherlands is shown in Figure 4.
Cost optimal lines for this and other Dutch networks were generated in Bussieck
(1998).

Table 2 shows the overall results for our test networks. We use a 400 MHz Pen-
tium II PC with 256 MB main memory for our experiments. The MIP instances are
solved with CPLEX, version 6.5.2. With the exception of the Dutch AggloRegio
network, which is a very large network, our branch-and-bound approach is very
fast. Even when we enforce arrivals and departures suitable for travelers chang-
ing trains (by adding periodical interval constraints for connections at important

Cost optimal periodic train scheduling 293

Table 1 Some characteristics of the railroad networks

DB-IC DB-IR NS-IC NS-IR NS-AR

Number of nodes 90 297 36 38 122
Number of edges 107 384 48 40 134
Number of lines 31 89 25 21 117
Average number of edges per line 7.5 5.9 5.0 5.8 4.2

Fig. 4 Intercity network of the Netherlands

stations – we stopped at 40 constraints, because then the running time increased
much, but the gain in traveller connection was marginal), we generate nearly opti-
mal train schedules within 5 min.

The number of branch-and-bound nodes varied from 200 (NS-IR) to 30000 (DB-
IC). The main time was spent on solving MCTP instances (90%). Almost all FSP
instances could be solved or proved to be infeasible in 10 s. The first solution for
NS-AR was generated after half an hour.

We will now discuss the effect of the cutting planes from Section 4 for solving
our MCTP instances. As example instances, we have chosen the MCTP instances
from the root node of our branch-and-bound algorithm applied to the test networks.

294 T. Lindner, U. T. Zimmermann

Table 2 Results for test instances without and with added constraints

Instance DB-IC DB-IR NS-IC NS-IR NS-AR

Number of added constraints 0 0 0 0 0
Verified optimum found in 219 s 4 s 30 s 33 s 0:47 h
Optimality gap after 5 min 0% 0% 0% 0% –*

Instance DB-IC DB-IR NS-IC NS-IR NS-AR
Number of added constraints 40 40 40 40 40
Verified optimum found in 9:31 h 122 s 14:00 h 1:20 h 1:24 h
Optimality gap after 5 min 0.10% 0% 0.39% 0.27% –*

*No solution in 5 min

Table 3 Results for MCTP

Inst. #Con. #Var. #�= 0 Root Time (S)
gap (%)

DB-IC 74 735 3435 0.9 1
DB-IR 69 471 1376 0.3 1
NS-IC 57 793 3237 2.5 20
NS-IR 41 545 2741 1.5 2
NS-AR 178 2221 9328 2.1 865

Table 4 Results for the MCTP using cutting planes

I # Iter. # Cuts Root Time (S) I # Iter. # Cuts Root Time (S)
gap (%) gap (%)

DB-IC 3 7 0.6 1 DB-IR 2 18 0.05 1
NS-IC 10 134 0.6 9 NS-IR 10 94 0.9% 4
NS-AR 9 123 1.1 934

In Table 3, the number of rows, columns and non-zeros of the MIPs, the relative
gap between the optimal LP solution and the optimal MIP solution and the solution
time for MCTP are given.

The solver CPLEX uses a MIP preprocessor for reducing the MIP size. The
numbers from Table 3 were obtained after the preprocessing step.

The effect of using the cutting planes we have discussed can be seen in Table 4.
There, the number of cutting plane iterations before starting the MIP branch-and-
bound process, the number of used cuts, the relative gap between the LP solution
and the MIP solution and the solution time (cutting plane algorithm + MIP solution)
are given.

We can see that for our instances, the use of cutting planes provides better LP
bounds and an additional acceleration in some cases (while in the other cases the
solution time does not increase much).

7 Conclusions

In this paper, we derived a mixed integer linear programming formulation of a cost
optimization train scheduling problem. A direct solution of problem instances of
practical size with a commercial MIP solver turned out to be impossible because

Cost optimal periodic train scheduling 295

of the tremendous sizes of the instances. Instead, we proposed a decomposition-
based branch-and-bound approach which produces solutions of acceptable quality
within a few minutes. Therefore, with our model, traffic planners may interactively
generate or evaluate different scenarios.

In view of the further development of commercial solvers we verified our
conclusions by experiments with a more recent CPLEX version (8.0). Although
with this version our MCTP instances could be solved faster than with our cutting
plane algorithm, the general improvement in solving MCTP is still not sufficient
to directly attack the full MIP instances of MCSP.

For larger networks, we propose a strategy of regional decomposition in order
to get “good” solutions. At first, the network is partitioned into several regional net-
works which allow fast optimization. Then, the corresponding partial train sched-
ules are combined to a train schedule of the complete network. The combination
step will require some interactive corrections which may be supported by com-
puterized tools. In manual schedule planning, regional decomposition is a well
established approach. With the help of the LP relaxation of the MCTP, which can
be calculated in a few seconds even for large networks, we can determine an upper
bound for the quality of the solutions constructed by the regional decomposition.

Acknowledgements We would like to express our thanks for encouragement, support and data
made available by Adtranz Signal (Braunschweig), Dr. M. Krista (Lineas, Braunschweig) and
Prof. Dr. L. Kroon (Railned, the Netherlands). We are also grateful to Dr. M. Lübbecke (TU Ber-
lin) for comparing our algorithms to different CPLEX versions.

References

Bussieck MR, Winter T, Zimmermann UT (1997) Discrete optimization in public rail transport.
Math Program 79(1–3):415–444

Bussieck MR, Krista M, Wiegand K-D, Zimmermann UT (1997) Linienoptimierung – Model-
lierung und praktischer Einsatz. In: Hoffmann K-H, Jäger W, Lohmann T, Schnuck H (eds)
Mathematik – Schlüsseltechnologie für die Zukunft, Springer, Berlin Heidelberg New York

Bussieck MR (1998) Optimal lines in public rail transport. PhD thesis, Technische Universität
Braunschweig

Claessens MT (1994) De kost-lijnvoering. Master’s thesis, University of Amsterdam
Claessens MT, van Dijk NM, Zwaneveld PJ (1998) Cost optimal allocation of rail passenger

lines. Eur J Oper Res 110(3):474–489
Cordeau J-F, Toth P, Vigo D (1998) A survey of optimization models for train routing and sched-

uling. Transport Sci 32(4):380–404
Garey MR, Johnson DS (1979) Computers and intractability — a guide to the theory of NP-com-

pleteness. Freeman, San Fransisco, USA
Lindner T (2000) Train schedule optimization in public rail transport. PhD thesis, Technische

Universität Braunschweig
Nachtigall K (1998) Periodic network optimization and fixed interval timetables. Habilitations-

schrift. Universität Hildesheim
Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York
Odijk MA (1996) A constraint generation algorithm for the construction of periodic railway

timetables. Transport Res B 30(6):455–464
Schrijver A, Steenbeek A (1994) Dienstregelingontwikkeling voor Railned. Technical Report,

Centrum voor Wiskunde en Informatica
Serafini P, Ukovich W (1989) A mathematical model for periodic scheduling problems. SIAM J

Disc Math 2(4):550–581
Voorhoeve M (1993) Rail scheduling with discrete sets. Unpublished report, Eindhoven Univer-

sity of Technology, The Netherlands

