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Preface to the second edition

Even a casual comparison of the table of contents of the present
collection with that of its predecessor will reveal significant differences as
well as much overlap. By and large, the present selection is the product of
two forces: (a) comments from users of the first edition (and from poten-
tial users of the second) and (b) our own sense of the direction the field
has taken during the past two decades.

We are grateful to our many friends and colleagues, too numerous to
thank individually, who have commented on what they found useful and
less than useful in our first effort, as well as on what they felt it would be
good to have available in one volume. Their perspective has been invalu-
able, though the responsibility for our selections remains largely our own.

Needless to say, we would have liked in a way to reissue the first edi-
tion and simply add a second, companion, volume. But we are deterred
by the prohibitive cost (to the user) of the two volumes. Hence the inevi-
table compromise: A selection was made, omitting several things to make
room for new ones. In a number of cases (most notably the Wittgenstein
material and **“Two Dogmas of Empiricism’’), the (present) availability
of most of the material enabled us to omit it with less of a sense of loss.
Not 5o with the rest. The selection of new material was even more diffi-
cult, as these years have been particularly fecund, both in relevant semi-
technical results and in philosophical explorations.

As before, we limited our selections to those we felt would be accessible
to the philosophically educated reader with enough background in logic
to understand an exposition of some of the results of twentieth-century
logic. (An important example is the independence of Cantor’s Continuum
Hypothesis.) In a similar vein, we tried also to narrow the range of philo-
sophical issues discussed in the selection to ones that could most easily be
recognized as concerning the philosophy of mathematics. Both of these
admittedly loose principles served as guidelines only; but any attempt to
observe them inevitably constrains the range of literature available for
consideration. Except for these rules of thumb, in the end, we followed
no overarching principle other than that of making a selection of items
that, in our judgment, would make interesting reading when taken

together.
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Preface to the second edition

Another major point of difference between this volume and its pre-
decessor lies in the extended Bibliography that appears at the end of this
edition. It was compiled by starting with the selected bibliography of the
first edition, adding a number of items that we felt were missing from it,
and closing it by including everything referred to in any of the selections
included in the book. Inevitably, there have been many important omis-
sions - as we go to press we must resist the urge to keep adding to it. We
wish at this point to record our gratitude: once again to George Boolos,
who compiled the initial bibliography; to Takashi Yagasawa, for his help
in augmenting it; and to Ann Getson, James Cappio, and Ann lvins for
their invaluable contributions to its completion and to the preparation of
the manuscript.

Finally, a word about format. Collecting all of the bibliographies into
one comprehensive Bibliography enabled us to put all bibliographical
references into a standard form for the book as a whole. This has meant
the elimination of a large number of purely referential footnotes (for the
convenience of including them in the text), as well as the shortening of
many others. Also, we have identified as such any references to items
that appear in this collection, inserting the present page number(s) where
relevant. Wherever feasible, we retained the author’s reference to the
original source and simply added the locus of that reference in the present
reprinting. We hope that the effort that went into this task is rewarded
with a book that is, as a consequence, much more useful.

Princeton, N.J., and Cambridge, Mass. PAUL BENACERRAF
November 1982 HIl ARY PUTNAM
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Introduction

1. General remarks

It would be difficult to say just what comprises the philosophy of mathe-
matics - what questions, views, and general areas should be covered in a
book such as this. With that as our excuse, we have not tried to bring
together a collection of selections that could be said to cover the field in a
comprehensive way. We have tried rather to bring together selections
that we felt were interesting in their own right, and that offered interest-
ing comparisons when read together, all with the proviso that the issues
discussed in them were in most cases central to the field. If we have suc-
ceeded, then we are certain that the reader has an adequate introduction
to the philosophy of mathematics.

The divisions we have chosen are largely arbitrary, as the following
remarks will indicate, and no importance should be attached to a particu-
lar article’s being in this section rather than that. With this much said, we
can state that the motivation behind the sections is roughly as follows:
We included in Part 1 those selections that centered around three tradi-
tionally important views on the nature of mathematics: logicism, intui-
tionism, and formalism. This is not to say that other articles in the book
do not bear on these views, For example, the article by Hempel in Part 111
is itself a very clear exposition of logicism. Like the other pieces in Part
111, however, it discusses the view on a (mathematically) less technical
plane and is therefore more readily accessible to people with no formal
training in logic than the papers in Part I. The discussion of the three
aforementioned views is thus the unifying thread that runs through the
section called ‘“The Foundations of Mathematics.”

Questions concerning mathematical existence (we leave open here the
question of whether mathematical existence is a different sort of existence
or the existence of a different sort of thing, or both, or neither) are
touched upon principally in Part II. But is is clear to anyone with the
slightest familiarity with these matters that intuitionism, at least, is a
view concerning mathematical existence, at least insofar as it includes con-
ditions on what is to count as proof of the existence of certain mathe-
matical structures, entities, and so on. Therefore, an adequate considera-
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Introduction

tion of these questions (adequate in that it takes in the leading points of
view) would include items from Part I as well.

The first three sections overlap further in that the third, ““Mathemati-
cal Truth,”” contains, besides the Hempel selection just mentioned, the
quasi-intuitionistic piece by Poincaré. Quine (‘“Truth by Convention’’)
discusses conventionalism, a view also expressed by Carnap in connec-
tion with mathematical existence and truth in his article in Part II, and
Benacerraf’s article in Part 11, ““What Numbers Could Not Be,”’ is a dis-
cussion of an issue central to logicism: the nature of numbers.

We feel that such overlap is unavoidable. The division into problems
is, at best, a guide for the reader. It is evident that one’s view on the
nature of mathematical truth (if there is indeed such a beast) will affect
one’s views on mathematical existence and will constitute a position on
the ““Foundations of Mathematics.”’

Despite this overlap, there is a further division to which we can point
and which may prove helpful in organizing the array of views represented
in this book: There is a suggestive distinction to be drawn between the
items in Part I on the one hand, and those in Parts Il and III on the other
(Part 1V, as we shall see, thoroughly straddles this distinction). Part 1
contains contributions belonging to what we should like to call the “‘epis-
temology of mathematics.”” With the possible exception of the selections
by Frege and Russell, the authors of these pieces devote a good part of
their attention to the question of what an acceptable mathematics should
be like: what methods, practices, proofs, and so on, are /egitimate and
therefore justifiably used. They don’t take existing mathematics and
mathematical activity as sacrosanct and immune from criticism; accord-
ing to them, there are justifiable and unjustifiable methods in mathe-
matics, and acceptable results are those obtainable by justiflable methods.
In fact, a good portion of the effort of the mathematlcian should be
devoted to trying to recast intuitively desirable and acceptable results in
f9rms that show them to be ultimately acceptable, If the author in ques-
tion is an intuitionist, then it will be his view, e.g., that any part of real
analysis that cannot be obtained by intuitionistic methods ought to be
dlSC?u‘ded. But in most cases, it is vitally important to carry on the search
for intuitionistic proofs of as yet unobtained classical theorems.

And what we have seen to be true of the intuitionist is also true of for-
malists (Hilbert, von Neumann, Curry). Members of this latter group are
concerned about the legitimacy of references to infinite collections,
structures, and the like, in mathematics. More particularly, the concern
takes the form of a concern that such reference, since it is to things so far
from what we are capable of experiencing, might lead to contradictions
(presumably because the candle of intuition casts but 2 dim light from
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such a distance). What then becomes important for the formalist is the
search for a proof that these ‘‘infinitistic’” methods form a consistent
whole. The proof must, of course, be one that does not employ these
questioned methods. So here again there appears a restriction on what
methods should be countenanced in mathematics. And so on for the
others. The other feature characterizing the members of this group is that
they are predominantly mathematicians rather than philosophers. And
we say this without in any way wishing to play down their philosophical
contributions, any more than we would be inclined to deny the mathe-
matical contributions made by members of the other group. The first
group consists, therefore, largely of mathematicians who criticize the
very foundations of their subject. These are the ‘‘epistemologists.’” (Poin-
car¢ and Bernays really belong in group one, if we are to judge from the
bulk of their work, but the passages we have chosen assimilate them
more to the second; Dummett, on the other hand, although primarily a
philosopher, is writing to supply philosophical underpinnings to the
intuitionist position and, as such, fits more naturally in group one.)

In contrast with the *‘epistemologists of mathematics,”’ there are those
who accept mathematics as, if not sacrosanct, then at least not their
province to criticize. Their task is a different one: They do not want to
promulgate certain mathematical methods as acceptable; they want to
describe the accepted ones. Mathematics is something given and to be
accounted for, explained, and accurately described. For them, episte-
mology is not a tool to help sort the good mathematics from the bad - it
is a scheme within which mathematics as such must fit (‘*“Mathematical
propositions are analytic,” ‘*Mathematical statements are true by con-
vention,”’ and so on). One way of describing the difference between these
two groups is to say that, for one group, the epistemological principles
have a hlgher priority or centrality than most particular bits of mathe-
matics, and hence can be used as a critical tool; whereas for the other
group just the reverse is the case: Existing mathematics is used as a
touchstone for the formation of an epistemology, one of whose condi-
tions of adequacy will be its ability to put all of mathematics in the proper
perspective. To put it somewhat crudely, if some piece of mathematics
doesn’t fit the scheme, then a writer in the first group will tend to throw
out the mathematics, whereas one in the second will tend to throw out
the scheme.

Of course, matters are not quite that neat. For both groups there is a
constant interplay between epistemological principle and mathematical
activity. Members of the first group will sometimes start with some para-
digm cases of acceptable mathematical practice (e.g., intuitionists and
formalists both start with parts of number theory) and then try to arrive
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at principles that will account for the validity of this starting point. These
principles are then used either to criticize what fails to conform to them,
or as a guide for the erection of standards that further proofs must meet,
especially proofs of those ‘‘theorems” already ‘‘proved’ but not
‘“‘acceptably’’ so. Similarly, it would be an exaggeration to saddle the
second group with absolutely everything a mathematician might produce.
Their account of mathematics might very well force them to renounce
and denounce some piece of mathematics as unacceptable. But by and
large this is very unlikely. Ayer, Hempel, Boolos, Benacerraf, and Put-
nam are all prepared to take mathematics pretty much as is. Russell and
the Carnap of ‘“The Logicist Foundations of Mathematics'* present a
problem, depending on how seriously one takes their discussions of the
vicious circle principle and impredicative definitions. There is no ques-
tion that the Carnap of ‘‘Empiricism, Semantics, and Ontology’’ has
abandoned any critical function for epistemology. Quine is a borderline
case, almost professionally so. Insofar as he has abandoned his ontic
qualms, however, he presents no problem. But leaving the borderline
cases straddling the border line, Heyting, Brouwer, Hilbert, von Neu-
mann, Curry, and Poincaré (in other passages than those we are pre-
senting, alas) are quite clearly on the other side. Kreisel belongs, if any-
where, to this latter group, for he has strong constructivistic leanings.
The “if anywhere” is inserted because Kreisel’s function has been more
or less to reconstruct and make mathematical sense of the philosophical
pronouncements of the members of this latter group. And it is quite con-
ceivable that he should wish to see just how much of extant mathematics
one can obtain on this or that restriction without much caring whether
or not one adopts the restriction. This would make his, as it were, a
metatask.

The articles in Part 1V weave both strands together into & hopeless
tangle. This is hardly surprising, as the subject matter is set theory - a
brgnch of mathematics with powerful ancestral ties to philosophy, and
Whlch. has served as the battleground for a host of philosophic disputes
ever since its explosive Cantorian(-Fregean) birth and its stormy Russell-
ian adolescence. It has survived these traumas, as well as those inflicted
by Gédel and Paul Cohen through their discovery of the independence
rejsults. Now, ph'ilosophers and mathematicians alike are scrutinizing its
hlstqry and prehistory to tease out both the strengths responsible for its
survival and the genetic weaknesses that almost caused it to perish. Inevi-
tably, the reformers and apologists rub elbows.

But the distinction is a vague one and we should not try to make too

much of it. Though vague, we hope it is nonetheless suggestive; and it
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should be of some help in understanding how the writings of the authors
included in this collection are related. What becomes of interest, once
one has seen the distinction, is the way in which one can view the discus-
sions included in this book as continuous with one another. At first sight,
it might appear that the two groups did not even discuss the same prob-
lems. But it should be seen that Hilbert is just as much concerned with
the determinants of ‘“‘mathematical truth’’ as, say, Ayer. The positions
they adopt are rather different, but both should be read as writing on the
same questions, or very nearly so. And similarly with Goédel. When
Gddel discusses the continuum hypothesis, he is merely focusing on a
particular mathematical proposition and the ways in which it might be
shown to be true or false. Hempel’s remarks on the nature of mathemati-
cal truth should, if cogent, be relevant to this discussion. And so on with
the rest of the selections.

Consequently, it is our view that the questions we have chosen for
study are intimately related. Furthermore, the authors whose discussions
of these questions we have selected are, on the whole, concerned with
very much the same questions, superficial differences to the contrary.
These differences bespeak differences in point of view and differences in
methods of attack, rather than simply different concerns. We believe
that the discussion of all these problems benefits greatly from the inter-
play of these differences - but only when it becomes clear what unites
them as discussions of the same problems. It is our hope that reading
these selections together will make this clear.

So much by way of introduction. The remainder of this Introduction
will consist of remarks on a number of problems, some of which are dis-
cussed rather fully, and others of which are merely touched upon by our
authors. We hope that these remarks will make it easier to understand the
selections and the issues involved.

A word of warning is in order. We have not attempted, in the sections
that follow, to present a single, unified point of view on all of the prob-
lems and authors that we discuss, Instead we speak from many, differ-
ent, and often incompatible viewpoints. For a couple of reasons. First,
we are more concerned here to raise useful and interesting questions than
to attempt to answer them. Second, it is unlikely that there is one on
which we could agree, or even agree to agree for the nonce. Thus, the
attentive reader, moving through this Introduction from section to sec-
tion and even within individual sections, will discern shifts of focus and
point of view. We hope that, rather than distract, they will prove helpful
through the variety of perspectives they offer on the extremely complex

problems under discussion.
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2. The actual infinite and formalism

Although this collection does not contain a section titled **The Infinite in
Mathematics,’”’ anyone who reads the selections from the writings of
Brouwer, Heyting, and Hilbert that we have included under the general
title ““The Foundations of Mathematics’’ will quickly realize that the role
played by infinite structures, collections, quantities, and the like in classi-
cal mathematics has a great deal to do with the controversy between the
different ““schools’’ in the philosophy of mathematics. By the same
token, the measure of success attained by Cauchy and Weierstrass in
eliminating “‘infinite quantities’’ from the calculus had a great deal to do
with the ideal, shared by thinkers with views as mutually antagonistic
and those of Hilbert and Brouwer, of eliminating the infinite from math-
ematics altogether.

But why should it be deemed desirable to avoid reference to the infinite
in mathematics? Sometimes it is said -~ even by Hilbert - that references
to the infinite are ‘“‘meaningless.”” But why should one suppose that this
is so? Classical philosophers - in particular Hume - had argued against
the notion (in connection with infinite divisibility) on the basis of an
identification of what is intelligible with what can be visualized; but the
“image-in-the-head”” theory of meaning no longer seems tenable, and
attacks on the notion of the infinite must depend on something more
reasonable than this if they are to be taken seriously.

In point of fact, it is very hard to find reasoned and even moderately
detailed argument on this point. Opponents of the *‘actual infinite’’ tend
to assume that the burden of proof lies on the other side. **Show us that
the notion makes sense,’’ they seem to say, where the criterion of making
sense seems to be expressibility in their terms. We cannot discuss this
issue here: Suffice it to say that readers who sympathize with the demand
of the classical empiricists that all concepts be legitimized by being
‘““derived from experience'’ will probably find themselves inclined to
§ympathize with those who doubt that any notion of an infinite structure
Is a clear one, whereas readers who are either of a more realistic or of &
more. pragmatist turn of mind may have difficulty in seeing *‘what the
fuss is all about.”

Suppose, however, that we assume that statements about infinite
structures.“make sense.”” Are there in fact any such structures to talk
ggg)ret';ol;lil;):l:ﬂiig;li ;gg:lrtllci:lgly that. physics provides no clear eyi-
has, as he points out. imorey C .; ?.lcFures. In faq, the ;?rogres‘s of physics
are:a oo i’n ﬁni?e uced ;:’lltCl’lCS? and d:sconum{lty in area after
Today even the possitin: an t'e continuous once reigned supreme.

y of a beginning (and an end) to “physical time”
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is under discussion among physicists. Thus we must agree with Hilbert
that if mathematics is to be independent of dubious empirical assump-
tions, it must not base assertions concerning the existence of infinite
structures on physical considerations.

To this Russell replied, in a slightly different context, that mathematics
is concerned not with (physical) existence, but only with the possibility of
existence. Thus, in the second edition of Principia Mathematica (hence-
forth: PM), Russell and Whitehead chose not to assume the so-called
Axiom of Infinity, which asserts that there are infinitely many objects in
the universe of discourse, but rather explicitly included it among the
hypotheses of each ‘‘theorem”’ in whose proof it was used. If T was the
“theorem” in question, then Whitehead and Russell asserted only ‘if
Inf. Ax., then T,

But is it clear that an infinite totality could possibly exist? If the Axiom
of Infinity leads to a contradiction, then the theorems that list it as hypo-
thesis are certainly not very interesting. Since these form a large part of
mathematics (at least as reconstructed by Russell and Whitehead),
should there not be some proof of the consistency of the Axiom of
Infinity, whether it is to be used as a postulate of the system or only as a
hypothesis of a large number of important theorems?

Here we get a parting of the ways in the philosophy of mathematics.
Russell and his followers apparently regard the possible, if not actual,
existence of infinitely many objects as self-evident, whereas for Hilbert
and the formalists the consistency of this assumption must be proved.
Moreover it must be proved by *‘finitist”> means - that is to say, the
assumption itself must obviously not figure, even in a disguised way,
among the assumptions of the consistency proof. The reader will observe
that this kind of question is a bit like a political question - it is not a
*‘purely theoretical’’ question, in the sense of making no difference to
practice, but rather it affects one’s standards in mathematics and one’s
program as a mathematician. Hilbert did not think it very likely that the
system of PM was, in fact, inconsistent; he simply felt that to take its
consistency, or even the consistency of elementary number theory, with-
out proof, was to adopt too low a standard of mathematical exactness
and to risk unpleasant surprises in the future.

Another perspective that might prove helpful in understanding Hil-
bert’s desire for a consistency proof for infinitistic classical mathematics
is the following.

Hilbert took certain kinds of mathematical assertions to be philosophi-
cally (i.e., epistemologically) unproblematic. These were assertions whose
truth or falsity could be determined by combinatorial calculation - by the
observation of combinatorial facts that could be ascertained by immediate
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perception. Call them *‘basic propositions’” - for example, whether one
(finite) string of symbols was longer than another. Assertions that made
essential reference to infinite collections, in ways that deprived them of
this property of finite verifiability/falsifiability in terms of observable
combinatorial facts, were considered to be strictly meaningless. Hilbert
recognized that their introduction into mathematics considerably simpli-
fies the statement of a number of laws, thus making the theory consider-
ably more elegant and appealing. In this regard he likened it to the intro-
duction of ideal elements, such as points at infinity in projective geome-
try, or i.

But is it safe?

Hilbert allowed that they might nonetheless be admitted into mathe-
matics if it could be shown that their admission would be harmless - that
it would not enable one to prove falsehoods, that is, false basic proposi-
tions. A consistency proof for classical mathematies that made no essen-
tial reference to infinite collections would do just that. If the proof made
use only of finitistic (i.e., sanitary) principles, the reference to infinite
collections would have been justified on finitistic grounds. It could then

be regarded as simply an elaborate facon de parler and indulged without
risk.

3. The “‘potential infinite’’ and intuitionism

For the intuitionists, the position with respect to the infinite was differ-
ent. Given a set of statements describing an infinite structure, there are
two sorts of doubts that may arise. First, one may question the consis-
tency of the statements: This was Hilbert’s worry. Second, one may
doubt that the statements **pick out’ a unique and well-defined mathe-
matical structure. Intuitionists sometimes write as If even the notlon of
an "art?itrary finite magnitude'’ is not completely flxed In advance.' We
knov.v, indeed, that 1,2, 3 are integers. We know that certain operations
applied to integers lead to integers - e.g., addition, multiplication, expo-
nentiatiqn. But it does not follow that we have a perfectly definite notion
of “any integer” - because this involves the idea of iterating an operation
(say,_ ‘‘adding 1°*) an arbitrary finite number of times, and we need not
admit that we have a clear notion of what this means. The intuitionist
does not, of course, propose to do without the concept ‘‘integer’” — that
would be to abandon mathematics altogether. The proposal (cf. Heyting,

'In esen :
is wss‘;tt;‘;t:,? l;g:s;‘xe present an account of intuitionism directed at the nonintuitionist. It
acceptable to no intuitionist, but we feel that such *“falsification’ is

justified if it helps brid :
“solagsical mathel;?;ﬁ;la:.e"the gulf that presently exists besween the intuitionist and the
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elaborating and formalizing Brouwer’s ideas) is rather to develop a prop-
ositional calculus for dealing with concepts that do not necessarily cor-
respond to a well-defined totality (and ‘‘statements’’ that do not neces-
sarily have a truth-value). This attitude is often described as ‘‘counte-
nancing the potential infinite but not the actual infinite.”” What it comes
to is this:

1. A statement about an infinite structure - say, an infinite sequence
of zeros and ones - may be regarded as true if proved and faise if
refuted, but in all other cases it is regarded as neither true nor
false.

2. Since the structure is not thought of as well-defined, a statement
about it can be proved only if it is actually proved for a much
larger class of structures. In fact, to prove a statement about an
infinite structure, we must prove the statement on the basis of ver-
ifiable statements either about some finite part of the structure
(e.g., the first ten places of the sequence), or about the rule (if
there is one) for successively producing the finite initial segments
of the structure.

An example may help to make this position more clear. Consider the
assertion that the sum of the first n odd number (1+3+4-+++(2n—1))
is always a perfect square (in fact n%). The sum of the first one odd
numbers, that is, 1, is a perfect square, since 1 =1% And if the sum of the
first 7 odd numbers is n2, then the sum of the first n+1 must be (n+1 )%,
or n*4+2n+1 (since the n+1st odd number is (2n~1)+2, and this is
equal to 2# +1). Thus we have proved the theorem for 1, and if we have
proved the theorem for n, we can prove it for n+1. Accordingly, the
Intultlonlst - like the classical mathematician - concludes that the theorem
holds for every number. The philosophical difference is that the intui-
tionist does not assume that the numbers are a well-defined totality. But
in this case it doesn’t matter. (Although there are many cases in which
intuitionists are led by their position to reject classically valid proofs; for
example, proofs that assume that every statement about an infinite total-
ity is either true or false - which amounts to assuming that the totality is
well-defined - are rejected by intuitionists.) For, even if we extend the
notion of an integer to cover a new ‘‘object,” if all theorems proved in
the preceding fashion hold for all the things previously counted as inte-
gers (notice that there need be only finitely many of these at any given
time), and if the ‘“‘new’’ integer is always “‘one plus’’ something pre-
viously counted as an integer, then the theorems in question will hold

also for the ‘“‘new’’ integer.
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By way of contrast, consider the assertion that the number of ‘‘twin
primes”? is infinite. For the classical mathematician this has a unique
truth-value (even if he doesn’t presently know it). But for the intuitionist
it doesn’t; For he has no proof of the statement, nor does he have a proof
of its negation, and statements about an ill-defined totality don’t have a
truth-value unless they are proved (or disproved) from a partial deter-
mination of the totality.

A classical mathematician can get an approximate idea of what the
intuitionist has in mind in the following way: (1) Drop the assumption
that there is a well-defined ‘‘standard model’’ for number theory.
(2) Don’t assume that we can characterize by any finite number of axioms
all of the things that we would intuitively recognize as correct methods of
proof. (I.e., take ““number theory’’ itself as a concept in the process of
being created.) Then there will be three classes of statements in number
theory: statements that are *“true,’’ that is, true in all models of number
theory; statements that are ““false,”” that is, false in all models; and state-
ments that are ‘‘neither true nor false,’” that is, true in some models and
false in others. Also, the ““true’’ statements will all be provable - but not
necessarily in any one formal system.

This explanation is, however, not intuitionistic, since an intuitionist
would not accept the idea that the undecidable statements are ‘‘true in
some models and false in others.”> Moreover, the intuitionist surely
objects with reason here: for if ‘‘number theory’’ is not a closed concept,
then the notion of a ‘‘model” of number theory is surely not a mathe-
matically meaningful one even from the standpoint of classical mathe-
matics. Yet one can still make sense of proving that a statement is *‘true
in all models,’’ namely, if one can prove that a statement is true in all
models for some finite fragment of number theory, then, however the
concept of *‘number theory’’ may be eniarged in the future, the state-
ment in question must be, indeed, ‘‘true in all models of number theory"’
gsince mod.eis of the whole must be models of each part). However, the
idea of an infinite “‘model’ - a well-defined infinite collection satisfying
the axioms of a formal system - is not one acceptable to an intuitionist.

For the intuitionist, also, the problem of consistency does not arise
because any statement about a “‘potential infinite”® can be interpreted as
a statement about a finite (but extendable) structure.? Thus the intuitjon-

27 pri .
prime number is one that cannot be divided without remaind i

A pri 4 C er except by itself and 1.
::mbp:m;es arhe primes f\.:/hose difference is 2: e.g., (5, 7), (11, 13), (17 19) etcyWhether the

mber of such pairs is finite or infinite is rently hopele i
pr(;blem e s an unsolved (and apparently hopelessly difficult)

Strictly speaking, this is true onl i

I » th y of frec-variable statements. And even there although
tg:ﬁ;?;?pnom used In any one free-variable proof always have a finite model, the proof
§ 36 may require non-finitist methods. This is one problem with **finitist mathe-
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ist and the formalist are in agreement as to the part of mathematics that
is “‘safe’’; that is, whose consistency may be taken as evident on the basis
of an interpretation; namely, the part that may be interpreted as refer-
ring only to finite structures.*

4. Logicism

Logicism (Frege-Russell-Whitehead) arose out of a concern with a dif-
ferent problem: the nature of mathematical truth. Logicists hoped to
show, as against Kant, that mathematics did not have any ‘‘subject
matter,”” but dealt with pure relations among concepts,’ and that these
relations were ‘‘analytic,” that is, of the same character as the principle
of noncontradiction, or the rule of modus ponens. In contrast, Hilbert
maintained that mathematics did have an extralogical subject matter,
namely expressions® (e.g., series of strokes |, ||, |||, ---) and that its
simplest truths (e.g., ‘|| added to ||| is ||| ||’} were anschaulich (a Ger-
man word that can mean both ‘‘visual’’ - in colloquial German - and
“‘self-evident’” or ‘‘intuitive’’ in philosophical German).

Logicism had one great and undeniable achievement - it succeeded in
reducing all of classical mathematics (by any reasonable standard exclud-
ing completeness) to a single formal system. This achievement was much
admired by the formalists, even if they did not agree that “‘mathematics
has been reduced to logic.”” Formalists held that, as a result of the work
of Whitehead and Russell, one had at last a clear formalization of what it

was that had to be proved consistent. . . ’
Logicists, of course, thought they had done more than just axiomatize

matics'': the consistency of *“‘finitist'* systems is not, In general, demonstrable by strictly
finitist means, o i
“We are Indebted to Georg Krelsel for the remark that the intuitionist notion of the
“potentlal Infinite’ has two classical analogues: the '‘ill-defined infinite set” and the
“flnite (but unbounded) segment.” ) ) N
For Frege, this is a complicated issue. Concepts for him are not object_s or “‘entities” of
any sort (what this pronouncement megns is far from clear, and tl'le subject of'much con-
troversy among Frege scholars). So, for logic (and hence n_lathemaucs) to deal with the rela-
tions among concepts is not for them to have a special subject matter - in the'way,‘say, that
living organisms constitute the subject matter of biology. l'Jnfortun.ately, the issue 1s'further
complicated by Frege's view that concepts have extensions, which are objects (mdee.d,
numbers, for Frege, are the extensions of concepts). Thus, to.deny logic and mathematics
any special subject matter, the logicist must argue that extensions of <-:0ncepts (vyhat some
would simply call **sets’”) do not themselves constitute a special domain - a special subject
matter. . .
“In place of ““expressions’’ one might, of course, use other thmg§:'e.g., tables apd chairs,
or musical tunes. The important thing for Hilbert was not that finitist mathematics should
be literally about series of marks (e-g-, |, ||, 1], etc.) but that the s.ubj<.3c1 maiter, whatever
it might be, should be wholly finite, discriminable, and anschaulich in all of its relevant

parts and relations.
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extant mathematics. They believed that they had derived all of mathe-
matics from pure logic, without using any extralogical assumptions, and
thus shown it all to be analytic. To assess this claim, we must ask at least
whether what the logicist derives in his formal system is the mathematics
he sets out to derive, and whether the premises of the derivation belong
to logic.

Whether the logicist reduction should count as a derivation of mathe-
matics depends, of course, on the character of the definitions employed -
more specifically on what those definitions preserve. If they preserve
meaning, at least sentence by sentence, then the answer is clearly yes. For
he has shown that sentences with the same meaning as those of mathe-
matics are logical consequences of the axioms of his formal system. To
the extent that something less than meaning is preserved, the claim that it
is the propositions of mathematics that have been derived must at least
be questioned.

The issue of whether the derivation is from logical premises is regarded
by many as largely a verbal issue (at least it need not be settled to see the
bearing of the logicist reduction on Kant’s claim that arithmetic was syn-
thetic a priori): Logicists did not reduce all of mathematics to elementary
logic, but they did reduce mathematics to elementary logic pfus the
theory of properties (or sets), properties of properties, properties of
properties of properties, and so on. Thus if property theory (or set theory)
may be counted as part of logic, mathematics is reducible to logic. But to
what extent this refutes Kant's claim and establishes mathematics as
analytic is something still open to question, for several objections may be
raised. (It is not our purpose here to argue these points in detail, but we
feel that it is particularly important to raise objections to logicism
because it is a view that has received very little criticism in the literature:
cOt:t'allltht? _?ultahorshwe repri‘nt, tf:nly the intuitionists are really seriously

ritical of it, But they attack it froma v i
will point out lmer')&' ery different point of view, as we

What Kant had denied was that the propositions of mathematics
(arithmetic would be the relevant branch here, since he might have con-
ceded the analyticity of algebra) were analytic. But ‘analytic’ for him
meant either ‘following from the law of noncontradiction’ or being (a
iskc)g;ctzli rtlre‘éiﬂlln )t ;ef itclile fo:fn; “All A are B, where “‘the idea of being a B
analytic truth might g: ‘(:Al | eing an A4.” A releva}nt exam.plfe of such an
case that the logicist reduction of matfoese - O, it s hardly the

uction of mathematics clearly shows the proposi-

tions of mathematics to be of either of these kinds. “Following from the
lgw of noncontradiction”’ is itself at best a very unclear notion. The most
likely (and most charita

ble) construal for it is something like ‘whose
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negations are self-contradictory’. Thus construed, the question becomes
that of deciding whether showing that on one set of plausible definitions
arithmetic can be derived from set theory establishes that the negations
of (presumably the true) arithmetic propositions are self-contradictory.
It establishes, to be sure, that if these definitions are correct analyses of
the meanings of the arithmetic terms, and if the set-theoretic axioms are
themselves analytic in the relevant sense, and if being derivable in first-
order logic from analytic propositions via definitions representing
correct analyses constitutes ‘‘following from the law of noncontradic-
tion,”’” then indeed the logicists have shown that the propositions of
arithmetic follow from the law of noncontradiction. But these are very
big ifs. Probably the biggest of them is the one concerning the analyticity
of the set-theoretic axioms. In what sense would rhey be ‘‘analytic’®?
Many, even of those who don’t doubt their consistency, would balk at
their analyticity. But even should this if be granted, the other two loom
large. The reader should refer to Quine’s ‘‘Carnap and Logical Truth”
for some objections to the first.

And, of course, it is just not the case that mathematical propositions
have been shown to be analytic in the second of the two Kantian senses
cited (i.e., reducible to “‘logical truths’’ that have the form ‘All A are
B’). It might be objected that to defend Kant on this basis is to trivial-
ize him in the process, because he surely would have widened his notion
of what constitutes logic if presented with, say, quantification theory.
Therefore, the claim that ought to be examined is whether mathe-
matics is reducible to quantification theory. To this, two replies might
be offered. The first is, of course, that mathematics is not so reduc-
ible. Some set theory or its equivalent is needed as well. Hence this
widening would not suffice. The second might be that Kant would not
have agreed to a widening of the notion of logic beyond the monadic
predicate calculus, so that the question does not even arise. And in either
case, the problem of what constitutes a correct analysis of the mean-
ing of a mathematical term is still with us and likely to remain for a while
to come.

Yet it should not be forgotten that if today it seems somewhat arbi-
trary just where one draws the line between logic and mathematics, this is
itself a victory for Frege, Russell, and Whitehead: Before their work, the
gulf between the two subjects seemed absolute.

One difficulty with calling set theory ‘‘logic’’ concerns the axio.ms of
set (or property) existence; e.g., (3P)(x)(~P(x)) (read: ‘T.here isaP
such that for all x, x does not have P’ or more simply ‘there is an empty
property {or set]’). In his last years, Frege came to the conclusion that
such assertions of existence were not part of logic at all and repudiated
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““Jogicism,’” which he had founded. Another difficulty is the need for an
Axiom of Infinity in deriving mathematics: In order to meet this diffi-
culty, Frege, having given up logicism, proposed to derive mathematics
from geometry (where the Axiom of Infinity is true, since presumably
there are infinitely many points) instead of from *‘logic.”

Russell, as has already been mentioned, proposed in the second edition
of PM not to take the Axiom of Infinity as a postulate of the system, but
to list it as a hypothesis whenever it was needed to prove a theorem. But
then it becomes puzzling how mathematics is usefu/ (if a great many of
its theorems have the form ‘if Inf. Ax., then p’, and “Inf. Ax.” - the
Axiom of Infinity - is, in fact, empirically false).

In connection with the first difficulty, it has been argued that
‘(3P)(x)(~ P(x))’ is a necessary truth, since there is indeed a proposi-
tion ‘P(x)’ that is false for every x, namely ‘x#x’ (or any other self-
contradictory proposition). More generally, Russell has sometimes sug-
gested that ‘(3P)’ need not be interpreted as meaning that some extra-
logical entity ‘‘exists,”’ but may only be a way of indicating that there is a
meaningful proposition ‘P (x)’ with the specified characteristics. (Hilbert
would reply: You still need the notion of the existence of formulas, i.e.,
expressions.) Sometimes Russell writes in this way: as if a property (or,
as he says, ‘‘propositional function’’) were only a linguistic expression
containing free variables (e.g., ‘x’, ‘y’,...) - or, perhaps, the meaning of
such an expression. However, this interpretation of PM is, in fact,
excluded if ‘‘impredicative definitions” are permitted. (For explanation,
see the article by Carnap in Part 1.) For, if ‘P’ ranges only over *‘proper-
ties nameable by formulas of PM’' then this restriction - to objects
nameable in PM - will appear in the definition of every set. In particular,
‘real number’ will only be able to mean ‘real number nameable in PM’.
However, under the intended interpretation of the version of PM that
permits impredicative definitions, there is an expression that stands for
the set of a/l real numbers, not just nameable real numbers.

Strangely, Russell never appreciated this difficulty, and called PM a
“no-class theory” to the end, although his ‘“‘propositional functions’'
are nothing but arbitrary sets (or ‘‘classes’’) under another name, if
impredicative definitions are permitted.

Another achievement of Frege and Russell was the analysis of the con-
cept “‘number.”” Since this analysis is presented in detail in several of our
S(?lections, we shall not review it here. However, it raises several points of
disagreement between logicists and intuitionists.

According to the intuitionists, one cannot understand ‘two’, ‘three’,
etc., unless one has the general notion of a number. On the other hand,
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the logicists maintain that ‘two’, for example, is (contextually) definable
thus:

2(P)=(@Ex)(@)[P(x)-P(y)-x#y- (2)(P(2)D. 2=xVz=y)]

(read: ‘there are two Ps if and only if there are x, y such that xis P and y
is P and x is not the same thing as y and for all z, if z is P then z is the
same as x or z is the same as y’.)

Here the intuitionists may perhaps be right. The logicist account, how-
ever, could easily be modified so as to take care of this criticism: namely,
define ‘“‘number”’ just as the logicists do’ (roughly, a “‘number’’ is any-
thing that can be obtained from zero - or the class of all empty classes -
by repeatedly applying a certain ‘‘successor’’ operation), and then define
‘zero’ nor as ‘the class of all empty classes’ but rather as ‘the smallest
number,’ (defining ‘smallest’ in some suitable way, or as ‘the number
that is not a successor’), ‘one’ as ‘the number that is the successor of
zero’, ‘two’ as ‘the number that is the successor of one’, etc. Then the
notion ‘number’ will be part of the definition of eack number.® Of
course, the definition of ‘two’ will be equivalent to the one Russell
employed, but not synonymous with it word-by-word (or rather symbol-
by-symbol). So one who used the new definition could perfectly well
agree with the intuitionisis that the Russell definition does not express
the customary meaning exactly.

Another disagreement between logicists and intuitionists is over the
identification of numbers with sets of sets (e.g., of zero with the set of all
empty sets). As a point separating these two camps, it has less importance
than is customarily accorded to it. In the first place, it is questionable
whether Frege® held that *‘zero,"’ **one,” *‘two,” etc., had to be identi-
fied with any particular entities: the important thing was the analysis of
‘there are two Ps’, ‘there are three Ps’, etc. The intuitionists accept this
analysis as mathematically correct. Perhaps the intuitionist would prefer
to render ‘there are two Ps’ by ‘the species of Ps can be put in one-to-one
correspondence with the numbers one, two’ - however, Frege would cer-
tainly have accepted this definition.

"We mean to suggest here that an intuitionist could accept the logicist definition of num-
ber in terms of the “‘ancestral’® (a number is something that is either 0 or bears the ancestral
of the successor relation to 0); not that the famous Frege-Russell definition of the ancestral

would in turn be acceptable to an intuitionist.
8This procedure may sound circular, but clearly it is not, provided that the expression
‘zero’ does not appear in the definition of ‘number’; i.e., that a number be defined, e-g.,as
either the set of all empty sets or something bearing the ancestral of the successor relation to
the set of all empty sets. Zero could then be identified with the “sma]lest”‘numt?er, etc.
9We are indebted to Michael Dummett for this and other points in connection with Frege.
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A more important disagreement concerns the logicist claim that
“mathematics can be reduced to logic.”” Intuitionists reject this claim on
the following grounds:

1. Understanding any system of deduction involves already having
the notion of iterating an operation an arbitrary finite number of
times; and this the intuitionists regard as a fundamentally mathe-
matical and not logical notion. (Recall that they also regard it as a
“‘creative”’ or extendable notion - not one whose every application
is completely clear and specifiable in advance.)

2. The principle of mathematical induction (which we used in our
proof that n? is the sum of the first » odd numbers) is a funda-
mentally mathematical one (closely connected with the idea of the
iteration of an operation), and not reducible to logic. Frege did
indeed reduce mathematical induction to what ke called logic - via
the ‘“definition of the ancestral’’ (see the Frege, Russell, and
Hempel selections). This reduction, however, depends on the use
of impredicative definitions, which are rejected by intuitionists,
and also on the axioms of set existence, which would not be called
“logic”’ by intuitionists even if they did accept them.

5. Tauiologies and sets

In his Tractatus Logico-Philosophicus, Wittgenstein maintained, follow-
ing Russell and Frege, that mathematics was reducible to logic. Logic, in
turn, was reducible to propositional calculus, sccording to Wittgenstein.
This is correct, for the system PM, whenever the number of individuals is
a fixed finite number, but it is correct in the infinite case only if infinitely
"'big"’ expressions'” are permitted. The idea is, briefly, to treat universal
statements as infinite conjunctions: ‘Everything is F” is treated as ‘x, is F
& xyis F&,..&..." (where x;,X,,... are all the individuals in the uni-
verse of discourse, in some order). Now, the truths of the propositional
calculus are all ‘‘tautologies’ - they come out true, combinatorially,
under all possible assignments of ‘true’ and ‘false’ to the ‘‘clementary
propositions.” Thus was born the very popular philosophical slogan that
“mathematics consists wholly of tautologies."”

Of course, closer examination revealed serious difficulties with the
Tractatus view. A quantifier over properties (i.e., such an expression as
‘for all properties P*) is expanded as a conjunction with one clause for

_‘°One cannot even say “infinitely long,”
arise at higher types if all quantifiers were **

dentumerably infinite, and could not be tho
notation.

because some of the expressions that would
expanded” as truth-functions would be non-
ught of as existing (**written out”’} in primitive
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each property of individuals. But this presupposes not only that the indi-
viduals form a well-defined totality, but that the properties (or sets of
individuals) form a well-defined totality, and similarly for sets of sets,
sets of sets of sets, and so on. This is already debatable for ‘property’ in
the sense of the term in which each property corresponds to a possible
“‘rule for selecting’’; for ‘property’ (or rather ‘set’) in the sense of arbi-
trary coltection (any collection, whether given by a rule or by ‘“‘chance’’),
the situation is even worse. Consider, for example, the famous ‘‘con-
tinuum problem’’ of Cantor. This asks whether there exists some set (in
the sense of arbitrary set) of real numbers (arbitrary sequences of inte-
gers) that can be put into one-to-one correspondence with neither the set
of all integers nor the set of a// real numbers. The answer ‘no’ has been
proved by Godel to be consistent with the axioms of set theory. And the
answer ‘yes’ was proved by Paul J. Cohen also to be consistent with
those axioms. In what sense then would it be true that ‘‘there really is”
(or “‘really isn’t’’) any such set? One might answer: ‘in the sense that if
you listed all the sets of real numbers, you would (or wouldn’t) find one
such that if you listed all the one-to-one correspondences (arbitrary sets
of pairs consisting of a real number and an integer, or of two real num-
bers, satisfying the ‘‘one-to-one’’ condition) you would not find a cor-
respondence mapping the set in question onto the integers, and you
would similarly fail to find a correspondence mapping the set in question
onto the real numbers.’ This answer, however, is completely unhelpful
for many reasons: e.g., the notion of *‘listing’’ all the sets of real num-
bers is absurd if taken literally; so is the notion of completely examining
even one nondenumerably infinite and ‘‘random’ collection of real
numbers in detail; and then how much more absurd is the notion of
examining a// **one-to-one correspondences’’!

Today, very few philosophers or mathematicians of any school would
maintain that the notion of, say, an arbitrary set of sets of real numbers
is a completely clear one, or that all the mathematical statements one can
write down in terms of this notion have a truth-value that is well-defined
in the sense of being fixed by a rule - even a non-constructive rule - that
does not assume that the notion of an ‘‘arbitrary set’’ has already been
made clear. The contention that, even in the absence of such rules, ques-
tions such as the continuum problem have a definite meaning and, hav-
ing a definite meaning, have a definite answer, quite independently of the
state of our knowledge, forms the core of what has variously been called
“realism” or “‘platonism’’ in the philosophy of mathematics. (For a
remarkably lucid and forceful statement of this position, see Godel’s
article in Part IV on the continuum problem, especially the supple-

mentary section.)
17



Introduction

Nevertheless, there is a respect in which this is the natural position to
take. We normally do not require an effective method of verification as
the sine qua non of meaningfulness. This was a requirement made in
quite another context (empirical science) by the Vienna Circle, and long
since abandoned by most of its proponents. Why should it be different
with mathematics? If we think we understand what is meant by a set, a
one-to-one correspondence, and so on, why shouldn’t we say that the
continuum problem has a definite answer, no matter how far we may be
from finding out what it is? What do the two have to do with one
another? A split on this question normally reveals a split on the most
fundamental issues in the philosophy of mathematics, on the very nature
of mathematical activity.

In general, the platonists will be those who consider mathematics to be
the discovery of truths about structures that exist independently of the
activity or thought of mathematicians. For others not so platonistically
minded, mathematics is an activity in which the mathematician plays a
more creative role. To put it crudely, propositions are true at best insofar
as they follow from assumptions and definitions we have made. If we can
show that a proposition is undecidable from the assumptions we cur-
rently accept, the question of its ““truth’’ or “*falsity’’ vanishes in a puff
of metaphysical smoke. Our assumptions, definitions, and methods of
proof constitute the rules determining the truth or falsity of the proposi-
tions formulated in their terms. If a proposition is undecidable from our
current assumptions, then its *‘truth’’ is not determined by the available
rules. Since nothing else is relevant, the question of truth does not arise.
The platonist does not agree because, for him, the truth of mathematical
propositions is not determined by the rules we adopt, but rather by the
correspondence or noncorrespondence between the propositions and the
mathematical structures to which the terms in those propositions refer.
In his view, mathematical terms and propositions have meaning above
and beyond that conferred on them by the assumptions and methods of
proof accepted at any one time.

To get an idea of the objections that might be raised to the platonistic
way of looking at the continuum problem let us look briefly at the notion
of an “‘arbitrary set,”” which is needed for the formulation of the prob-
lem. Thc? reader may perhaps wonder what is wrong with our preceding
explanation: “Arbftrary set’’ means ‘‘any set, whether given by a rule or
by chance.”” The difficulty is that the notion of chance makes no sense in
pure mgthematics, except as a figure of speech. Suppose, however, we
t;)ok this explanati.on litert’a’lly: We might, for example, define an *‘arbi-

ary sequence of integers™ as a sequence that could be generated by a
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“random device.’’ One difficulty is then the word ‘could’. ‘Could’ can
only mean mathematical possibility here, since we do not want to let
physical laws have any effect on mathematical truth. But ‘‘mathematical
possibility”’ is itself a disputed notion, where infinite structures are con-
cerned. And a further difficulty is that, according to classical mathe-
matics, there are other infinite sets, for instance the set of all sets of sets
of real numbers, which are so “‘big”’ that they cannot be put into one-to-
one correspondence with the set of all integers or even with the set of all
real numbers: Such sets could not be identical with the ‘‘output’’ of any
possible physical process, even if we were to take the notion of a ““‘pos-
sible (actually infinite) physical process’’ as itself a clear one.

Again, some people say: ‘“Why worry about possible physical models
at all? You know what a collection is (as in ‘collection of oranges’) and
you know what an integer is; therefore you know what is meant by ‘col-
lection of integers’, and by ‘collection of collections of integers’, etc.”
This “‘simple-minded’’ point of view hardly seems satisfying, however.
In the first place, our ordinary notion of a ‘‘collection’’ is loaded with
physical connotations. If we say that these are to be disregarded, and
that the members of a ““collection’’ need not be proximate in space and
time, need not be ‘‘similar’’ in any particular respect, and so on, then we
are left with the notion of something like a random listing of objects.
And if we say that the members of a ““collection’’ (a) need not be objects,
numbers, and so on, but may themselves be “‘collections,’’ and (b} need
not even be capable of being listed (or for that matter, named in lan-
guage), even by a random device working through an infinity of time,
then what notion are we supposed to form at all?

Second, the presence of statements (such as the continuum hypothesis)
corresponding to which there is no verification or refutation procedure
(except looking for a proof - which is most certainly not going to do any
good, if ‘proof’ means ‘proof in present-day set theory’) is, perhaps, a
reason for at least suspecting an unclarity in our notion of a “‘set.”

Here it is instructive to compare set theory with number theory. In
number theory too there are statements that are neither provable nor
refutable from the axioms of present-day mathematics. Intuitionists
might agree that this shows (not by itself, of course, but together with
other considerations) that we do not have a clear notion of “truth’ in
number theory, and that our notion of a “totality of all integers™ is not
precise. Most mathematicians would reject this conclusion. Yet most
mathematicians feel that the notion of an ‘‘arbitrary set’’ is somewhat
unclear. What is the reason for this difference in attitude?

Perhaps the reason is that a verification/refutation procedure is incon-
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ceivable for number theory only if we require that the procedure be effec-
tive." If we take the stand that ‘‘nonconstructive’’ procedures - i.e., pro-
cedures that require us to perform infinitely many operations in a finite
time - are conceivable,'? though not physically possible (owing mainly to
the existence of a limit to the velocity with which physical operations can
be performed), then we can say that there does ‘‘in principle’” exist a
verification/refutation procedure for number theory. For instance, to
“verify” that an equation P(x,y,z)=0 has a solution using the *‘pro-
cedure,” we check each ordered tripie x, y, 7 of integers. (Of course, this
requires working forever, or else completing an infinite series of opera-
tions in a finite time.) Similarly, to check a statement of the form
(x)(3y)P(x,y)=0 (read: ‘For every x there is a y such that P(x,y)=0")
by the “‘procedure,”” we have to substitute 0 for x, and then check
through y=0,1,2,... until we find a y, such that P(0, yo)=0; then we
substitute 1 for x, and look for a y, such that P(l,y,)=0; and so on
(again this requires an infinite series of operations). What this shows is:
The notion of “‘truth” in number theory is not a dubious one if the
notion of a completed actually infinite series (of, say, definitely speci-
fiable physical operations) is itself not dubious. Since many mathemati-
cians do not share intuitionist doubts about the clarity of the actual
infinite, it is understandable that such mathematicians are willing to take
the notion of number-theoretic truth as precise. For instance, Carnap
argued for the legitimacy of such “nonconstructive rules” in explaining
the notion of number-theoretic truth in his famous book The Logical
Syntax of Language.
’ By' way of contrast, we recall that no physical structure (not even an
infinite one) can serve as a **standard model’’ for set theory. in addition,
even if we allow *‘working forever,” *‘completing infinite serles in a
finite time,"” and so on, no precisely definable sequence of operations
exists by means of which we could '‘in principle’’ teil (in the sense
explained in connection with number theory) whether an arbitrary
cheking ll ascs. Tnshot, 1 you s Procedure of exhaustivel
adding, multiplying, and se’einyiftun erstand such notions as coummg.
to you the notion of, a ““true stgtemwo i mpers dre equal, we can explal.n
_ ent of number theory*’ (though not if
you consistently “boggle” at all quantifications over an infinite domain);

An
eff ective procedur €Is loughl y} one tha a compuhng machine could be p

nuglber theory the Impossibility of an effective decision procedure for

E.g., if one has an infinite series of o i

} i S Ol Operations to perform, say S,, S,, S;,... and oneis

able to perform §, in 1 minute, §, in 1/2 minute, S, in 1/4 minute letcz- thje’n in 2 minutes
one will have compieted the whole infinite series. R
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but to have explained to you the notion of a ‘‘true statement of set
theory”’ or of an “‘arbitrary set,”” it would appear that you must already
have some such notion in your conceptual vocabulary.

6. Mathematical truth

An admittedly naive view, which has certain attractions (perhaps its very
innocence is among the greatest of them), runs like this:

Some propositions are true. Others aren’t. Generally, a proposition is
true if the reality it purports to describe is as that proposition depicts it -
if the things referred to (if any) have the properties they are said to have
or stand in the relations in which they are said to stand. All of this is
quite independent of whether we know or have any reason to believe (or
in the extreme - could ever have any reason to believe) that they are true.
Our language can express (and we can understand) a whole range of
questions, quite independently of whether we possess their answers, or
ever will possess their answers, or even ever could possess their answers.
Consider. On January 1, 1901, at 12 noon GMT, every molecule on Earth
had an approximate location (never mind the rest of the universe). We
don’t now know that distribution. We never will know it. Perhaps there
are reasons why in principle we never could know it. (Perhaps any repre-
sentation of such a map is too big for us to comprehend, and compre-
hend we must if we are to know.) Still it seems plausible that such a dis-
tribution existed. We can frame the question. It has an answer. But the
answer is too complicated.

And 30 too with certain mathematical questions.

Until recently it was not known whether every map can be colored with
four colors, with no two regions that share a common boundary being
colored the same color. Now we know. Mathematical research proceeds,
at least In part, by answering questions previously put. At each stage
there are meaningful questions that haven’t been answered - and perhaps
others that it is beyond us to answer despite the fact that it was we who
framed them. In brief, every “‘well-formed’’ sentence in the language of
science and mathematics expresses a meaningful proposition (one having
a truth-value) about its subject maiter. Whether a question is meaning-
ful, whether it has an answer, does not depend on whether we know the
answer, ever will know the answer, or even whether it is ‘“in principle”’
possible for us to find it out.

Semantics is independent of epistemology.

Such an approach fits nicely with a conception of man and his place in
nature in which man, like other animals, is a limited being. There are
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bounds on our epistemic powers - bounds dictated by the number of cells
in our bodies, by the arrangement of those cells (the structure of our eyes
is a good model: Things far too small for us to see, wave lengths too long
to register, are not thereby deprived of existence). And so too there are
things too complex for us to understand, questions just too hard for us to
answer - though if we were differently constituted they might be within
our reach. And might some of these questions not nevertheless be simple
enough for us to frame? Any philosophy that adjusts the bounds of
reality to those imposed by the existing (and in some sense necessary) lim-
itations on our epistemic powers is bound to be shortchanging the world.

A referential semantics exhibits the propositions of physics as being
““‘about’’ rigid bodies, fields, electrons; those of number theory as about
numbers; set theory about sets. They are true if and only if the relevant
entities have the properties ascribed to them.

In this form, our naive view is a kind of realism. Conjoin it with a
platonist’s perspective on the nature of the objects populating the
domains of many mathematical theories (such as numbers, sets, func-
tions, and spaces) - that these are abstract, exist outside of space-time,
and independently of our conceptions. Plausible as such a perspective
may seem (what and where could they be?), the result begins to threaten
the pastoral calm of our opening scene. Because it now becomes unclear
how we could know any of these mathematical propositions on their
platonist construals. Qur accounts of the truth-conditions of mathemati-
cal propositions and the nature of the objects that form their subject
matter, independently plausible as these may have seemed, when joined
clash with our most fundamental epistemological theories (for more on
this general problem see Benacerraf **Mathematical Truth” and Section 8
of this Introduction).

Although not always explicitly stated, we feel that this is an important
component of many of the questions that prompt the myriad of answers

we call theories of the ‘‘foundations of mathematics," by mathema-
ticians and philosophers alike:

- Formalists deny, among other things, the associated platonism and
attempt to supply mathematics with a more visible subject matter
and truth conditions for its propositions whose presence or absence
it is at least sometimes clearly within our power to ascertain. Indeed,
Hilbert wanted his program to produce, in addition to a proof of the
consistency of mathematics, a general method which, applied to any
given mathematical question (framable in a particular formal lan-
guage), would either answer it or show it to be independent of exist-
ing assumptions. Church’s proof of the unsolvability of the decision
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problem for first-order logic dashed that hope, after Gédel had
shown by his second incompleteness theorem that another principal
aim of Hilbert’s program - a finitist consistency proof for arithme-
tic — was already beyond reach.

- Nominalists traditionally have objected to the postulation of objects
satisfying the platonist’s description (although more recently the
focus of the objection has shifted - see Part 11, on the existence of
mathematical objects, for more details), sometimes because they
thought there simply weren’t any such things, but more often for
epistemological reasons - because they found the idea of an abstract
object unintelligible.

- Conventionalists attempt to account for mathematical truth by by-
passing the referential semantics (thus avoiding altogether the issues
raised by platonism - mathematics has no ‘‘objects,’’ or if it does,
they simply have the properties we assign to them by convention).
Mathematical truth thus reduces to the truth of certain conventions
(by our fiat) plus the preservation of truth through logical conse-
quence. Quine addresses these problems in ‘‘Truth by Convention”’
and in ‘“‘Carnap and Logical Truth’’ far better than we could here.
Although it is to some extent parasitic on Quine’s reply, we should
mention one reply to the conventionalist that is not often made but
is worth considering:

Everything ‘‘true by convention”’ is supposedly true. But conven-
tions, however well-intentioned, can turn out to be inconsistent.
First, their consistency or inconsistency is a mathematical fact of
combinatorial mathematics (the fact that certain programs for com-
puting do not lead to the ‘output’’ ‘1 =0), one that is itself hard to
represent as a matter of convention. If this is right, then not a/l of
mathematics can be true by convention. This suggests that our abil-
ity to make even axioms ‘‘true by convention”’ is already limited by
the (nonconventional) fact of their logical consequences. But might
we not make contradictions themselves true by convention? Few so
far have been so devoted to conventionalism as to suggest that as a
way out.

And so on with a number of other views.

~ Logicism is a special and difficult case - because it is really many
cases — and we have dealt with it in Section 4 of this Introduction.

But there is another way in which epistemic considerations can entice
one’s account of mathematical truth away from the naive view described
at the beginning of this section - other, that is, than the direct clash
between epistemology and platonism. This is through the rejection of the
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realist principles proclaiming the independence of semantics (the theories
of meaning and of reference and truth) from epistemology. It represents
semantical features of sentences (meaning, truth conditions) as parasitic
on epistemological ones (conditions of warranted assertability). For the
naive realist we depicted earlier, it was the absence of such a coupling
that opened the floodgates to propositions (mathematical or other) that
were rmeaningful, had determinate truth-values (and thus represented in
some respects possible states of “‘the world®*), but yet remained entirely
beyond our epistemic grasp. A philosopher can hold such an epistemically
determined view about both mathematics and empirical science, or about
either of them separately. Many phenomenalistically inclined positivists
were verificationists about empirical matters but not about the formal
sciences (perhaps because, in the idiom of the day, these were already
thought to be ‘‘empty of factual content’’). Intuitionists, on the other
hand, appear to be verificationists in mathematics, but not necessarily
elsewhere.

Michael Dummett, in his article *“The Philosophical Basis of Intuition-
istic Logic,”” urges a more thoroughgoing abandonment of the naive
realist position.

To simplify considerably, Dummett’s intuitionist construes mathemat-
ical propositions as having truth-conditions that coincide with their veri-
fication conditions, thus very neatly bridging the gulf that, for the pla-
tonist, separates truth and knowledge. This is proposed in support of the
claim that the canons of reasoning appropriate to mathematics are those
of intuitionistic logic. Ingeniously, Dummett gives a general argument in
favor of taking verification conditions as truth conditions - general
because it does not depend on any special character of mathematical
propositions and thus applies everywhere if it applies anywhere. Hence,
in this respect, it satisfies our instinctive demand that our theories of
meaning and truth (whether or not the latter is based on the former) be
uniform across the language, a demand that is made all the more plaus-
ible by the fact that the logical vocabulary is the common property of all
segments of our language: It could be a theoretical embarrassment to be
S)bhged to assign the logical particles different meanings from one sub-
Ject matter to the next. (What would we do in mixed contexts?)

So the generality of his account, and its attendant reconciliation of
semantics and epistemnology are achieved through a single fundamental
move: the founding of the theory of meaning on epistemology - and the
Fheory of truth on this already (for the realist) truncated theory of mean-
ing. The natural result is a theory of truth for propositions, mathemati-
cal and nonmathematical alike, in which the truth-conditions are the
assertability conditions. Sentences with no assertability conditions just
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do not express propositions - they do not describe possible but possibly
unknowable states of the universe.

But one pays a price.

It is the abandonment of classical logic in favor of intuitionistic logic.
Of course, to describe it as a price is to side with the platonist in the dis-
pute: For the intuitionist there is no cost, simply gains on all fronts, as
logic, mathematics, epistemology, semantics, and metaphysics are all
finally brought into harmony.

Whatever one thinks of the details of these views, it is important to
notice that a number of positions in the philosophy of mathematics (and
other branches of philosophy that don’t concern us here) are united by
precisely such epistemic considerations.

An excellent example of a view that is similar in spirit is to be found in
Putnam’s ‘““Models and Reality,’’ a piece falling squarely in the pragma-
tist tradition. Certain authors, in the course of expressing similar con-
cerns, have tended to legislate out of mathematics (and out of the realm
of sense altogether as “‘speculative metaphysics’’) any proposition that
couldn’t ‘““in principle’’ be decided by us.

The lines of demarcation vary from author to author - depending to a
large extent on how *‘in principle’’ and ‘‘decided’’ are understood. On
this spectrum, Putnam does not come off as a ‘‘hard-liner.” His view
amounts to this: Call our ‘‘theory of the world’’ some set of our beliefs,
augmented by their logical consequences and indeed corrected and ex-
tended by any canons of reasoning, inductive or deductive, that might
ever find favor with us. By a famous theorem due to Lowenheim and
Skolem, such a theory - far vaster than any theory anyone has ever
actually held or conceivably ever could hold - if it is consistent, has
among its models (interpretations) ones of every cardinality from R, on
up, as well as others with even more horrifying pathologies. Which, if
any, of these models is *‘the real world’'? There is, for us, no distinguish-
ing among them; for any distinctions that could be made on the basis of
any principles we might hold or observations we might make have
already been taken into account in constructing the theory (and therefore
in selecting the set of models).

Putnam now asks if there is a fact of the matter as to which (if any) of
the models of this theory (assuming it has some) is “‘the real world.”
(Whether the real world is even among the models may be in question for
some. Consider the skeptic who feels there are ways in which our best
efforts, as outlined above, might have been mistaken, thus possibly ex-
cluding “‘the real world’’ from the model set under consideration.)

His pragmatist answer is no.

Yet, one feels compelled to ask, might we not have been differently
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constructed - perhaps in such a way that our reconstructed selves made
finer-grained distinctions that those we are now able to make or could
ever conceivably make? Or simply different distinctions? If there is to be
no fact of the matter about which of the models of our idealized theory is
the real world, then there cannot be possible distinctions we cannot actu-
ally make - or could not make in Putnam’s ideally extended theory.

The naive realist feels short-changed.

Given the way we are, some worlds are indistinguishable by us, and by
the idealized possessors of our ideally extended idealized theories. But
surely, had we been differently made, different theories might have
evolved, and still different theories might have resulted from a yet differ-
ent process of idealization. If such theories would be possible theories,
surely worlds distinguishable in terms of them would be genuinely differ-
ent, even if not distinguishable by Putnam’s theory.

Or so a naive realist might want to reply.

Whatever the merits of such a reply, its bearing on Putnam’s conclu-
sions as applied to mathematics is more difficult to assess. One line of
argument might be the following: Perhaps a way in which we might have
been different involves the ability to ‘“‘count” uncountable sets, or
‘“‘compute” uncomputable functions, or the like. Whether, in Russell’s
famous phrase, such feats are at most “medically impossible”’ is certainly
one of the questions at issue. If the impossibility is merely medical - if it
resides in the accidents of our genetic makeup - then such feats might not
have been impossible. And if they weren’t impossible, we would be able
to decide issues we are not able to decide. And if these are issues we

might have been able to decide, they must be real issues, about which
there must be a fact of the matter.

Or so the naive realist might urge.

In their curtailment of reality, some deal evenhandedly with all of It
(Putnam). Others (intuitionists) address only mathematical reallty - per-
haps because they see mathematics as our creation, or because they see it
as subjective in some important way, or... In each case, the result is a
limitation of reality to what, in their view, could possibly be known. And
in each case, too, it proceeds through an adjustment of the bounds of
possible sense: through the theory of meaning,

Of course it is tendentious to describe their doings as a curtailment.
This is a luxury we allow ourselves only because we have adopted, for
expository purposes, the standpoint of the naive realist, the target of
many of these views. In any event, whether such ‘“‘curtailment”’ is legiti-
r{late depends on subtle questions in the philosophy of language - ques-
tions not likely to be resolved very soon, at least to the satisfaction of all
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combatants, for they are among the most profound that have plagued
philosophers ever since the subject began.

To mention but one vexing question that runs through all the views dis-
cussed in this section: How may one express the ‘‘fact’’ that certain prop-
ositions cannot be expressed - because if they were expressible, we could
not decide them and they would then have violated our epistemic con-
straints on sense. It seems that for us to know that they would violate
such constraints on meaning we must know on the basis of what they
mean that we could not know them to be true or false if they meant any-
thing at all.

This problem is an ancient one: How can we circumscribe the bounds
of sense without stepping outside of them?

7. The iterative conception of set

Consider the following view (which should be thought of as a sort of
mathematico-philosophical metaphor, rather than as a serious suggestion):
Sets are created by the mind. They are created by the mental act of ““col-
lecting”’ objects (or mental representations of the objects) together. This
act can be performed only if the objects collected together are alfready in
existence. So, as a result, the members of a set are always prior (in time)
to the set.

Such a view has a number of attractive immediate consequences. For
one thing, there cannot possibly be a collection of afl sets. (It would have
to contain itself, and this would mean that it would have to exist prior to
itself.) Nor is there any reason why there mus? be a collection of all sets
that are not members of themselves (this would, in fact, be the collection
of all sets, since no set is a member of itself on this conception). So the
Russell paradox is avoided. On the other hand, if a set has already been
created, then, for any condition P that refers only to sets already created,
there should be a set consisting of all members of the given set satisfying
that condition P. For what can stop the mind from ‘‘collecting’’ all the
members of the given set that satisfy P? So many plausible principles of
set existence (e.g., existence of a union of any two sets, of an intersec-
tion, of an empty set), including the existence of a power set (a set of all
subsets of a given set), seem to follow from this conception, while no
obviously paradox-breeding principle of set existence seems to.

Although the metaphor of sets coming into existence (or being created)
in time by the human mind cannot be taken seriously (even if the mind
could create the set of all integers, separately creating each of its subsets
would keep the mind rather busy, not to mention collecting these all
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together into the power set of the set of integers), these advantages of the
metaphor can be retained if we suppose that there is some relation of
“priority”’ that is transitive, irreflexive, and asymmetrical, and such that
the members of any set are always prior to the set. Indeed, just such an
intuition led Russell to the Vicious Circle Principles and uitimately to the
theory of types. Any conception of set in which this figures as a promi-
nent motivating force is today referred to as the iterative conception of
set (despite the fact that there is more than one such conception). A num-
ber of papers in Part IV of this book discuss this conception, explain its
great mathematical importance, and explore what the needed relation of
“‘priority”’ might be.

One such conception is as follows: There is a well-defined totality of
all sets (giving up the original metaphor of sets ‘“‘coming into existence”’
or being constructed by us completely). This totality is not itself a set.
Every set belongs to a set of a special kind, called a rank by some authors.
(These ranks are a modified version of Russell’s types, extended into the
transfinite.) The ranks are indexed by numbers (including transfinite
numbers, or Cantorian ‘‘ordinals’”); the relation of priority is just the
relation ‘‘belonging to a smaller rank” (i.e., a rank indexed by a smaller
ordinal). The rank indexed by the number zero contains only the empty
set (in the case of pure set theory; in a set theory with individuals
(““Urelemente’’) we would take the collection of all the individuals as the
rank zero). The rank indexed by the successor of any number (or any
ordinal) is the power set of the rank indexed by the number. At those
transfinite numbers that are not successors (the so-called *‘limit num-
bers,” of which the least is w, the ordinal number of the sequence of all
integers) we take the union of all the ranks indexed by earlier ordinals to
be the rank indexed by the limit ordinal. (For example, rank w contains
all the sets belonging to any finite rank. Thus rank w is the union, in the
set-theoretic sense, of ranks 0,1,2,...)

This explanation of the iterative conception makes free use of numbers
(in fact, of transfinite numbers) and of mappings from sets to numbers,
nc?twithstanding the fact that the numbers will eventually be identified
W.lt.h certain sets. This is not objectionable unless we think of the possi-
bility of identifying mathematical objects with sets as of greater episte-
n}ological or metaphysical significance than is now custornary among
either philosophers or mathematicians. There is no reason why we
can.not think of numbers, functions, and so on, as objects concerning
which we have a certain amount of mathematical theory prior to doing
set theory. This prior theorizing enables us to state certain assumptions
about sets (e.g., th.at every set belongs to some rank); and when we see
that these assumptions lead to an attractive theory we can adopt it and
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work out a formalization of it that seems attractive. Certain of the sets in
such a formalization may end up being singled out as numbers (ordinals);
but this feature has only ““elegance’’ to recommend it, it cannot, on pain
of circularity, be claimed to have epistemological significance - at least
not by one who views the iterative conception itself as having some epis-
temological force. (Nor need it be viewed as having profound metaphysi-
cal significance either, but that is a more complicated matter.)

If we start with a weak (second-order) theory of ordinal numbers, then
the axioms of set theory can actually be derived from the assumptions
that the ranks exist and are related as described. Thus the iterative pic-
ture has the pleasing property of wunifying the axioms of set theory; it
gives a ‘“‘model” such that we can prove the axioms to be true in that
model (assuming, of course, the existence of the model), and this is
clearly preferable to just assuming the various axioms without giving any
intuitive picture of how or why they are supposed to be true. Although
some logicians (notably Quine) claim that no intuitive justification can
be given for the acceptance of set-theoretic axioms after the discovery of
the Russell paradox, the fact is that almost all of our authors (Godel,
Wang, Boolos, and Parsons, among others) maintain that this iterative
picture is an intuitive justification for the standard axioms in the sense
that (1) the picture is natural and persuasive (i.e., it seems to these
authors that there is a notion of set that we had all along on which the
elements of a set had to be ““prior”’ to the set, and on which a *‘set of all
sets’’ was impossible); and (2) as just remarked, the assumption of a
structure of “‘ranks’’ with the properties we mentioned enables us to
derive almost all of the standard axioms of set theory. (The one doubtful
case being the Axiom of Replacement - the image of a set under a fung-
tion is a set - although that, too, seems natural to many people under this
picture even if it is not deducible from the hypothesis that the system of
ranks exists.)

The version of the iterative conception just described is ‘‘platonistic’’
in that it views the sets as all existing at once. The priority relation is
simply an ordering defined in terms of the membership relation of set
theory itself. Others espouse the iterative conception but seek to avoid
assuming a well-defined totality of all sets. Saul Kripke has suggested that
this might be made sense of by construing set-theoretical quantifiers intu-
itionistically rather than classically. On such a view it is not clear why a
condition P that quantifies over all sets (‘‘all”’ read intuitionistically)
should single out a well-defined subset of a given set, however; so this
construal might leave us with a problem in justifying or even stating the
Axiom of Selection. In an interesting article in Part 1V, Charles Parsons
proposes & modal interpretation of the “‘priority’’ relation on which the
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iterative conception rests. (The idea being that the members of a set
could exist - in some possible well-founded structure that is thought of as
a ““realization’’ of set theory in a possible world — without the set exist-
ing. The priority relation is a kind of presupposition relation; x is prior to
y if ¥’s existence presupposes x’s existence, but not vice versa.)

There is no doubt that the iterative conception connects with a power-
ful and useful mathematical metaphor. On the other hand, the large
number of statements to the effect that the iterative conception is a per-
fectly clear and consistent conception that shows there is no difficulty at
all with our set-theoretic “‘intuition’’ might suggest to some readers that
“‘the lady doth protest too much.”” The problem in either justifying or
doing without the assumption that all sets form a well-defined totality on
the iterative conception, and the epistemological unclarity of the ‘“prior-
ity’’ relation, suggest that the iterative conception is not without its own
problems.

8. The problem of ‘“‘access’’

At one extreme of the spectrum of views one might hold on the founda-
tions of set theory, and of mathematics generally, stands a form of
“‘platonism”’ that might be described as follows. Mathematics consists of
a body of propositions about an independent reality composed of the
familiar mathematical objects (such as sets, numbers, functions, and
spaces). Mathematical discovery is the uncovering of truths about this
independently existing reality by deduction from axioms that we see to be
true by a special faculty of intuition distinct from sense experience (which
gives us knowledge only of the empirical world). Mathematical objects
are independent of our minds and, unlike physica! objects, do not inter-
act with our bodies to cause alterations in our brains that lead ultimately
to knowledge of them. But they must be postulated to account for the
existence and growth of mathematical knowledge and, to the extent to
which other knowledge is dependent on mathematical knowledge, of
other knowledge as well.

It is hard to pin this view in its pure form on anyone, although Gtdel
pe.rhaps comes as close to it as anyone since Plato. For the time being, we
w_ﬂl consider the view in the abstract, returning later to the details of the
view that Godel expresses in his various writings.

Itis !ikely that most mathematicians would reject this extreme form of
platonism; certainly few contemporary philosophers or psychologists
would find the idea of a nonphysical power of surveying a realm of inde-
pendently existing objects outside of space and time very congenial. But
if one rejects the idea of returning to such a view (a view that is ‘““pla-
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tonist”’ in a more literal sense than that overused epithet frequently has
in philosophical discussion), then one cannot escape the problems posed
by the talk of “intuition’’ that one encounters in the writings of many
philosophers and set theorists. What is ““intuition,”” and how can there
be such a faculty if platonist views such as those mentioned above are
totally wrong?

We might describe the problem as a problem of access: here are we,
evolving social organisms in space-time. Our sense organs are admirably
suited to bringing us information about tables and chairs, trees, fruits
and vegetables, other organisms, the sky, the weather, and so on. We
have managed to devise electronic and optical extensions of these sense
organs that enable us to observe objects as small as viruses (and even
smaller) and as distant as remote galaxies. But none of these sense
organs, natural or artificial, extended or unextended, ever causally inter-
acts with, observes, or perceives a sef. There are the sets; beautiful (at
least to some), imperishable, multitudinous, intricately connected. They
toil not, neither do they spin. Nor, and this is the rub, do they interact
with us in any way. So how are we supposed to have epistemological
access to them? To answer, ‘‘by intuition,”’ is hardly satisfactory. We
need some account of how we can have knowledge of these beasties,
some account of our cognitive relationship to them.

(We referred earlier to worries about whether the notion of a set is
*‘clear.” It seems to us that many such worries are really grounded in
precisely this problem of access. It is not, after all, that set language is
“‘unclear’’ in any ordinary linguistic sense: too many ambiguities, too
many possible paraphrases, and the like. What is ‘‘unclear”’ is whether
such objects really exist and, if they do, how we can possibly know what
we claim to know about them.)

One suggestion that a number of authors have advanced is that sets
may exist not as platonic, extra-mental objects, but in the mind, as
objects of our own making. If sets are, in some way, our own creation
and in our minds, then the problem of accounting for our access to them
should be easier. Or so it might seem.

But how can a nondenumerable infinity of sets exist as mental objects
in our all-too-finite minds? One possible answer would be that they exist
as intentional objects, that is, as objects whose existence is the content of
certain thoughts of ours. These thoughts need not be supposed to be true
of anything ‘‘external’’ any more than the play Hamlet is true of any
actual prince of Denmark; truth in set theory, on such an account, would
be no more than fruth in the story. Two problems with such an account
(which, along with Gédel’s account and others, is discussed by Wang in
Part 1V) are:
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(1) On such an account, how are we to choose among ri\fal set the(')ri.&s?
Or should we just be relativists? Should we say that within broad hmntts,
one set theory is as good as another? And if so, what would establish
even the broad limits? Wang points out that such an attitude is anathema
to most working set theorists. He suggests (tentatively) that perha'p_s truth
in set theory might be defined in terms of convergence in the intulthns of
set theorists in the long run. But is such convergence, assuming it exists at
all, epistemologically significant if it is founded on ‘‘aesthetic’ prefer-
ences for certain stories as opposed to others? And how much of tlfe
existing agreement among set theorists is just the product of academic
fashion?

(2) How, on such an account, can we explain the apparent truth or ap-
proximate truth of empirical laws (e.g., Newton’s Law of Gravity, Quan-
tum Mechanics, Relativity) that require higher mathematics to state? Such
alaw, as standardly formalized, makes reference both to physical entities
(forces, masses, particles, fields) and to functions and sets. If the func-
tions and sets are just intentional objects, objects ‘‘in the story,”’ then
the physical theories are to that extent also about fictional (or at least
intentional) objects, too. This view would seem to require a radical
adjustment in philosophy of science as a whole, not just a new philos-
ophy of mathematics. If mathematics is fiction, should the Mathematics
Department be renamed ‘‘Creative Writing’’? And what about the Physics
Department? (Perhaps all there is is Creative Writing.)

Parsons’s paper, which is related to Putnam’s ‘“‘Mathematics without
Foundations,’” explores the possibility of a modal interpretation of set
theory. (Parsons is continuing to explore this possibility in subsequent
work that is not yet published as of this writlng.) The idea is that set
theory should be interpreted as a theory of what sorts of structures cowld
exist (in a special mathematical sense of *‘could’’) and, in particular, as &
theory of what models for iterative set theory could exist.

One question of mathematical interest raised by this program is the
following: Is there some way of making the Axiom of Replacement (the
range of values of any function whose domain is a set is also a set) more
evident by deriving it from suitable assumptions about possible existence?
Are there axioms that are ‘“‘evident’ on the modal interpretation that
imply the Axiom of Replacement?

At first blush, the modal logical interpretation seems attractive because
it eschews the whole picture that makes the problem of ‘‘access’’ seem 5O
terrifying. It avoids saying that there is a nondenumerable infinity of
actual objects called sets there, thus bypassing the problem of how we
here can know about those objects there if there are no telegraph (or
other) wires running from there to here. (It also rejects Quine’s view that
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we should reformulate all scientific theories in quantificational logic in
order to determine their ‘‘ontological commitments.”’ Recasting set
theory in modal logic leaves it unclear what the “‘ontological commit-
ments’’ of set theory are, since there is no presently agreed upon account
of ontological commitment in the case of a logic with modal operators.
But if one thinks that the whole picture is wrong, then one will not regard
this as a defect of the reformulation.) The problem of accounting for our
epistemic access to a nondenumerable infinity of recherché entities is
replaced with the problem of accounting for our ability to know modal
truths, truths about what is and is not possible. And perhaps this will
prove in the long run to be more tractable; to some it sounds less
frightening.

Be that as it may, at present it is not clear just h-ow the modal logical
interpretation can help with the epistemological problem. This is particu-
larly so if modalities are themselves understood in terms of ““possible
world’’ semantics: S is mathematically necessary if it is true in every
mathematically possible world; S is mathematically possible if § is true in
at least one mathematically possible world. The problem then shifts to
that of explaining how we can know what we appear to know about this
new breed of platonic entity - the (mathematically) possible world. After
all, the theories that naturally come to mind as candidate accounts of our
ability to know modal truths are just the ones that come to mind on the
standard ‘‘Mathematics as the theory of Mathematical Objects’’ picture:
for example, that modal truths are *“‘analytic’’ or *‘true by convention™’;
that there are special Faculties of the Mind that enable one to know (and
perhaps actually define) what is and is not “possible’’ in the logical/
mathematical sense; that our theory of what is and is not mathematically
possible is, like our theory of what is and is not physically possible, a part
of total scientific theory and to be accepted, modified, or rejected on
grounds similar to those on which one accepts, modifies, or rejects
empirical theories. It may be useful to have an alternative to the Heaven
of Mathematical Objects picture; but we haven’t been shown (yet) how it

is useful.

9. Quine and Godel

In line with what we said at the outset about the importance of seeing
connections between issues raised by authors who are philosophers and
authors who are mathematicians, and the importance of seeing connec-
tions between essays in different sections of this anthology, we recom-
mend reading Quine’s “Carnap and Logical Truth” in connection with
the papers in Part IV as well as in connection with the other papers in
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Part I11. In particular, the view just mentioned, that the grounds for ac-
cepting or rejecting mathematical theories are analogous to the grounds
for accepting or rejecting physical theories, has long been urged by Quine.

It is not, of course, that Quine is unaware of the fact that there are
experiments in physics and no experiments in mathematics (or, at least,
none in the same sense). But Quine emphasizes the idea that mathematics
has to be viewed not by itself but rather as a part of an all-embracing
conceptual scheme, and he claims that the necessity for quantification
over mathematical objects (e.g., sets) is all the reason one needs for
making the “*posit’” of the existence of sets, numbers, and so on. Sets
and electrons are alike for Quine in being objects we need to assume to
do science.

While this sort of holistic pragmatism is attractive in that it recognizes
what Russell and the logicists were for a long time alone in emphasizing -
that we must account for the use of mathematical locutions in empirical
statements, and not only in the context of pure set theory, number theory,
and so on - and in that it provides a reason to believe in the existence of
sets without postulating mysterious Faculties of the Mind, it too runs
into serious difficulties. (So does every view; that is why the philosophy
of mathematics is so fascinating.) Quine seems to be saying (on one read-
ing; despite the deceptive clarity of his style, he is not always an easy
philosopher to interpret) that science as a whole is to be viewed as a single
explanatory theory and that the theory is to be justified as a whole by its
ability to explain sensations. But is is not clear what the acceptance or
nonacceptance of the Axiom of Choice or the Continuum Hypothesis
has to do with explaining sensations,

The idea that there is something analogous to empirical reasoning in
pure mathematics has also been advanced by Putnam (‘*Mathematical
Truth, not in this volume) and even by Gdel (**What is Cantor's Con-
tinuum Problem?” in Part IV). In spite of his platonism, Gbdel is much
too sophisticated to think acts of “‘intuition’ are a// that is involved in
mathematical ‘‘self-evidence,”” *‘plausibility,’’ and the like. The fact that
two philosophers as radically different as Quine and Godel both recog-
nize tht.l presence of an element of something like *‘hypothetico-deductive’
reasoning in pure mathematics is certainly striking. (Such an element was
also pointed out by Russell, in the preface to PM and in earlier publi-
cations.)

‘ Quine recognizes tl}at' even in empirical science there are considera-
;13:; i(;Te;I Lhz;e:;'(c;dgg;gos}insatio?‘s that plas‘/ a crucial role. in theory

1. F en of *‘conservatism’’ - the desire to pre-
serve principles that have long been regarded as ‘*‘central’’ or ‘“‘obvious’’
or both, and of “‘simplicity” - a desire for elegance, which occasionally
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makes us fly in the face of conservatism when a radical change of a cen-
tral (or even a ‘‘self-evident’’) principle turns out to lead to far-reaching
simplifications of the whole system.

But why should the simplest and most conservative system (or rather,
the system that best balances simplicity and conservatism, by our lights)
have any tendency to be frue? Quine, good pragmatist that he is, tends to
pooh-pooh this sort of question; but more realistically minded philoso-
phers are sure to be bothered. It is hard enough to believe that the natural
world is so nicely arranged that what is simplest, etc., by our lights is
always the same as what is true (or, at least, generally the same as what is
true); why should one believe that the universe of sets (or the totality of
modal truths) is so nicely arranged that there is a preestablished harmony
between our feelings of simplicity, etc., and fruth?

It might be rewarding at this point to go into Godel’s view in more
detail and particularly to compare it to Quine’s; for despite superficial
differences, they agree in a surprising number of respects. And what is
perhaps of greater interest, the least satisfactory portion of each account
comes at precisely the same spot: at the place where it must be explained
how the criteria of truth that are advanced by each are related to the
truth of the propositions for whose truths they are criteria.

For Gédel, as for Quine, objects exist in exactly the same sense as the
objects of physical theory. And our reasons for believing in them are
every bit as good as our reasons for believing in the existence of fields,
protons, and so on. Both Gédel and Quine declare our experience to be
in some sense the touchstone of our theorizing; they differ principally in
what they admit as constituting that experience. Quine insists on an
almost thoroughgoing holism, broken only by the independence of ob-
servation sentences (they record our experience) and (sometimes) logical
truths, whereas Gddel adopts a modified Kantian position about experi-
ence: Our experience of physical objects goes beyond mere sensation -
our concept of physical object contains an admixture of elements not
conceivably derived from sensation. But the ‘‘added ingredients’’ belong
to our perceptual faculty and, unlike for Kant, they are not subjective,
not contributed by the perceiving subject (**... by our thinking we cannot
create any qualitatively new elements, but only reproduce and combine
those that are given’’; p. 484). This faculty of grouping sensations into
sensations of objects is, for Godel, very closely related to the faculty
of intuition, in virtue of which we have the (iterative) concept of set
(*“...the function of both is ‘synthesis,’ i.e., the generating of unities out
of manifolds. ...”; p. 484, fn. 26). He emphasizes that it (intuition) need
not be conceived of as giving us immediate knowledge of mathematics.
But this should not exclude it from being recognized as part of experience,
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particularly since even our experience of physical objects transcends
sensation. He concludes: ‘‘Evidently the ‘given’ underlying mathematics
is closely related to the abstract elements contained in our empirical
ideas” (p. 484).

Despite this difference (and who can say how much of a difference it
really is, since Quine much more readily discusses the kinds of sentences
we may admit into our theories than the kinds of evidence appropriate to
each?), both agree that ‘‘empirical’’ considerations might figure among
the criteria for the truth of mathematical axioms. According to Quine’s
view, this is axiomatic, since mathematical axioms are not observation
sentences, while Gddel concedes that ‘‘besides mathematical intuition,
there exists another (though only probable) criterion of the truth of
mathematical axioms, namely their fruitfulness in mathematics and, one
may add, possibly also in physics” (p. 485). Someone wishing to mini-
mize the difference would emphasize that Gddel’s account of the connec-
tion between mathematical experience and our acceptance of a mathe-
matical theory plays a similar explanatory role in his philosophy to that
played by the concept of simplicity, conservatism, and explanatory
power in the philosophies of pragmatists and empiricists: In neither case
is it made crystal clear why theories that (1) accord with intuition or
(2) appear simpler and appear to explain better are more likely to be true
than the others. Far from being insensitive to the problem of **access,”’
as we have described it in this section, Gddel rather founds his philos-
Ophy on the view that it must be taken very seriously indeed. Believing
that we Aave peculiarly mathematical knowledge, he tries to explain our
possession of it by (1) noting that there are objective elements of experi-
ence that do not derive from sensation and (2) proposing to account for
our mathematical knowledge at least in part In terms of such nonsensa-
tional aspects of experience. To be sure, we are left without an account of
the mechanism by which these experlential elements reflect aspects of the
alleged reality they allegedly betray. But it would be hard to argue that
such a view is in a worse position for giving an account of our overall
knowledge than are its holist, empiricist, or pragmatist competitors. In
both cases, the philosophical lacuna occurs in exactly the same place:
'when 1t must be explained why the criteria that are advocated for select-
Ing a theory (fit with intuition - simplicity) should pick out a theory that
15 more likely to be true than one of its competitors.

An interesting and perhaps undesired consequence of Gadel’s view,
and one tl.lat makes the rapprochement with Quine even closer, is that
;nsa‘t‘tix;e;ne&;t;:sd nﬁtlgrflger appear’s’to be a priori, unless that is reinterpreted
edge is what :’e hav.:egst{tton. For now, our only mathematical knowl-

erived from our experience. And Godel dispenses

36



Introduction

with the very feature of the Kantian view that was designed to guarantee
the a priori character of mathematics when he says:

It by no means follows, however, that the data of this second kind [what we have
called the nonsensational component of experience. Eds.], because they cannot
be associated with actions of certain things upon our sense organs, are something
purely subjective, as Kant asserted. Rather they, too, may represent an aspect of
objective reality, but, as opposed to the sensations, their presence may be due to
another kind of relationship between ourselves and reality. (p. 484)

The very question ‘‘Why should one believe that there is a preestab-
lished harmony between our feelings of simplicity, or intuition, and
truth?”’ presupposes a notion of truth that is independent of our stand-
ards of assertability. In Dummett’s terminology, it assumes a “‘realist’’
notion of truth; and it is at this point that the discussion of issues in the
foundations of set theory leads back to the discussion of the issues that
we grouped together in Section 6 under the heading ‘‘Mathematical
Truth.” It is possible that significant further progress on these issues
cannot be made until we have a more satisfactory account of the nature
of truth and of the ways in which truth and reference are and are not
linked to assertability. In any case, there is certainly a close connection
between discussions in the philosophy of mathematics and discussions in
general philosophy concerning the metaphysical issue of realism. But this
is not to say that philosophy of mathematics ought simply to wait for
improved views in general philosophy. Quite the contrary, for it is even
more likely that one way in which theories of truth and knowledge in
general philosophy will be shown to be adequate (or inadequate) is by
their ability (or inability) to account for mathematical knowledge; and it
is only in philosophy of mathematics that one finds searching attempts to
apply theories of truth and knowledge to the special case of mathematics.
For this reason, it is our conviction that philosophers interested in funda-
mental questions in epistemology, in theory of reference and truth, in
philosophy of language, and in metaphysics should pay closer attention
to the case of mathematics than they generally have. General philosophi-
cal theories that appear to account adequately for our intercourse with
protons and pachyderms but fail on polynomials are, for that very
reason, inadequate treatments of the very cases they seem to fit so well.
The world of mathematics is not a world apart. We will not have an ade-
quate account of the physical world and our knowledge of it until we
understand better than we presently do the role played by mathematics in
our accounts of physical phenomena. And it is not likely that we will
have satisfied ourselves on that score until we have produced accounts
of knowledge, truth, and reality that deal adequately with pure mathe-

matics as well.
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The foundations of mathematics






Symposium on the foundations
of mathematics

1. The logicist foundations of mathematics
RUDOLF CARNAP

The problem of the logical and epistemological foundations of mathe-
matics has not yet been completely solved. This problem vitally concerns
both mathematicians and philosophers, for any uncertainty in the foun-
dations of the ‘‘most certain of all the sciences’’ is extremely disconcert-
ing. Of the various attempts already made to solve the problem none can
be said to have resolved every difficulty. These efforts, the leading ideas
of which will be presented in these three papers, have taken essentially
three directions: Logicism, the chief proponent of which is Russell; Intui-
tionism, advocated by Brouwer; and Hilbert’s Formalism.

Since I wish to draw you a rough sketch of the salient features of the
logicist construction of mathematics, I think I should not only point out
those areas in which the logicist program has been completely or at least
partly successful but also call attention to the difficulties peculiar to this
approach. One of the most important questions for the foundations of
mathematics is that of the relation between mathematics and logic.
Logicism is the thesis that mathematics is reducible to logic, hence nothing
but a part of logic. Frege was the first to espouse this view (1884). In their
great work, Principia Mathematica, the English mathematicians A. N.
Whitehead and B. Russell produced a systematization of logic from which
they constructed mathematics.

We will split the logicist thesis into two parts for separate discussion:

. The concepts of mathematics can be derived from logical concepts

through explicit definitions.

2. The theorems of mathematics can be derived from logical axioms

through purely logical deduction.

1. The derivation of mathematical concepts

To make precise the thesis that the concepts of mathematics are derivable
from logical concepts, we must specify the logical concepts to be employed

The first three essays in this chapter form part of a symposium on the foundations of
mathematics which appeared in Erkenntnis (1931), pp. 91-12]. They were translated by Erna
Putnam and Gerald J. Massey and appear here with the kind permission of Rudolf Carnap,
Arend Heyting, and Klara von-Neumann Eckart. The last of these appears in A, H, Taub,
ed., John von Neumann Colfected Works, Vol. 2 (New York: Pergamon Press, 1961).
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in the derivation. They are the following: In propositional calculus,
which deals with the relations between unanalyzed sentences, the most
important concepts are: the negation of a sentence p, ‘not-p’ (symbolized
‘~p’); the disjunction of two sentences, ‘p or @’ (‘pV q’); the conjunc-
tion, ‘p and ¢’ (‘p-q’); and the implication, ‘if p, then ¢’ (‘pD>¢q’). The
concepts of functional calculus are given in the form of functions, e.g.,
‘f(a)’ (read ‘f of a') signifies that the property f belongs to the object a.
The most important concepts of functional calculus are universality and
existence: ‘(x)f(x)’ (read ‘for every x, f of x’) means that the property f
belongs to every object; ‘(3x)f(x)’ (read ‘there is an x such that f of x°)
means that f belongs to at least one object. Finally there is the concept of
identity: ‘a=)’ means that ‘a’ and ‘b’ are names of the same object.

Not all these concepts need be taken as undefined or primitive, for
some of them are reducible to others. For example, ‘p v ¢’ can be defined
as ‘~(~p-~q)’and ‘(3x) f(x) as ‘~ (x) ~f(x)". It is the logicist thesis,
then, that the logical concepts just given suffice to define all mathemati-
cal concepts, that over and above them no specifically mathematical con-
cepts are required for the construction of mathematics.

Already before Frege, mathematicians in their investigations of the
interdependence of mathematical concepts had shown, though often with-
out being able to provide precise definitions, that all the concepts of arith-
metic are reducible to the natural numbers (i.e., the numbers 1,2, 3, ...
which are used in ordinary counting). Accordingly, the main problem
which remained for logicism was to derive the natural numbers from logi-
cal concepts. Although Frege had already found a solution to this prob-
lem, Russell and Whitehead reached the same results independently of
him and were subsequently the first to recognize the agreement of their
work with Frege’s. The crux of this solution is the correct recoghition of
the logical status of the natural numbers; they are logical attributes
wh'ich belong, not to things, but to concepts. That a certain number, say
3, is the number of a concept means that three objects fall under it. We
can express the very same thing with the help of the logical concepts pre-
Viously given. For example, let ‘2, (f)’ mean that at least two objects fall
under the concept f. Then we can define this concept as follows (where
‘=p¢’ is the symbol for definition, read as ‘‘means by definition’’):

2 (N =pr (3X)(3Y)[ ~ (x=y) - f(x) )]

or in words: there is an x and there is a ysuch that x is not identical with y
and fbelongs to x and f belongs to y. In like manner, we define 3

4,
and so on. Then we define the number two itself thus: "

z(f)zbfzm(f)' ~3In(N)
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or in words: at least two, but not at least three, objects fall under f. We can
also define arithmetical operations quite easily. For example, we can
define addition with the help of the disjunction of two mutually exclusive
concepts. Furthermore, we can define the concept of natural number itself.

The derivation of the other kinds of number - i.e., the positive and
negative numbers, the fractions, the real and the complex numbers - is
accomplished, not in the usual way by adding to the domain of the
natural numbers, but by the construction of a completely new domain.
The natural numbers do not constitute a subset of the fractions but are
merely correlated in obvious fashion with certain fractions. Thus the
natural number 3 and the fraction 3/1 are not identical but merely cor-
related with one another. Similarly we must distinguish the fraction 1/2
from the real number correlated with it. In this paper, we will treat only
the definition of the real numbers. Unlike the derivations of the other
kinds of numbers which encounter no great difficulties, the derivation of
the real numbers presents problems which, it must be admitted, neither
logicism, intuitionism, nor formalism has altogether overcome.

Let us assume that we have already constructed the series of fractions
(ordered according to magnitude). Our task, then, is to supply defini-
tions of the real numbers based on this series. Some of the real numbers,
the rationals, correspond in obvious fashion to fractions; the rest, the ir-
rationals, correspond as Dedekind showed (1872) to ‘‘gaps’’ in the series
of fractions. Suppose, for example, that we divide the (positive) fractions
into two classes, the class of all whose square is less than 2, and the class
comprising all the rest of the fractions. This division forms a “cut” in the
series of fractions which corresponds to the irrational real number V2.
This cut is called a *‘gap"’ since there is no fraction correlated with it. As
there is no fraction whose square is two, the first or “lower” class contains
no greatest member, and the second or “upper” class contains no least
member, Hence, to every real number there corresponds a cut in the series
of fractions, each irrational real number being correlated with a gap.

Russell developed further Dedekind’s line of thought. Since a cut is
uniquely determined by its ‘‘lower”’ class, Russell defined a real number
as the lower class of the corresponding cut in the series of fractions. For
example, V2 is defined as the class (or property) of those fractions whose
square is less than two, and the rational real number 1/3 is defined as the
class of all fractions smaller than the fraction 1/3. On the basis of these
definitions, the entire arithmetic of the real numbers can be developed.
This development, however, runs up against certain difficulties con-
nected with so-called ‘‘impredicative definition,”’ which we will discuss
shortly.

The essential point of this method of introducing the real numbers is
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that they are not postulated but constructed. The logicist does not estab-
lish the existence of structures which have the properties of the real num-
bers by laying down axioms or postulates; rather, through explicit defini-
tions, he produces logical constructions that have, by virtue of these defi-
nitions, the usual properties of the real numbers. As there are no “‘crea-
tive definitions,”” definition is not creation but only name-giving to
something whose existence has already been established.

In similarly constructivistic fashion, the logicist introduces the rest of
the concepts of mathematics, those of analysis {(e.g., convergence, limit,
continuity, differential, quotient, integral, etc.) and also those of set
theory (notably the concepts of the transfinite cardinal and ordinal num-
bers). This “‘constructivist’ method forms part of the very texture of
logicism.

II. The derivation of the theorems of mathematics

The second thesis of logicism is that the theorems of mathematics are
derivable from logical axioms through logical deduction. The requisite
system of logical axioms, obtained by simplifying Russell’s system, con-
tains four axioms of propositional calculus and two of functional calcu-
lus. The rules of inference are a rule of substitution and a rule of implica-
tion (the modus ponens of ancient logic). Hilbert and Ackermann have
used these same axioms and rules of inference in their system.

Mathematical predicates are introduced by explicit definitions. Since
an explicit definition is nothing but a convention to employ a new, usu-
ally much shorter, way of writing something, the definiens or the new
way of writing it can always be eliminated. Therefore, as every sentence
of mathematics can be translated into a sentence which contains only the
primitive logical predicates already mentioned, this second thesis can be
restated thus: Every provable mathematical sentence is transiatable into
a sentence which contains only primitive logical symbols and which is
provable in logic.

But the derivation of the theorems of mathematics poses certain diffi-
cu_lties fqr logicism. In the first place it turns out that some theorems of
ant.hmetlc and set theory, if interpreted in the usual way, require for
their proof besides the logical axioms still other special axioms known as
the axiom of infinity and the axiom of choice (or multiplicative axiom).
The axiom of infinity states that for every natural number there is a
greater one. The axiom of choice states that for every set of disjoint non-
empty sets, there is (at least) one selection-set, i.e., a set that has exactly
one member in common with each of the member sets. But we are not
concerned here with the content of these axioms but with their logical
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character. Both are existential sentences. Hence, Russell was right in hes-
itating to present them as logical axioms, for logic deals only with pos-
sible entities and cannot make assertions about whether something does
or does not exist. Russell found a way out of this difficuity. He reasoned
that since mathematics was also a purely formal science, it too could
make only conditional, not categorical, statements about existence: if
certain structures exist, then there also exist certain other structures
whose existence follows logically from the existence of the former. For
this reason he transformed a mathematical sentence, say S, the proof of
which required the axiom of infinity, £, or the axiom of choice, C, into a
conditional sentence; hence S is taken to assert not S, but />S5 or COS,
respectively. This conditional sentence is then derivable from the axioms
of logic.

A greater difficulty, perhaps the greatest difficulty, in the construction
of mathematics has to do with another axiom posited by Russell, the so-
called axiom of reducibility, which has justly become the main bone of
contention for the critics of the system of Principia Mathematica. We
agree with the opponents of logicism that it is inadmissible to take it as
an axiom. As we will discuss more fully later, the gap created by the
removal of this axiom has certainly not yet been filled in an entirely satis-
factory way. This difficulty is bound up with Russell’s theory of types
which we shall now briefly discuss.

We must distinguish between a ‘‘simple theory of types’’ and a *‘rami-
fied theory of types.”’ The latter was developed by Russell but later recog-
nized by Ramsey to be an unnecessary complication of the former. If, for
the sake of simplicity, we restrict our attention to one-place functions
(properties) and abstract from many-place functions (relations), then
type theory consists in the following classification of expressions into dif-
ferent “'types’’: To type 0 belong the names of the objects (*‘individ-
uals’’) of the domain of discourse (e.8., @, b,...). To type | belong the
properties of these objects (e.8., f(a),&(a),...). To type 2 belong the
properties of these properties (e.g., F(f),G(f),...); for example, the
concept 2(f) defined above belongs to this type. To type 3 belong the
properties of properties of properties, and so on. The basic rule of type
theory is that every predicate belongs to a determinate type and can be
meaningfully applied only to expressions of the next lower type. Accord-
ingly, sentences of the form f(a), F(f), 2(f) are always meaningful, i.e.,
either true or false; on the other hand combinations like f(g) and f(F)
are neither true nor false but meaningless. In particular, expressions like
Sf(f) or ~f(f) are meaningless, i.e., we cannot meaningfully say of a
property either that it belongs to itself or that it does not. As we shall see,
this last result is important for the elimination of the antinomies.
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This completes our outline of the simple theory of types, which most
proponents of modern logic consider legitimate and necessary. In his sys-
tem, Russell introduced the ramified theory of types, which has not
found much acceptance. In this theory the properties of each type are
further subdivided into “‘orders.’’ This division is based, not on the kind
of objects to which the property belongs, but on the form of the defini-
tion which introduces it. Later we shall consider the reasons why Russell
believed this further ramification necessary. Because of the introduction
of the ramified theory of types, certain difficulties arose in the construc-
tion of mathematics, especially in the theory of real numbers. Many
fundamental theorems not only could not be proved but could not even
be expressed. To overcome this difficulty, Russell had to use brute force;
i.e., he introduced the axiom of reducibility by means of which the dif-
ferent orders of a type could be reduced in certain respects to the lowest
order of the type. The sole justification for this axiom was the fact that
there seemed to be no other way out of this particular difficulty engen-
dered by the ramified theory of types. Later Russell himself, influenced
by Wittgenstein’s sharp criticism, abandoned the axiom of reducibility in
the second edition of Principia Mathematica (1925). But, as he still
believed that one could not get along without the ramified theory of
types, he despaired of the situation. Thus we see how important it would
be, not only for logicism but for any attempt to solve the problems of the
foundations of mathematics, to show that the simple theory of types is
sufficient for the construction of mathematics out of logic. A young
English mathematician and pupil of Russell, Ramsey (who unfortunately

died this year, i.e., 1930), in 1926 made some efforts in this direction
which we will discuss later.

I11. The problem of impredicative definition

To ascertain whether the simple theory of types is sufficient or must be
further ramified, we must first of all examine the reasons which induced
Russell to adopt this ramification in spite of its most undesirable conse-
gue{lces. There were two closely connected reasons: the necessity of elim-
Inating the logical antinomies and the so-called “vicious circle” principle.
We call ““logical antinomies’ the contradictions which first appeared in
set theory (as so-called ‘‘paradoxes’’) but which Russell showed to be
COI{]IT']OH to all logic. It can be shown that these contradictions arise in
logic if the theory of types is not presupposed. The simplest antinomy is
fhat of tl}e concept ““‘impredicable.”” By definition a property is ‘‘impred-
icable”” if it does not belong to itself. Now is the property ‘‘impredi-
cable’ itself impredicable? If we assume that it is, then since it belongs to
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itself it would be, according to the definition of ‘‘impredicable,’’ not im-
predicable. If we assume that it is not impredicable, then it does not
belong to itself and hence, according to the definition of ‘‘impredi-
cable,” is impredicable. According to the law of excluded middle, it is
either impredicable or not, but both alternatives lead to a contradiction.
Another example is Grelling’s antinomy of the concept ‘‘heterological.”
Except that it concerns predicates rather than properties, this antinomy is
completely analogous to the one just described. By definition, a predi-
cate is “‘heterological’’ if the property designated by the predicate does
not belong to the predicate itself. (For example, the word ‘monosyllabic’
is heterological, for the word itself is not monosyllabic.) Obviously both
the assumption that the word ‘heterological’ is itself heterological as well
as the opposite assumption lead to a contradiction. Russell and other
logicians have constructed numerous antinomies of this kind.

Ramsey has shown that there are two completely different kinds of
antinomies. Those belonging to the first kind can be expressed in logical
symbols and are called ‘“logical antinomies’’ (in the narrower sense). The
“impredicable’”’ antinomy is of this kind. Ramsey has shown that this
kind of antinomy is eliminated by the simple theory of types. The con-
cept ‘‘impredicable,” for example, cannot even be defined if the simple
theory of types is presupposed, for an expression of the form, a property
does not belong to itself (~f(f)), is not well-formed, and meaningless
according to that theory.

Antinomies of the second kind are known as ‘‘semantical’’ or *‘epis-
temological”’ antinomies. They include our previous example, ‘‘hetero-
logical,” as well as the antinomy, well-known to mathematicians, of the
smallest natural number which cannot be defined in German with fewer
than 100 letters. Ramsey has shown that antinomies of this second kind
cannot be constructed in the symbolic language of logic and therefore
need not be taken into account in the construction of mathematics from
logic. The fact that they appear in word languages led Russell to impose
certain restrictions on logic in order to eliminate them, viz., the ramified
theory of types. But perhaps their appearance is due to some defect of
our ordinary word language.

Since antinomies of the first kind are already eliminated by the simple
theory of types and those of the second kind do not appear in logic,
Ramsey declared that the ramified theory of types and hence also the
axiom of reducibility were superfluous.

Now what about Russell’s second reason for ramifying the theory of
types, viz., the vicious circle principle? This principle, that ““no whole
may contain parts which are definable only in terms of that whole’’, may
also be called an ‘‘injunction against impredicative definition.”’ A defini-
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tion is said to be ‘‘impredicative’’ if it defines a concept in terms of a
totality to which the concept belongs. (The concept ‘‘impredicative’” has
nothing to do with the aforementioned pseudo concept ‘‘impredicable.’’)
Russell’s main reason for laying down this injunction was his belief that
antinomies arise when it is violated. From a somewhat different stand-
point Poincaré before, and Weyl after, Russell also rejected impredica-
tive definition. They pointed out that an impredicatively defined concept
was meaningless because of the circularity in its definition. An example
will perhaps make the matter clearer:

We can define the concept *‘inductive number’” (which corresponds to
the concept of natural number including zero) as follows: A number is
said to be ‘‘inductive” if it possesses all the hereditary properties of zero.
A property is said to be ‘‘hereditary’” if it always belongs to the number
n+1 whenever it belongs to the number n. In symbols,

Ind (x) =p¢ (f) [(Her(f)- £(0)) D f(x)]

To show that this definition is circular and useless, one usually argues as
follows: In the definiens the expression ‘(f)’ occurs, i.e., **for all proper-
ties (of numbers)”. But since the property ‘‘inductive’ belongs to the
class of all properties, the very property to be defined already occurs in a
hidden way in the definiens and thus is to be defined in terms of itself, an
obviously inadmissible procedure. It is sometimes claimed that the mean-
inglessness of an impredicatively defined concept is seen most clearly if
one tries to establish whether the concept holds in an individual case. For
example, to ascertain whether the number three is inductive, we must,
according to the definition, investigate whether every property which is
hereditary and belongs to zero also belongs to three. But if we must do
this for every property, we must also do it for the property *‘inductive’’
which is also a property of numbers. Therefore, in order to determine
whether the number three is inductive, we must determine among other
things whether the property *‘inductive’’ is hereditary, whether it belongs
to zero, and finally - this is the crucial point - whether it belongs to three.
But this means that it would be impossible to determine whether three is
an inductive number.

Before we consider how Ramsey tried to refute this line of thought, we
must get clear about how these considerations led Russell to the ramified
the9ry of types. Russell reasoned in this way: Since it is inadmissible to
c!efme a property in terms of an expression which refers to ‘‘all proper-
ties,”” we must subdivide the properties (of type 1): To the *‘first order’’
belong those properties in whose definition the expression ‘all properties’
does n(?t occur; to the ‘‘second order” those in whose definition the
expression ‘all properties of the first order’ occurs; to the “‘third order”
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those in whose definition the expression ‘all properties of the second
order’ occurs, and so on. Since the expression ‘all properties’ without
reference to a determinate order is held to be inadmissible, there never
occurs in the definition of a property a totality to which it itself belongs.
The property “‘inductive,”” for example, is defined in this no longer im-
predicative way: A number is said to be ‘‘inductive’” if it possess all the
hereditary properties of the first order which belong to zero.

But the ramified theory of types gives rise to formidable difficulties in
the treatment of the real numbers. As we have already seen, a real num-
ber is defined as a class, or what comes to the same thing, as a property
of fractions. For example, we say that V2 is defined as the class or
property of those fractions whose square is less than two. But since the
expression ‘for all properties’ without reference to a determinate order is
inadmissible under the ramified theory of types, the expression ‘for all
real numbers’ cannot refer to all real numbers without qualification but
only to the real numbers of a determinate order. To the first order belong
those real numbers in whose definition an expression of the form ‘for all
real numbers’ does not occur; to the second order belong those in whose
definition such an expression occurs, but this expression must be restricted
to “‘all real numbers of the first order,”” and so on. Thus there can be
neither an admissible definition nor an admissible sentence which refers
to all real numbers without qualification.

But as a consequence of this ramification, many of the most important
definitions and theorems of real number theory are lost. Once Russell
had recognized that his earlier attempt to overcome it, viz., the introduc-
tion of the axiom of reducibility, was itself inadmissible, he saw no way
out of this difficulty. The most difficult problem confronting contem-
porary studies in the foundations of mathematics is this: How can we
develop logic if, on the one hand, we are to avoid the danger of the
meaninglessness of impredicative definitions and, on the other hand, are
to reconstruct satisfactorily the theory of real numbers?

1V. Attempt at a solution

Ramsey (1926a) outlined a construction of mathematics in which he
courageously tried to resolve this difficulty by declaring the forbidden
impredicative definitions to be perfectly admissible. They contain, he
contended, a circle but the circle is harmless, not vicious. Consider, he
said, the description ‘the tallest man in this room’. Here we describe
something in terms of a totality to which it itself belongs. Still no one
thinks this description inadmissible since the person described already
exists and is only singled out, not created, by the description. Ramsey
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believed that the same considerations applied to properties. The totality
of properties already exists in itself. That we men are finite beings who
cannot name individually each of infinitely many properties but can
describe some of them only with reference to the totality of all properties
is an empirical fact that has nothing to do with logic. For these reasons
Ramsey allows impredicative definition. Consequently, he can both get
along with the simple theory of types and still retain all the requisite
mathematical definitions, particularly those needed for the theory of the
real numbers.

Although this happy result is certainly tempting, 1 think we should not
let ourselves be seduced by it into accepting Ramsey’s basic premise; viz.,
that the totality of properties already exists before their characterization
by definition. Such a conception, I believe, is not far removed from a
belief in a platonic realm of ideas which exist in themselves, indepen-
dently of if and how finite human beings are able to think them. I think
we ought to hold fast to Frege’s dictum that, in mathematics, only that
may be taken to exist whose existence has been proved (and he meant
proved in finitely many steps). I agree with the intuitionists that the
finiteness of every logical-mathematical operation, proof, and definition
is not required because of some accidental empirical fact about man but
is required by the very nature of the subject. Because of this attitude,
intuitionist mathematics has been called “anthropological mathematics.”
It seems to me that, by analogy, we should call Ramsey’s mathematics
“theological mathematics,”” for when he speaks of the totality of prop-
erties he elevates himself above the actually knowable and definable and
in certain respects reasons from the standpoint of an infinite mind which
ist not bound by the wretched necessity of building every structure step by
step.

We may now rephrase our cruclal question thus: Can we have Ram-
sey‘s result without retaining hls absolutlst conceptions? Hls result was
tr'u.s: Limitation to the simple theory of types and retention of the possi-
bility of definitions for mathematical concepts, particularly in real num-
b'er theor)f.'We can reach this result if, like Ramsey, we allow impredica-
tive def'“mmon, but can we do this without falling into his conceptual
absolutism? I will try to give an affirmative answer to this question.

Let us go.back to the example of the property ““inductive’” for which
we gave an impredicative definition:

Ind(X)=m(f)[(Her(f)-f(0))Df(x)]

I:et.us examine once again whether the use of this definition, i.e., estab-
lishing whether the concept holds in an individual case or not, really
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leads to circularity and is therefore impossible. According to this defini-
tion, that the number two is inductive means:

N I(Her(f)-f(0))D£(2)]

in words: Every property f which is hereditary and belongs to zero be-
longs also to two. How can we verify a universal statement of this kind?
If we had to examine every single property, an unbreakable circle would
indeed result, for then we would run headlong against the property
‘“‘inductive.”” Establishing whether something had it would then be im-
possible in principle, and the concept would therefore be meaningless.
But the verification of a universal logical or mathematical sentence does
not consist in running through a series of individual cases, for impredica-
tive definitions usually refer to infinite totalities. The belief that we must
run through all the individual cases rests on a confusion of ‘‘numerical’’
generality, which refers to objects already given, with *‘specific’’ general-
ity (cf. Kaufmann 1930). We do not establish specific generality by run-
ning through individual cases but by logically deriving certain properties
from certain others. In our example, that the number two is inductive
means that the property ‘“‘belonging to two’’ follows logically from the
property ‘‘being hereditary and belonging to zero.”’ In symbols, ‘f(2)’
can be derived for an arbitrary f from ‘Her(f)-f(0)’ by logical opera-
tions. This is indeed the case. First, the derivation of ‘f(0)’ from
‘Her(f)-f(0) is trivial and proves the inductiveness of the number
zero. The remaining steps are based on the definition of the concept
“‘hereditary’’:

Her(f) =pr(m)[f(n) DS (n+1)]

Using this definition, we can easily show that /(0+1)’ and hence /(1)
are derivable from *Her (/) f(0)' and thereby prove that the number one
is inductive, Using this result and our definition, we can derive f(1+1)’
and hence ‘/(2)’ from ‘Her(f)-f(0)’, thereby showing that the number
two is inductive. We see then that the definition of inductiveness,
although impredicative, does not hinder its utility. That proofs that the
defined property obtains (or does not obtain) in individual cases can be
given shows that the definition is meaningful. If we reject the belief that
it is necessary to run through individual cases and rather make it clear to
ourselves that the complete verification of a statement about an arbitrary
property means nothing more than its logical (more exactly, tautological)
validity for an arbitrary property, we will come to the conclusion that im-
predicative definitions are logically admissible. If a property is defined im-
predicatively, then establishing whether or not it obtains in an individual
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case may, under certain circumstances, be difficult, or it may even be
impossible if there is no solution to the decision problem for that logical
system. But in no way does impredicativeness make such decisions
impossible in principle for all cases. If the theory just sketched proves
feasible, logicism will have been helped over its greatest difficulty, which
consists in steering a safe course between the Scylla of the axiom of
reducibility and the Charybdis of the allocation of the real numbers to
different orders.

Logicism as here described has several features in common both with
intuitionism and with formalism. It shares with intuitionism a construc-
tivistic tendency with respect to definition, a tendency which Frege also
emphatically endorsed. A concept may not be introduced axiomatically
but must be constructed from undefined, primitive concepts step by step
through explicit definitions. The admission of impredicative definitions
seems at first glance to run counter to this tendency, but this is only true
for constructions of the form proposed by Ramsey. Like the intuition-
ists, we recognize as properties only those expressions (more precisely,
expressions of the form of a sentence containing one free variable) which
are constructed in finitely many steps from undefined primitive properties
of the appropriate domain according to determinate rules of construc-
tion. The difference between us lies in the fact that we recognize as valid
not only the rules of construction which the intuitionists use (the rules of
the so-called *‘strict functional calculus’’), but in addition, permit the use
of the expression ‘for all properties’ (the operations of the so-called
‘‘extended functional calculus’’).

Further, logicism has a methodological affinity with formalism. Logi-
cism proposes to construct the loglcal-mathematical system in such a way
that, although the axloms and rules of Inference are chosen with an inter-
pretation of the primitive symbols In mind, nevertheless, inside the sys-
tem the chains of deductions and of definitions are carried through for-

mglly as in a pure calculus, i.e., without reference to the meaning of the
primitive symbols,

2. The intuitionist foundations of mathematics

[Die intuitionistische Grundlegung der Mathematik]
AREND HEYTING

The i{ltuitioni.f»t mathematician proposes to do mathematics as a natural
function (?f l}ls intellect, as a free, vital activity of thought. For him,
mathematics is a production of the human mind. He uses language, both
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natural and formalized, only for communicating thoughts, i.e., to get
others or himself to follow his own mathematical ideas. Such a linguistic
accompaniment is not a representation of mathematics; still less is it
mathematics itself.

It would be most in keeping with the active attitude of the intuitionist
to deal at once with the construction of mathematics. The most impor-
tant building block of this construction is the concept of unity which is
the architectonic principle on which the series of integers depends. The
integers must be treated as units which differ from one another only by
their place in this series. Since in his Logischen Grundiagen der exakten
Wissenschaften Natorp has already carried out such an analysis, which in
the main conforms tolerably well to the intuitionist way of thinking, I
will forego any further analysis of these concepts. But I must still make
one remark which is essential for a correct understanding of our intui-
tionist position: we do not attribute an existence independent of our
thought, i.e., a transcendental existence, to the integers or to any other
mathematical objects. Even though it might be true that every thought
refers to an object conceived to exist independently of it, we can never-
theless let this remain an open question. In any event, such an object
need not be completely independent of human thought. Even if they
should be independent of individual acts of thought, mathematical
objects are by their very nature dependent on human thought. Their exis-
tence is guaranteed only insofar as they can be determined by thought.
They have properties only insofar as these can be discerned in them by
thought. But this possibility of knowledge is revealed to us only by the
act of knowing itself. Faith in transcendental existence, unsupported by
concepts, must be rejected as a means of mathematical proof. As I will
shortly Illustrate more fully by an example, this is the reason for doubt-
ing the law of excluded middle.

Oskar Becker has dealt thoroughly with the problems of mathematical
existence in his book on that subject. He has also uncovered many con-
nections between these questions and the most profound philosophical
problems.

We return now to the construction of mathematics. Although the intro-
duction of the fractions as pairs of integers does not lead to any basic dif-
ficulties, the definition of the irrational numbers is another story. A real
number is defined according to Dedekind by assigning to every rational
number either the predicate ‘Left’ or the predicate ‘Right’ in such a way
that the natural order of the rational numbers is preserved. But if we
were to transfer this definition into intuitionist mathematics in exactly
this form, we would have no guarantee that Euler’s constant C is a real
number. We do not need the definition of C. It suffices to know that this
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definition amounts to an algorithm which permits us to enclose C within
an arbitrarily small rational interval. (A rational interval is an interval
whose end points are rational numbers. But, as absolutely no ordering
relations have been defined between C and the rational numbers, the
word ‘enclose’ is obviously vague for practical purposes. The practical
question is that of computing a series of rational intervals each of which
is contained in the preceding one in such a way that the computation can
always be continued far enough so that the last interval is smaller than an
arbitrarily given limit.) But this algorithm still provides us with no way of
deciding for an arbitrary rational number A whether it lies left or right of
C or is perhaps equal to C. But such a method is just what Dedekind's
definition, interpreted intuitionistically, would require.

The usual objection against this argument is that it does not matter
whether or not this question can be decided, for, if it is not the case that
A=C, then either A<Cor A>C, and this last alternative is decided after
a finite, though perhaps unknown, number of steps N in the computa-
tion of C. I need only reformulate this objection to refute it. It can mean
only this: either there exists a natural number N such that after N steps in
the computation of Cit turns out that A< C or A> C; or there is no such
N and hence, of course, 4=C. But, as we have seen, the existence of N
signifies nothing but the possibility of actually producing a number with
the requisite property, and the non-existence of N signifies the possibility
of deriving a contradiction from this property. Since we do not know
whether or not one of these possibilities exists, we may not assert that N
either exists or does not exist. In this sense, we can say that the law of ex-
cluded middle may not be used here.

In its original form, then, Dedekind’s definition cannot be used
in intuitionist mathematics. Brouwer, however, has improved it in the
following way: Think of the rational numbers enumerated in some way.
For the sake of simplicity, we restrict ourselves to the numbers in the

closed unit interval and take always as our basis the following enumer-
ation:

@onll2131234
2°3 3474’55 5 85"

A feal nu.mber is determined by a cut in the series (A); i.e., by a rule
which assigns to each rational number in the series either the predicate
‘L{fft’ or the predicate ‘Right’ in such a way that the natural order of the
fatlonal numbers is preserved. At each step, however, we permit one
individual number to be left out of this mapping. For example, let the
rule be so formed that the series of predicates begins this way:
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1 1 21 3 1
o1l 12131234
233 4> 5’555

4’
LlRl Ll Ll r’ L

Here 2/3 is temporarily left out of the mapping. We need not know
whether or not the predicate for 2/3 is ever determined. But it is also a
possibility that 3/4 should become a new excluded number and hence
that 2/3 would receive the predicate ‘Left’.

It is easy to give a cut for Euler’s constant. Let d,, be the smallest dif-
ference between two successive numbers in the first # numbers of (A).
Now if we compute C far enough to get a rational interval / which is
smaller than d,, then at most one of these # numbers can fall within i. If
there is such a number, it becomes the excluded number for the cut.
Thus, we can see how closely Brouwer’s definition is related to the actual
computation of a real number.

We can now take an important step forward. We can drop the require-
ment that the series of predicates be determined to infinity by a rule. It
suffices if the series is determined step by step in some way, e.g., by free
choices. I call such sequences “‘infinitely proceeding.”’ Thus the defini-
tion of real numbers is extended to allow infinitely proceeding sequences
in addition to rule-determined sequences. Before discussing this new def-
inition in detail, we will give a simple example. We begin with this ‘‘Left-
Right’’ choice-sequence:

112131
2’33744’ 5’
L,R, L, L, R, L, R, L, L,

Here the question about which predicate 3/5 receives cannot be answered
yet, for it must still be decided which predicate to give it. The question
about the predicate which 4/5 receives, on the other hand, can be
answered now by ‘Right,’ since that choice would hold for every possible
continuation of the sequence. In general, only those questions about an
infinitely proceeding sequence which refer to every possible continuation
of the sequence are susceptible of a determinate answer. Other questions,
like the foregoing about the predicate for 3/5, must therefore be regarded
as meaningless. Thus choice-sequences supplant, not so much the indi-
vidual rule-determined sequences, but rather the totality of all possible
rules. A ““Left-Right’’ choice-sequence, the freedom of choice for which
is limited only by the conditions which result from the natural order of
the rational numbers, determines not just one real number but the spread

0,1, )

r 3

3
5

w| A

2
5
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of all real numbers or the continuum. Whereas we ordinarily think of
each real number as individually defined and only afterwards think of
them all together, we here define the continuum as a totality. If we re-
strict this freedom of choice by rules given in advance, we obtain spreads
of real numbers. For example, if we prescribe that the sequence begin in
the way we have just written it, we define the spread of real numbers
between 1/2 and 2/3. An infinitely proceeding sequence gradually
becomes a rule-determined sequence when more and more restrictions
are placed on the freedom of choice.

We have used the word ‘spread’ exactly in Brouwer’s sense. His defini-
tion of a spread is a generalization of this notion. In addition to choice-
sequences, Brouwer treats sequences which are formed from choice-
sequences by mapping rules. A spread involves two rules. The first rule
states which choices of natural numbers are allowed after a determinate
finite series of permitted choices has been made. The rule must be so
drawn that at least one new permissible choice is known after each finite
series of permitted choices has been made. The natural order of the
rational numbers is an example of such a rule for our ‘“Left-Right’’ se-
quence previously given. The second rule involved in a spread assigns a
mathematical object to each permissible choice. The mathematical object
may, of course, depend also on choices previously made. Thus it is per-
missible to terminate the mapping at some particular number and to
assign nothing to subsequent choices. A sequence which results from a
permissible choice-sequence by a mapping-rule is called an ‘‘element’’ of
the spread.

To bring our previous example of the spread of real numbers between
3/2 and 2(3 under this general definition, we will replace the predicates

Left’, ‘Right’, and ‘temporarily undetermined’, by 1, 2, and 3; and we
will derive the rule for permissible choices from the natural order of the
rational numbers and from the requirement that the sequence begin in 2
particular way; and we will take identity for the mapping-rule.

. ,;x spread (ljs not the sum of its elements (this statement is meaningless
nless spreads are regarded as existing i i
identified with its de%ining rules. "Sl"t\\rrf ;?e:::rrlrtl:e:;(;s)s.plr{:z:g Z;easiri)éiidl;:
equal if equal objects exist at the nth place in both for every n. Equality
:li:ir::n’:% oli"e atshr;rizd, th(:;efore, does not mean that they are the same
spread by the same ch:)r;e’- & would have to be. asslgm?d to the same
mathematical objects ec::aslequ‘lmc'e' heyould be 1mpract1cz_:11 Lo er
every kind of object ml?st re ive ff ped are.tt'le' e Objec't' Rathet

Brouwer calls *species tl"felve its own de'fmmon of'equalfty. o
terminology, by a charateri ose spreads which are defined, in clasm'ca

g cteristic property of their members. A species,
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like a spread, is not regarded as the sum of its members but is rather iden-
tified with its defining property. Impredicative definitions are made
impossible by the fact, which intuitionists consider self-evident, that only
previously defined objects may occur as members of a species. There
results, consequently, a step-by-step introduction of species. The first
level is made up of those spread-species whose defining property is
identity with an element of a particular spread. Hence, to every spread M
there corresponds the spread-species of those spread-elements which are
identical with some element of M.' A species of the first order can con-
tain spread-elements and spread-species. In addition, a species of the
second order contains species of the first order as members, and so on.

The introduction of infinitely proceeding sequences is not a necessary
consequence of the intuitionist approach. Intuitionist mathematics could
be constructed without choice-sequences. But the following set-theoretic
theorem about the continuum shows how much mathematics would
thereby be impoverished. This theorem will also serve as an example of
an intuitionist reasoning process.

Let there be a rule assigning to each real number a natural number as
its correlate. Assume that the real numbers 2 and b have different corre-
lates, e.g., 1 and 2. Then, by a simple construction, we can determine a
third number ¢ which has the following property: in every neighborhood
of ¢, no matter how small, there is a mapped number other than c; i.e.,
every finite initial segment of the cut which defines ¢ can be continued so
as to get a mapped number other than c. We define the number d by a
choice-sequence thus: we begin as with ¢ but we reserve the freedom to
continue at an arbitrary choice in a way different from that for c¢. Obvi-
ously the correlate of d is not determined after any previously known
finite number of choices. Accordingly, no definite correlate is assigned to
d. But this conclusion contradicts our premise that every real number has
a correlate. Qur assumption that the two numbers a and b have different
correlates is thus shown to be contradictory. And, since two natural
numbers which cannot be distinguished are the same number, we have
the following theorem: if every real number is assigned a correlate, then
all the real numbers have the same correlate.

As a special result, we have: if a continuum is divided into two sub-
species in such a way that every member belongs to one and only one of
these subspecies, then one of the subspecies is empty and other other is
identical with the continuum.

The unit continuum, for example, cannot be subdivided into the spe-
cies of numbers between 0 and 1/2 and the species of numbers between

"This definition of spread-species is taken from a communication of Professor Brouwer.
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1/2 and 1, for the preceding construction produces a number for which
one need never decide whether it is larger or smaller than 1/2. The
theorems about the continuity of a function determined in an interval are
also connected with the foregoing theorem. But Brouwer’s theorem about
the uniform continuity of alt full functions goes far beyond these results.

But what becomes of the theorem: we have just proved if no infinitely
proceeding sequences are allowed in mathematics? In that event, the spe-
cies of numbers defined by rule-determined sequences would have to take
the place of the continuum. This definition is admissible if we take it to
mean that a number belongs to this species only if there is a rule which
permits us actually to determine all the predicates of the sequence
successively.

In this event, the foregoing proof continues to hold only if we succeed
in defining the number d by a rule-determined sequence rather than by a
choice-sequence. We can probably do it if we make use of certain unre-
solved problems; e.g., whether or not the sequence 0123456789 occurs in
the decimal expansion of x. We can let the question - whether or not to
deviate from the predicate series for c, at the nth predicate in the predi-
cate sequence for d - depend on the occurrence of the preceding sequence
at the nth digit after the decimal point in x. This proof obviously is
weakened as soon as the question about the sequence is answered. But, in
the event that it is answered, we can replace this question by a similar
unanswered question, if there are any left. We can prove our theorem for
rule-determined sequences only on the condition that there always remain
unsolved problems. More precisely, the theorem is true if there are two
numbers, determined by rule-determined sequences, such that the ques-
tion about whether they are the same or different poses a demonstrably
unsolvable problem. It is false if the existence of two such numbers is
contradictory. But the problem raised by these conditions is insuperable,
Even here choice-sequences prove to be superior to rule-determined
sequences in that the former make mathematics independent of the ques-
tion of the existence of unsolvable problems.

We conclude our treatment of the construction of mathematics in
order Fo.say something about the intuitionist propositional calculus. We
here dlst'mguish between propositions and assertions. An assertion is the
afﬁrrpatlon of a proposition. A mathematical proposition expresses a
cer.tam expectation. For example, the proposition, ‘Euler’s constant C is
rational’, expresses the expectation that we could find two integers a@ and
b such tha( C=a/b. Perhaps the word ‘intention’, coined by the phe-
nomenologists, expresses even better what is meant here. We also use the
word ‘proposition’ for the intention which is linguistically expressed by
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the proposition. The intention, as already emphasized above, refers not
only to a state of affairs thought to exist independently of us but also to
an experience thought to be possible, as the preceding example clearly
brings out.

The affirmation of a proposition means the fulfillment of an intention.
The assertion ‘C is rational’, for example, would mean that one has in
fact found the desired integers. We distinguish an assertion from its cor-
responding proposition by the assertion sign ‘+’ that Frege introduced
and which Russell and Whitehead also used for this purpose. The affir-
mation of a proposition is not itself a proposition; it is the determination
of an empirical fact, viz., the fulfillment of the intention expressed by the
proposition.

A logical function is a process for forming another proposition from a
given proposition. Negation is such a function. Becker, following
Husserl, has described its meaning very clearly. For him negation is
something thoroughly positive, viz., the intention of a contradiction con-
tained in the original intention. The proposition ‘C'is not rational’, there-
fore, signifies the expectation that one can derive a contradiction from
the assumption that C is rational. It is important to note that the nega-
tion of a proposition always refers to a proof procedure which leads to
the contradiction, even if the original proposition mentions no proof
procedure. We use — as the symbol for negation.

For the law of excluded middle we need the logical function ‘‘either-
or”. *pV ¢ signifies that intention which is fulfilled if and only if at least
one of the intentions p and q is fulfilled. The formula for the law of
excluded middle would be ‘+p Vv —p’. One can assert this law for a par-
ticular proposition p only if p either has been proved or reduced to a con-
tradiction. Thus, a proof that the law of excluded middle is a general law
must consist in giving a method by which, when given an arbitrary prop-
osition, one could always prove either the proposition itself or its nega-
tion. Thus the formula ‘p Vv - p’ signifies the expectation of a mathe-
matical construction (method of proof) which satisfies the aforemen-
tioned requirement. Or, in other words, this formula is a mathematical
proposition; the question of its validity is a mathematical problem which,
when the law is stated generally, is unsolvable by mathematical means. In
this sense, logic is dependent on mathematics.

We conclude with some remarks on the question of the solvability of
mathematical problems. A problem is posed by an intention whose ful-
fillment is sought. It is solved either if the intention is fulfilled by a con-
struction or if it is proved that the intention leads to a contradiction. The
question of solvability can, therefore, be reduced to that of provability.
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A proof of a proposition is a mathematical construction which can
itself be treated mathematically. The intention of sucha proof thus yields
a new proposition. If we symbolize the proposition ‘the proposition p is
provable’ by ‘+p’, then ‘+’ is a logical function, viz., ‘‘provability.”
The assertions ‘+p’ and ‘+ +p’ have exactly the same meaning. For, if p
is proved, the provability of p is also proved, and if +p is proved, then
the intention of a proof of p has been fulfilled, i.e., p has been proved.
Nevertheless, the propositions p and + p are not identical, as can best be
made clear by an example. In the computation of Euler’s constant C,it
can happen that a particular rational value, say A, is contained for an
unusually long time within the interval within which we keep more nar-
rowly enclosing C so that we finally suspect that C=A; i.e., we expect
that, if we continued the computation of C, we would keep on finding A
within this interval. But such a suspicion is by no means a proof that it
will always happen. The proposition + (C=A), therefore, contains more
than the proposition {(C=A).

If we apply negation to both of these propositions, then we get not
only two different propositions, ‘- p’ and ‘—+p’, but also the asser-
tions, ‘+-p’ and ‘- +p’, are different. ‘+ —~+p’ means that the
assumption of such a construction as +p requires is contradictory. The
simple expectation p, however, need not lead to a contradiction. Here is
how this works in our example just cited. Assume that we have proved
the contradictoriness of the assumption that there is a construction which
proves that A lies within every interval that contains C (+~ — + p). But
still the assumption that in the actual computation of C we will always in
fact find A within our interval need not lead to a contradiction. It is even
conceivable that we might prove that the latter assumption could never
be proved to be contradictory, and hence that we could assert at the same
time both ‘- 4p' and ‘= =p'. In such an event, the problem
whether C=A4 would be essentially unsolvable.

The distinction between p and + p vanishes as soon as a construction is
intended in p itself, for the possibility of a construction can be proved
only by its actual execution. If we limit ourselves to those propositions
which requife a construction, the logical function of provability generally
d.oes not arise. We can impose this restriction by treating only proposi-
tions qf the .form ‘p is provable’ or, to put it another way, by regarding
every intention as having the intention of a construction for its fulfill-
ment added to it. It is in this sense that intuitionist logic, insofar as it has
been developed up to now without using the function +, must be under-
stood. The introduction of provability would lead to serious complica-
tions. Yet its minimal practical value would hardly make it worthwhile to

60



The formalist foundations of mathematics

deal with those complications in detail.? But here this notion has given us
an insight into how to conceive of essentially unsolvable problems.

We will have accomplished our purpose if we have shown you that
intuitionism contains no arbitrary assumptions. Still less does it contain
artificial prohibitions, such as those used to avoid the logical paradoxes.
Rather, once its basic attitude has been adopted, intuitionism is the only
possible way to construct mathematics.

3. The formalist foundations of mathematics
JOHANN VON NEUMANN

Critical studies of the foundations of mathematics during the past few
decades, in particular Brouwer’s system of “‘intuitionism,”’ have re-
opened the question of the origins of the generally supposed absolute
validity of classical mathematics. Noteworthy is the fact that this ques-
tion, in and of itself philosophico-epistemological, is turning into a
logico-mathematical one. As a result of three important advances in the
field of mathematical logic (namely: Brouwer’s sharp formulation of the
defects of classical mathematics; Russell’s thorough and exact descrip-
tion of its methods - both the good and the bad; and Hilbert’s contribu-
tions to the mathematical-combinatorial investigation of these methods
and their relations), more and more it is unambiguous mathematical
questions, not matters of taste, that are being investigated in the founda-
tion of mathematics. As the other papers have dealt extensively both with
the domain (delimited by Brouwer) of unconditionally valid (i.e., need-
ing no justification) ‘‘intuitionist’’ or ‘‘finitistic"* definitions and methods
of proof and with Russell's formal characterization (which has been fur-
ther developed by his school) of the nature of classical mathematics, we
need not dwell on these topics any longer. An understanding of them is,
of course, a necessary prerequisite for an understanding of the utility,
tendency, and modus procedendi of Hilbert’s theory of proof. We turn
instead directly to the theory of proof.

The leading idea of Hilbert’s theory of proof is that, even if the state-
ments of classical mathematics should turn out to be false as to content,
nevertheless, classical mathematics involves an internally closed proce-
dure which operates according to fixed rules known to all mathematicians

The question dealt with in this paragraph was fully clarified only in a discussion with H.
Freudenthal after the conference. The results of this discussion are reproduced in the text.
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and which consists basically in constructing successively certain com-
binations of primitive symbols which are considered ‘‘correct’ or
““proved.”’ This construction-procedure, moreover, is ‘“‘finitary’’ and
directly constructive. To see clearly the essential difference between the
occasionally non-constructive handling of the “‘content’” of mathematics
(real numbers and the like) and the always constructive linking of the
steps in a proof, consider this example: Assume that there exists a classi-
cal proof of the existence of a real number x with a certain very compli-
cated and deep-seated property E(x). Then it may well happen that,
from this proof, we can in no way derive a procedure for constructing an
x such that E(x). (We shall give an example of such a proof in a
moment.) On the other hand, if the proof somehow violated the conven-
tions of mathematical inference, i.e., if it contained an error, we could,
of course, find this error by a finitary process of checking. In other
words, although the content of a classical mathematical sentence cannot
always (i.e., generally) be finitely verified, the formal way in which we
arrive at the sentence can be. Consequently, if we wish to prove the valid-
ity of classical mathematics, which is possible in principle only by
reducing it to the @ priori valid finitistic system (i.e., Brouwer’s system),
then we should investigate, not statements, but methods of proof. We
must regard classical mathematics as a combinatorial game played with
the primitive symbols, and we must determine in a finitary combinatorial
way to which combinations of primitive symbols the construction
methods or *‘‘proofs’’ lead.

As we promised, we now produce an example of a non-constructive
existence proof. Let f(x) be a function which is linear from 0 to 1/3,
from 1/3 to 2/3, from 2/3 to 1, and so on. Let

. 1 h=e €2n 2 hew €2
S(0)y=~1; f<§)=— r = f(—)- L =& and f(l)=1

aml 2 k} =l 2
€n is defined as follows: if 2k is the sum of two prime numbers, then
€ =.O; otherwise ¢, =1. Obviously f(x) is continuous and calculable with
arbitrary accuracy at any point x. Since f(0)<0and f(1)>0, there exists
an x, where 0<x<1, such that f(x)=0. (In fact we readily see that
1/3€x<2/3.) However the task of finding a root with an accuracy
greater than +1/6 encounters formidable difficulties. Given the present
state of mathematics, these difficulties are insuperable, for if we could
find such a root, then we could predict with certitude the existence of a
root <2/3 or >1/3, according as its approximate value were <1/2 or
21/ %, respectively. The former case (Where the approximate value of the
rootis <1/2) excludes both that f(1/3)<0and that S(2/3)=0; the latter
case (where the approximate value of the root #1/2) excludes
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both that f(1/3)=0 and that f(2/3)>0. In other words, in the former
case the value of ¢, must be 0 for all even n but not for all odd #n; in the
latter case the value of ¢, must be 0 for all odd n but not for all even n.
Hence we would have proved that Goldbach’s famous conjecture (that
2n is always the sum of two prime numbers), instead of holding univer-
sally, must already fail to hold for odd »n in the former case and for even
nin the latter. But no mathematician today can supply a proof for either
case, since no one can find the solution of f(x)=0 more accurately than
with an error of 1/6. (With an error of 1/6, 1/2 would be an approximate
value of the root, for the root lies between 1/3 and 2/3, i.e., between
1/2—1/6 and 1/241/6.)

Accordingly, the tasks which Hilbert’s theory of proof must accomplish
are these:

1. To enumerate all the symbols used in mathematics and logic.
These symbols, called *‘primitive symbols,”’ include the symbols
‘~’ and ¢ —’ (which stand for ‘‘negation’’ and ‘‘implication’’
respectively).

2. To characterize unambiguously all the combinations of these sym-
bols which represent statements classified as ‘‘meaningful”” in
classical mathematics. These combinations are called ‘‘formulas.”
(Note that we said only ‘‘meaningful,’”’ not necessarily ‘“‘true.”
‘] +1=2"is meaningful but so is ‘1+1=1", independently of the
fact that one is true and the other false. On the other hand, combi-
nations like ‘14 — =1"and ‘++1= -’ are meaningless.)

3. To supply a construction procedure which enables us to construct
successively all the formulas which correspond to the ‘‘provable”’
statements of classical mathematics. This procedure, accordingly,
is called *‘proving.”

4. To show (in a finitary combinatorial way) that those formulas
which correspond to statements of classical mathematics which
can be checked by finitary arithmetical methods can be proved
(i.e., constructed) by the process described in (3) if and only if the
check of the corresponding statement shows it to be true.

To accomplish tasks 1-4 would be to establish the validity of classical
mathematics as a short-cut method for validating arithmetical statements
whose elementary validation would be much too tedious. But since this is
in fact the way we use mathematics, we would at the same time suffi-
ciently establish the empirical validity of classical mathematics.
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We should remark that Russell and his schoo!l have almost completely
accomplished tasks 1-3. In fact, the formalization of logic and mathe-
matics suggested by tasks 1-3 can be carried out in many different ways.
The real problem, then, is (4).

In connection with (4) we should note the following: If the ‘‘effective
check” of a numerical formula shows it to be false, then from that for-
mula we can derive a relation p=g where p and q are two different,
effectively given numbers. Hence (according to task 3) this would give us
a formal proof of p=g from which we could obviously get a proof of
1 =2. Therefore, the sole thing we must show to establish (4) is the for-
mal unprovability of 1 =2; i.e., we need to investigate only this one par-
ticular false numerical relation. The unprovability of the formula 1 =2
by the methods described in (3) is called ‘‘consistency.”’ The real prob-
lem, then, is that of finding a finitary combinatorial proof of consistency.

To be able to indicate the direction which a proof of consistency takes,
we must consider formal proof procedure - as in (3) - a little more
closely. 1t is defined as follows:

3,. Certain formulas, characterized in an unambiguous and finitary
way, are called ‘‘axioms.”” Every axiom is considered proved.

3,. If aand b are two meaningful formulas, and if @ and @ = b have
both been proved, then b also has been proved.

Note that, although (3,) and (3,) do indeed enable us to write down
successively all provable formulas, still this process can never be finished.
Further, (3,) and (3;) contain no procedure for deciding whether a given
formula e is provable. As we cannot tell in advance which formulas must
be proved successively in order ultimately to prove e, some of them might
turn out to be far more complicated and structurally quite different from
e itself. (Anyone who is acquainted, for example, with analytic number
theory knows just how likely this possibility is, especially in the most
interesting parts of mathematics.) But the problem of deciding the prova-
bility of an arbitrarily given formula by means of a (naturally finitary)
general procedure, i.e., the so-called decision problem for mathematics,
is much more difficult and complex than the problem discussed here.

As it would take us too far afield to give the axioms which are used in
classical mathematics, the following remarks must suffice to characterize
them. Although infinitely many formulas are regarded as axioms (for
example, by our definition each of the formulas I=1,2=2 3=3,... is

64



The formalist foundations of mathematics

an axiom), they are nevertheless constructed from finitely many sche-
mata by substitution in this manner: ‘If a, 4, and ¢ are formulas, then
(@ —=b) = ((b = c)— (a —c))is an axiom’, and the like.

Now if we could succeed in producing a class R of formulas such that

(o) Every axiom belongs to R,
(B) If aand a — b belong to R, then & also belongs to R,
(v) ‘1=2’does not belong to R,

then we would have proved consistency, for according to () and (8)
every proved formula obviously must belong to R, and according to (v),
1 =2 must therefore be unprovable. The actual production of such a class
at this time is unthinkable, however, for it poses difficulties comparable
to those raised by the decision problem. But the following remark leads
from this problem to a much simpler one: If our system were inconsis-
tent, then there would exist a proof of 1 =2 in which only a finite number
of axioms are used. Let the set of these axioms be called M. Then the
axiom system M is already inconsistent. Hence the axiom system of clas-
sical mathematics is certainly consistent if every finite subsystem thereof
is consistent. And this is surely the case if, for every finite set of axioms
M, we can give a class of formulas R 5, which has the following properties:

(o) Every axiom of M belongs to R,,.
(8) If aand a = b belong to Ry, then & also belongs to Ryy.
(v) 1=2does not belong to Ry,.

This problem is not connected with the (much too difficult) decision
problem, for R, depends only on M and plainly says nothing about
provability (with the help of all the axioms). It goes without saying that
we must have an effective, finitary procedure for constructing R,, (for
every effectively given finite set of axioms M) and that the proofs of («),
(8), and () must also be finitary.

Although the consistency of classical mathematics has not yet been
proved, such a proof has been found for a somewhat narrower mathe-
matical system. This system is closely related to a system which Weyl pro-
posed before the conception of the intuitionist system. It is substantially
more extensive than the intuitionist system but narrower than classical
mathematics (for bibliographical material, see Weyl 1927).

Thus Hilbert’s system has passed the first test of strength: the validity
of a non-finitary, not purely constructive mathematical system has been
established through finitary constructive means. Whether someone will
succeed in extending this validation to the more difficult and more
important system of classical mathematics, only the future will tell.
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Persons of the dialogue: Class, Form, Int, Letter, Prag, Sign

Class: How do you do, Mr. Int? Did you not flee the town on this fine
summer day?

Int: 1 had some ideas and worked them out at the library.
Class: Industrious bee! How are you getting along?
Int: Quite well. Shall we have a drink?

Class: Thank you. I bet you worked on that hobby of yours, rejection of
the excluded middle, and the rest. I never understood why logic should
be reliable everywhere else, but not in mathematics.

Int: We have spoken about that subject before. The idea that for the
description of some kinds of objects another logic may be more adequate
than the customary one has sometimes been discussed. But it was Brouwer
who first discovered an object which actually requires a different form of
logic, namely the mental mathematical construction (L. E. J. Brouwer
1908]. The reason is that in mathematics from the very beginning we deal

with the infinite, whereas ordinary logic is made for reasoning about
finite collections.

Class: 1 know, but in my eyes logic is universal and applies to the infinite
as well as to the finite.

Int: You ought to consider what Brouwer’s program was (L. E. J.
Brouwer 1907]. It consisted in the investigation of mental mathematical
construction as such, without reference to questions regarding the nature
of the constructed objects, such as whether these objects exist indepen-
dently of our knowledge of them. That this point of view leads immedi-
ately to the rejection of the principle of excluded middle, I can best
demonstrate by an example.

Let us compare two definitions of natural numbers, say k and /.

E_xcerpted by kinq permission of the author and publisher from Intuitionism: an Introduc-
tion, Arend Heyting, North-Holland, 1956 (3rd ed., 1971).
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I.  kis the greatest prime such that k—1 is also a prime, or k=1 if
such a number does not exist.

II. /is the greatest prime such that /— 2 is also a prime, or /=1 if such
a number does not exist.

Classical mathematics neglects altogether the obvious difference in char-
acter between these definitions. & can actually be calculated (k=3),
whereas we possess no method for calculating /, as it is not known
whether the sequence of pairs of twin primes p, p+2 is finite or not.
Therefore intuitionists reject II as a definition of an integer; they con-
sider an integer to be well-defined only if a method for calculating it is
given. Now this line of thought leads to the rejection of the principle of
excluded middle, for if the sequence of twin primes were either finite or
not finite, II would define an integer.

Class: One may object that the extent of our knowledge about the exis-
tence or non-existence of a last pair of twin primes is purely contingent
and entirely irrelevant in questions of mathematical truth. Either an
infinity of such pairs exist, in which case /=1; or their number is finite,
in which case / equals the greatest prime such that /—2 is also a prime. In
every conceivable case / is defined; what does it matter whether or net we
can actually calculate the number?

Int: Your argument is metaphysical in nature. If ‘‘to exist’’ does not
mean ‘‘to be constructed”’, it must have some metaphysical meaning. It
cannot be the task of mathematics to investigate this meaning or to
decide whether it is tenable or not. We have no objection against a math-
ematician privately admitting any metaphysical theory he likes, but
Brouwer’s program entails that we study mathematics as something
simpler, more immediate than metaphysics. In the study of mental
mathematical constructions *‘to exist*’ must be synonymous with ‘‘to be
constructed’’,

Class: That is to say, as long as we do not know if there exists a last pair
of twin primes, II is not a definition of an integer, but as soon as this
problem is solved, it suddenly becomes such a definition. Suppose on
January 1, 1970 it is proved that an infinity of twin primes exists; from
that moment /=1. Was /=1 before that date or not? [Menger 1930].

Int: A mathematical assertion affirms the fact that a certain mathemati-
cal construction has been effected. It is clear that before the construction
was made, it had not been made. Applying this remark to your example,
we see that before Jan. 1, 1970 it had not been proved that /=1. But this
is not what you mean. It seems to me that in order to clarify the sense of
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your question you must again refer to metaphysical concepts: to some
world of mathematical things existing independently of our knowledge,
where “/=1"’ is true in some absolute sense. But I repeat that mathe-
matics ought not to depend upon such notions as these. In fact all mathe-
maticians and even intuitionists are convinced that in some sense mathe-
matics bear upon eternal truths, but when trying to define precisely this
sense, one gets entangled in a maze of metaphysical difficulties. The only
way to avoid them is to banish them from mathematics. This is what 1
meant by saying that we study mathematical constructions as such and
that for this study classical logic is inadequate.

Class: Here come our friends Form and Letter. Boys, we are having a
most interesting discussion on intuitionism.

Letter: Could you speak about anything else with good old Int? He is
completely submerged in it.

Int: Once you have been struck with the beauty of a subject, devote your
life to it!

Form: Quite so! Only I wonder how there can be beauty in so indefinite a
thing as intuitionism. None of your terms are well-defined, nor do you
give exact rules of derivation. Thus one for ever remains in doubt as to
which reasonings are correct and which are not [R. Carnap 1934b, p. 41;
1937, p. 46; W. Dubislav 1932, pp. 37, 75]. In daily speech no word has a
perfectly fixed meaning; there is always some amount of free play, the
greater, the more abstract the notion is. This makes people miss each
other’s point, also in non-formalized mathematical reasonings. The only
way to achieve absolute rigour is to abstract all meaning from the mathe-
matical statements and to consider them for their own sake, as sequences
of signs, neglecting the sense they may convey, Then it is possible to
formulate definite rules for deducing new statements from those already
known and to avoid the uncertainty resulting from the ambiguity of
language.

Int: 1 see the difference between formalists and intuitionists mainly as
one of taste. You also use meaningful reasoning in what Hilbert called
metamathematics, but your purpose is to separate these reasonings from
purely formal mathematics and to confine yourself to the most simple
rf:asonings possible. We, on the contrary, are interested not in the formal
:rnde of mathematics, but exactly in that type of reasoning which appears
In metamathematics; we try to develop it to its farthest consequences.

This preference arises from the conviction that we find here one of the
most fundamental faculties of the human mind.

1’?0"'71-’ If you wi'll not quarrel with formalism, neither will I with intui-
tionism. Formalists are among the most pacific of mankind. Any theory
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may be formalized and then becomes subject to our methods. Also intui-
tionistic mathematics may and will be thus treated [R. Carnap 1934b,
p. 44; 1937, p. 51].

Class: That is to say, intuitionistic mathematics ought to be studied as a
part of mathematics. In mathematics we investigate the consequences of
given assumptions; the intuitionistic assumptions may be interesting, but
they have no right to a monopoly.

Int: Nor do we claim that; we are content if you admit the good right of
our conception. But I must protest against the assertion that intuitionism
starts from definite, more or less arbitrary assumptions. Its subject, con-
structive mathematical thought, determines uniquely its premises and
places it beside, not interior to, classical mathematics, which studies
another subject, whatever subject that may be. For this reason an agree-
ment between formalism and intuitionism by means of the formalization
of intuitionistic mathematics is also impossible. It is true that even in
intuitionistic mathematics the finished part of a theory may be formal-
ized. It will be useful to reflect for a moment upon the meaning of such a
formalization. We may consider the formal system as the linguistic
expression, in a particularly suitable language, of mathematical thought.

If we adopt this point of view, we clash against the obstacle of the
fundamental ambiguousness of language. As the meaning of a word can
never be fixed precisely enough to exclude every possibility of misunder-
standing, we can never be mathematically sure that the formal system
expresse: correctly our mathematical thoughts.

However, let us take another point of view. We may consider the fonr-
mal system itself as an extremely simple mathematical structure; its enti-
ties (the signs of the system) are associated with other, often very com-
plicated, mathematical structures, In this way formalizations may be
carried out inside mathematics, and it becomes a powerful mathematical
tool. Of course, one is never sure that the formal system represents fully
any domain of mathematical thought; at any moment the discovering of
new methods of reasoning may force us to extend the formal system.

Form: For several years we have been familiar with this situation. Godel’s
incompleteness theorem showed us that any consistent formal system of
number-theory may be extended consistently in different ways.

Int: The difference is that intuitionism proceeds independently of‘the
formalization, which can but follow after the mathematical construction.

Class: What puzzles me most is that you both seem to start from nothin-g
at all. You seem to be building castles in the air. qu can you knox'v if
your reasoning is sound if you do not have at your disposal the infallible
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criterion given by logic? Yesterday I talked with Sign, who is still more of
a relativist than either of you. He is so slippery that no argument gets
hold of him, and he never comes to any somewhat solid conclusion.
I fear this fate for anybody who discards the support of logic, that is, of
common sense.

Sign: Speak of the devil and his imp appears. Were you speaking ill of me?

Class: 1 alluded to yesterday’s discussion. To-day I am attacking these
other two damned relativists.

Sign: 1 should like to join you in that job, but first let us hear the reply of

your opponents. Please meet my friend Prag; he will be interested in the
discussion.

Form: How do you do? Are you also a philosopher of science?
Prag: 1 hate metaphysics.
Int: Welcome, brother!

Form: Why, 1 would rather not defend my own position at the moment,
as our discussion has dealt mainly with intuitionism and we might easily
confuse it. But I fear that you are wrong as to intuitionistic logic. It has
indeed been formalized and valuable work in this field has been done by
a score of authors. This seems to prove that intuitionists esteem logic

more highly than you think, though it is another logic than you are
accustomed to.

Int: | regret to disappoint you. Logic is not the ground upon which 1
stand. How could it be? It would in turn need a foundation, which would
involve principles much more intricate and less direct than those of math-
ematics itself. A mathematical construction ought to be so immediate to
the mind and its result so clear that it needs no foundation whatsoever.
One may very well know whether a reasoning is sound without using any
logic; a clear scientific conscience suffices. Yet it is true that intuitionistic
logic has been developed. To indicate what its significance is, let me give
you an illustration. Let 4 designate the property of an integer of being
divisible by 8, B the same by 4, C the same by 2. For 8a we may write
4X2a; by this mathematical construction P we see that the property 4
entails B (4 — B), A similar construction Q) shows B — C. By effecting
first P, then Q (juxtaposition of P and Q) we obtain 8a=2x (2% 2a)
showing A — C. This process remains valid if for A, B, C we substitute
arbitrary properties: If the construction P shows that A - B and Q
shows that B — C, then the juxtaposition of P and Qshows that 4 — C.
We have obtained a logical theorem. The process by which it is deduced
§h9ws us that it does not differ essentially from mathematical theorems;
it is only more general, e.g., in the same sense that ‘‘addition of integers
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is commutative’’ is a more general statement than *‘2+3=3+2". This is
the case for every logical theorem: it is but a mathematical theorem of
extreme generality; that is to say, logic is a part of mathematics, and can
by no means serve as a foundation for it. At least, this is the conception
of logic to which I am naturally led; it may be possible and desirable to
develop other forms of logic for other purposes.

It is the mathematical logic which I just described that has been for-
malized. The resulting formal system proves to have peculiar properties,
very interesting when compared to those of other systems of formal
logic. This fact has led to the investigations to which Mr. Form alluded,
but, however interesting, they are tied but very loosely to intuitionistic
mathematics.

Letter: In my opinion all these difficulties are imaginary or artificial.
Mathematics is quite a simple thing. I define some signs and I give some
rules for combining them; that is all.

Form: You want some modes of reasoning to prove the consistency of
your formal system.

Letter: Why should I want to prove it? You must not forget that our for-
mal systems are constructed with the aim towards applications and that
in general they prove useful; this fact would be difficult to explain if
every formula were deducible in them. Thereby we get a practical convic-
tion of consistency which suffices for our work. What I contest in intui-
tionism is the opinion that mathematics has anything to do with the
infinite. I can write down a sign, say «, and call it the cardinal number of
the integers. After that I can fix rules for its manipulation in agreement
with those which Mr. Class uses for this notion; but in doing this I oper-
ate entirely in the finite. As soon as the notion of infinity plays a part,
obscurity and confusion penetrate into the reasoning. Thus all the intui-
tionistic assertions about the infinite seem to me highly ambiguous, and
it is even questionable whether such a sign as 10'° has any other mean-
ing than as a figure on paper with which we operate according to certain
rules [J. Dieudonné 1951].

Int: Of course your extreme finitism grants the maximum of security
against misunderstanding, but in our eyes it implies a denial of under-
standing which it is difficult to accept. Children in the elementary school
understand what the natural numbers are and they accept the fact that
the sequence of natural numbers can be indefinitely continued.

Letter: 1t is suggested to them that they understand.

Int: That is no objection, for every communication by means of language
may be interpreted as suggestion. Also Euclid in the 20th proposition of
Book IX, where he proved that the set of prime numbers is infinite, knew
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what he spoke about. This elementary notion of natural numbers, famil-
iar to every thinking creature, is fundamental in intuitionistic mathe-
matics. We do not claim for it any form of certainty or definiteness in an
absolute sense, which would be unrealizable, but we comen’ that it is suf-
ficiently clear to build mathematics upon.

Letter: My objection is that you do not suppose too little, as Mr. Class
thinks, but far too much. You start from certain principles which you
take as intuitively clear without any explanation and you reject other
modes of reasoning without giving any grounds for that discrimination.
For instance, to most people the principle of the excluded middle seems
at least as evident as that of complete induction. Why do you reject the
former and accept the latter? Such an unmotivated choice of first prin-
ciples gives to your system a strongly dogmatic character.

Int: Indeed intuitionistic assertions must seem dogmatic to those who
read them as assertions about facts, but they are not meant in this sense.
Intuitionistic mathematics consists, as I have explained already to Mr.
Class, in mental constructions; a mathematical theorem expresses a
purely empirical fact, namely the success of a certain construction.
“2+42=3+1"" must be read as an abbreviation for the statement: *‘l
have effected the mental constructions indicated by ‘242’ and by
‘“3+1’ and I have found that they lead to the same result.”” Now tell me
where the dogmatic element can come in; not in the menta} construction
itself, as is clear by its very nature as an activity, but no more in the state-

ments made about the constructions, for they express purely empirical
results.

Letter: Yet you contend that these mental constructions lead to some sort
of truth; they are not a game of solitaire, but in some sense must be of
val_ue for mankind, or you would be wrong in annoying others with them.
.lt is in this pretence that 1 see the dogmatic element. The mathematical
intuition inspires you with objective and eternal truths; in this sense your

point of view is not only dogmatic, but even theological [H. B. Curry
1951, p. 6].

Int: In the first instance, my mathematical thoughts belong to my indi-
vidual intellectual life and are confined to my personal mind, as is the
case for other thoughts as well. We are generally convinced that other
people have thoughts analogous to our own and that they can understand
us when We express our thoughts in words, but we also know that we are
never quite sure of being faultlessly understood. In this respect, mathe-
matics dt?es not essentially differ from other subjects; if for this reason
you co'nSIder mathematics to be dogmatic, you ought to cali any human
reasoning dogmatic. The characteristic of mathematical thought is, that

72



Disputation

it does not convey truth about the external world, but is only concerned
with mental constructions. Now we must distinguish between the simple
practice of mathematics and its valuation. In order to construct mathe-
matical theories no philosophical preliminaries are needed, but the value
we attribute to this activity will depend upon our philosophical ideas.

Sign: In the way you treat language you put the clock back. Primitive
language has this floating, unsteady character you describe, and the lan-
guage of daily life is still in the main of the same sort, but as soon as sci-
entific thought begins, the formalization of language sets in. In the last
decades significists have studied this process. It has not yet come to an
end, for more strictly formalized languages are still being formed.

Int: If really the formalization of language is the trend of science, then
intuitionistic mathematics does not belong to science in this sense of the
word. It is rather a phenomenon of life, a natural activity of man, which
itself is open to study by scientific methods; it has actually been studied
by such methods, namely that of formalizing intuitionistic reasoning and
the signific method, but it is obvious that this study does not belong to
intuitionistic mathematics, nor do its results. That such a scientific exam-
ination of intuitionistic mathematics will never produce a complete and
definite description of it, no more than a complete theory of other phe-
nomena is attainable, is clearly to be seen. Helpful and interesting as
these metaintuitionistic considerations may be, they cannot be incorpo-
rated into intuitionistic mathematics itself. Of course, these remarks do
not apply to formalization inside mathematics, as I described it a few
moments ago.

Prag: Allow me to underline what Mr. Sign said just now. Science pro-
ceeds by formalization of language; it uses this method because it is effi-
cient. In particular the modern completely formalized languages have
appeared to be most useful. The ideal of the modern scientist is to pre-
pare an arsenal of formal systems ready for use from which he can
choose, for any theory, that system which correctly represents the experi-
mental results. Formal systems ought to be judged by this criterion of
usefulness and not by a vague and arbitrary interpretation, which is pre-
ferred for dogmatic or metaphysical reasons.

Int: It seems quite reasonable to judge a mathematical system by its use-
fulness. I admit that from this point of view intuitionism has as yet little
chance of being accepted, for it would be premature to stress the few
weak indications that it might be of some use in physics [J. L. Destouches
1951}; in my eyes its chances of being useful for philosophy, history and
the social sciences are better. In fact, mathematics, from the intuition-
istic point of view, is a study of certain functions of the human mind, and
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as such it is akin to these sciences. But is usefulness really the only
measure of value? It is easy to mention of score of valuable activities
which in no way support science, such as the arts, sports, and light enter-
tainment. We claim for intuitionism a value of this sort, which it is diffi-
cult to define beforehand, but which is clearly felt in dealing with the
matter. You know how philosophers struggle with the problem of defin-
ing the concept of value in art; yet every educated person feels this value.
The case is analogous for the value of intuitionistic mathematics.

Form: For most mathematicians this value is affected fatally by the fact
that you destroy the most precious mathematical results; a valuable
method for the foundation of mathematics ought to save as much as pos-
sible of its results [D. Hilbert 1922]). This might even succeed by con-
structive methods; for definitions of constructiveness other than that
advocated by the intuitionists are conceivable. For that matter, even the
small number of actual intuitionists do not completely agree about the
delimitation of the constructive. The most striking example is the rejec-
tion by Griss of the notion of negation, which other intuitionists accept
as perfectly clear [H. Freudenthal 1936; G. F. C. Griss 1946a, p. 24;
1946b]. It seems probable, on the other hand, that a somewhat more
liberal conception of the constructive might lead to the saving of the vital
parts of classical mathematics.

Int: As intuitionists speak a non-formalized language, slight divergences
of opinion between them can be expected. Though they have arisen sooner
and in more acute forms than we could foresee, they are in no way alarm-
ing, for they all concern minor points and do not affect the fundamental
ideas, about which there is complete agreement. Thus it is most unlikely
that a wider conception of constructiveness could obtain the support of
intuitionists. As to the mutllatlon of mathematics of which you accuse
me, it must be taken as an inevitable consequence of our standpoint. It
can also be seen as the excision of noxious ornaments, beautiful in form,
but hollow in substance, and it is at least partly compensated for by the

charm of subtle distinctions and witty methods by which intuitionists
have enriched mathematical thought.

Form: Our discussion has assumed the form of a discussion of values. |
gather from your words that Yyou are ready to acknowledge the value of

qther conceptions of mathematics, but that you claim for your concep-
tion a value of its own. Is that right?

Inr:'lndeefi, the only positive contention in the foundation of mathe-
matics which I oppose is that classical mathematics has a clear sense; I
must confess that I do not understand that. But even those who maintain
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that they do understand it might still be able to grasp our point of view
and to value our work.

Letter: 1t is shown by the paradoxes that classical mathematics is not per-
fectly clear.

Form: Yes, but intuitionistic criticism goes much farther than is neces-
sary to avoid the paradoxes; Mr. Int has not even mentioned them as an
argument for his conception, and no doubt in his eyes consistency is but
a welcome by-product of intuitionism.

Sign: You describe your activity as mental construction, Mr. Int, but
mental processes are only observable through the acts to which they lead,
in your case through the words you speak and the formulas you write.
Does not this mean that the only way to study intuitionism is to study the
formal system which it constructs?

Int: When looking at the tree over there, I am convinced I see a tree, and
it costs considerable training to replace this conviction by the knowledge
that in reality lightwaves reach my eyes, leading me to the construction of
an image of the tree. In the same way, in speaking to you I am convinced
that I press my opinions upon you, but you instruct me that in reality I
produce vibrations in the air, which cause you to perform some action,
e.g. to produce other vibrations. In both cases the first view is the natural
one, the second is a theoretical construction. It is too often forgotten that
the truth of such constructions depends upon the present state of science
and that the words ‘‘in reality”’ ought to be translated into ‘‘according to
the contemporary view of scientists”’. Therefore 1 prefer to adhere to the
idea that, when describing intuitionistic mathematics, I convey thoughts
to my hearers; these words ought to be taken not in the sense of some
philosophical system, but in the sense of every-day life.

Sign: Then intuitionism, as a form of interaction between men, is a social
phenomenon and its study belongs to the history of civilization.

Int; Its study, not its practice. Here I agree with Mr. Prag: primum
vivere, deinde philosophari, and if we like we can leave the latter to
others. Let those who come after me wonder why I built up these mental
constructions and how they can be interpreted in some philosophy; I am
content to build them in the conviction that in some way they will con-
tribute to the clarification of human thought.

Prag: It is a common fault of philosophers to speak about things they
know but imperfectly and we are near to being caught in that trap. Is Mr.
Int willing to give us some samples of intuitionistic reasoning, in order
that we may better be able to judge the quality of the stuff?
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Int: Certainly, and even I am convinced that a few lessons will give
you a better insight into it than lengthy discussions. May 1 beg those

gentlemen who are interested in my explanations, to follow me to my
classroom?
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L. E. 1. BROUWER

The subject for which 1 am asking your attention deals with the founda-
tions of mathematics. To understand the development of the opposing
theories existing in this field one must first gain a clear understanding of
the concept *‘science’’; for it is as a part of science that mathematics orig-
inally took its place in human thought.

By science we mean the systematic cataloguing by means of laws of
nature of causal sequences of phenomena, i.e., sequences of phenomena
which for individual or social purposes it is convenient to consider as
repeating themselves identically, - and more particularly of such causal
Sequences as are of importance in social relations.

That science lends such great power to man in his action upon nature is
due to the fact that the steadily improving cataloguing of ever more
causal sequences of phenomena gives greater and greater possibility of
bringing about desired phenomena, difficult or impossible to evoke
directly, by evoking other phenomena connected with the first by causal
sequences. And that man always and everywhere creates order in nature
is due to the fact that he not only isolates the causal sequences of phe-
nomena (i.e., he strives to keep them free from disturbing secondary phe-
nomena) but also supplements them with phenomena caused by his own
activity, thus making them of wider applicability. Among the latter phe-
nomena the results of counting and measuring take so important a place,
that a large number of the natural laws introduced by science treat only
of the mutual relations between the results of counting and measuring. It
is well to notice in this connection that a hatural law in the statement of
which measurable magnitudes occur can only be understood to hold in
nature with a certain degree of approximation; indeed natural laws as a
rule are not proof against sufficient refinement of the measuring tools.

The exceptions to this rule have from ancient times been practical
arithmetic and geometry on the one hand, and the dynamics of rigid
bodies and celestial mechanics on the other hand. Both these groups have
S0 far resisted all improvements in the tools of observation. But while

Inaugural address at the University of Amsterdam, read October 14, 1912. Translated. by
Professor Arnold Dresden. Reprinted by the kind permission of the author and the editor
from the Bulletin of the American Mathematical Society, 20 (November, 1913), 81-96.
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this has usually been looked upon as something accidental and temporal
for the latter group, and while one has always been prepared to see these
sciences descend to the rank of approximate theories, until compara-
tively recent times there has been absolute confidence that no experiment
could ever disturb the exactness of the laws of arithmetic and geometry;
this confidence is expressed in the statement that mathematics is *‘the”
exact science.

On what grounds the conviction of the unassailable exactness of math-
ematical laws is based has for centuries been an object of philosophical
research, and two points of view may here be distinguished, intuitionism
(largely French) and formalism (largely German). In many respects these
two viewpoints have become more and more definitely opposed to each
other; but during recent years they have reached agreement as to this,
that the exact validity of mathematical laws as laws of nature is out of the
question. The question where mathematical exactness does exist, is
answered differently by the two sides; the intuitionist says: in the human
intellect, the formalist says: on paper.

In Kant we find an old form of intuitionism, now almost completely
abandoned, in which time and space are taken to be forms of conception
inherent in human reason. For Kant the axioms of arithmetic and geom-
etry were synthetic a priori judgments, i.e., judgments independent of
experience and not capable of analytical demonstration; and this ex-
plained their apodictic exactness in the world of experience as well as in
abstracto. For Kant, therefore, the possibility of disproving arithmetical
and geometrical laws experimentally was not only excluded by a firm
belief, but it was entirely unthinkable,

Diametrically opposed to this is the view of formalism, which main-
tains that human reason does not have at its disposal exact images either
of straight lines or of numbers larger than ten, for example, and that
therefore these mathematical entities do not have existence in our
conception of nature any more than in nature itself. It is true that from
certain relations among mathematical entities, which we assume as
gxioms, we deduce other relations according to fixed iaws, in the convic-
tion that in this way we derive truths from truths by logical reasoning,
but this non-mathematical conviction of truth or legitimacy has no exact-
ness whatever and is nothing but a vague sensation of delight arising
frorq the knowledge of the efficacy of the projection into nature of these
relations and laws of reasoning. For the formalist therefore mathematical
exactness Cf)n_SiStS merely in the method of developing the series of rela-
tions, ar}d is independent of the significance one might want to give to
the relations or the entities which they refate. And for the consistent for-
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malist these meaningless series of relations to which mathematics are
reduced have mathematical existence only when they have been repre-
sented in spoken or written language together with the mathematical-
logical laws upon which their development depends, thus forming what is
called symbolic logic.

Because the usual spoken or written languages do not in the least satisfy
the requirements of consistency demanded of this symbolic logic, for-
malists try to avoid the use of ordinary language in mathematics. How
far this may be carried is shown by the modern Italian school of formal-
ists, whose leader, Peano, published one of his most important discov-
eries concerning the existence of integrals of real differential equations in
the Mathematische Annalen in the language of symbolic logic; the result
was that it could only be read by a few of theinitiated and that it did not
become generally available until one of these had translated the article
into German.

The viewpoint of the formalist must lead to the conviction that if other
symbolic formulas should be substituted for the ones that now represent
the fundamental mathematical relations and the mathematical-logical
laws, the absence of the sensation of delight, called ‘‘consciousness of
legitimacy,”’ which might be the result of such substitution would not in
the least invalidate its mathematical exactness. To the philosopher or to
the anthropologist, but not to the mathematician, belongs the task of
investigating why certain systems of symbolic logic rather than others
may be effectively projected upon nature. Not to the mathematician, but
to the psychologist, belongs the task of explaining why we believe in cer-
tain systems of symbolic logic and not in others, in particular why we are
averse to the so-called contradictory systems in which the negative as well
as the positive of certain propositions are valid (Mannoury 1909: 149-54),

As long as the intuitionists adhered to the theory of Kant it seemed
that the development of mathematics in the nineteenth century put them
in an ever weaker position with regard to the formalists. For in the first
place this development showed repeatedly how complete theories could
be carried over from one domain of mathematics to another: projective
geometry, for example, remained unchanged under the interchange of
the réles of point and straight line, an important part of the arithmetic of
real numbers remained valid for various complex number fields and
nearly all the theorems of elementary geometry remained true ff)r non-
archimedian geometry, in which there exists for every straight line seg-
ment another such segment, infinitesimal with respect to the first. These
discoveries seemed to indicate indeed that of a mathematical theory only
the logical form was of importance and that one need no more be
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concerned with the material than it is necessary to think of the signifi-
cance of the digit groups with which one operates, for the correct solu-
tion of a problem in arithmetic.

But the most serious blow for the Kantian theory was the discovery of
non-euclidean geometry, a consistent theory developed from a set of
axioms differing from that of elementary geometry only in this respect
that the parallel axiom was replaced by its negative. For this showed that
the phenomena usually described in the language of elementary geometry
may be described with equal exactness, though frequently less compactly
in the language of non-euclidean geometry; hence, it is not only impos-
sible to hold that the space of our experience has the properties of ele-
mentary geometry but it has no significance to ask for the geometry
which would be true for the space of our experience. It is true that ele-
mentary geometry is better suited than any other to the description of the
laws of kinematics of rigid bodies and hence of a large number of natural
phenomena, but with some patience it would be possible to make objects
for which the kinematics would be more easily interpretable in terms of
non-euclidean than in terms of euclidean geometry (Poincaré 1903: 104).

However weak the position of intuitionism seemed to be after this
period of mathematical development, it has recovered by abandoning
Kant’s apriority of space but adhering the more resolutely to the apriority
of time. This neo-intuitionism considers the falling apart of moments of
life into qualitatively different parts, to be reunited only while remaining
separated by time, as the fundamental phenomenon of the human intel-
lect, passing by abstracting from its emotional content into the funda-
mental phenomenon of mathematical thinking, the intuition of the bare
two-oneness. This intuition of two-oneness, the basal intuition of mathe-
matics, creates not only the numbers one and two, but also all finite ordi-
nal numbers, inasmuch as one of the elements of the two-oneness may be
thought of as a new two-oneness, which process may be repeated indefi-
nitely; this gives rise still further to the smallest infinite ordinal number
w. Finally this basal intuition of mathematics, in which the connected
and the separate, the continuous and the discrete are united, gives rise
immediately to the intuition of the linear continuum, i.e., of the “‘be-
tween,”” which is not exhaustible by the interposition of new units and
which therefore can never be thought of as a mere collection of units.

In this way the apriority of time does not only qualify the properties of
arithmetic as synthetic a priori judgments, but it does the same for those
of geometry, and not only for elementary two- and three-dimensional
geometry, but for non-euclidean and n-dimensional geometries as well.

qu sincg Descartes we have learned to reduce all these geometries to
arithmetic by means of the calculus of coordinates.
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From the present point of view of intuitionism therefore all mathemat-
ical sets of units which are entitled to that name can be developed out of
the basal intuition, and this can only be done by combining a finite
number of times the two operations: ‘‘to create a finite ordinal number”’
and ‘‘to create the infinite ordinal number w’’; here it is to be understood
that for the latter purpose any previously constructed set or any pre-
viously performed constructive operation may be taken as a unit. Conse-
quently the intuitionist recognizes only the existence of denumerable sets,
i.e., sets whose elements may be brought into one-to-one correspondence
either with the elements of a finite ordinal number or with those of the
infinite ordinal number w. And in the construction of these sets neither
the ordinary language nor any symbolic language can have any other réle
than that of serving as a nonmathematical auxiliary, to assist the mathe-
matical memory or to enable different individuals to build up the same
set.

For this reason the intuitionist can never feel assured of the exactness
of a mathematical theory by such guarantees as the proof of its being
noncontradictory, the possibility of defining its concepts by a finite num-
ber of words (Poincaré 1908a: 6), or the practical certainty that it will
never lead to a misunderstanding in human relations (Borel 1912: 221).

As has been stated above, the formalist wishes to leave to the psychol-
ogist the task of selecting the ‘‘truly-mathematical” language from
among the many symbolic languages that may be consistently developed.
Inasmuch as psychology has not yet begun in this task, formalism is com-
pelled to mark off, at least temporarily, the domain that it wishes to con-
sider as *‘true mathematics’’ and to lay down for that purpose a definite
system of axioms and laws of reasoning, if it does not wish to see its work
doomed to sterility. The various ways in which this attempt has actually
been made all follow the same leading idea, viz., the presupposition of
the existence of a world of mathematical objects, a world independent of
the thinking individual, obeying the laws of classical logic and whose
objects may possess with respect to each other the ‘‘relation of a set to its
elements.”” With reference to this relation various axioms are postulated,
suggested by the practice with natural finite sets; the principal of these
are: “‘a set is determined by its elements’’; “for any two mathematical
objects it is decided whether or not one of them is contained in the other
one as an element’’; “‘to every set belongs another set containing as its
elements nothing but the subsets of the given set”; the axiom of selection:
““a set which is split into subsets contains at least one subset which con-
tains one and not more than one element of each of the first subsets’’; the
axiom of inclusion: “‘if for any mathematical object it is decided whether
a certain property is valid for it or not, then there exists a set containing
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nothing but those objects for which the property does hold’’; the axiom
of composition: “‘the elements of all sets that belong to a set of sets form
a new set.””’

On the basis of such a set of axioms the formalist develops now in the
first place the theory of “‘finite sets.”” A set is called finite if its elements
cannot be brought into one-to-one correspondence with the elements of
one of its subsets; by means of relatively complicated reasoning the prin-
ciple of complete induction is proved to be a fundamental property of
these sets (Zermelo 1909: 185-93); this principle states that a property
will be true for all finite sets if, first, it is true for all sets containing a
single element, and, second, its validity for an arbitrary finite set follows
from its validity for this same set reduced by a single one of its elements.
That the formalist must give an explicit proof of this principle, which is
self-evident for the finite numbers of the intuitionist on account of their
construction, shows at the same time that the former will never be able to
justify his choice of axioms by replacing the unsatisfactory appeal to
inexact practice or to intuition equally inexact for him by a proof of the
non-contradictoriness of his theory. For in order to prove that a contra-
diction can never arise among the infinitude of conclusions that can be
drawn from the axioms he is using, he would first have to show that if no
contradiction had as yet arisen with the nth conclusion then none could
arise with the (n+ 1)th conclusion, and secondly, he would have to apply
the principle of complete induction intuitively. But it is this last step
which the formalist may not take, even though he should have proved the
principle of complete induction; for this would require mathematical cer-
tainty that the set of properties obtained after the nth conclusion had
been reacped, would satisfy for an arbitrary n his definition for finite sets
(Poincaré 1905: 834), and in order to secure this certainty he would have
to have recourse not only to the unpermissible application of a symbolic
criterion to a concrete example but also to another intuitive application
of the principle of complete induction; this would lead him to a vicious
circle reasoning.

' In the domain of finite sets in which the formalist axioms have an
interpretation perfectly clear to the intuitionists, unreservedly agreed to
by them, the two tendencies differ solely in their method, not in their
results; thls. becomes quite different however in the domain of infinite
?rfclt;;r:rlﬁngzost?;'a‘zgi?, trtrllair;ly by the application of the axiom of
entirely r,neaningless to t,h 'e 9r'm§llst introduces \{arlous coneepts
whose elements s e Oietmtumomst’: ‘s‘uch as for instance ‘‘the set
continious functions ojl',a l:' 5_0{; Ispfz’ci, the set whose elements are the
contintions funri ariable, " the set whose elements are the dis-

ons of a variable,”’ and so forth. In the course of these
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formalistic developments it turns out that the consistent application of
the axiom of inclusion leads inevitably to contradictions. A clear illus-
tration of this fact is furnished by the so-called paradox of Burali-Forti
(1897). To exhibit it we have to lay down a few definitions.

A set is called ordered if there exists between any two of its elements a
relation of ‘‘higher than’’ or “‘lower than,’’ with this understanding that
if the element a is higher than the element b, then the element & is lower
than the element a, and if the element & is higher than @ and c is higher
than b, then ¢ is higher than a.

A well-ordered set (in the formalistic sense) is an ordered set, such that
every subset contains an element lower than all others.

Two well-ordered sets that may be brought into one-to-one correspon-
dence under invariance of the relations of “‘higher than’’ and ““lower
than” are said to have the same ordinal number.

If two ordinal numbers A and & are not equal, then one of them is
greater than the other one, let us say A is greater than B; this means that
B may be brought into one-to-one correspondence with an initial seg-
ment of 4 under invariance of the relations of ‘‘higher than’’ and ““lower
than.”” We have introduced above, from the intuitionist viewpoint, the
smallest infinite ordinal number w, i.e., the ordinal number of the set of
all finite ordinal numbers arranged in order of magnitude.’ Well-ordered
sets having the ordinal number w are called elementary series.

It is proved without difficulty by the formalist that an arbitrary subset
of a well-ordered set is also a well-ordered set, whose ordinal number is
less than or equal to that of the original set; also, that if to a well-ordered
set that does not contain all mathematical objects a new element be
added that is defined to be higher than all elements of the original set, a
new well-ordered set arises whose ordinal number is greater than that of
the first set.

We construct now on the basis of the axiom of inclusion the ser s which
contains as elements all the ordinal numbers arranged in order of magni-
tude; then we can prove without difficulty, on the one hand that s is a
well-ordered set whose ordinal number can not be exceeded by any other
ordinal number in magnitude, and on the other hand that it is possible,
since not all mathematical objects are ordinal numbers, to create an ordi-
nal number greater than that of s by adding a new element to s, ~ a con-
tradiction.?

The more general ordinal numbers of the intuitionist are the numbers constructed by
means of Cantor’s two principles of generation (cf. Cantor 18957, 49: 226).

2t is without justice that the paradox of Burali-Forti is sometimes classed with that of
Richard, which in a somewhat simplified form reads as follows: ‘“‘Does there exist a leasr
integer, thet can not be defined by a sentence of af most twenty words? On the one hand
yes, for the number of sentences of at most twenty words is of course finite; on the other
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Although the formalists must admit contradictory results as mathe-
matical if they want to be consistent, there is something disagreeable for
them in a paradox like that of Burali-Forti because at the same time the
progress of their arguments is guided by the principium contradictionis,
i.e., by the rejection of the simultaneous validity of two contradictory
properties. For this reason the axiom of inclusion has been modified to
read as follows: “If for all elements of a set it is decided whether a certain
property is valid for them or not, then the set contains a subset contain-
ing nothing but those elements for which the property does hol »* (Zer-
melo 1908: 263).

in this form the axiom permits only the introduction of such sets as are
subsets of sets previously introduced; if one wishes to operate with other
sets, their existence must be explicitly postulated. Since however in order
to accomplish anything at all the existence of a certain collection of sets
will have to be postulated at the outset, the only valid argument that can
be brought against the introduction of a new set is that it leads to contra-
dictions; indeed the only modifications that the discovery of paradoxes
has brought about in the practice of formalism has been the abolition of
those sets that had given rise to these paradoxes. One continues to oper-
ate without hesitation with other sets introduced on the basis of the old
axiom of inclusion; the result of this is that extended fields of research,
which are without significance for the intuitionist are still of considerable
interest to the formalist. An example of this is found in the theory of
potencies, of which | shall sketch the principal features here, because it
illustrates so clearly the impassable chasm which separates the two sides.

Two sets are said to possess the same potency, or power, if their ele-
ments can be brought into one-to-one correspondence. The power of set
A is. sa'id to be greater than that of B, and the power of B less than that of
A, if it is possible to establish a one-to-one correspondence between B
and a part of A4, but impossible to establish such a correspondence
between A and a part of B. The power of a set which has the same power
as one of its subsets, is called infinite, other powers are called finite. Sets
that t.lave 'the same power as the oridinal number w are called denumer-
ably infinite anq the power of such sets is called aleph-null: it proves to
be the smallest infinite power. According to the statements previously

n.lad.e, this power aleph-null is the only infinite power of which the intui-
tionists recognize the existence.

hand no, for if it should exist, it would be defined by t
e s et st y the sentence of fifteen words formed

, Th; :);;gin og tnis paradgx' does not _Iig in the axiom of inclusion but in the variable mean-
ng o wor defined in tl_le italicized sentence, which makes it possible to define by
means of this sentence an infinite number of integers in succession
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Let us now consider the concept: ‘‘denumerably infinite ordinal num-
ber.”’ From the fact that this concept has a clear and well-defined mean-
ing for both formalist and intuitionist, the former infers the right to
create the “‘set of all denumerably infinite ordinal numbers,’’ the power
of which he calls aleph-one, a right not recognized by the intuitionist.
Because it is possible to argue to the satisfaction of both formalist and
intuitionist, first, that denumerably infinite sets of denumerably infinite
ordinal numbers can be built up in various ways, and second, that for
every such set it is possible to assign a denumerably infinite ordinal num-
ber, not belonging to this set, the formalist concludes: ‘‘aleph-one is
greater than aleph-null,”’ a proposition that has no meaning for the intui-
tionist. Because it is possible to argue to the satisfaction of both formal-
ist and intuitionist that it is impossible to construct® a set of denumerably
infinite ordinal numbers, which could be proved to have a power less
than that of aleph-one, but greater than that of aleph-null, the formalist
concludes: ‘‘aleph-one is the second smallest infinite ordinal number,” a
proposition that has no meaning for the intuitionist.

Let us consider the concept: ‘‘real number between 0 and 1.”’ For the
formalist this concept is equivalent to ‘‘elementary series of digits after
the decimal point,*’* for the intuitionist it means ‘‘law for the construc-
tion of an elementary series of digits after the decimal point, built up by
means of a finite number of operations.”” And when the formalist creates
the “‘set of all real numbers between 0 and 1,"’ these words are without
meaning for the intuitionist, even whether one thinks of the real numbers
of the formalist, determined by elementary series of freely selected digits,
or of the real numbers of the intuitionist, determined by finite laws of
construction. Because it is possible to prove to the satisfaction of both
formalist and intuitionist, first, that denumerably infinite sets of real
numbers between 0 and | can be constructed in various ways, and second
that for every such set it is possible to assign a real number between 0 and
1, not belonging to the set, the formalist concludes: ‘‘the power of the
continuum, i.e., the power of the set of real numbers between 0 and 1, is
greater than aleph-null,”” a proposition that is without meaning for the
intuitionist; the formalist further raises the question, whether there exist
sets of real numbers between 0 and 1, whose power is less than that of the
continuum, but greater than aleph-null, in other words, ‘‘whether the
power of the continuum is the second smallest infinite power,”’ and this

31f ““construct’” were here replaced by ‘“‘define’” (in the formalistic sense), the proof

would not be satisfactory to the intuitionist. For, in Cantor’s argument it is not allowed to
replace the words ‘‘kdnnen wir bestimmen’’ (1895-7, 49: 214, line 17 from top) by the

words ‘‘muss es geben.”
“Here as everywhere else in this paper, the assumption is tacitly made that there are an

infinite number of digits different from 9.
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question, which is still waiting for an answer, he considers to be one of
the most difficult and most fundamental of mathematical problems.

For the intuitionist, however, the question as stated is without mean-
ing; and as soon as it has been so interpreted as to get a meaning, it can
easily be answered.

If we restate the question in this form: ““Is it impossible to construct’
infinite sets of real numbers between 0 and 1, whose power is less than
that of the continuum, but greater than aleph-null?’’ then the answer
must be in the affirmative; for the intuitionist can only construct denum-
erable sets of mathematical objects and if, on the basis of the intuition of
the linear continuum, he admits elementary series of free selections as
elements of construction, then each non-denumerable set constructed by
means of it contains a subset of the power of the continuum.

If we restate the question in the form: ““Is it possible to establish a one-
to-one correspondence between the elements of a set of denumerably
infinite ordinal numbers on the one hand, and a set of real numbers
between 0 and 1 on the other hand, both sets being indefinitely extended
by the construction of new elements, of such a character that the corre-
spondence shall not be disturbed by any continuation of the construction
of both sets?’” then the answer must also be in the affirmative, for the
extension of both sets can be divided into phases in such a way as to add
a denumerably infinite number of elements during each phase.®

If however we put the question in the following form: *“[s it possible to
construct a law which will assign a denumerably infinite ordinal number
to every elementary series of digits and which will give certainty a priori
that two different elementary series will never have the same denumer-
ably infinite ordinal number corresponding to them?"’ then the answer
must be in the negative; for this law of correspondence must prescribe in
some way a construction of certain denumerably Infinite ordinal
numbers at each of the successive places of the elementary series; hence
there is for each place ¢, a well-defined largest denumerably infinite num-
ber ay, the construction of which is suggested by that particular place;
there is then also a well-defined denumerably infinite ordinal number a,,,

SIf ““construct’ were here replaced by **define”” (in the formalistic sense), and if we
suppose that the problem concerning the pairs of digits in the decimal fraction development
of x, .dnscussed on p. 88, can not be solved, then the question of the text must be answered
pegat_lvely. For, 1e} us denote by Z the set of those infinite binary fractions, whose nth digit
is 1., if the nth pair of digits in the decimal fraction development of ¥ consists of unequal
digits; .let us further denote by X the set of all finite binary fractions. Then the power of
Z-:Xls_ greater than aleph-null, but less than that of the continuum.

) Calllng demfmerably unfinished all sets of which the elements can be individually real-
ized, and in which for every denumerably infinite subset there exists an element not belong-

ing to this subset, we can say in general, in accordance wi iti *
) W . ith the defi : Al
denumerably unfinished sets have the same power."’ definiions of the text: A
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greater than all «,’s and that can not therefore be exceeded by any of the
ordinal numbers involved by the law of correspondence; hence the power
of that set of ordinal numbers can not exceed aleph-null.

As a means for obtaining ever greater powers, the formalists define
with every power u a ‘‘set of all the different ways in which a number of
selections of power u may be made,”’ and they prove that the power of
this set is greater than u. In particular, when it has been proved to the
satisfaction of both formalist and intuitionist that it is possible in various
ways to construct laws according to which functions of a real variable
different from each other are made to correspond to all elementary series
of digits, but that it is impossible to construct a law according to which
an elementary series of digits is made to correspond to every function of
a real variable and in which there is certainty a priori that two different
functions will never have the same elementary series corresponding to
them, the formalist concludes: ““the power ¢’ of the set of all functions of
a real variable is greater than the power ¢ of the continuum,”’ a proposi-
tion without meaning to the intuitionist; and in the same way in which he
was led from c to ¢’, he comes from ¢’ to a still greater power c”.

A second method used by the formalists for obtaining ever greater
powers is to define for every power u, which can serve as a power of ordi-
nal numbers, ‘‘the set of all ordinal numbers of power u,”” and then to
prove that the power of this set is greater than u. In particular they
denote by aleph-two the power of the set of all ordinal numbers of power
aleph-one and they prove that aleph-two is greater than aleph-one and
that it follows in magnitude immediately after aleph-one. If it should be
possible to interpret this result in a way in which it would have meaning
for the intuitionist, such interpretation would not be as simple in this
case as it was in the preceding cases.

What has been treated so far must be considered to be the negative part
of the theory of potencies; for the formalist there also exists a positive
part however, founded on the theorem of Bernstein: ‘‘If the set A has the
same power as a subset of B and B has the same power as a subset of A,
then A and B have the same power”’ or, in an equivalent form: “‘If the set
A=A, +B;+C,, has the same power as the set 4, then it also has the
same power as the set A, +B;.

This theorem is self-evident for denumerable sets. If it is to have any
meaning at all for sets of higher power for the intuitionist, it will have to
be interpretable as follows: *‘If it is possible, first to construct a law de-
termining a one-to-one correspondence between the mathematical enti-
ties of type A and those of type A,, and second to construct a law deter-
mining a one-to-one correspondence between the mathematical entities
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of type A and those of types A4,, B;, and C, then it is possible to deter-
mine from these two laws by means of a finite number of operations a
third law, determining a one-to-one correspondence between the mathe-
matical entities of type A and those of types 4, and B,.”

In order to investigate the validity of this interpretation, we quote the
proof:

““From the division of A into A4, + B, + C,, we secure by means of the
correspondence vy, between A and A, a division of A4, into A, + B, +Ca
as well as a one-to-one correspondence v, between A, and A,. From the
division of A, into A,+ B, + C,, we secure by means of the correspon-
dence between A, and A, a division of A4, into A3 + B3+ C;, as well as a
one-to-one correspondence v; between A, and As. Indefinite repetition
of this procedure will divide the set A4 into an elementary series of subsets
C,C,,C;,..., an clementary series of subsets By, B,, Bs,..., and are-
mainder set D. The correspondence y¢ between 4 and A, + B, which is
desired is secured by assigning to every element of C, the corresponding
element of C,,; and by assigning every other element of A4 to itself.”

In order to test this proof on a definite example, let us take for A
the set of all real numbers between 0 and 1, represented by infinite deci-
mal fractions, for 4, the set of those decimal fractions in which the
(2n—1)th digit is equal to the 2nth digit; further a decimal fraction that
does not belong to A, will be counted to belong to B, or to C, according
as the above-mentioned equality of digits occurs an infinite or a finite
number of times. By replacing successively each digit of an arbitrary ele-
ment of A by a pair of digits equal to it, we secure at once a law deter-
mining a one-to-one correspondence v, between A and A4,. For of the
element of A, that corresponds to an arbitrary well-defined element of
A, such as, e.g., 1—3, we can determine successively as many digits as
we please; it must therefore be considered as being well-defined.

In order to determine the element corresponding to x —3 according to
the correspondence v, it is now necessary to decide first whether it hap-
pens an infinite or a finite number of times in the decimal fraction devel-
opment of v~3 that a digit in an odd-numbered place is equal t0 the
d_lgit in the following even-numbered place; for this purpose we should
either have to invent a process for constructing an elementary series of
S}lch pairs of equal digits, or to deduce a contradiction from the assump-
tion of the existence of such an elementary series. There is, however, N0
ground for believing that either of these problems can be solved.’

7 .
Such belief could be based only on an appeal to the principi . i i e tothe
i i principium tertii exclusi, 1.€., {0
axiom of the existence of the *‘set of all mathematical propertp ies,” an axiom of far wider

range even than the axioms of inclusi in thi ion
Brouwer 1908: 152.5. inclusion, quoted above. Compare in this connect
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Hence it has become evident that also the theorem of Bernstein, and
with it the positive part of the theory of potencies, does not allow an
intuitionistic interpretation.

So far my exposition of the fundamental issue, which divides the mathe-
matical world. There are eminent scholars on both sides and the chance
of reaching an agreement within a finite period is practically excluded.
To speak with Poincare: ‘‘Les hommes ne s'entendent pas, parce qu'ils
ne parlent pas la méme langue et qu’il y a des langues qui ne s’apprennent
pas.”’
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Consciousness, philosophy,
and mathematics
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The...point of view that there are no non-experienced truths and that
logic is not an absolutely reliable instrument to discover truths has found
acceptance with regard to mathematics much later than with regard to
practical life and to science. Mathematics rigorously treated from this
point of view, including deducing theorems exclusively by means of
introspective construction, is called intuitionistic mathematics. In many
respects it deviates from classical mathematics. In the first place because
classical mathematics uses logic to generate theorems, believes in the
existence of unknown truths, and in particular applies the principle of
the excluded third expressing that every mathematical assertion (i.e.
every assignment of a mathematical property to a mathematical entity)
either is a truth or cannot be a truth. In the second place because classical
mathematics confines itself to predeterminate infinite sequences for
which from the beginning the nth element is fixed for each n. Owing to
this confinement classical mathematics, to define real numbers, has only
predeterminate convergent infinite sequences of rational numbers at its
disposal. Out of real numbers defined in this way, only subspecies of
*ever unfinished denumerable” species of real numbers can be composed
by means of introspective construction. Such ever unfinished denumer-
able species all being of measure zero, classical mathematics, to create
the continuum out of points, needs some logical process starting from
one or more axioms. Consequently we may say that classical analysis,
however appropriate it be for technique and science, has less mathemati-
cal truth than intuitionistic analysis performing the said composition of
the continuum by considering the species of freely proceeding convergent
infinite sequences of rational numbers, without having recourse to lan-
guage or logic.

As a matter of course also the languages of the two mathematical
schools diverge. And even in those mathematical theories which are
cpvered by a neutral language, i.e. by a language understandable on both
sides, either school operates with mathematical entities not recognized

Excerpted by kind permission of the publisher from 10th International Congress of Philos-

ophy, Amsterdam, 1948, Proceedings I, Fascicule 11 (Amsterdam: - blish-
ing Company, 1949), pp. 12439, {Amsterdam: North-Holland Publis
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by the other one: there are intuitionist structures which cannot be fitted
into any classical logical frame, and there are classical arguments not
applying to any introspective image. Likewise, in the theories mentioned,
mathematical entities recognized by both parties on each side are found
satisfying theorems which for the other school are either false, or sense-
less, or even in a way contradictory. In particular, theorems holding in
intuitionism, but not in classical mathematics, often originate from the
circumstance that for mathematical entities belonging to a certain spe-
cies, the possession of a certain property imposes a special character on
their way of development from the basic intuition, and that from this
special character of their way of development from the basic intuition,
properties ensue which for classical mathematics are false. A striking
example is the intuitionist theorem that a full function of the unity con-
tinuum, i.e. a function assigning a real number to every non-negative real
number not exceeding unity, is necessarily uniformly continuous.

To elucidate the consequences of the rejection of the principle of the
excluded third as an instrument to discover truths, we shall put the word-
ing of this principle into the following slightly modified, intuitionistically
more adequate form, called the simple principle of the excluded third:

Every assignment 7 of a property to a mathematical entity can be
Jjudged, i.e. either proved or reduced to absurdity.

Then for a single such assertion 7 the enunciation of this principle is
non-contradictory in intuitionistic as well as in classical mathematics.
For, if it were contradictory, then the absurdity of = would be true and
absurd at the same time, which is impossible. Moreover, as can easily be
proved, for a finite number of such assertions r the simultaneous enunci-
ation of the principle is non-contradictory likewise. However, for the
simultaneous enunciation of the principle for all elements of an arbitrary
species of such assertions t this non-contradictority cannot be main-
tained.

E.g. from the supposition, for a definite real number c;, that the asser-
tion: c, is rational, has been proved to be either true or contradictory,
no contradiction can be deduced. Furthermore, ¢y, ¢3,...cy, being real
numbers, neither the simultaneous supposition, for each of the values
1,2,...m of », that the assertion: ¢, is rational, has been proved to be
either true or contradictory, can lead to a contradiction. However, the
simultaneous supposition for a// real numbers c that the assertion: ¢ is
rational, has been proved to be either true or contradictory, does lead to
a contradiction.

Consequently if we formulate the complete principle of the excluded
third as follows:
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Ifa, b, and c are species of mathematical entities, if further both a
and b form part of ¢, and if b consists of those elements of ¢ which
cannot belong to a, then c is identical with the union of a and b,

the latter principle is contradictory.
A corollary of the simple principle of the excluded third says that:

If for an gssignment t of a property to a mathematical entity the
non-contradictority, i.e. the absurdity of the absurdity, has been
established, the truth of r can be demonstrated likewise.

The analogous corollary of the complete principle of the excluded
third is the principle of reciprocity of complementarity, running as
follows:

If a, b, and c are species of mathematical entities, if further a and
b form part of ¢, and if b consists of the elements of ¢ which cannot
belong to a, then a consists of the elements of ¢ which cannot belong
to b.

Another corollary of the simple principle of the excluded third is the
simple principle of testability saying that

every assignment v of a property to a mathematical entity can be
lested, i.e, proved to be either non-contradictory or absurd.

.The: analogous corollary of the complete principle of the excluded
third is the following complete principle of testability:

{f @, b, d, and c are species of mathematical entities, if each of the
species a, b, and d forms part of ¢, {f b consists of the elements of
which cannot belong to a, and d of the elements of ¢ which cannot
belong to b, then c is identical with the union of band d.

For intuitionjsm the principle of the excluded third and its coroliaries
are assertions ¢ about assertions r, and these assertions o only then are
“realized’’, i.e, only then convey truths, if these truths have been expe-
rienced,

Each assertion 7 of the possibility of a construction of bounded finite
character in a finite mathematical system furnishes a case of realization
of the principle of the excluded third. For every such construction can be
attémpted only in a finite number of particular ways, and each attempt
proves successful or abortive in a finite number of steps.

If the assertion of an absurdity is called a negative assertion, then each
negalive assertion furnishes a case of realization of the principle of reci-
procity of complementarity. For, let a be a negative assertion, indicating
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the absurdity of the assertion 3. As, on the one hand, the implication of
the truth of an assertion a by the truth of an assertion & implies the impli-
cation of the absurdity of b by the absurdity of @, whilst, on the other
hand, the truth of 8 implies the absurdity of the absurdity of 3, we con-
clude that the absurdity of the absurdity of the absurdity of 3, i.e. the
non-contradictority of «, implies the absurdity of 8, i.e. implies .

In consequence of this realization of the principle of reciprocity of
complementarity the principles of testability and of the excluded third
are equivalent in the domain of negative assertions. For, if for o the prin-
ciple of testability holds, this means that either the absurdity of the
absurdity of 8 or the non-contradictority of the absurdity of 3, i.e. by the
preceding paragraph, that either the absurdity of the absurdity of 8 or
the absurdity of 8, i.e. either the absurdity of @ or @ can be proved, so
that « satisfies the principle of the excluded third.

To give some examples refuting the principle of the excluded third and
its corollaries, we introduce the notion of a drift. By a drift we under-
stand the union v of a convergent fundamental sequence of real num-
bers ¢,(y), ¢2(v), .., called the counting-numbers of the drift, and the
limiting-number c () of this sequence, called the kernel of the drift, all
counting-numbers lying apart’ from each other and from the kernel.
If ¢,(y)<ec(y) for each », the drift will be called left-winged. 1f
¢, (y)>c(y) for each », the drift will be called right-winged. 1f the
fundamental sequence ¢;(7), €2(7),... is the union of a fundamental
sequence of left counting-numbers [,(7y), l;(7y), ... such that [,(y) <oc(7)
for each », and a fundamental sequence of right counting-numbers
d\(v),d3(¥),... such that d,(y)e>c(y) for each », the drift will be
called two-winged.

Let « be a mathematical assertion so far neither tested nor recognized
as testable. Then in connection with this assertion  and with a drift v the
creating subject can generate an infinitely proceeding sequence R (v, @)
of real numbers ¢,(y, @), ¢3(¥, @), ... according to the following direc-
tion: As long as during the choice of the ¢, (v, @) the creating subject has
experienced neither the truth, nor the absurdity of o, each ¢, (v, @) is
chosen equal to c(vy). But as soon as between the choice of ¢,_(y, a)
and that of ¢, (v, o) the creating subject has experienced either the truth
or the absurdity of «, ¢, (y, @), and likewise ¢, (7, @) for each natural

If for two real numbers @ and b defined by convergent infinite sequences of rational
numbers a,,a,,. . and b,, b,,... respectively, two such natural numbers m and n can be
calculated that b, —a,>2~" for » 2m, we write be>a and a<eb, z‘md aand b are s:cnd to lie
apart from each other. If a=b is absurd, we write a#b. Ifa<eb is absurd, we write @ 2 b.
If both @=4 and a<eb are absurd, we write a>>b. The absurdities ofa.<ob and a <b prove
to be mutually equivalent, and the absurdity of 2 b proves to be equivalent to a <b.
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number », is chosen equal to ¢, (v). This sequence R (v, a) convergestoa
real number D(y, @) which will be called a direct checking-number of v
through o.

Again, in connection with a and with a two-winged drift y the creating
subject can generate an infinitely proceeding sequence S(v, a) of real
numbers w, (Y, &), w2(y, @), ... according to the following direction: As
long as during the choice of the w, (v, a) the creating subject has experi-
enced neither the truth, nor the absurdity of a, each w, (v, a) is chosen
equal to c(vy). But as soon as between the choice of w,_ (v, a) and that
of w, (v, a) the creating subject has experienced the truth of a, w, (7, @),
and likewise w,,, (7, a) for each natural number », is chosen equal
to d,(v). And as soon as between the choice of w,_(y,a) and that
of ws(7, @) the creating subject has experienced the absurdity of o,
w (v, @), and likewise g, , (7, a) for each natural number », is chosen
equal to /; (). This sequence S (v, a) converges to a real number E (v, a)
which will be called an oscillatory checking-number of v through o.

Let v be a right-winged drift whose counting-numbers are rational.
Then the assertion of the rationality of D (v, a) is testable, but not judg-
able, and its non-contradictority is not equivalent to its truth. Further-
more we have D(y, a)>c(y), but not D(y, a)e>c(y).

Let v be a two-winged drift whose right counting-numbers are rational,
and whose left counting-numbers are irrational. Then the assertion of the
rationality of E(v, «) is neither judgeable, nor is it testable, nor is its non-
contradictority equivalent to its truth. Furthermore E (v, a) is neither
2c(y), nor €¢(v).

The long belief in the universal validity of the principle of the excluded
third in mathematics is considered by intuitionism as a phenomenon of
history of civilization of the same kind as the old-time belief in the
rationality of = or In the rotation of the firmament on an axis passing
through the earth. And intuitionism tries to explain the long persistence
of this dogma by two facts: firstly the obvious non-contradictority of the
principle for an arbitrary single assertion; secondly the practical validity
of the whole of classical logic for an extensive group of simple everyday
phenomena. The latter fact apparently made such a strong impression
that the play of thought that classical logic originally was, became &
deep-rooted habit of thought which was considered not only as useful
but even as aprioristic.

_ Obviously the field of validity of the principle of the excluded third is
identical with the intersection of the fields of validity of the principle of
testability and the principle of reciprocity of complementarity. Further-

more the'former field of validity is a proper subfield of each of the latter
ones, as is shown by the following examples:
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Let A be the species of the direct checking-numbers of drifts with
rational counting-numbers, B the species of the irrational real numbers,
C the union of A and B. Then all assertions of rationality of an element
of C satisfy the principle of testability, whilst there are assertions of
rationality of an element of C not satisfying the principle of the excluded
third. Again, all assertions of equality of two real numbers satisfy the
principle of reciprocity of complementarity, whereas there are assertions
of equality of two real numbers not satisfying the principle of the ex-
cluded third.

In the domain of mathematical assertions the property of absurdity,
just as the property of truth, is a universally additive property, that is to
say, if it holds for each element o of a species of assertions, it also holds
for the assertion which is the union of the assertions «. This property of
universal additivity does not obtain for the property of non-contradic-
tority. However, non-contradictority does possess the weaker property
of finite additivity, that is to say, if the assertions p and ¢ are non-contra-
dictory, the assertion = which is the union of p and ¢, is also non-contra-
dictory. For, let us start for a moment from the supposition w that 7 is
contradictory. Then the truth of p would entail the contradictority of a,
which would clash with the data, so that the truth of p is absurd, i.e. p is
absurd. This consequence of the supposition w clashing with the data, the
supposition v is contradictory, i.e. 7 is non-contradictory.

Application of this theorem to the special non-contradictory assertions
that are the enunciations of the principle of the excluded third for a
single assertion, establishes the above-mentioned non-contradictority of
the simultaneous enunciation of this principle for a finite number of
assertions,

Within some species of mathematical entities the absurdities of two
non-equivalent? assertions may be equivalent. E.g. each of the following
three pairs of non-equivalent assertions relative to a real number a:

11 a=a; I 2. eithera<0ora»0
H1 a»0; Il 2. either a=0 or a->0
i 1. a>0; i 2. a->0

furnishes a pair of equivalent absurdities.

It occurs that within some species of mathematical entities some
absurdities of constructive properties can be given a constructive form.
E.g. for a natural number a the absurdity of the existence of two natural
numbers different from @ and from 1 and having a as their product is
equivalent to the existence, whenever a is divided by a natural number dif-

2By non-equivalence we understand absurdity of equivalence, just as by noncontradic-
tority we understand absurdity of contradictority.
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ferent from a and from 1, of a remainder. Likewise, for two real numbers
a and b the relation @ = b introduced above as an absurdity of a construc-
tive property can be formulated constructively as follows: Let a,, a,...
and b, b,,... be convergent infinite sequences of rational numbers
defining a and b respectively. Then, for any natural number n, a natural
number m can be calculated such that a,— b,o> —2"" for v 2m.

On the other hand there seems to be little hope for reducing irrational-
ity of a real number a, or one of the relations a# b and a> b for real
numbers @ and b, to a constructive property, if we remark that a direct
checking-number of a drift whose kernel is rational and whose counting-
numbers are irrational, is irrational without lying apart from the species
of rational numbers; further that a direct checking-number of an arbi-
trary drift differs from the kernel of the drift without lying apart from it,
and that a direct checking-number of a right-winged drift lies to the right
of the kernel of the drift without lying apart from it.

It occurs that within some species of mathematical entities some non-
contradictorities of constructive properties ¢ can be given either a con-
structive form {possibly, but not necessarily, in consequence of recipro-
city of complementarity holding for {) or the form of an absurdity of a
constructive property. E.g. for real numbers a and b the non-contra-
dictority of a=b is equivalent to a= 5, and the non-contradictority of:
either a=b or a-> b, is equivalent to a 2 b; further the non-contradic-
tority of @>b is equivalent to the absurdity of a<b as well as to the
absurdity of: either a=b or a<eb.

On the other hand, if we think of the property of non-contradictority
of rationality existing for all direct checking-numbers of drifts whose
counting-numbers are rational, there seems to be little hope for reducing
non-contradictority of rationality of a real number to a constructive
property or to an absurdity of a constructive property.

If we understand by the simple absurdity of the property y the absurd-
ity of n, and by the (n+1)-fold absurdity of y the absurdity of the n-fold
absurdity of n, then a theorem established above expresses that threefold
absurdity is equivalent to simple absurdity. And a corollary of this

theorem is that n-fold absurdity is equivalent to simple or to double
absurdity according as n is odd or even.

. I'should like to terminate here. I hope I have made clear that intuition-
1sm on the one hand subtilizes logic, on the other hand denounces logic
as a_ source of truth. Further that intuitionistic mathematics js inner
architecture, and that research in foundations of mathematics is inner

inql}iry with revealing and liberating consequences, also in non-mathe-
matical domains of thought.
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The philosophical basis of
intuitionistic logic

MICHAEL DUMMETT

The question with which I am here concerned is: What plausible rationale
can there be for repudiating, within mathematical reasoning, the canons
of classical logic in favour of those of intuitionistic logic? I am, thus, not
concerned with justifications of intuitionistic mathematics from an eclec-
tic point of view, that is, from one which would admit intuitionistic
mathematics as a legitimate and interesting form of mathematics along-
side classical mathematics: I am concerned only with the standpoint of
the intuitionists themselves, namely that classical mathematics employs
forms of reasoning which are not valid on any legitimate way of constru-
ing mathematical statements (save, occasionally, by accident, as it were,
under a quite unintended reinterpretation). Nor am I concerned with exe-
gesis of the writings of Brouwer or of Heyting: the question is what
forms of justification of intuitionistic mathematics will stand up, not
what particular writers, however eminent, had in mind. And, finally, I
am concerned only with the most fundamental feature of intuitionistic
mathematics, its underlying logic, and not with the other respects (such
as the theory of free choice sequences) in which it differs from classical
mathematics. It will therefore be possible to conduct the discussion
wholly at the level of elementary number theory. Since we are, in effect,
solely concerned with the logical constants - with the sentential operators
and the first-order quantifiers - our interest lies only with the most gen-
eral features of the notion of a mathematical construction, although it
will be seen that we need to consider these in a somewhat delicate way.

Any justification for adopting one logic rather than another as the
logic for mathematics must turn on questions of meaning. It would be
impossible to contrive such a justification which took meaning for
granted, and represented the question as turning on knowledge or cer-
tainty. We are certain of the truth of a statement when we have conclu-
sive grounds for it and are certain that the grounds which we have are
valid grounds for it and are conclusive. If classical arguments for mathe-
matical statements are called in question, this cannot possibly be because

Reprinted with the kind permission of the author, the editors, and the publisher from Pro-
ceedings of 1he Logic Colloquium, Bristol, July 1973, H. E. Rose and J. C. Shepherdson,
eds., North-Holland 1975, pp. 5-40.
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it is thought that we are, in general, unable to tell with certainty whether
an argument is classically valid, unless it is also intuitionistically valid:
rather, it must be that what is being put in doubt is whether arguments
which are valid by classical but not by intuitionistic criteria are absolutely
valid, that is, whether they really do conclusively establish their conclu-
sions as true. Even if it were held that classical arguments, while not in
general absolutely valid, nevertheless always conferred a high probability
on their conclusions, it would be wrong to characterise the motive for
employing only intuitionistic arguments as lying in a desire to attain
knowledge in place of mere probable opinion in mathematics, since the
very thesis that the use of classical arguments did not lead to knowledge
would represent the crucial departure from the classical conception,
beside which the question of whether or not one continued to make use
of classical arguments as mere probabilistic reasoning is comparatively
insignificant. (In any case, within standard intuitionistic mathematics,
there is no reason whatever why the existence of a classical proof of it
should render a statement probable, since if, e.g., it is a statement of
analysis, its being a classical theorem does not prevent it from being intu-
itionistically disprovable.)

So far as I am able to see, there are just two lines of argument for
repudiating classical reasoning in mathematics in favour of intuitionistic
reasoning. The first runs along the following lines. The meaning of a
mathematical statement determines and is exhaustively determined by its
use. The meaning of such a statement cannot be, or contain as an ingre-
dient, anything which is not manifest in the use made of it, lying solely in
the mind of the individual who apprehends that meaning: if two indi-
viduals agree completely about the use to be made of the statement, then
they agree about its meaning. The reason is that the meaning of a state-
ment consists solely in its role as an instrument of communication
between individuals, just as the powers of a chess-piece consist solely in
its rt')le in the game according to the rules. An individual cannot com-
municate what he cannot be observed to communicate: if one individual
associated with a mathematical symbol or formula some mental content,
where the association did not lie in the use he made of the symbol or
formula, then he could not convey that content by means of the symbol
or formula, for his audience would be unaware of the association and
would have no means of becoming aware of it.

. The argument may be expressed in terms of the knowledge of meaning,
Le. of understanding. A model of meaning is a model of understanding,
i.e.a repr'esentation of what it is that is known when an individual knows
LI;;::se:;(r)l;nig;.flr\low knowledge.of the meaning of a particular symbol or

equently verbalisable knowledge, that is, knowledge which
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consists in the ability to state the rules in accordance with which the ex-
pression or symbol is used or the way in which it may be replaced by an
equivalent expression or sequence of symbols. But to suppose that, in
general, a knowledge of meaning consisted in verbalisable knowledge
would involve an infinite regress: if a grasp of the meaning of an expres-
sion consisted, in general, in the ability to sfafe its meaning, then it would
be impossible for anyone to learn a language who was not already
equipped with a fairly extensive language. Hence that knowledge which,
in general, constitutes the understanding of the language of mathematics
must be implicit knowledge. Implicit knowledge cannot, however, mean-
ingfully be ascribed to someone unless it is possible to say in what the
manifestation of that knowledge consists: there must be an observable
difference between the behaviour or capacities of someone who is said to
have that knowledge and someone who is said to lack it. Hence it fol-
lows, once more, that a grasp of the meaning of a mathematical state-
ment must, in general, consist of a capacity to use that statement in a cer-
tain way, or to respond in a certain way to its use by others.

Another approach is via the idea of learning mathematics. When we
learn a mathematical notation, or mathematical expressions, or, more
generally, the language of a mathematical theory, what we learn to do is
to make use of the statements of that language: we learn when they may
be established by computation, and how to carry out the relevant compu-
tations, we learn from what they may be inferred and what may be
inferred from them, that is, what réle they play in mathematical proofs
and how they can be applied in extra-mathematical contexts, and per-
haps we learn also what plausible arguments can render them probable.
These things are all that we are shown when we are learning the meanings
of the expressions of the language of the mathematical theory in question,
because they are all that we can be shown: and, likewise, our proficiency
in making the correct use of the statements and expressions of the lan-
guage is all that others have from which to judge whether or not we have
acquired a grasp of their meanings. Hence it can only be in the capacity
to make a correct use of the statements of the language that a grasp of
their meanings, and those of the symbols and expressions which they
contain, can consist. To suppose that there is an ingredient of meaning
which transcends the use that is made of that which carries the meaning is
to suppose that someone might have learned all that is directly tal}ght
when the language of a mathematical theory is taught to him, and might
then behave in every way like someone who understood the language,
and yet not actually understand it, or understand it only incorrect.ly, But
to suppose this is to make meaning ineffable, that is, in principle incom-
municable. If this is possible, then no one individual ever has a guarantee
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that he is understood by any other individual; for all he knows, or can
ever know, everyone else may attach to his words or to the symbols
which he employs a meaning quite different fom that which he attaches
to them. A notion of meaning so private 1o the individual is one that has
become completely irrelevant 1o mathematics as it is actually practised,
namely as a body of theory on which many individuals are corporately
engaged, an enquiry within which each can communicate his results to
others,

It might seem that an approach to meaning which regarded it as ex-
haustively determined by use would rule out any form of revisionism. If
use constitutes meaning, then, it might seem, use is beyond criticism:
there can be no place for rejecting any established mathematical practice,
such as the use of certain forms of argument or modes of proof, since
that practice, together with all others which are generally accepted, is
simply constitutive of the meanings of our mathematical statements, and
we surely have the right to make our statements mean whatever we
choose that they shall mean. Such an attitude is one possible development
of the thesis that use exhaustively determines meaning: it is, however,
one which can, ultimately, be supported only by the adoption of a holistic
view of language. On such a view, it is illegitimate to ask after the content
of any single statement, or even after that of any one theory, say a math-
ematical or a physical theory; the significance of each statement or of
e'ach deductively systematised body of statements is modified by the mul-
?lple connections which it has, direct and remote, with other statements
in other areas of our language taken as a whole, and so there is no ade-
quate way of understanding the statement short of knowing the entire
language. Or, rather, even this image is false to the facts: it is not that a
statement or even a theory has, as it were, & primal meaning which then
gets modified by the interconnections that are established with other state-
ments _and other theories; rather, its meaning simply consists in the place
}vhlch It occupies in the complicated network which constitutes the total-
ity of our linguistic practices. The only thing to which a definite content
may be attributed is the totality of all that we are, at a given time, pre-
pared to assert; and there can be no simple mode! of the content which
that totality of assertions embodies; nothing short of a complete knowl-
edge of the language can reveal it,

Frequently suc!m a holistic view is modified to the extent of admitting a
glle:sef:t ?;rzzisiz\;?rtllogust?temeg'ts which can be regarded as more or less
a determinate in(%ividr aT Contens. Tonience, and I?ence as each i

ctet crvidual content. These observation statements lie, in
Quine’s famous image of language, at the periphery of the articulated
structure formed by all the sentences of our language, where alone expe-
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rience impinges. To these peripheral sentences, meanings may be ascribed
in a more or less straightforward manner, in terms of the observational
stimuli which prompt assent to and dissent from them. No comparable
model of meaning is available for the sentences which lie further towards
the interior of the structure: an understanding of them consists solely in a
grasp of their place in the structure as a whole and their interaction with
its other constituent sentences. Thus, on such a view, we may accept a
mathematical theory, and admit its theorems as true, only because we
find in practice that it serves as a convenient substructure deep in the
interior of the complex structure which forms the total theory: there can
be no question of giving a representation of the truth-conditions of the
statements of the mathematical theory under which they may be judged
individually as acceptable, or otherwise, in isolation from the rest of
language.

Such a conception bears an evident analogy with Hilbert’s view of
classical mathematics; or, more accurately, with Boole’s view of his logi-
cal calculus. For Hilbert, a definite individual content, according to
which they may be individually judged as correct or incorrect, may legiti-
mately be ascribed only to a very narrow range of statements of ele-
mentary number theory: these correspond to the observation statements
of the holistic conception of language. All other statements of mathe-
matics are devoid of such a content, and serve only as auxiliaries, though
psychologically indispensable auxiliaries, to the recognition as correct of
the finitistic statements which alone are individually meaningful. The
other mathematical statements are not, on such a view, devoid of signifi-
cance: but their significance lies wholly in the réle which they play within
the mathematical theories to which they belong, and which are them-
selves significant precisely because they enable us to establish the correct-
ness of finitistic statements. Boole likewise distinguished, amongst the
formulas of his logical calculus, those which were interpretable from
those which were uninterpretable: a deduction might lead from some in-
terpretable formulas as premisses, via uninterpretable formulas as inter-
mediate steps, to a conclusion which was once more interpretable.

The immediately obvious difficulty about such a manner of construing
a mathematical, or any other, theory is to know how it can be justified.
How can we be sure that the statements or formulas to which we ascribe
a content, and which are derived by such a means, are true? The differ-
ence between Hilbert and Boole, in this respect, was that Hilbert took the
demand for justification seriously, and saw the business of answering it
as the prime task for his philosophy of mathematics, while Boole simply
ignored the question. Of course, the most obvious way to find a justifica-
tion is to extend the interpretation to all the statements or formulas with

101



MICHAEL DUMMETT

which we are concerned, and, in the case of Boole’s calculus, this is very
readily done, and indeed yields a great simplification of the calculus.
Even in Hilbert’s case, the consistency proof, once found, does yield an
interpretation of the infinitistic statements, though one which is relative
to the particular proof in which they occur, not one uniform for all con-
texts. Without such a justification, the operation of the mechanism of
the theory or the language remains quite opaque to us; and it is because
the holist is oblivious of the demand for justification, or of the unease
which the lack of one causes us, that | said that he is to be compared to
Boole rather than to Hilbert. In his case, the question would become:
With what right do we feel an assurance that the observation statements
deduced with the help of the complex theories, mathematical, scientific
and otherwise, embedded in the interior of the total linguistic structure,
arc true, when these observation statements are interpreted in terms of
their stimulus meanings? To this the holist attempts no answer, save a
generalised appeal to induction: these theories have ‘worked’ in the past,
in the sense of having for the most part yielded true observation state-
ments, and so we have confidence that they will continue to work in the
future.

The path of thought which leads from the thesis that use exhaustively
determines meaning to an acceptance of intuitionistic logic as the correct
logic for mathematics is one which rejects a holistic view of mathematics
and insists that each statement of any mathematical theory must have &
determinate individual content. A grasp of this content cannot, in gen-
eral, consist of a piece of verbalisable knowledge, but must be capable of
being fully manifested by the use of the statement: but that does not
imply that every aspect of its existing use is sacrosanct. An existing prac-
Eice in the use of a certain fragment of language is capabie of being sub-
Jected to criticism if it is impossible to systematise it, that is, to frame &
model whereby each sentence carrles a determinate content which can, In
turn, be explained in terms of the use of that sentence. What makes it
possible that such a practice may prove to be incoherent and therefore in
need of revision is that there are different aspects to the use of a sentence;
if the whole practice is to be capable of systematisation in the present
sen'se3 there must be a certain harmony between these different aspects.
This is already apparent from the holistic examples already cited. One
aspect of the use of observation statements lies in the propensities we
ha}ve acquired to assent to and dissent from them under certain types of
stimuli; another lies in the possibility of deducing them by means of non-
ObFC{Vational statements, including highly theoretical ones. If the lin-
guistic system as a whole is to be coherent, there must be harmony
between these two aspects: it must not be possible to deduce observation
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statements from which the perceptual stimuli require dissent. Indeed, if
the observation statements are to retain their status as observation state-
ments, a stronger demand must be made: of an observation statement
deduced by means of theory, it must hold that we can place ourselvesina
situation in which stimuli occur which require assent to it. This condition
is thus a demand that, in a certain sense, the language as a whole be a
conservative extension of that fragment of the language containing only
observation statements. In just the same way, Hilbert’s philosophy of
mathematics requires that classical number theory, or even classical
analysis, be a conservative extension of finitistic number theory.

For utterances considered quite generally, the bifurcation between the
two aspects of their use lies in the distinction between the conventions
governing the occasions on which the utterance is appropriately made
and those governing both the responses of the hearer and what the
speaker commits himself to by making the utterance: schematically,
between the conditions for the utterance and the consequences of it.
Where, as in mathematics, the utterances with which we are concerned
are statements, that is, utterances by means of which assertions can be
effected, this becomes the distinction between the grounds on which the
statement can be asserted and its inferential consequences, the conclu-
sions that can be inferred from it. Plainly, the requirement of harmony
between these in respect of some type of statement is the requirement
that the addition of statements of that type to the language produces a
conservative extension of the language; i.c., that it is not possible, by
going via statements of this type as intermediaries, to deduce from
premisses not of that type conclusions, also not of that type, which could
not have been deduced before. In the case of the logical constants, a
loose way of putting the requirement is to say that there must be a har-
mony between the introduction and elimination rules; but, of course, this
is not accurate, since the whole system has to be considered (in classical
logic, for example, it is possible to infer a disjunctive statement, say by
double negation elimination, without appeal to the rule of disjunction
introduction). An alternative way of viewing the dichotomy between the
two principal aspects of the use of statements is as a contrast between
direct and indirect means of establishing them. So far as a logically com-
plex statement is concerned, the introduction rules governing the logical
constants occurring in the statement display the most direct means of es-
tablishing the statement, step by step in accordance with its logical struc-
ture; but the statement may be accepted on the basis of a complicated
deduction which relies also on elimination rules, and we require a harmony
which obtains only if a statement that has been indirectly established
always could (in some sense of ‘could") have been established directly.
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Here again the demand is that the admission of the more complex infer-
ences yield a conservative extension of the language. When only intro-
duction rules are used, the inference involves only statements of logical
complexity no greater than that of the conclusion: we require that the
derivation of a statement by inferences involving statements of greater
logical complexity shall be possible only when its derivation by the more
direct means is in some sense already possible.

On any molecular view of language - any view on which individual
sentences carry a content which belongs to them in accordance with the
way they are compounded out of their own constituents, independently
of other sentences of the language not involving those constituents -
there must be some demand for harmony between the various aspects of
the use of sentences, and hence some possibility of criticising or rejecting
existing practice when it does not display the required harmony. Exactly
what the harmony is which is demanded depends upon the theory of
meaning accepted for the language, that is, the general model of that in
which the content of an individual sentence consists; that is why I ren-
dered the above remarks vague by the insertion of phrases like ‘in some
sense’. It will always be legitimate to demand, of any expression or form
of sentence belonging to the language, that its addition to the language
should yield a conservative extension; but, in order to make the notion of
a conservative extension precise, we need to appeal to some concept such
as that of truth or that of being assertible or capable in principle of being
established, or the like; and just which concept is to be selected, and how
it is to be explained, will depend upon the theory of meaning that is
adopted.

A theory of meaning, at least of the kind with which we are mostly
famillar, seizes upon some one general feature of sentences (at least of
assertoric sentences, which Is all we need be concerned with when con-
sidering the language of mathematics) as central: the notion of the con-
tent of an individual sentence is then to be explained in terms of this
central feature. The selection of some one such feature of sentences as
cgntral to the theory of meaning is what is registered by philosophical
dicta of the form, ‘Meaning is...’ - e.g., ‘The meaning of a sentence is
the.method of its verification’, “The meaning of a sentence is determined
by 1.ts truth-conditions’, etc. (The slogan ‘Meaning is use’ is, however, of
a different character: the ‘use’ of a sentence is not, in this sense, a single
feature; the slogan simply restricts the kind of feature that may legiti-
fnatf:ly be appealed to as constituting or determining meaning.) The
justification for thus selecting some one single feature of sentences as
central - as being that in which their individual meanings consist - is that
it is hoped that every other feature of the use of sentences can be derived,
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in a uniform manner, from this central one. If, e.g., the notion of truth is
taken as central to the theory of meaning, then the meanings of indi-
vidual expressions will consist in the manner in which they contribute to
determining the truth-conditions of sentences in which they occur; but
this conception of meaning will be justified only if it is possible, for an
arbitrary assertoric sentence whose truth-conditions are taken as known,
to describe, in terms of the notion of truth, our actual practice in the use
of such a sentence; that is, to give a general characterisation of the lin-
guistic practice of making assertions, of the conditions under which they
are made and the responses which they elicit. Obviously, we are very far
from being able to construct such a general theory of the use of sen-
tences, of the practice of speaking a language; equally obviously, it is
likely that, if we ever do attain such an account, it will involve a con-
siderable modification of the ideal pattern under which the account will
take a quite general form, irrespective of the individual content of the
sentence as given in terms of whatever is taken as the central notion of
the theory of meaning. But it is only to the extent that we shall eventually
be able to approximate to such a pattern that it is possible to give sub-
stance to the claim that it is in terms of some one feature, such as truth or
verification, that the individual meanings of sentences and of their com-
ponent expressions are to be given.

It is the multiplicity of the different features of the use of sentences,
and the consequent legitimacy of the demand, given a molecular view of
language, for harmony between them, that makes it possible to criticise
existing practice, to call in question uses that are actually made of sen-
tences of the language. The thesis with which we started, that use exhaus-
tively determines meaning, does not, therefore, conflict with a revision-
ary attitude to some aspect of language: what it does do is to restrict the
selection of the feature of sentences which is to be treated as central to
the theory of meaning. On a platonistic interpretation of a mathematical
theory, the central notion is that of truth: a grasp of the meaning of a
sentence belonging to the language of the theory consists in a knowledge
of what it is for that sentence to be true. Since, in general, the sentences
of the language will not be ones whose truth-value we are capable of
effectively deciding, the condition for the truth of such a sentence will be
one which we are not, in general, capable of recognising as obtaining
whenever it obtains, or of getting ourselves into a position in which we
can so recognise it. Nevertheless, on the theory of meaning which under-
lies platonism, an individual’s grasp of the meaning of such a sentence
consists in his knowledge of what the condition is which has to obtain for
the sentence to be true, even though the condition is one which he can-
not, in general, recognise as obtaining when it does obtain.
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This conception violates the principle that use exhaustively determines
meaning; or, at least, if it does not, a strong case can be put up that it
does, and it is this case which constitutes the first type of ground which
appears to exist for repudiating classical in favour of intuitionistic logic
for mathematics. For, if the knowledge that constitutes a grasp of the
meaning of a sentence has to be capable of being manifested in actual lin-
guistic practice, it is quite obscure in what the knowledge of the condi-
tion under which a sentence is true can consist, when that condition is not
one which is always capable of being recognised as obtaining. In par-
ticular cases, of course, there may be no problem, namely when the
knowledge in question may be taken as verbalisable knowledge, i.e. when
the speaker is able to srare, in other words, what the condition is for the
truth of the sentence; but, as we have already noted, this cannot be the
general case. An ability to state the condition for the truth of a sentence
is, in effect, no more than an ability to express the content of the sen-
tence in other words. We accept such a capacity as evidence of a grasp of
the meaning of the original sentence on the presumption that the speaker
understands the words in which he is stating its truth-condition; but at
some point it must be possible to break out of the circle: even if it were
always possible to find an equivalent, understanding plainly cannot in
general consist in the ability to find a synonymous expression. Thus the
knowledge in which, on the platonistic view, a grasp of the meaning of a
mathematical statement consists must, in general, be implicit knowledge,
knowledge which does not reside in the capacity to state that which is
known. But, at least on the thesis that use exhaustively determines
meaning, and perhaps on any view whatever, the ascription of implicit
knowledge to someone is meaningful only if he is capable, in suitable cir-
cumstances, of fully manifesting that knowledge, (Compare Wittgen-
stein’s question why a dog cannot be said to expect that his master will
come home next week.) When the sentence Is one which we have a
methpd for effectively deciding, there is again no problem: a grasp of the
condition under which the sentence is true may be said to be manifested
by a mastery of the decision procedure, for the individual may, by that
means, get himself into a position in which he can recognise that the
condition for the truth of the sentence obtains or does not obtain, and we
may reasonably suppose that, in this position, he displays by his lin-
guistic behaviour his recognition that the sentence is, respectively, true or
fals'e. But, when the sentence is one which is not in this way effectively
detfldable, as is the case with the vast majority of sentences of any inter-
fstmg mathematical theory, the situation is different. Since the sentence
is, by hypothesis, effectively undecidable, the condition which must, in
gencral, obtain for it to be true is not one which we are capable of recog-
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nising whenever it obtains, or of getting ourselves in a position to do so.
Hence any behaviour which displays a capacity for acknowledging the
sentence as being true in all cases in which the condition for its truth can
be recognised as obtaining will fall short of being a full manifestation of
the knowledge of the condition for its truth: it shows only that the condi-
tion can be recognised in certain cases, not that we have a grasp of what,
in general, it is for that condition to obtain even in those cases when we
are incapable of recognising that it does. It is, in fact, plain that the
knowledge which is being ascribed to one who is said to understand the
sentence is knowledge which transcends the capacity to manifest that
knowledge by the way in which the sentence is used. The platonistic
theory of meaning cannot be a theory in which meaning is fully deter-
mined by use.

If to know the meaning of a mathematical statement is to grasp its use;
if we learn the meaning by learning the use, and our knowledge of its
meaning is a knowledge which we must be capable of manifesting by the
use we make of it: then the notion of fruth, considered as a feature which
each mathematical statement either determinately possesses or deter-
minately lacks, independently of our means of recognising its truth-
value, cannot be the central notion for a theory of the meanings of
mathematical statements. Rather, we have to look at those things which
are actually features of the use which we learn to make of mathematical
statements. What we actually learn to do, when we learn some part of the
language of mathematics, is to recognise, for each statement, what
counts as establishing that statement as true or as false. In the case of
very simple statements, we learn some computation procedure which
decides their truth or falsity: for more complex statements, we learn to
recognise what is to be counted as a proof or a disproof of them. That is
the practice of which we acquire a mastery: and it is in the mastery of
that practice that our grasp of the meanings of the statements must con-
sist. We must, therefore, replace the notion of truth, as the central notion
of the theory of meaning for mathematical statements, by the notion of
proof: a grasp of the meaning of a statement consists in a capacity to
recognise a proof of it when one is presented to us, and a grasp of the
meaning of any expression smaller than a sentence must consist in a
knowledge of the way in which its presence in a sentence contributes to
determining what is to count as a proof of that sentence. This does not
mean that we are obliged uncritically to accept the canons of proof as
conventionally acknowledged. On the contrary, as soon as we construe
the logical constants in terms of this conception of meaning, we become
aware that certain forms of reasoning which are conventionally accepte'd
are devoid of justification. Just because the conception of meaning in
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terms of proof is as much a molecular, as opposed to holistic, theory of
meaning as that of meaning in terms of truth-conditions, forms of infer-
ence stand in need of justification, and are open to being rejected as
unjustified. Our mathematical practice has been disfigured by a false
conception of what our understanding of mathematical theories con-
sisted in.

This sketch of one possible route to an account of why, within mathe-
matics, classical logic must be abandoned in favour of intuitionistic logic
obviously leans heavily upon Wittgensteinian ideas about language. Pre-
cisely because it rests upon taking with full seriousness the view of lan-
guage as an instrument of social communication, it looks very unlike
traditional intuitionist accounts, which, notoriously, accord a minimum
of importance to language or to symbolism as a means of transmitting
thought, and are constantly disposed to slide in the direction of solip-
sism. However, I said at the outset that my concern in this paper was not
in the least with the exegesis of actual intuitionist writings: however little
it may jibe with the view of the intuitionists themselves, the considera-
tions that I have sketched appear to me to form one possible type of
argument in favour of adopting an intuitionistic version of mathematics
in place of a classical one (at least as far as the logic employed is con-
cerned), and, moreover, an argument of considerable power. 1 shall not
take the time here to attempt an evaluation of the argument, which
would necessitate enquiring how the platonist might reply to it, and how
the debate between them would then proceed: my interest lies, rather, in
'asking whether this is the only legitimate route to the adoption of an
intuitionistic logic for mathematics.

Now the first thing that ought to strike us about the form of argument
which I have sketched is that jt is virtually independent of any considera-
tions relating specifically to the mathematical character of the statements
under discussion. The argument involved only certain considerations
within the theory of meaning of a high degree of generality, and could,
therefore, just as well have been applied to any statements whatever, in
whatever area of language. The argument told in favour of replacing, &s
the central notion for the theory of meaning, the condition under which a
statement is true, whether we know or can know when that condition
obtains, by the condition under which we acknowledge the statement as
conclusively established, a condition which we must, by the nature of the
case, be capable of effectively recognising whenever it obtains. Since we
were concerned with mathematical statements, which we recognise as
true b3f means of 2 proof (or, in simple cases, a computation), this meant
replacing the notion of truth by that of proof: evidently, the appropriate
generalisation of this, for statements of an arbitrary kind, would be the
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replacement of the notion of truth, as the central notion of the theory of
meaning, by that of verification; to know the meaning of a statement is,
on such a view, to be capable of recognising whatever counts as verifying
the statement, i.e. as conclusively establishing it as true. Here, of course,
the verification would not ordinarily consist in the bare occurrence of
some Sequence of sense-experiences, as on the positivist conception of
the verification of a statement. In the mathematical case, that which
establishes a Statement as true is the production of a deductive argument
terminating in that statement as conclusion; in the general case, a state-
ment Will, in Beneral, also be established as true by a process of reason-
ing, though here the reasoning will not usually be purely deductive in
character, and the premisses of the argument will be based on obser-
vation; only for a restricted class of statements - the observation state-
ments - will their verification be of a purely observational kind, without
the mediation of any chain of reasoning or any other mental, linguistic or
symbolic process.

It follows that, in so far as an intuitionist position in the philosophy of
mathematics {(or, at least, the acceptance of an intuitionistic logic for
mathematics) is supported by an argument of this first type, similar,
though not necessarily identical, revisions must be made in the logic
accepted for statements of other kinds. What is involved is a thesis in the
theory of meaning of the highest possible level of generality. Such a
thesis is vylnerable in many places: if it should prove that it cannot be
coherently applied to any one region of discourse, to any one class of
statements, then the thesis cannot be generally true, and the general argu-
ment in favour of it must be fallacious. Construed in this way, therefore,
a position in the philosophy of mathematics will be capable of being
undermined by considerations which have nothing directly to do with
Mmathematjcs at all.

Is there, then, any alternative defence of the rejection, for mathe-
matics, of classical in favour of intuitionistic logic? Is there any such
defence which turns on the fact that we are dealing with mathematical
statements in particular, and leaves it entirely open whether or not we
wish to extend the argument to statements of any other general class?

Such a defence must start from some thesis about mathematical state-
ments the analogue of which we are free to reject for statements of other
kinds. It is plain what this thesis must be: namely the celebrated thesis
that mathematical statements do not relate to an objective mathematical
Teality existing independently of us. The adoption of such a view appar-
ently leaves us free either to reject or to adopt an analogous view for
statements of any other kind. For instance, if we are realists about the
Physical ypjverse, then we may contrast mathematical statements with
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statements ascribing physical properties to material objects: on this com-
bination of views, material-object statements do relate to an objective
reality existing independently of ourselves, and are rendered true or
false, independently of our knowledge of their truth-values or of our
ability to attain such knowledge or the particular means, if any, by which
we do so, by that independently existing reality; the assertion that mathe-
matical statements relate to no such external reality gains its substance by
contrast with the physical case. Unlike material objects, mathematical
objects are, on this thesis, creations of the human mind: they are objects
of thought, not merely in the sense that they can be thought about, but in
the sense that their being is to be thought of; for them, esse est concipi.

On such a view, a conception of meaning as determined by truth-
conditions is available for any statements which do relate to an independ-
ently existing reality, for then we may legitimately assume, of each such
statement, that it possesses a determinate truth-value, true or false, inde-
pendently of our knowledge, according as it does or does not agree with
the constitution of that external reality which it is about. But, when the
statements of some class do not relate to such an external reality, the
supposition that each of them possesses such a determinate truth-value is
empty, and we therefore cannot regard them as being given meanings by
associating truth-conditions with them; we have, in such a case, faute de
mieux, to take them as having been given meaning in a different way,
namely by associating with them conditions of a different kind - condi-
tions that we are capable of recognising when they obtain - namely,
those conditions under which we take their assertion or their denial as
being conclusively justified.

The first type of justification of intuitionistic logic which we con-
sidered conformed to Kreisel's dictum, *The point is not the existence of
mathematical objects, but the objectivity of mathematical truth’: it bore
directly upon the claim that mathematicai statements possess objective
truth-values, without raising the question of the ontological status of
mathematical objects or the metaphysical character of mathematical
reality. But a justification of the second type violates the dictum: it
makes the question whether mathematical statements possess objective
truth-values depend upon a prior decision as to the being of mathe-
matical objects. And the difficulty about it lies in knowing on what we
are to base the premiss that mathematical objects are the creations of
humap thought in advance of deciding what is the correct model for the
meanings of mathematical statements or what is the correct conception
of truth as relating to them. It appears that, on this view, before deciding
whether a grasp of the meaning of a mathematical statement is to be con-
sidered as consisting in a knowledge of what has to be the case for it to be
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true or in a capacity to recognise a proof of it when one is presented, we
have first to resolve the metaphysical question whether mathematical
objects — natural numbers, for example - are, as on the constructivist
view, creations of the human mind, or, as on the platonist view, inde-
pendently existing abstract objects. And the puzzle is to know on what
basis we could possibly resolve this metaphysical question, at a stage at
which we do not even know what model to use for our understanding of
mathematical statements. We are, after all, being asked to choose
between two metaphors, two pictures. The platonist metaphor assimi-
lates mathematical enquiry to the investigations of the astronomer:
mathematical structures, like galaxies, exist, independently of us, in a
realm of reality which we do not inhabit but which those of us who have
the skill are capable of observing and reporting on. The constructivist
metaphor assimilates mathematical activity to that of the artificer fash-
ioning objects in accordance with the creative power of his imagination.
Neither metaphor seems, at first sight, especially apt, nor one more apt
than the other; the activities of the mathematician seem strikingly unlike
those either of the astronomer or of the artist. What basis can exist for
deciding which metaphor is to be preferred? How are we to know in
which respects the metaphors are to be taken seriously, how the pictures
are to be used?

Preliminary reflection suggests that the metaphysical question ought
not to be answered first: we cannot, as the second type of approach
would have us do, first decide the ontological status of mathematical
objects, and then, with that as premiss, deduce the character of mathe-
matical truth or the correct model of meaning for mathematical state-
ments. Rather, we have first to decide on the correct model of meaning -
either an intuitionistic one, on the basis of an argument of the first type,
or a platonistic one, on the basis of some rebuttal of it; and then one or
other picture of the metaphysical character of mathematical reality will
force itself on us. If we have decided upon a model of the meanings of
mathematical statements according to which we have to repudiate a
notion of truth considered as determinately attaching, or failing to
attach, to such statements independently of whether we can now, or ever
will be able to, prove or disprove them, then we shall be unable to use the
picture of mathematical reality as external to us and waiting to be dis-
covered. Instead, we shall inevitably adopt the picture of that reality as
being the product of our thought, or, at least, as coming into existence
only as it is thought. Conversely, if we admit a notion of truth as attach-
ing objectively to our mathematical statements independently of our
knowledge, then, likewise, the picture of mathematical reality as exist-
ing, like the galaxies, independently of our observation of it will force
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itself on us in an equally irresistible manner. But, when we approach the
matter in this way, there is no puzzle over the interpretation of these
metaphors: psychologically inescapable as they may be, their non-meta-
phorical content will consist entirely in the two contrasting models of the
meanings of mathematical statements, and the issue between them will
become simply the issue as to which of these two models is correct. If,
however, a view as to the ontological status of mathematical objects is to
be treated as a premiss for deciding between the two models of meaning,
then the metaphors cannot without circularity be explained solely by
reference to those models; and it is obscure how else they are to be
explained.

These considerations appear, at first sight, to be reinforced by reflec-
tion upon Frege’s dictum, ‘Only in the context of a4 sentence does & name
stand for anything’. We cannot refer to an object save in the course of
saying something about it. Hence, any thesis concerning the ontological
status of objects of a given kind must be, at the same time, a thesis about
what makes a statement involving reference to such objects true, in other
words, a thesis about what properties an object of that kind can have.
Thus, to say that fictional characters are the creations of the imagination
is to say that a statement about a fictional character can be true only if it
is imagined as being true, that a fictional character can have only those
properties which it is part of the story that he has; to say that something
is an object of sense - that for it esse est percipi - is to say that it has only
those properties it is perceived as having: in both cases, the ontological
thesis is a ground for rejecting the law of excluded middle as applied to
statements about those objects. Thus we cannot separate the question of
the ontological status of a class of objects from the question of the cor-
rect hotion of truth for statements about those objects, i.¢. of the kind of
thing in virtue of which such statements are true, when they are true.
'!:’his conclusion corroborates the idea that an answer to the former ques-
tion cannot serve as a premiss for an answer to the latter one.

NevFrtheless. the position is not so straightforward as all this would
make it appear. From the possibility of an argument of the first type for
the use of intuitionistic logic in mathematics, it is evident that # model of
the meanings of mathematical statements in terms of proof rather than
of truth need not rest upon any particular view about the ontological
character of mathematical objects. There is no substantial disagreement
bet\'veen the two models of meaning so long as we are dealing only with
decidable statements: the crucial divergence occurs when we consider
ones which are not effectively decidable, and the linguistic operation
which first enables us to frame effectively undecidable mathematical
statements is that of quantification over infinite totalities, in the first
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place over the totality of natural numbers. Now suppose someone who
has, on whatever grounds, been convinced by the platonist claim that we
do not create the natural numbers, and yet that reference to natural num-
bers is not a mere fagcon de parler, but is a genuine instance of reference
to objects: he believes, with the platonist, that natural numbers are
abstract objects, existing timelessly and independently of our knowledge
of them. Such a person may, nevertheless, when he comes to consider the
meaning of existential and universal quantification over the natural
numbers, be convinced by a line of reasoning such as that which I
sketched as constituting the first type of justification for replacing classi-
cal by intuitionistic logic. He may come to the conclusion that quantifi-
cation over a denumerable totality cannot be construed in terms of our
grasp of the conditions under which a quantified statement is true, but
must, rather, be understood in terms of our ability to recognise a proof
or disproof of such a statement. He will therefore reject a classical logic
for number-theoretic statements in general, admitting only intuition-
istically valid arguments involving them. Such a person would be accept-
ing a platonistic view of the existence of mathematical objects (at least
the objects of number theory), but rejecting a platonistic view of the
objectivity of mathematical statements.

Our question is, rather, whether the opposite combination of views is
possible: whether one may consistently hold that natural numbers are the
creations of human thought, but yet believe that there is a notion of truth
under which each number-theoretic statement is determinately either true
or false, and that it is in terms of our grasp of their truth-conditions that
our understanding of number-theoretic statements is to be explained. If
such a combination is possible, then, it appears, there can be no route
from the ontological thesis that mathematical objects are the creations of
our thought to the model of the meanings of mathematical statements
which underlies the adoption of an intuitionistic logic.

This is not the only question before us: for, even if these two views
cannot be consistently combined, it would not follow that the ontological
thesis could serve as a premiss for the constructivist view of the meanings
of mathematical statements; our difficulty was to understand how the
ontological thesis could have any substance if it were not merely a picture
encapsulating that conception of meaning. The answer is surely this:
that, while it is surely correct that a thesis about the ontological status of
objects of a given kind, e.g. natural numbers, must be understood as a
thesis about that in which the truth of certain statements about those
objects consists, it need not be taken as, in the first place, a thesis about
the entire class of such statements; it may, instead, be understood as a
thesis only about some restricted subclass of such statements, those
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which are basic to the very possibility of making reference to those
objects. Thus, for example, the thesis that natural numbers are creations
of human thought may be taken as a thesis about the sort of thing which
makes a numerical equation or inequality true, or, more generally, a
statement formed from such equations by the sentential operators and
bounded quantification. To say that the only notion of truth we can have
for number-theoretic statements generally is that which equates truth
with our capacity to prove a statement is to prejudge the issue about the
correct model of meaning for such statements, and therefore cannot
serve as a premiss for the constructivist view of meaning. But to say that,
for decidable number-theoretic statements, truth consists in provability,
is not in itself to prejudge the question in what the truth of undecidable
statements, involving unbounded quantification, consists: and hence the
possibility is open that a view about the one might serve as a premiss for
a view about the other. Our problem is to discover whether it can do s0 in
fact: whether there is any legitimate route from the thesis that natural
numbers are creations of human thought, construed as a thesis about the
sort of thing which makes decidable number-theoretic statements true, t0
a view of the meanings of number-theoretic statements generally which
would require the adoption for them of an intuitionistic rather than a
classical logic.

In order to resolve this question, it is necessary for us to take a rather
closer look at the notion of truth for mathematical statements, as under-
stood intuitionistically. The most obvious suggestion that comes to mind
in this connection is that the intuitionistic notion of truth conforms, just
as does the classical notion, to Tarski’s schema:

4))] Sis true iff A4,

where an instance of the schema Is to be formed by replacing ‘A’ by some

number-theoretic statement and ‘S’ by a canonical name of that sen-
tence, as, e.g., in:

“There are infinitely many twin primes’ is true iff there are infinitely
many twin primes.

It is necessary to admit counter-examples to the schema (T) in any case in
which we wish to hold that there exist sentences which are neither true
nor false: for if we replace ‘4’ by such a sentence, the left-hand side of
the biconditional becomes false (on the assumption that, if the negation
of a sentence is true, that sentence is false), although, by hypothesis, the
right-hand side is not false. But, in intuitionistic logic, that semantic
principle holds good which stands to the double negation of the law of
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excluded middle as the law of bivalence stands to the law of excluded
middle itself: it is inconsistent to assert of any statement that it is neither
true nor false; and hence there seems no obstacle to admitting the cor-
rectness of the schema (T). Of course, in doing so, we must construe the
statement which appears on the right-hand side of any instance of the
schema in an intuitionistic manner. Provided we do this, a truth-defini-
tion for the sentences of an intuitionistic language, say that of Heyting
arithmetic, may be constructed precisely on Tarski’s lines, and will yield,
as a consequence, each instance of the schema (T).

However, notoriously, such an approach leaves many philosophical
problems unresolved. The truth-definition tells us, for example, that

598017 + 246532 ==844549’ is true

just in the case in which 598017 + 246532 = 844549. We may perform the
computation, and discover that 598017+ 246532 does indeed equal
844549: but does that mean that the equation was already true before the
computation was performed, or that it would have been true even if the
computation had never been performed? The truth-definition leaves such
questions quite unanswered, because it does not provide for inflections
of tense or mood of the predicate ‘is true’: it has been introduced only as
a predicate as devoid of tense as are all ordinary mathematical predi-
cates; but its role in our language does not reveal why such inflections of
tense or even of mood should be forbidden.

These difficulties raise their heads as soon as we make the attempt to
introduce tense into mathematics, as intuitionism provides us with some
inclination to do; this can be seen from the problems surrounding the
theory of the creative subject. These problems are well brought out in
Troelstra's discussion of the topic. It is evident that we ought to admit as

an axiom
() (FrA) A

if we know that, at any stage, A has been (or will be) proved,then we are
certainly entitled to assert A. But ought we to admit the converse in the
form

®) A—an(+—,A)?
Its double negation
(7) A—)—-—-Em(i—,,A)

is certainly acceptable: if we know that A is true, then we shall certainl.y
never be able to assert, at least on purely mathematical grounds, that it
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will never be proved. But can we equate truth with the obtaining of a
proof at some stage, in the past or in the future, as the equivalence:

(%) AeaAn(i-,A)

requires us to do? (To speak of ‘truth’ here seems legitimate, since, while
Tarski’s truth-predicate is a predicate of sentences, the sentential oper-
ator to which it corresponds is a redundant one, which can be inserted
before or deleted from in front of any clause without change of truth-
value.)

If we accept the axiom (8), and hence the equivalence (8), we run
into certain difficulties, on which Troelstra comments. The operator
‘3n(F,... )" becomes a redundant truth-operator, and hence may be dis-
tributed across any logical constant, as in

(€) (xYmA(m)) > vmian(r—,A(m)).

As Troelstra observes, this appears to have the consequence that, if we
have once proved a universally quantified statement, we are in some way
committed to producing, at some time in the future, individual proofs of
all its instances, whereas, palpably, we are under no such constraint. The
solution to which he inclines is that proposed by Kreisel, namely that the
operator ‘+,’ must be so construed that a proof, at stage n, of a univer-
sally quantified statement counts as being, at the same time, a proof of
each instance, so that we could assert the stronger thesis

© (FeYmA(m)) = ¥m (- A(m)).

(Troelstra in fact recommends this interpretation on separate grounds, s
enabling us to escape a paradox about constructive functions; he himself
points out, however, that this paradox can alternatively be avoided by
introducing distinctions of level which seem intrinsically plausible.) The
difficulty about this solution is that it must be extended to every recog-
nised logical consequence. From

() (m&n& (FpA)) = (+,A)

we have

0) (n=max(m,k) & (F,A) & (+-4,C)) = ((F,A4) & (F,C)),
while from (§) we obtain

0] (FmA) & (Fx(A = B)) = an(+,B).

We could in the same way complain that this committed us, whenever we
hafj proved a statement A and had recognised some other statement B as
being a consequence of A, to actually drawing that consequence some
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time in the future; and, if our interpretation of the operator ‘+,’ is to be
capable of dealing with this difficulty in the same way as with the special
case of instances of a universally quantified statement, we should have to
allow that a proof that a theorem had a certain consequence was, at the
same time, a proof of that consequence, and, likewise, that a proof of a
statement already known to have a certain consequence was, at the same
time, a proof of that consequence; we should, that is, have to accept the
law

(x) (n=max(m,k) & (FynA) & (¢ (A = B))) = (+,B).

We should thus have so to construe the notion of proof that a proof of a
statement is taken as simultaneously constituting a proof of anything
that has already been recognised as a consequence of that statement. We
can, no doubt, escape having to say that it is simultaneously a proof of
whatever, in a platonistic sense, is as a matter of fact an intuitionistic con-
sequence of the statement: but when are we to be said to have recognised
that one statement is a consequence of another? If a proof of a univer-
sally quantified statement is simultaneously a proof of all its instances,
it is difficult to see how we can avoid conceding that a demonstration of
the validity of a schema of first-order predicate logic is simultaneously a
demonstration of the truth of all its instances, or an acceptance of the
induction schema simultaneously an acceptance of all cases of induction.
The resulting notion of proof would be far removed indeed from actual
mathematical experience, and could not be explained as no more than an
idealisation of it.

The trouble with all this is that, as a representation of actual mathe-
matical experience, we are operating with too simplified a notion of
proof. The axiom (n) is acceptable in the sense that, prescinding from the
occasional accident, once a theorem has been proved, it always remains
available to be subsequently appealed to: but the idea that, having
acknowledged the two premisses of a modus ponens, we have rhereby
recognised the truth of the conclusion, is plausible only in a case in which
we are simultaneously bearing in mind the truth of the two premisses. To
have once proved a statement is not thereafter to be continuously aware
of its truth: if it were, then we should indeed always know the logical
consequences of everything which we know, and should have no need of
proof.

Acceptance of axiom (B) leads to the conclusion that we shall eventu-
ally prove every logical consequence of everything we prove. This, as a
representation of the intuitionist notion of proof, is an improvement
upon Beth trees, as normally presented: for these are set up in such a way
that, at any stage (node), every logical consequence of statements true at
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that stage is already true; the Beth trees are adapted only to situations,
such as those involving free choice sequences, where new information is
coming in that is not derived from the information we have at earlier
stages. But the idea that we shall eventually establish every logical con-
sequence of everything we know is implausible and arbitrary: and it
cannot be rescued by construing each proof as, implicitly, a proof also of
the consequences of the statement proved, save at the cost of perverting
the whole conception. If we wish to do so, there seems no reason why we
should not take the stages represented by the numerical subscripts as
punctuated by proofs, however short the stages thereby become, and the
notion of proof as relating only to what is quite explicitly proved, so
that, at each stage, one and only new statement is proved, and consider
what axioms hold under the resulting interpretation of the symbol ‘+,’.
It thus appears that, under this interpretation, the axiom (8) must be
rejected in favour of the weaker axiom (y).

Looked at in another way, however, the stronger axiom (8) seems
entirely acceptable. If, that is, we interpret the implication sign in its
intuitionistic sense, the axiom merely says that, given a proof of A4, we
can effectively find a proof that 4 was proved at some stage; and this
seems totally innocuous and banal. But, if axiom (8) is innocuous, how
did we arrive at our earlier difficulties? The only possibility seems to be
that our logical laws are themselves at fault. For instance, the law

(0] vxA(x) = A(m)
leads, via axiom (8), to the conclusion
(W) YxA(x) = 3n(+,A(m)),

which appears, on the present interpretation of *+,’, to say that we shall
explicitly prove every instance of every universally quantified statement
which we prove; so perhaps the error lies in the jaw (M) itself. A law such
as (A) is ordinarily justified by saying that, given a proof of ¥xA4(x), we
can, for each m, effectively find & proof of 4 (m). If this is to remain a
sgfﬁciem justification of (u), then (1) must be construed as saying that,
given a proof of vx A (x), we can effectively find a proof that A (m) will
be proved at some stage. How can we do this, for given m? Qbviously,
by proving A(m) and noting the stage at which we do so. This means,
then, that the existentially quantified statement

) n(-,A(m))

is to be so understood that its assertion does not amount to a claim that
we shall, as a matter of fact, prove A(m) at some stage n, but only that
we are capable of bringing it about that A(m) is proved at some stage.
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Our difficulties thus appear to have arisen from understanding the exis-
tential quantifier in () in an excessively classical or realistic manner,
namely as meaning that there will in fact be a stage » at which the state-
ment is proved, rather than as meaning that we have an effective means,
if we choose to apply it, of making it the case that there is such a stage.
The point here is that it is not merely a question of interpreting the exis-
tential quantifier intuitionistically rather than classically in the sense that
we can assert that there is a stage # at which a statement will be proved
only if we have an effective means for identifying a particular such stage.
Rather, if quantification over temporal stages is to be introduced into
mathematical statements, then it must be treated like quantification over
mathematical objects and mathematical constructions: the assertion that
there is a stage n at which such-and-such will hold is justified provided
that we possess an enduring capability of bringing about such a stage,
regardless of whether we ever exercise this capability or not.

The confusions concerning the theory of the creative subject which we
have been engaged in disentangling arose in part from a perfectly legiti-
mate desire, to relate the intuitionistic truth of a mathematical statement
with a use of the logical constants which is alien to intuitionistic mathe-
matics. Troelstra’s difficulties sprang from his desire to construe the
expression ‘3n(+,A) as meaning that 4 would in fact be proved at
some stage: but, whether we interpret the existential quantifier classically
or constructively, such a way of construing it fails to jibe with the way it
and the other logical constants are construed within ordinary mathe-
matical statements, and hence, however we try to modify our notion of a
statement’s being proved, we shall not obtain anything equivalent to the
mathematical statement A itself. Nevertheless, the desire to express the
condition for the intuitionistic truth of a mathematical statement in
terms which do not presuppose an understanding of the intuitionistic
logical constants as used within mathematical statements is entirely licit.
Indeed, if it were impossible to do so, intuitionists would have no way of
conveying to platonist mathematicians what it was that they were about:
we should have a situation quite different from that which in fact
obtains, namely one in which some people found it natural to extend
basic computational mathematics in a classical direction, and others
found it natural to extend it in an intuitionistic direction, and neither
could gain a glimmering of what the other was at. That we are not in this
situation is because intuitionists and platonists can find a common
ground, namely statements, both mathematical and non-mathematical,
which are, in the view of both, decidable, and about whose meaning
there is therefore no serious dispute and which both sides agree obey a
classical logic. Each party can, accordingly, by use of and reference to
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these unproblematic statements, explain to the other what his conception
of meaning is for those mathematical statements which are in dispute.
Such an explanation may not be accepted as legitimate by the other side
(the whole point of the intuitionist position is that undecidable mathe-
matical statements cannot legitimately be given a meaning by laying
down truth-conditions for them in the platonistic manner): but at least
the conception of meaning held by each party is not wholly opaque to the
other.

This dispute between platonists and intuitionists is a dispute over
whether or not a realist interpretation is legitimate for mathematical
statements: and the situation I have just indicated is quite characteristic
for disputes concerning the legitimacy of a realist interpretation of some
class of statements, and is what allows a dispute to take place at all.
Typically, in such a dispute there is some auxiliary class of statements
about which both sides agree that a realist interpretation is possible
(depending upon the grounds offered by the anti-realists for rejecting a
realist interpretation for statements of the disputed class, this auxiliary
class may or may not consist of statements agreed to be effectively de-
cidable); and, typically, it is in terms of the truth-conditions of state-
ments of this auxiliary class that the anti-realist frames his conception of
meaning, his non-classical notion of truth, for statements of the disputed
class, while the realist very often appeals to statements of the auxiliary
class as providing an analogy for his conception of meaning for state-
ments of the disputed class. Thus, when the dispute concerns statements
about the future, statements about the present will form the auxiliary
class; when it concerns statements about material objects, the auxiliary
class will consist of sense-data statements; when the dispute concerns
statements about character-traits, the auxiliary class will consist of state-
ments about actual or hypothetical behaviour; and so on.

If the intuitionistic notion of truth for mathematical statements can be
explained only by a Tarski-type truth-definition which takes for granted
the meanings of the intuitionistic logical constants, then the intuitionist
notion of truth, and hence of meaning, cannot be so much as conveyed
Fq anyone who does not accept it already, and no debate between intu-
itionists and platonists is possible, because they cannot communicate
with one another. It is therefore wholly legitimate, and, indeed, essential,
to frame the condition for the intuitionistic truth of a mathematical
statement in terms which are intelligible to a platonist and do not beg any
questions, because they employ only notions which are not in dispute.
) The obvious way to do this is to say that a mathematical statement is
1ntuiti9nistically true if there exists an (intuitionistic) proof of it, where
the existence of a proof does not consist in its platonic existence in a
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realm outside space and time, but in our actual possession of it. Such a
notion of truth, obvious as it is, already departs at once from that sup-
plied by the analogue of the Tarski-type truth-definition, since the predi-
cate ‘is true’, thus explained, is significantly tensed: a statement not now
true may later become true. For this reason, when ‘true’ is so construed,
the schema (T) is incorrect: for the negation of the right-hand side of any
instance will be a mathematical statement, while the negation of the left-
hand side will be a non-mathematical statement, to the effect that we do
not as yet possess a proof of a certain mathematical statement, and hence
the two sides cannot be equivalent. We might, indeed, seek to restore the
equivalence by replacing ‘is true’ on the left-hand side by ‘is or will be
true’: but this would lead us back into the difficulties we encountered
with the theory of the creative subject, and I shall not further explore it.

What does require exploration is the notion of proof being appealed
to, and that also of the existence of a proof. It has often, and, I think,
correctly, been held that the notion of proof needs to be specialised if it is
to supply a non-circular account of the meanings of the intuitionistic
logical constants. It is possible to see this by considering disjunction and
existential quantification. The standard explanation of disjunction is
that a construction is a proof of A Vv B just in case it is a proof either of 4
or of B. Despite this, it is not normally considered legitimate to assert a
disjunction, say in the course of a proof, only when we actually have a
proof of one or other disjunct. For instance, it would be quite in order to
assert that

1019° 41 is either prime or composite

without being able to say which alternative held good, and to derive some
theorem by means of an argument by cases. What makes this legitimate,
on the standard intuitionist view, is that we have a method which is in
principle effective for deciding which of the two alternatives is correct: if
we were to take the trouble to apply this method, the appeal to an argu-
ment by cases could be dispensed with. Generally speaking, therefore, if
we take a statement as being true only when we actually possess a proof
of it, an assertion of a disjunctive statement will not amount to a claim
that it is true, but only to a claim that we have a means, effective in prin-
ciple, for obtaining a proof of it. This means, however, that we have to
distinguish between a proof proper, a proof in the sense of ‘proof” used
in the explanations of the logical constants, and a cogent argument. In
the course of a cogent argument for the assertibility of a mathematical
statement, a disjunction of which we do not possess, an actual proof may
be asserted, and an argument by cases based upon this disjunction. This
argument will not itself be a proof, since any initial segment of a proof
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must again be a proof: it merely indicates an effective method by which
we might obtain a proof of the theorem if we cared to apply it. We thus
appear to require a distinction between a proof proper - a canonical
proof - and the sort of argument which will normally appear in a mathe-
matical article or textbook, an argument which we may call a ‘demon-
stration’. A demonstration is just as cogent a ground for the assertion of
its conclusion as is a canonical proof, and is related to it in this way: that
a demonstration of a proposition provides an effective means for finding
a canonical proof. But it is in terms of the notion of a canonical proof
that the meanings of the logical constants are given. Exactly similar
remarks apply to the existential quantifier.

There is some awkwardness about this way of looking at disjunction
and existential quantification, namely in the divorce between the notions
of truth and of assertibility. It might be replied that the significance of
the act of assertion is not, in general, uniquely determined by the notion
of truth: for instance, even when we take the notion of truth for mathe-
matical statements as given, it still needs to be stipulated whether the
assertion of a mathematical statement amounts to a claim to have a
proof of it, or whether it may legitimately be based on what Polya calls a
‘plausible argument’ of a non-apodictic kind. (We can imagine people
whose mathematics wholly resembles ours, save that they do not con-
strue an assertion as embodying a claim to have more than a plausible
argument.) It nevertheless remains that, if the truth of a mathematical
statement consists in our possession of a canonical proof of it, while its
assertion need be based on possession of no more than a demonstra-
tion, we are forced to embrace the awkward conclusion that it may be
legitimate to assert a statement even though it is known not to be true.
Still, if the sign of disjunction and the existential quantifier were the only
logical constants whose explanation appeared to call for a distinction
between canonical proofs and demonstrations, the distinction might
be avoided altogether by modifying their explanations, to allow that a
proof of a disjunction consisted in any construction of which we could
{ecognise that it would effectively yield a proof of one or other dis-
Junct, and similarly for existential quantification: we should then be
able to say that a statement could be asserted only when it was (known
to be) true.

However, the distinction is unavoidable if the explanations of univer-
sal quantification, implication and negation are to escape circularity.
The standard explanation of implication is that a proof of A > Bisa
construction of which we can recognise that, applied to any proof of A4, it
would yield a proof of B. It is plain that the notion of proof being used
here cannot be one which admits unrestricted use of modus ponens: for,
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if it did, the explanation would be quite empty. We could admit anything
we liked as constituting a proof of 4 — B, and it would remain the case
that, given such a proof, we had an effective method of converting any
proof of A4 into a proof of B, namely by adding the proof of 4 — B and
performing a single inference by modus ponens. Obviously, this is not
what is intended: what is intended is that the proof of 4 — B should
supply a means of converting a proof of 4 into a proof of B without
appeal to modus ponens, at least, without appeal to any modus ponens
containing 4 — B as a premiss. The kind of proof in terms of which the
explanation of implication is being given is, therefore, one of a restricted
kind. On the assumption that we have, or can effectively obtain, a proof
of A — B of this restricted kind, an inference from 4 — B by modus
ponens is justified, because it is in principle unnecessary. The same must,
by parity of reasoning, hold good for any other application of modus
ponens in the main (though not in any subordinate) deduction of any
proof. Thus, if the intuitionistic explanation of implication is to escape,
not merely circularity, but total vacuousness, there must be a restricted
type of proof - canonical proof - in terms of which the explanation is
given, and which does not admit modus ponens save in subordinate de-
ductions. Arguments employing modus ponens will be perfectly valid
and compelling, but they will, again, not be proofs in this restricted
sense: they will be demonstrations, related to canonical proofs as
supplying a means effective in principle for finding canonical proofs.
Exactly similar remarks apply to universal quantification vis-a-vis uni-
versal instantiation and to negation vis-a-vis the rule ex falso quodlibet:
the explanations of these operators presuppose a restricted type of proof
in which the corresponding elimination rules do not occur within the
main deduction.

What exactly the notion of a canonical proof amounts to is obscure.
The deletion of elimination rules from a canonical proof suggests a com-
parison with the notion of a normalised deduction. On the other hand,
Brouwer’s celebrated remarks about fully analysed proofs in connection
with the bar theorem do not suggest that such a proof is one from which
unnecessary detours have been cut out - the proof of the bar theorem
consists in great part in cutting out such detours from a proof taken
already to be in ‘fully analysed’ form. Rather, Brouwer’s idea appears to
be that, in a fully analysed proof, all operations on which the proof
depends will actually have been carried out. That is why such a proof
may be an infinite structure: a proof of a universally quantified state-
ment will be an operation which, applied to each natural number,
will yield a proof of the corresponding instance; and, if this opera-
tion is carried out for each natural number, we shall have proofs of
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denumerably many statements. The conception of the mental
construction which is the fully analysed proof as being an infinite
structure must, of course, be interpreted in the light of the intuitionist
view that all infinity is potential infinity: the mental construction consists
of a grasp of general principles according to which any finite segment of
the proof could be explicitly constructed. The direction of analysis runs
counter to the direction of deduction; while one could not be convinced
by an actually infinite proof-structure (because one would never reach
the conclusion), one may be convinced by a potentially infinite one,
because its infinity consists in our grasp of the principles governing its
analysis. Indeed, it might reasonably be said that the standard intuition-
istic meanings of the universal and conditional quantifiers involve thata
proof is such a potentially infinite structure. Nevertheless, the notion of
a fully analysed proof, that is, of the result of applying every operation
involved in the proof, is far from clear, because it is obscure what the
effect of the analysis would be on conditionals and negative statements.
We can systematically display the results of applying the operation which
constitutes a proof of a statement involving universal quantification over
the natural numbers, because we can generate each natural number in
sequence. But the corresponding application of the operation which con-
stitutes the proof of a statement of the form 4 — B would consist in
running through all putative canonical proofs of A and either showing,
in each case, that it was not a proof of A, or transforming itinto a proof
of B; and, at least without a firm grasp upon the notion of a canonical
proof, we have no idea how to generate all the possible candidates for
being a proof of A.

The notion of canonical proof thus lies in some obscurity; and this
state of affairs is not indefinitely tolerable, because, unless it is possible
to find a coherent and relatively sharp explanation of the notion, the via-
bility of the intuitionist explanations of the logical constants must remain
in doubt. But, for present purposes, it does not matter just how the
notion of canonical proof is to be explained; all that matters is that we
require some distinction between canonical proofs and demonstrations,
related to one another in the way that has been stated. Granted that such
a distinction is necessary, there is no motivation for refusing to apply it
to the case of disjunctions and existential statements.

Let us now ask whether we want the intuitionistic truth of a mathe-
matical statement to consist in the existence of a canonical proof or of 2
demonstration. If by the ‘existence’ of a proof or demonstration we
mean that we have actually explicitly carried one out, then either choice
leaves us with certain counter-intuitive consequences. On either view,
naturally, a valid rule of inference will not always lead from true prem-
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isses to a true conclusion, namely if we have not explicitly drawn the
inference: this will always be so on any view which equates truth with our
actual possession of some kind of proof. If we take the stricter line, and
hold a statement to be true only when we possess a canonical proof of it,
then, as we have seen, we shall have to allow that a statement may be
asserted even though it is known not to be true. If, on the other hand, we
allow that a statement is true when we possess merely a demonstration of
it, then truth will not distribute over disjunction: we may possess a
demonstration of 4 v B without having a demonstration either of 4 or of
B. Now, admittedly, once we have admitted a significant tense for the
predicate ‘is true’, then, as we have noted, the schema (T) cannot be
maintained as in all cases correct: but our instinct is to permit as little
divergence from it as possible, and it is for this reason that we are uneasy
about a notion of truth which is not distributive over disjunction or exis-
tential quantification.

A natural emendation is to relax slightly the requirement that a proof
or demonstration should have been explicitly given. The question is how
far we may consistently go along this path. If we say merely that a mathe-
matical statement is true just in case we are aware that we have an effec-
tive means of obtaining a canonical proof of it, this will not be signifi-
cantly different from equating truth with our actual possession of a
demonstration. 1t might be allowed that there would be some cases when
we had demonstrated the premisses of, say, an inference by modus
ponens in which we were aware that we could draw the conclusion, though
we had not quite explicitly done so; but there will naturally be others in
which we were not aware of this, i.e. had not noticed it; if it were not so,
we could never discover new demonstrations. It is therefore tempting to
go one step further, and say that a statement is true provided that we are
in fact in possession of a means of obtaining a canonical proof of it,
whether or not we are aware of the fact. Would such a step be a betrayal
of intuitionist principles? )

In which cases would it be correct to say that we possess an effective
means of finding a canonical proof of a statement, although we do not
know that we have such a means? Unless we are to suppos¢ that we can
attain so sharp a notion of a canonical proof that it would be possible to
enumerate effectively all putative such proofs of a given statement (the
supposition whose implausibility causes our difficulty over the notion of
a fully analysed proof), there is only one such case: that in which we
possess a demonstration of a disjunctive or existential statemel?t. Sucha
demonstration provides us with what we recognise as an effective n)eans
(in principle) for finding a canonical proof of the disjunctive or exnstep-
tial statement demonstrated. Such a canonical proof, when found, will
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be a proof of one or other disjunct, or of one instance of the existentially
quantified statement: but we cannot, in general, tell which. For example,
when A (x) is a decidable predicate, the decision procedure constitutes a
demonstration of the disjunction ‘A (#)V ~A (i), for specific n; but,
until we apply the procedure, we do not know which of the two disjuncts
we can prove. It is very difficult for us to resist the temptation to suppose
that there is already, unknown to us, a determinate answer to the ques-
tion which of the two disjuncts we should obtain a proof of, were we to
apply the decision procedure; that, for example, that it is already the case
either that, if we were to test it out, we should find that 1019° 41 is
prime, or that, if we were to test it out, we should find that it was com-
posite. What is involved here is the passage from a subjunctive condi-
tional of the form:

A—=>(BVC)
to a disjunction of subjunctive conditionals of the form
(A—>B)Vv(A—C(C).

Where the conditional is interpreted intuitionistically, this transition is,
of course, invalid: but the subjunctive conditional of natural language
does not coincide with the conditional of intuitionistic mathematics. Itis,
indeed, the case that the transition is not in general valid for the subjunc-
tive conditional of natural language either: but, when we reflect on the
cases in which the inference fails, it is difficult to avoid thinking that the
present case is not one of them.

There are two obvious kinds of counter-example to this form of infer-
ence for ordinary subjunctive conditionals: perhaps they are really two
sub-varieties of a single type. One is the case in which the antecedent A
requires supplementation before it will yield a determinate one of the
disjuncts B and C. For instance, we may safely agree that, if Fidel Castro
were to meet President Carter, he would either insult him or speak
politely to him; but it might not be determinately true, of either of those
things, that he would do it, since it might depend upon some so far
unspecified further condition, such as whether the meeting took place in

Cuba or outside. Schematically, this kind of case is one in which we can
assert:

A = (BVC),
(A& Q) B,
(A& -Q)—C,
but in \fvhich the S}lbjunctive antecedent A neither implies nor presup-
poses either Q or its negation; in such a case, we cannot assert either
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A — Bor A — C. The other kind of counter-example is that in which we
do not consider the disjuncts to be determined by anything at all: no sup-
plementation of the antecedent would be sufficient to decide between
them in advance. If that light-beam were to fall upon an atom, either it
would assume a higher energy level, or it would remain in its ground
state; but nothing can determine for certain in advance which would
happen. Similar cases will arise, for those who believe in free will in the
traditional sense, in respect of human actions.

If we were to carry out the decision procedure for determining the
primality or otherwise of some specific large number N, we should either
obtain the result that N is prime or obtain the result that NV is composite.
Is this, or is it not, a case in which we may conclude that it either holds
good that, if we were to carry out the procedure, we should find that N is
prime, or that, if we were to carry out the procedure, we should find that
N is composite? The difficulty of resisting the conclusion that it is such a
case stems from the fact that it does not display either of the charac-
teristics found in the two readily admitted types of counter-example to
the form of inference we are considering. No further circumstance could
be relevant to the result of the procedure - this is part of what is meant by
calling it a computation; and, since at each step the outcome of the pro-
cedure is determined, how can we deny that the overall outcome is deter-
minate also?

If we yield to this line of thought, then we must hold that every state-
ment formed by applying a decidable predicate to a specific natural
number already has a definite truth-value, true or false, although we may
not know it. And, if we hold this, it makes no difference whether we
chose at the outset to say that natural numbers are creations of the
human mind or that they are eternally existing abstract objects. Which-
ever we say, our decision how to interpret undecidable statements of
number theory, and, in the first place, statements of the forms vxA4(x)
and 3xA (x), where A (x) is decidable, will be independent of our view
about the ontological status of natural numbers. For, on this view of the
truth of mathematical statements, each decidable number-theoretic state-
ment will already be determinately true or false, independently of our
knowledge, just as it is on a platonistic view; any thesis about the
ontological character of natural numbers will then be quite irrelevan_t to
the interpretation of the quantifiers. As we noted, it would be p_ossmle
for someone to be prepared to regard natural numbers as tlmelc?ss
abstract objects, and to regard decidable predicates as being determin-
ately true or false of them, and yet to be convinced by an argument of- the
first type, based on quite general considerations concerning meaning,
that unbounded quantification over natural numbers was not an operation
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which in all cases preserved the property of possessing a determinate
truth-value, and therefore to fall back upon a constructivist interpreta-
tion of it. Conversely, if someone who thought of the natural numbers as
creations of human thought also believed, for the reasons just indicated,
that each decidable predicate was determinately true or false of each of
themn, he might accept a classical interpretation of the quantifiers. He
would do so if he was unconvinced by the general considerations about
meaning which we reviewed, i.e., by the first type of argument for the
adoption of an intuitionistic logic for mathematics: the fact that he was
prepared to concede that the natural numbers come into existence only in
virtue of our thinking about them would play no part in his reflections on
the meanings of the quantifiers. Dedekind, who declared that mathe-
matical structures are free creations of the human mind, but nevertheless
appears to have construed statements about them in a wholly platonistic
manner, may perhaps be an instance of just such a combination of ideas.

One who rejects the idea that there is already a determinate outcome
for the application, to any specific case, of an effective procedure is,
however, in a completely different position. If someone holds that the
only acceptable sense in which a mathematical statement, even one that is
effectively decidable, can be said to be true is that in which this means
that we presently possess an actual proof or demonstration of it, then a
classical interpretation of unbounded quantification over the natural
numbers is simply unavailable to him. As is frequently remarked, the
classical or platonistic coneption is that such quantification represents an
infinite conjunction or disjunction: the truth-value of the quantified
statement is determined as the infinite sum or product of the truth-values
of the denumerably many instances. Whether nor not this be regarded as
an acceptable means of determining the meaning of these operators, the
explanation presupposes that all the instances of the quantified statement
themselves already possess determinate truth-values: if they do not, it is
impossible to take the infinite sum or product of these. But if, for
example, we do not hold that such a predicate as ‘x is odd —» x is not
perfect’ already has a determinate application to each natural number,
though we do not know it, then it is just not open to us to think that, by
attaching a quantifier to this predicate, we obtain a statement that is
determinately true or false.

One question which we asked earlier was this: Can the thesis that
natural numbers are creations of human thought be taken as a premiss
for the adoption of an intuitionistic logic for number-theoretic state-
ments? And another question was: What content can be given to the
the§is that natural numbers are creations of human thought that does not
prejudge the question what is the correct notion of truth for number-
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theoretic statements in general? The tentative answer which we gave to
this latter question was that the thesis might be taken as relating to the
appropriate notion of truth for a restricted class of number-theoretic
statements, say numerical equations, or, more generally, decidable state-
ments. From what we have said about the intuitionistic notion of truth
for mathematical statements, it has now become apparent that there is
one way in which the thesis that natural numbers are creations of the
human mind might be taken, namely as relating precisely to the appro-
priate notion of truth for decidable statements of arithmetic, which
would provide a ground for rejecting a platonistic interpretation of
number-theoretic statements generally, without appeal to any general
thesis concerning the notion of meaning. This way of taking the thesis
would amount to holding that there is no notion of truth applicable even
to numerical equations save that in which a statement is true when we
have actually performed a computation (or effected a proof) which justi-
fies that statement. Such a claim must rest, as we have seen, on the most
resolute scepticism concerning subjunctive conditionals: it must deny
that there exists any proposition which is now true about what the result
of a computation which has not yet been performed would be if it were to
be performed. Anyone who can hang on to a view as hard-headed as this
has no temptation at all to accept a platonistic view of number-theoretic
statements involving unbounded quantification: he has a rationale for an
intuitionistic interpretation of them which rests upon considerations
relating solely to mathematics, and demanding no extension to other
realms of discourse (save in so far as the subjunctive conditional is
involved in explanations of the meanings of statements in these other
realms). But, for anyone who is not prepared to be quite as hard-headed
as that, the route to a defence of an intuitionistic interpretation of
mathemnatical statements which begins from the ontological status of
mathematical objects is closed; the only path that he can take to this goal
is that which 1 sketched at the outset: one turning on the answers given to
general questions in the theory of meaning.
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GOTTLOB FREGE

Each individual number is an independent object

35. Having recognized that a statement of number is an assertion about a
concept, we can attempt to supplement the leibnizian definitions of the
individual numbers by means of the definitions of 0 and of 1.

Right away we might say: the number 0 applies to a concept, if no
object falls under that concept. Here, however, “no’’ appears to have
been substituted for 0, with which it is synonymous. Therefore the fol-
lowing wording is preferable: the number 0 applies to a concept if, no
matter what 2 might be, the statement always holds that @ does not fall
under this concept.

Similarly we could say: the number 1 applies to a concept F if it is not
the case that no matter what a is, @ does not fall under F, and if from the
staternent

‘a falls under F’ and ‘b falls under F’

it always follows that @ and & are the same.

We must still define in general the transition from one number to the
next. We will try the following formulation: the number (n+1) applies
to the concept F'if there is an object a which falls under F and such that

the number 7 applies to the concept ‘*falling under £ but not [identical
with} a.”

56. These definitions appear so natural, following our previous results,
that an explanation is called for to show why they cannot satisfy us.
The last definition will most quickly arouse hesitation, for, strictly
speaking, the sense of the expression ‘the number n applies to the con-
cept G’ is just as unknown to us as that of the expression ‘the number

(n+1) applies to the concept F’. To be sure, we can say by means of this
and the next-to-last definition what

‘the number 1+1 applies to the concept F’

Translated by Michael S. Mahoney from Gottiob Frege, Die Grundiagen der Arithmetik
(Breslau: 1884), pp. 67-104, 115-19.
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means, and then, using this, indicate the sense of the expression
‘the number 1+1+1 applies to the concept F’, etc.

But, to give a crude example, we can never decide by means of our defini-
tions, whether the number Julius Caesar applies to a concept, whether
this well-known conqueror of Gaul is a number or not. Furthermore, we
cannot prove with the help of our attempted definitions that ¢ must equal
b if a applies to the concept F and b applies to the same concept. The ex-
pression ‘the number which applies to the concept F’ would, therefore,
not be justifiable, and it would consequently be completely impossible to
prove a numerical equality because we could never isolate a definite num-
ber. It is only apparent that we have defined 0 and 1; as a matter of fact,
we have only determined the sense of the expressions

‘the number 0 applies to’
and
‘the number 1 applies to’;

but it is not permissible to isolate in these 0 and 1 as independent, recog-
nizable objects.

57. Here is the place to examine somewhat more closely our statement
that a statement of number involves an assertion about a concept. In the
sentence ‘the number 0 applies to the concept F°, 0 is only a part of the
predicate, if we consider the concept F as the actual subject. Therefore I
have avoided calling numbers like 0, 1, 2 properties of concepts. The indi-
vidual number appears as a separate independent object for the very
reason that it forms only & part of the assertion. I have already called
attention above to the fact that we say ‘the [number] 1’ and, by means of
the definite article, set up 1 as an object.

This independence appears everywhere in arithmetic, e.g., in the equa-
tion ‘141 =2". Since the important thing here is to grasp the concept of
number in such a way that it is useful for science, it needn’t disturb us
that in everyday usage the number appears attributively. This may
always be avoided. E.g., the sentence ‘Jupiter has four moons’ may be
rearranged to form ‘The number of Jupiter’s moons is four’. Here the
‘is” is not to be considered merely a copula, as in the sentence ‘the sky is
blue’. This is shown by the fact that one can say ‘the number of Jupiter’s
moons is four’ or ‘is the number four’. Here ‘is’ has the sense of ‘is equal
to’, ‘s the same as’. We have, therefore, an equation which asserts that
the expression ‘the number of Jupiter’s moons’ denotes the same object
as the word ‘four’. And the form of the equation is the reigning one in
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arithmetic. The fact that nothing about Jupiter or about a moon is con-
tained in the word ‘four’ is no objection to this interpretation. Neither is
there anything in the name ‘Columbus’ to suggest discovery or America,
and nonetheless the same man is called both Columbus and the dis-
coverer of America.

58. One could object that we cannot at all represent' to ourselves the
object which we call four or the number of Jupiter’s moons as something
separate and indepenent. However, it is not the separateness which we
have given the number that is at fault. To be sure, one would like to
believe that in picturing the four spots of a die something appears which
corresponds to the word ‘four’ - but that is an illusion. Think of a green
meadow and see whether the picture changes when the indefinite article is
replaced by the number ‘one’. Nothing is added, but there is certainly
something in the picture corresponding to the word ‘green’.

if one pictures for himself the printed word ‘gold’, one will not at first
associate any number with it. Were one now to ask himself how many
letters the word has, the result would be the number 4; the picture, how-
ever, will be in no way more definite, but can remain wholly unchanged.
The added concept “letter of the word ‘gold’ ” is the very thing in which
we discover the number. In the case of the four spots of a die the situa-
tion is somewhat less obvious because the concept is forced upon us so
directly by the similarity of the spots that we hardly notice its intrusion.
The number can be picrured [translator’s italics] neither as a separate
object nor as a property of an outward thing, because it is neither some-
thing sensible nor the property of an outward thing. The situation is
probably most clear in the sense of the number 0. One will try in vain to
picture O visible stars. To be sure, one can think of the sky completely
covered up by clouds; but there is nothing in this picture which might
cprrespond to the word ‘star’ or to the 0. One is only imagining a situa-
tion in which one may conclude: now no star may be seen.

5.9. Perhaps each word awakens some sort of picture for us, even a word
like ‘only’. The picture, however, need not correspond to the content of
the word; it can be an entirely different one for different men. One will
then probably imagine a situation which evokes a sentence in which the
word occurs; or the spoken word might call forth the written word in
one’s memory.

This does not occur only in the case of particles. There can be no doubt
that we lack any idea [picture] of our distance from the sun. For, even if

*In the sense of ‘picture’.
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we know the rule about the number of times we must multiply a unit of
measure, nevertheless any attempt by this rule to sketch a picture which
even slightly approaches the one desired is doomed to fail. This is, how-
ever, no reason to doubt the correctness of the computation by which the
distance has been found, and it in no way hinders us in basing further
conclusions on this being the distance.

60. Even such a concrete thing as the earth we cannot picture in the way
that we have learned it actually to be, but rather we are satisfied with a
sphere of medium size, which serves us as a symbol for the earth, know-
ing nevertheless that the two are very different from one another. Now
although our picture often does not at all meet the requirements, still we
make judgments with great certainty about an object like the earth, even
where its size is concerned.

Thought often leads us far beyond the imaginable without thereby
depriving us of the basis for our conclusions. Even if, as it appears,
thought without mental pictures is impossible for us men, still their con-
nection with the object of thought can be wholly superficial, arbitrary,
and conventional.

The unimaginability of the content of a word is no reason, then, to
deny it any meaning or to exclude it from usage. That we are nevertheless
inclined to do so is probably owing to the fact that we consider words
individually and ask about their meaning [in isolation], for which we
then adopt a mental picture. Thus a word for which we are lacking a cor-
responding inner picture will seem to have no content. However, we must
always consider a complete sentence. Only in [the context of] the latter
do the words really have a meaning. The inner pictures which somehow
sway before us (in reading the sentence) need not correspond to the logi-
cal components of the judgment. It is enough if the sentence as a whole
has a sense; by means of this its parts also receive their content.

This observation seems to me to be useful in throwing light on several
difficult concepts, such as that of the infinitesimal,’ and its scope is prob-
ably not limited to mathematics.

The separateness [independence] which I require for the number is not
intended to mean that a number-word used outside of the context of a
sentence shall denote anything, but rather I want only to exclude its use
as a predicate or attribute, for such a use somewhat alters its meaning.

2What is in question here is defining the sense of an equation like
df (x)=g(x)dx
rather than finding an interval bounded by two distinct points and of length dx.
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61. But, one might object, even if the earth is really unimaginable, still it
is an external thing having a definite place. Where, however, is the num-
ber 47 It is neither outside of us nor inside of us. Taken in spatial terms,
this is correct. A determination of the place of the number 4 makes no
sense. But, from this it follows only that the number 4 is not a spatial
object, not that it is no object at all. Not every object is somewhere. Even
our mental pictures® are in this sense not in us (subcutaneously). In us
there are ganglia cells, blood particles, etc., but no mental pictures. Spa-
tial predicates are not applicable to them: the one is neither right nor left
of the other. Mental pictures have no distances between them which may
be stated in millimeters. When nevertheless we refer to them as in us, we
mean that they are subjective.

Even if the subjective has no spatial location, however, how is it pos-
sible for the number 4, which is objective, to be nowhere? Now I main-
tain that there is no contradiction here. The number 4 is, as a matter of
fact, exactly the same for everyone who works with it; but this has nothing
to do with spatiality. Not every objective object has a place.

In order to obtain concept of number, one must
determine the sense of a numerical equation

62. How shall we have a number, then, if we can have no idea or picture
of it? Only in the context of a sentence do words have meaning. We
must, therefore, define the sense of a sentence in which a number-word
occurs, This seems at first to leave a lot of latitude, but we have already
determined that number-words are to be understood as standing for
independent objects. This already specifies a class of sentences which
must have a sense, the class of those sentences which express the recog-
nition [of & number as the same number). If for us the symbol g is to
denote an object, then we must have & criterion which determines in
every case whether b is the same as g, even if it is not always within our

power to apply this criterion. In our present case, we must explain the
sense of the statement:

‘the number which applies to the concept F is the same number as
that which applies to the concept G,

i-‘?" we must reproduce the content of this statement in another way
without using the expression

‘the number which applies to the concept F’.

In doing this, we give a general criterion for the equality of numbers.

3This word is understood purely psychologically, not psychophysically.
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Once we have obtained such a means of grasping a definite number and
recognizing it as such, we can assign it a number-word as its proper name.

63. Hume (Baumann 1868-9, 2: 565) has already mentioned such a
means: ‘“‘If two numbers are so combined that the one always has a unit
which corresponds to each unit of the other, then we claim they are
equal.”” In more recent times, the opinion seems to have found much
sympathy among mathematicians, that the equality of numbers must be
defined in terms of a one-to-one correspondence. Immediately, however,
there arise certain logical hesitations and difficulties, which we must not
pass by without examination.

The relationship of equality does not hold only among numbers. It
seems to follow from this that the relationship should be defined espe-
cially for numbers. One would think it possible to derive a criterion of
when numbers are identical with one another from a previously deter-
mined concept of identity together with the concept of number, without
its being necessary, for this purpose, to define a special concept of
numerical identity.

Contrary to this, it should be noted that, for us, the concept of number
has not yet been defined, but rather is to be determined by means of our
definition of numerical identity. We intend to reconstruct the content of
judgments interpretable as expressing identities each side of which is a
number. We do not, therefore, want to define equality especially for this
instance, but we wish rather, by means of the already familiar concept of
equality, to determine that which is to be considered equal. This seems
indeed to be a very unusual type of definition, which has probably not
yet received sufficient attention from the logicians. Nevertheless, that it
is not entirely unheard of may be shown by a few examples:

64. The judgment: ‘the [straight] line a is parallel to the [straight] line b,
or, symbolically:

allb,

can be interpreted as an equation. If we do this, we obtain the concept of
direction and say: ‘the direction of line a is the same as the direction of
line b’. Hence, we replace the symbol ‘||” by the more general ‘=", by
distributing the particular content of the former to 4 and b. We split up
the content in some way other than the original way and thus obtain a
new concept. Often the situation is interpreted conversely, and several
teachers define: parallel lines are those having the same direction. The
theorem *‘if two straight lines are parallel to a third, then they are paral-
lel to one another” can then be very easily proved on the basis of the
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similarly worded equality theorem. Unfortunately, this method reverses
the natural order of things. For everything geometric must indeed be
intuitive, at least originally. Now I ask whether anyone has ever had an
intuition of the direction of a straight line? Of the straight line, yes, but
can one also distinguish intuitively this line from its direction? Rather
difficult! This concept is found only by means of a mental activity con-
nected with intuition. On the other hand, one has a picture of parallel
lines. That proof comes about only through a trick in which what is to be
proved is covertly presupposed in the use of the word ‘direction’; for,
were the statement: ‘if two straight lines are parallel to a third, then they
are parallel to one another’ false, then one could not change ‘a|| &’ into
an equation.

Thus one can obtain from the parallelism of planes a concept which
corresponds to that of direction among straight lines. 1 have seen the
name ‘orientation’ used for this concept. From geometric similarity there
arises the concept of shape, so that, e.g., instead of ‘the two triangles are
similar’, one says: ‘the two triangles have the same shape’ or ‘the shape
of the one triangle is equal to the shape of the other.’ Similarly one can
also obtain from the collinear relationship of geometric figures a concept
for which a name is probably still lacking.

65. Now, in order to move, e.g., from parallelism* to the concept of
direction, let us try the following definition: the sentence

‘line @ is parallel to line »’
is to be synonymous with
‘the direction of line a is the same as the direction of line b’

This definition departs from common practice insofar as it apparently
defines the already familiar relation of equality, while it should in actual-
ity introduce the expression ‘the direction of line a’, which occurs only
incidentally. From this there arises a second hesitation; viz., whether,
through such a stipulation, we could not become involved in contradic-
tions with the familiar laws of equality. What are these? They will be

developed as analytic truths from the concept itself. Now, Leibniz
defines:*

“In order to be able to express myself more comfortably and to be more easily under-
st00fi. I speak here of parallelism. The essential parts of these discussions are very easily
carried over to the case of numerical equality.

$Non inelegans specimen demonstrandi in abstractis (Erdmann 1840: 94).
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“Eadem sunt, quorum unum potest substitui alteri salva veritate.’’
{*“Things are equal which may be substituted for one another with-
out change of truth [value].”’]

[ will adopt this definition. Whether, like Leibniz, one says ‘the same’
or ‘equal’, is of little import. ‘The same’ does seem to express complete
agreement, ‘equal’ only agreement in this respect or that. One can, how-
ever, assume a manner of speaking in which this difference is eliminated,
e.g., by saying instead of ‘the lines are equal in length’ that ‘the length of
the lines is equal’ or ‘the same’; instead of saying ‘the surfaces are equal
in color’ one might say ‘the color of the surfaces is equal [identical]’.

And this is the way we used the word in the foregoing examples. In
fact, all the laws of equality are contained in the principle of universal
substitutivity.

In order to justify our proposed definition of the direction of a straight
line, we would have to show, then, that

‘the direction of a’
can be everywhere replaced by
‘the direction of 4°,

if line a is parallel to line 4. This is simplified by the fact that, at first, we
know no assertion about the direction of a straight line other than its
agreement with the direction of another straight line. We would therefore
need to demonstrate only the substitutivity in such an equation or in con-
texts which would contain such equations as component parts.® All other
statements about directions would have to be defined first, and for these
definitions we can adopt the rule that the substitutivity of the direction of
a straight line for that of one parallel to it must be preserved.

66. Still a third hesitation arises, however, concerning our proposed defi-
nition. In the sentence
‘the direction of a is equal to the direction of &’,

the direction of @ appears as an object,” and we have in our definition a
means of recognizing this object, should it appear in some other guise,

SFor example, in a hypothetical judgment an equality of directions could occur either as
antecedent or as consequent. . . i .

"The definite article points to this. A concept is for me a possible predicate in a singular
thought content, an object a possible subject of the latter. [Although the (ern:unology of
““thought contents’’ has been adopted, Frege must not be (aken. to mean aqﬂhmg psycho-
logical by ‘thought’. For Frege a “‘thought content”” is what is asserted in a statement,
asked in a question, etc....] If, in the sentence ‘the direction of the axis of the (el?scope is
equal to the direction of the earth’s axis’, we consider the direction of the telescope’s axis to
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such as the direction of . However, this method is not sufficient for all
cases. One cannot use it to decide whether England is the same as the
direction of the earth’s axis. Please excuse this apparently nonsensical
example! Naturally, no one is going to confuse England with the direc-
tion of the earth’s axis; but this is not owing to our definition. The latter
says nothing about whether the statement

‘the direction of a is equal to q’

is to be affirmed or denied, if q itself is not given in the form ‘the direc-
tion of &’. We lack the concept of direction; for, if we had this, then we
could stipulate that, if q is not a direction, then our statement is to be
denied; if g is a direction, then the earlier definition decides. It is now but
a step away to define:

q is a direction if there is a straight line & whose direction is ¢.

However, it is clear that we have now come around in a circle. In order to

apply this definition, we would first have to know in each case whether
the statement

‘g is equal to the direction of &’

was to be affirmed or denied.

67. If we were to say: q is a direction if it is introduced by means of the
foregoing definitions, then we would be treating the manner by which the
object q is introduced as a property of it, which it is not. The definition
of an object, as such, really says nothing about that object; rather it stip-
ulates the meaning of & symbol. Once that has happened, the deflnition
becomes a judgment which treats of the object: It now no longer Intro-
duces the object but stands on equal footing with other statements about
ft. To choose this way out Is to presuppose that an object could be given
in one way only; otherwise it would not follow from the fact that g is not
introduced by means of our definition that it could not be so introduced.
The import of any equation would then be that what is given us in the
same way should be recognized as the same. But this principle is sO
obvious and so unfruitful that there is little to be gained by stating it. AS
a matter of fact, no conclusion could be drawn from it which would not
be the same as some premise. The many-sided and broad applicability of
equations is based rather on the fact that something is recognizable again
even though it is given in a different way.

be the subject, then the predicate is ‘equal to the direction of the earth’s axis’. This is 2

concept. But the direction of the earth’s axis is only a part of the icate; the direction is
an object, since it can also be made the subject. yap predicate;
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68. Since this method fails to yield a sharply delimited concept of direc-
tion and, for the same reason, would yield no such concept of number,
let us try a different tack. If line a is parallel to line b, then the extension
of the concept ‘‘line parallel to line @’’ is the same as the extension of the
concept “‘line parallel to line &°°; and conversely: if the extensions of the
aforementioned concepts are equal, then a is parallel to b. Let us try,
then, to define:

the direction of line a is the extension of the concept ‘‘parallel to
line a”’

the shape of triangle d is the extension of the concept “‘similar to tri-
angle d.”

If we want to apply this to our case, then we must substitute concepts
for the lines or the triangles and, for parallelism or similarity, the pos-
sibility of correlating in one-to-one fashion the objects falling under the
one concept with those falling under the other. As an abbreviation, I will
call the concept F equinumerous® with the concept G, if this possibility
exists; I must, however, request that this word be considered an arbi-
trarily chosen notational device whose meaning is not to be taken from
its linguistic composition, but rather from the foregoing definition.

1 define accordingly:

the number which applies to the concept F is the extension’® of the
concept “‘equinumerous with the concept F.”

69. That this definition is correct will, at first perhaps, not be so clear.
Don't we mean something other than [different from] a number by the
extension of a concept? What we do mean becomes clear from the basic
statements that can be made about extensions of concepts. They are the
following:

'lFrese coined ‘gleichziihlig’ for this. In his translation, J. L. Austin (Fr;ge l959) uses
‘equal’ and adds the following footnote: * Gleichzéhlig - an invented word, literally ‘identi-
numerate’ or ‘tautarithmic’; but these are too clumsy for constant use. Other transl‘a}or‘s
have used ‘equinumerous’; ‘equinumerate’ would be better. Later \:rn‘t.ers have used ‘simi-
lar’ in this connection (but as a predicate of ‘class’ not of ‘concept ). - Tr.]

°I think we could say for ‘extension of the concept’ simply ‘concept’. However, there
might be two objections: o )

1. This stands in contradiction to my earlier assertion that the .lndm‘duitl‘ numt:t,?rb is ?ln
object, the Iatter being indicated by the use of the article in expressions like ““the 2,” by the
impossibimy of speaking about ones, twos, etc. in the plural, and by the fact that the num-
ber makes up only a part of the predicate of a statement 9f_numbcr.

2. Concepts can have the same extension without coinciding. . . d lead

Now | am of the opinion that both these objections can be me!, but doing this wou d lea
Us 100 far astray. 1 presuppose that one knows what the extension of a concept 15.
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1. that they are equal,
2. that the one encompasses more than the other.

Now the statement

‘the extension of the concept “equinumerous with the concept F” is
the same as the extension of the concept “‘equinumerous with the
concept G’

is true if and only if the statement
‘the same number applies to the concept F as to the concept G’

is also true. Hence, there is complete agreement here.

To be sure, one does not say that one number encompasses more than
another in the same sense that the extension of one concept encompasses
more than does another; however, so is it impossible that

the extension of the concept ‘‘equinumerous with the concept F”’

should encompass more than
the extension of the concept ‘‘equinumerous with the concept G’

Rather, if all concepts which are equinumerous with G are also equi-
numerous with F, then conversely, all concepts which are equinumerous
with F are also equinumerous with G. This term ‘more encompassing’
should not, of course, be confused with the term ‘greater’, which occurs
among numbers.

Certainly, it is also imaginable that the extension of the concept *‘equi-
numerous with the concept £’ might encompass more or less than the
extension of another concept; the latter, then, could not be a number
according to our definition. Furthermore, it is not usual to call a number
more or less encompassing than the extension of a concept. Nonetheless,
there is nothing in the way of so speaking should the occasion arise.

Completion and confirmation of our definition

70. Definitions are confirmed by their fruitfulness. Those definitions
which could just as easily be left out without invalidating proofs should
be discarded as wholly worthless.

Let us see, then, whether some of the familiar properties of numbers
can be derived from our definition of the number which applies to the
concept F. We will be satisfied here by the most simple properties.

In order to do this, it is necessary to specify somewhat more exactly the
meaning of equinumerosity. We defined it in terms of one-to-one corre-
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lation; just how I want to understand this expression must now be
explained, since one might easily suspect a connection with intuition.

Let us consider the following example: If a waiter wants to be sure that
he is placing just as many knives as plates on the table, he need count
neither of them if he places a knife immediately to the right of each plate
so that each knife on the table is located to the immediate right of a plate.
The plates and knives are thus correlated in one-to-one fashion with one
another, in this case through the same positional relationship. If, in the
sentence

‘ar lies immediately to the right of A4’

we imagine all sorts of objects substituted for & and A, then the part of
the content which remains unchanged through all this forms the essence
of the relation. Let us generalize this:

When, from a thought content which concerns an object a and an
object b, we remove @ and b, we retain the concept of a relation, which,
accordingly, requires supplementation in two places. If, in the statement

‘the earth has more mass than the moon’,

we remove ‘“‘the earth,”’ then we obtain the concept ‘‘having more mass
than the moon.’’ If, on the other hand, we remove the object, *“‘the
moon,’’ we gain the concept ‘‘having less mass than the earth.’”” Remov-
ing both at once leaves a relational concept, which has in itself no more
meaning than a simple concept, and which must be supplemented to
become a thought content. But this supplementation can come about in
various ways: instead of the earth and moon, I can take, e.g., the sun and
earth, thus also effecting a removal of the earth and moon [and disclos-
ing the relational nature of the concept].

The individual pairs of associated objects are related - one might say
as subjects - to the relational concept in a manner similar to that of the
individual object and the concept under which it falls. The subject here is
a composite. At times, when the relation is a reversible one [symmetric in
two argument places), this is also expressed linguistically, as in the sen-
tence ‘Peleus and Thetis were the parents of Achilles’."

On the other hand, it would not be possible to reformulate the state-
ment ‘the earth is greater than the moon’ so as to make ‘the earth and the
moon’ appear as a compound subject, because the ‘and’ always indicates
a certain equality of rank. This, however, does not affect the matter at
hand.

The concept of relation, like the simple concept, belongs, then, to pure

Do not confuse this with the case where the ‘and’ only seemingly connects the subjects,
but in reality, however, connects two sentences.
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logic. The particular content of the relation does not concern us here, but
only its logical form. And [the truth of} whatever can be asserted gbout
this form is analytic and is known a priori. This holds for the relational
concepts as well as for the others.

Just as

‘a falls under the concept F'

is the general form of a thought content concerning the object a, so can

‘@ stands in the relation ¢ to b’

be taken as the general form of a thought content concerning objects @
and b.

71. Now if each object which falls under the concept F stands in the rt.ela-
tion ¢ to an object falling under the concept G, and if, for each quect
which falls under G, there is an object falling under F which stands in the

relation ¢ to it, then the objects falling under Fand G are correlated with
one another by means of the relation ¢.

We may still ask what the expression

‘each object which falls under F stands in the relation ¢ to an object
falling under G’

means, if no object at all falls under F. By this I mean that the two state-
ments

‘a falls under F*
and

‘a does not stand in the relation ¢ to any object falling under G’

cannot stand together, no matter what g denotes, so that either the first

or }he secqnd or both are false. From this it follows that if there is no

object falling under F, then “each object which fails under F stands in

the relation ¢ to an object falling under G,” because the first statement
‘a falls under F°

is always to be denied, no matter what ¢ might be.
Thus

‘for each object which fal

: Is under G, there is an object falling under
F which stands in the rel

ation ¢ (o it’
means that the two statements
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‘a falls under G’
and

‘no object falling under F stands in the relation ¢ to @’

cannot stand together, whatever # may be.

72. We have now seen when the objects falling under the concepts F and
G are correlated with one another by means of the relation ¢. This corre-
lation is here supposed to be one-to-one. By that I mean that the follow-
ing two statements must hold:

1. If d stands in the relation ¢ to a, and if d stands in the relation ¢

to e, then, no matter what d, a, and e may be, a is always the same

as e.
2. If dstands in the relation ¢ to a, and if b stands in the relation ¢ to
a, then, whatever d, b, and g may be, d is always the same as b.

By these statements we have reduced one-to-one correlations to purely
logical terms and can now offer the following definition:

the expression
‘the concept F is equinumerous with the concept G’

is to be synonymous with the expression
‘there is a relation ¢ which correlates in one-to-one fashion the
objects falling under F with the objects falling under G’.

I [now] repeat [our original definition):

the number which appiies to the concept F is the extension of the
concept ‘‘equinumerous with the concept F,"’

and add to it:

the expression:
‘n is a number’
is to be synonymous with the expression
‘there is a concept to which the number » applies’.

Thus the concept of number is defined, apparently by means of itself,
nevertheless without fallacy, because ‘the number which applies to the

concept F has already been defined.
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73. We want to show next, then, that the number which applies tp the
concept F is equal to the number which applies to the concffpt G, if the
concept F is equinumerous with the concept G. This §ounds llke’ a tautol-
ogy, but it is not, since the meaning of the word ‘equinumerous’ does 1:10(
follow from its (linguistic) composition, but rather from the foregoing
definition. .

According to our definition, we must show that the extension of the
concept ‘‘equinumerous with the concept F’’ is the same as that. of th‘e
concept ‘‘equinumerous with the concept of G,”’ if the concept F is equi-
numerous with the concept G. In other words, it must be shown that,
under this hypothesis, the following statements always hold:

‘if the concept H is equinumerous with the concept F, then it is also
equinumerous with the concept G’;

and

‘if the concept H is equinumerous with the concept G, then it is also
equinumerous with the concept F’,

The upshot of the first statement is that there is a relation which corre-
lates in one-to-one fashion the objects falling under the concept H with
those falling under the concept G, if there is a relation ¢ which correlates
one-to-one the objects falling under the concept F with those falling
under the concept G, and if there is a relation ¥ which correlates one-to-
one the objects falling under the concept H with those falling under the

concept F. The following arrangement of the letters will make this easier
to see

HYF$G.

Such a relation can in fact be given: it is [that] part of the thought
content:

“there is an object to which ¢ st

ands in the relation ¢ and which
stands in the relation ¢ to »*’

Iwhich remains] if we remove
things related). It can be shown
correlates the objects falling
under the concept G.
In a similar manner,
fully, these outlines will

from it ¢ and b (considering them as thf?
that this relation is one-to-one and that it
under the concept H with those falling

the other theorem can also be proved.'' Hope-
suffice to demonstrate that we need not borrow

Hgr .
as hSlm’l:['IY for its converse: If the number which applies to the concept F is the same
2 ;:( 2 which applies to the concept G, then the concept £ is equinumerous with the con-
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here any evidence from intuition, and that something may be done with
our definitions.

74. We can now go on to the definitions of the individual numbers.
Because nothing falls under the concept ‘‘unequal to itself,”” I define:

0 is the number which applies to the concept ‘‘unequal to itself.”

Perhaps someone will take exception to my speaking about a concept
here. He will perhaps object that a contradiction is contained therein and
will recall the old stand-bys, wooden iron and the square circle. To my
mind, these are not at all as bad as they are made out to be. Of course,
they are not exactly useful, but they can’t do any harm, either, as long as
one doesn’t require that something fall under them; and that one does
not yet do through the mere usage of the concepts. That a concept con-
tains a contradiction is not always obvious without some examination;
but to do that, one must have [the concept] and treat it logically just like
any other. All that can be demanded of a concept from the point of view
of logic and for rigor in proof procedure is its precise delineation; that,
for each object, it be determined whether or not it falls under the con-
cept. This requirement is fully satisfied, then, by concepts containing a
contradiction, such as ‘‘unequal to itself,” for it is known of every object
that it does not fall under such a concept."

I use the word ‘concept’ in such a way that

‘a falls under the concept F’
is the general form of a thought content, which concerns an object @ and
which remains decidable, whatever one may put for a. And in this sense,
‘a falls under the concept “unequal to itself”’
is synonymous with
‘a is unequal to itself’
or

‘a is unequal to a@’.

In defining 0, 1 could have taken any other concept under which nothing

2Completely different from this is the definition of an object in terms of a concept under
which it fails. The expression ‘the greatest proper fraction’ has, for example, no content,
because the definite article carries with it the requirement that it refer to a definite object.
On the other hand, the concept, ‘‘fraction which is less than ! and has trge property that no
fraction which is less than 1 exceeds it in magnitude,”” is wholly unobjectionable. In fact, in
order to prove that there is no such fraction, one even needs this concept, even though it

contains a contradiction.

145



GOTTLOB FREGE

falls. It was up to me, however, to choose one of which th_is co:x’ld be
purely logically proved, and for this purpose ‘‘unequal to itself’’ pre-
sented itself most comfortably, whereby I let the previously presented
definition of Leibniz hold, which is also purely logical.

75. We must now be able to prove, by means of what has already be‘en
said, that every concept under which nothing falls is equinumerous with
any other concept under which nothing falls, and only with.such a con-
cept; from which it follows that 0 is the number which applies to suctli a
concept and that no object falls under a concept if the number which
applies to that concept is 0.

If we assume that no object falls either under the concept F or under
the concept G, then, in order to prove that they are equinumerous, we
need a relation ¢ about which the following statements hold:

‘each object which falls under F stands in the relation ¢ to an ijCCt
which falls under G; for each object which falls under G there is one
falling under F which stands in the relation ¢ to it’.

According to what was said earlier about the meaning of these expres-
sions, every relation fulfills these conditions under our hypotheses; her‘lce
also equality, which is, moreover, one-to-one. For, both the foregoing
statements required of it hold.

If, on the other hand, an object falls under G, e.g., a, whereas none
falls under F, then the two statements

‘a falls under G’
and

‘no object falling under £ stands in the relation ¢ to g’

hold for every relation ®;
assumption, and the secon
no object falling under F,
any sort of relation to g.
according to our definitj
those falling under G; a
numerous.

for, the first holds true according to the ﬂr§t
d, according to the second. That is, if there is
then there is also none which would stand in
There is, therefore, no relation which would,
on, correlate the objects falling under F with
ccordingly, the concepts F and G are not equi-

76. I want now to define the relation in which any two adjoining mem-
bers of the series of natural numbers stand to one another. The statement

‘there is a concept F and an object x falling under it such that the
number which applies to the ¢

oncept £ is #, and that the number
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which applies to the concept ‘falling under F but not identical with
xis m’,

is to be synonymous with
‘n immediately follows m in the series of natural numbers’.

I am avoiding the expression ‘n is the number immediately following
m’, because two theorems would first have to be proved in order to
justify the use of the definite article.'® For the same reason, I am not yet
saying here ‘n=m+1’; for, by means of the equals sign, (m+1) is also
designated as an object.

77. Now in order to arrive at the number 1, we must first show, that there
is something which immediately follows 0 in the series of natural numbers.

Let us consider the concept - or, if you prefer - the predicate ‘equal to
0’. 0 falls under this. On the other hand, no object falls under the con-
cept ‘“‘equal to 0 but not equal to 0,”” so that 0 is the number which
applies to this concept. We have therefore, a concept ‘‘equal to 0”” and
an object 0 falling under it, for which it holds that:

the number which applies to the concept ‘‘equal to 0"’ is equal to the
number which applies to the concept ‘‘equal to 0°’;
the number which applies to the concept ‘‘equal to 0 but not equal to
0 is 0.
Therefore, according to our definition, the number which appl.ies to
the concept ‘‘equal to 0" follows immediately after 0 in the series of

natural numbers.
If we define, then,

1 is the number which applies to the concept ‘‘equal to 0,”
then we can express the last statement so:
I immediately follows 0 in the series of natural numbers.

Perhaps it is not superfluous to note that the definition of 1 does not
presuppose any observed fact'* for its objective legitimacy, for one can
easily be confused by the fact that certain subjective conditions must be
fulfilled in order to enable us to give the definition, and that sense
impressions cause us to do so (cf. Erdmann 1877: 164). This can, never-
theless, be the case without the derived theorems ceasing to be a priori.
To such conditions belongs the requirement, for example, that blood

13See footnote 12.
“A propoasition that is not general.
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flow through the brain in sufficient quantity and of the right concentra-
tion - at least as far as we know; however, the truth of our last proposi-
tion is independent of that; it continues to hold even if this flow no
longer takes place. And even if all reasonable creatures should at some
time simultaneously slip into hibernation, the truth of the statement
would not, as it were, be suspended for the duration of this sleep, but
would remain undisturbed. The truth of a statement is not its being
thought.

78. 1 list here several theorems to be proved by means of our definitions.
The reader will easily see how this may be done.

L. If aimmediately follows 0 in the series of natural numbers, then
a=1.

II. If 1 is the number which applies to a concept, then there is an
object which falls under that concept.

L If 1 is the number which applies to a concept F; if the object x
falls under the concept F, and if y falls under the concept F, then
X=y; i.e., x is the same as y.

IV. If an object falls under a concept F and if, from the fact that x
falls under the concept F and that » falls under the concept F, it
may always be inferred that x= ¥, then 1 is the number which
applies to the concept F,

V. The relation that m bears to n, if and only if

“‘nimmediately follows m in the series of natural numbers”,
is & one-one relation.

'l_‘hu§ far it _has not yet been said that for every number there is another
which immediately follows it or is immediately followed by it in the series
of natural numbers.

VL. Every number except 0 immediately follows another number in

the series of natural numbers,

79. Now in order to bf’ able to prove that every number (n) in the series
of natural numbers is Immediately followed

up with 1 é by a number, one must come
p a concept to which this latter number applies. We choose for this:

‘belonging to the series of natural numbers ending with n,”’

but we must first define it.

To begin with I shail repeat, in somewhat different words, the defini-

tion I gave in my Begriffsschrift of following in a series:
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The statement

‘if every object to which x stands in the relation ¢ falls under the
concept F, and if, from the fact that d falls under the concept F, it
always follows, no matter what d may be, that every object to which
d stands in the relation ¢ falls under the concept F, then y falls under
the concept F, no matter what concept F might be’,

is to be synonymous with

‘y follows x in the ¢-series’
and with

‘x precedes y in the ¢-series’.

80. Several remarks concerning this definition will not be superfluous
here. Since the relation ¢ is left indeterminate, the series is not necessarily
to be thought of in the form of a spatial or temporal arrangement,
although these cases are not excluded.

Some other definition might be considered more natural, e.g., if, in
proceeding from x, we always turn our attention from one object to
another, to which it stands in the relation ¢, and if, in this way, we can
finally reach y, then we say that y follows x in the ¢-series.

This is a way of looking at the matter, not a definition. Whether we
reach y in the wanderings of our attention can depend on many subjec-
tive incidental circumstances; e.g., on the time we have available or on
our knowledge of the things. Whether y follows x in the ¢-series has, in
general, nothing at all to do with our attention and the conditions of its
progress, but rather it is a matter of objective fact: just as a green leaf
reflects certain light rays whether or not they should meet my eye and
summon up a sensation; just as a grain of salt is soluble in water whether
or not | put it in water and observe the process; and just as it remains
soluble even if it is not possible for me to experiment on it.

By means of my definition, the matter is elevated from the realm of the
subjectively possible to that of the objectively definite. Indeed, the fact
that from certain statements another statement follows is something
objective, something independent of whatever laws may govern the wan-
derings of our attention; and it makes no difference whether we really
make the inference or not. Here we have a criterion which decides the
question, wherever it can be asked, even though we might be hindered by
external difficulties from judging in individual cases whether it is appli-
cable. That makes no difference to the issue itself.

We need not always run through all the intermediate members, from
the initial member up to an object, in order to be sure that the latter

149



GOTTLOB FREGE

follows the former. If, e.g., it is given that, in the ¢-series, b follows a
and c follows b, then we can conclude on the basis of our definition that
¢ follows a, without even knowing the intermediate members.

Only by means of this definition of following in a series does it become
possible to reduce the rule of inference from n to (n+1), which appar-
ently is peculiar to mathematics, to general logical faws.

81. Now if we have as our relation ¢ the one in which m is related to n by
the statement

‘n immediately follows m in the series of natural numbers’,

then we say instead of ‘¢-series’, ‘series of natural numbers’.
I define further:

the statement

‘y follows x in the ¢-series or y is the same as x’,
is to be synonymous with

‘y belongs to the ¢-series starting with x’
and with

‘x belongs to the ¢-series ending with Y.

According to this, a belongs to the series of natural numbers ending

with ‘:1 if n either follows ¢ in the series of natural numbers or is equal
to a.

82. We.must nqw show that, under a condition still to be stated, the num-
ber which applies to the concept

“‘belonging to the series of natural numbers ending with n"’

nmmediately‘ follows n in the series of natural numbers, Having this
lresult, we will ha.lve proved that there is a number which immediately fol-
OWS n in the series of natural numbers; i.e., that there is no last member

of this series. Obviously, this statement cannot be established empirically
or by means of induction.

It_would take us too far afield to give the proof itself.
a brief sketch of it here. We must prove:

1.

We can only give

I}f1 a lmmediately follows d in the series of natural numbers, and if
the number which applies to the concept
[ X3 H
belonging to the series of natural numbers ending with d”’

If nis not a ny
. mber, then only n ngs : i
with 1. One should not object to (yhis l::::&ts’:ilgn 10 the scries of natural numbers ending
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immediately follows d in the series of natural numbers, then th
number which applies to the concept

““belonging to the series of natural numbers ending with a’’

immediately follows a in the series of natural numbers.

2. We must prove that what has been asserted about d and a in the
foregoing statements holds for 0, and then show that it also holds
for n, if n belongs to the series of natural numbers beginning with
0. This will result from an application of my definition of

‘y follows x in the series of natural numbers’,

taking as the concept F the relation asserted above to hold between
d and a, and substituting 0 and » for d and a.

83. In order to prove Theorem 1 of the last paragraph, we must show
that a is the number which applies to the concept ‘‘belonging to the series
of natural numbers ending with a, but not equal to a.”” And to this end,
we must prove that this concept has the same extension as the concept
“belonging to the series of natural numbers ending with d.”” For this, we
need the theorem that no object which belongs to the series of natural
numbers beginning with 0 can follow itself in the series of natural num-
bers. The latter must likewise be proved by means of our definition of
following in a series, as it is outlined above. 't

For this reason, we must add the condition that » belong to the series
of natural numbers beginning with 0 to the statement that the number
which applies to the concept

“*belonging to the series of natural numbers ending with n,”

immediately follows # in the series of natural numbers. There is a shorter
way of putting this, which | shall now define:
the statement
‘n belongs to the series of natural numbers beginning with 0’
is to be synonymous with
‘nis a finite number’.
We can now express the last theorem thus: no finite number follows
itself in the series of natural numbers.

16E, Schréder (1873: 63) seems to look upon this theorem as the consequence of an
ambiguous terminology. The difficulty which infects his whole_presentatlon of Phe matter
emerges here too; i.e., it is never quite clear whether the number is a symbol and, if 50, what
its meaning is, or whether it is this very meaning. From the fact that one sets up different
symbols, so that the same one never recurs, it does not follow that these symbols mean
different things.
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Infinite numbers

84. In contrast to the finite numbers there are the infinite ones. The
number which applies to the concept *‘finite number’’ is an infinite one.
Let us denote it, say, by 8¢.'” Were it a finite number, it could not follow
itself in the series of natural numbers. One can show, however, that Rp
does just this.

There is nothing somehow mysterious or marvellous about the infinite
number Ry when so defined. ‘The number which applies to the concept F
is Xy’ says nothing more nor less than: there is a relation which estab-
lishes a one-to-one correlation between the objects falling under the con-
cept F and the finite numbers. This has, according to our definitions, a
completely clear and unambiguous sense, and that suffices to justify the
use of the symbol Ry and to guarantee it a meaning. That we can form no
mental picture of an infinite number is wholly irrelevant and would hold
true of finite numbers as well. In this way, our number ¥, is something
just as determinate as any finite number: it can be recognized without a
doubt as the same and differentiated from any other.

8.5. Recently, in a noteworthy paper (1883b), G. Cantor introduced in-
finite numbers. I agree with him completely in his evaluation of the view
which would have only the finite numbers qualify as real. Neither these
nor tl'1e fractions are sensibly perceptible and spatial, nor are the nega-
tive, irrational, and complex numbers. And if one calls real {only] that
yvhich affects the senses, or at least can have sense impressions as an
Immediate or distant consequence, then certainly none of these numbers
1s real. But we don’t need such sense impressions as evidence for our
theorems. A name or a symbol, which is introduced in a logically un-
objectionable way, may be used by us without hesitation in our investiga-
tions, and thus our number R, is just as firmly grounded as 2 or 3.
Although I believe I agree with Cantor in this matter, 1 do, however,
dgv:ate from him in terminology. He calls my numbers ‘powers’, whereas
his concep‘t"' of number is based on ordering. To be sure, finite numbers
enq up being independent of order; however, this does not hold for in-
ﬁmte'numbers. Now the linguistic usage of the word ‘number’ and of the
question ‘how many?’ contains no indication of a definite order. Cantor’s
number answers rather the question: ‘the last member is the how-manyth
member of the sequence?’ Therefore my terminology seems to me to

17
[Frege used ‘w,*, . . .
current practice, - 'l"r.lbm we adopt the aleph notation as being more in keeping with

®This expression . :
tivity of conceps, however onty e rwradict (my earlier remarks emphasizing] the objec-

only the terminology is subjective here.
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agree better with linguistic usage. 1f one extends the meaning of a word,
then one must take care that as many general statements as possible
retain their validity, and particularly statements as basic as, for instance,
[the one asserting] for numbers their independence of the sequence. We
have needed no extension at all, because our concept of number immedi-
ately embraces infinite numbers as well,

86. In order to obtain his infinite numbers, Cantor introduces the rela-
tional concept of following in a sequence, which differs from my ‘‘fol-
lowing in a series.”’ According to him, for instance, a sequence would
result if one were so to order the finite positive whole numbers that the
odd numbers followed one another in their own natural order, and simi-
larly the even numbers in theirs, and it were further stipulated that all the
even numbers should come after all the odd numbers. In this sequence,
e.g., 0 would follow 13. There would, however, be no number immedi-
ately preceding 0. Now this case cannot occur within my definition of
following in a series. It may be strictly proved, without using intuition,
that, if y follows x in the ¢-series, there is an object which immediately
precedes y in this series. It seems to me, then, that exact definitions of
following in a sequence and of number [in Cantor’s sense} are still lack-
ing. Thus Cantor bases himself on a somewhat mysterious ‘‘inner intui-
tion”” where a proof from definitions should be striven for and would
probably be found. For I think 1 can foresee how those concepts could be
defined. In any case, 1 in no way wish these comments to be taken as an
attack on the justifiability or fruitfulness of these concepts. On the con-
trary, 1 welcome these investigations as an extension of the science, espe-
cially because they strike a purely arithmetic path to higher infinite num-
bers (powers).

Conclusion

87. 1 hope in this monograph to have made it probable that arithmetic
laws are analytic judgments, and therefore a priori. According to thi:c.,
arithmetic would be only a further developed logic, every arithmetic
theorem a logical law, albeit a derived one. The applications of arith-
metic to the explanation of natural phenomena would be logical process-
ing of observed facts;'® computation would be inference. Numerical laws
will not need, as Baumann (1868-9, 2: 670) contends, a practical confir-
mation in order to be applicable in the external world; for, in the external
world, the totality of space and its contents, there are no concepts, no
properties of concepts, no numbers. Therefore, the numerical laws are

190bservation itself already includes a logical activity.
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really not applicable to the external world: they are not laws of nature.
They are, however, applicable to judgments, which are true of things in
the external world: they are laws of the laws of nature. They assert con-
nections not between natural phenomena, but rather between judgments;
and it is to the latter that the laws of nature belong.

88. Kant (1867-8, 3: 39ff) evidently underestimated the value of analytic
judgments — probably as the result of having too narrow a definition of
the concept — although he apparently also had in mind the broader con-
cept used here.” Taking his definition as a basis, the division of judg-
ments into the analytic and the synthetic is not exhaustive. He is thinking
of universal affirmative judgments. In such cases, one can speak of a
concept of the subject and inquire whether the concept of the predicate -
as would result from his definition - is contained in it. How can we do
this, however, when the subject is a single object? Or when the judgment
is existential? In such cases there can be, in Kant’s sense, no talk of a
concept of the subject. Kant seems to have thought of the concept as
determined by subordinate characteristics; that, however, is one of the
least fruitful notions of concept. If one surveys the foregoing definitions,
one will hardly find one of this kind. The same is true of the really fruit-
ful definitions in mathematics, e.g., of the continuity of a function. There
we don’t have a series of subordinate characteristics but rather a more
intimate, I should say more organic, connection between the (elements of
the] definitions. The difference can be illustrated by means of a geometri-
cal analogy. If the concepts (or their extensions) are represented by regions
of a plane, then the concept defined by means of subordinate characteris-
ucs‘ corresponds to the region which is the overlap of all the individual
reglons corresponding to these characteristics; it Is enclosed by parts of
the}r boundaries. Pictorially speaking, in such a definition, we delimit 8
region by using in a new way lines already given. In doing this, however,
nothing essentially new comes out. The more fruitful definitions draw
border lines which had not previously been given. What can be inferred
fror.n them cannot be seen in advance; one does not simply withdraw
again from the box what one has put into it. These inferences expand our
kﬂOWleige and one should, therefore, following Kant, consider them
syntheflc. Nevertheless, they can be proved purely logically and hence are
?ﬂalytlc. They are in fact contained in the definitions, but like the plant
in the seed, not like the rafter in the house. One often needs several defi-

nitions to prove a theorem, which consequently is contained in no single
[Kant] says that a s

ynthetic stal .
Contradiction only if a tatement can be understood according to the Theorem of

nother synthetic statement is presupposed (1867-8, 3: 43).
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definition, but nevertheless follows in a purely logical way from all of
them together.

89. I must also contradict the generality of Kant’s assertion (1867-8, 3:
82) that without sensible perception no object would be given us. Zero
and 1 are objects that cannot be given us sensibly. And those who hold
the smaller numbers to be intuitive will surely have to concede that none
of the numbers greater than 10001%0'* can be given them intuitively,
and that we nevertheless know a good deal about them. Perhaps Kant
was using the word ‘object’ in a somewhat different sense; but then zero,
1, and our R, disappear completely from his considerations; for, they are
not concepts either, and Kant demands even of concepts that their objects
be appended to them in intuition.

In order not to open myself to the criticism of carrying on a picayune
search for faults in the work of a genius whom we look up to only with
thankful awe, I believe I should also emphasize our areas of agreement,
which are far more extensive than those of our disagreement. To touch
on only the immediate points, I see a great service in Kant’s having dis-
tinguished between synthetic and analytic judgments. In terming geomet-
ric truths synthetic and a prior