Clostridioides difficile infection

Marcela Krůtová Department of Medical Microbiology, 2. LF a FN Motol

224435355, marcela.krutova@lfmotol.cuni.cz

Clostridium difficile ([klos-trid'e-əm di-fi -sil']

"Clostridium" pochází z řeckého klōstēr (spindle), because under the microscope, the colonies resemble spindles used in weaving fabrics and long rods with bulging ends.

Species name, *difficile* "is a form of the Latin adjective ,,difficilis", because at first identification (Hall a O'Toole v roce 1935) the organism was difficult to isolate and grew slowly in pure culture.

Clostridium difficile nebo Clostridioides difficile?

Both names are still valid

Based on the analysis of the 16S rRNA gene sequence, *Clostridium difficile* is the closest relative of *Clostridium mangenotii* with a similarity of 94.7%, and both are located in the family Peptostreptococcaceae, which is phylogenetically distant from *C. butyricum* and other representatives of *Clostridium* sensu stricto.

Based on phenotypic, chemotaxonomic and phylogenetic analyses, the new genus *Clostridioides* gen. nov. is designed for *Clostridium difficile*.

Etymologia: Clostridium difficile. Emerg Infect Dis. 2010;16(4):674. doi: 10.3201/eid1604.ET1604; Oren and Rupnik , 2018; Lawson et al., 2016.

Dormant spore vs metabolically active cell

Gram-positive Obligate anaerobe Can produce toxins (A, B some strains Binary) Spore-forming

Spore formation by *C. difficile* is crucial for the survival and dissemination of the bacterium in the environment.

The dormant aerotolerant and highly resistant spore facilitates efficient transmission and persistence in the host.

Spores are resistant to different environmental conditions, antibiotics, and some disinfectants (usage of sporicidal ones).

Clostridioides difficile infection (CDI)

Fecal-oral route of transmission.

Asymptomatic colonization or infection.

Recurrence of CDI (25%, 50%).

Symptoms: watery diarrhoea, fever, loss of appetite, nausea and abdominal pain/tenderness.

Toxins=disruption of cytoskeletal structure and tight junctions with subsequent cell rounding, detachment and cell death.

Smits et al., 2016; Crobach et al., 2018; Chilton et al., 2018

Severe forms of CDI

Pseudomembranous colitis

Paralytic ileus = toxic megacolon, surgical intervention, high mortality

How common is CDI?

The CDC lists 4 antibiotic-resistant bacteria as URGENT THREATS in the U.S.

Carbapenem-resistant	8,500 700
Acinetobacter	est. cases est. deaths
Carbapenem-resistant	13,100 1,100
Enterobacteriaceae (CRE)	est. cases est. deaths
Drug-resistant Neisseria	550,000
gonorrhoeae (N. gonorrhoeae)	est. cases est. deaths
Clostridioides difficile	223,900 12,800
(C. difficile)	EST. CASES EST. DEATHS

C. diff is currently the only threat that is **NOT** nationally notifiable, even though it has the **2ND HIGHEST** number of cases and the **HIGHEST** number of deaths. Figure 22. *Clostridioides difficile* infections and other gastro-intestinal infections (excluding hepatitis) as a percentage of all HAIs, by country

124 000 CDI cases a year Approx. 17% die. 4% in relation to CDI

European mean: 5 cases per 10,000 bed-days

What does a patient at risk of CDI look like?

YOU **KNOW** C. DIFF

PEGGY was a mother, sister, kindergarten teacher, union member

DIED FROM C. DIFF

Clostridioides difficile (or C diff) is the most common healthcare-associated infection, afflicting an estimated 500,000 Americans every year. Learn how to protect yourself and your family at **cdiff.org**. #cdiffawarenessmonth

YOU KNOW C. DIFF

MARYANN is a wife, mother, regulatory professional, breast cancer survivor, and a

C. DIFF SURVIVOR

Clostridiodes difficile (or C. diff) is the most common healthcare-associatec infection, afflicting an estimated 500,000 Americans every year. Learn how to protect yourself and your family at **cdiff.org**

#cdiffawarenessmonth

YOU **KNOW** C. DIFF

JOSEPH was a son, brother, retired police officer, bodybuilder

DIED FROM C. DIFF

Clostridioides difficile (or C. diff) is the most common healthcare-associated infection, afflicting an estimated 500,000 Americans every year. Learn how to protect yourself and your family at **cdiff.org**. **#cdiffawarenessmonth**

YOU *KNOW* C. DIFF

MAHLINA is a daughter, sister, second grader, beat Acute Myeloid Leukemia

and is also a C. DIFF SURVIVOR

Clostridioides difficile (or C. diff) is the most common healthcare-associat infection, afflicting an estimated 500,000 Americans every year. Learn ho to protect yourself and your family at **cdiff.org**. #cdiffawarenessmonth

RISK factors for CDI

Advanced age ≥ 65 years Comorbidity conditions Exposure to acid-suppressing agents (PPIs) Exposure to antibiotics Exposure to the healthcare system Immunosuppressive conditions and agents (cancer, chemotherapy, organ transplant, HIV) Manipulation of GI system (feeding tubes, surgery)

EVERYTHING WHICH AFFECTS MICROBIOTA and IMMUNE SYSTEM.

Laboratory diagnostics-odor?

<u>Clin Infect Dis.</u> 2013 Feb 15; 56(4): 615–616. doi: <u>10.1093/cid/cis974</u> PMCID: PMC3571629 PMID: <u>23166192</u>

The Nose Knows Not: Poor Predictive Value of Stool Sample Odor for Detection of *Clostridium difficile*

Krishna Rao,^{1,2} Daniel Berland,^{1,3} Carol Young,^{4,5} Seth T. Walk,^{1,2,6} and Duane W. Newton^{4,5}

The dog correctly identified 25 of the 30 cases (sensitivity 83%, 65% to 94%) and 265 of the 270 controls (specificity 98%, 95% to 99%).

Better to send the sample to the laboratory!!!

Vancomycin and its effect on the gut microbiota

Isaac, JAC, 2017

Empirical *Clostridium difficile* Infection (CDI) Therapy Result in False-Negative CDI Diagnostic Test Results

Sampling before treatment (if possible)!

Sunkesula et al., 2013

WHO should be tested?

All hospitalized patients aged ≥2 years who had three

or more unformed stools within 24 hours.

*40,000 hospitalized patients a year are not diagnosed!

In primary care, patients who do not respond to oral rehydration and where antibiotic treatment is considered should be tested.

Children under 2 years of age should be tested on a case-by-case basis in consultation with a paediatrician and clinical microbiologist. In children, the likelihood of colonization should always be considered *C. difficile* and/or co-infection with other intestinal pathogens.

Davies a kol., 2014; Crobach a kol., 2016; Krůtová a kol., 2022

Infections caused by C. difficile are under diagnosis

1/3 hospital CDI Around 37,000 CDI cases per year in Europe

1/2 of community-based CDI casesAbout 111,000 cases of CDI per year in Europe.

If we test all diarrheal stools delivered to the laboratory.

A patient with CDI must be detected early!! Preventing spore spread and reducing the risk of CDI complications.

Diarrhoea=CDI?=TEST

Viprey et al., 2022

Sampling for stool testing: gastrointestinal infection Liquid consistency with no solid pieces Separate hard l (Severe diarrhea) (Severe constipation BRISTOL **STOOL CHART** Mushy consistency Lumpy and sausage-like (Mild constipation) with ragged edges Mild diarrhea Type : Soft blobs with clear-cut edges usage shape with cracks (Lacking fiber) (Normal Type 4 Like a smooth soft sausage or snake (Normal) **Rectal swab: Unformed stool sample** Paralytic ileus only (taking the shape of a container) Bacterial culture: stool is not available

What can we test?

Glutamate dehydrogenase (GDH) (enzyme produced by all *C. difficile*), **EIA**

Toxins A/B (virulence factor(s)), EIA

Gene (s) fragment(s) for toxins, PCR (not the same like toxins!)

C. difficile culture (spores)

Recommended combination: GDH and toxins A/B or PCR and toxins A/B

Test type	CDI prevale	nce 5%	CDI preval	CDI prevalence 10%		CDI prevalence 20%		CDI prevalence 50%	
	PPV	NPV	PPV	NPV	PPV	NPV	PPV	NPV	
Well-type EIA GDH	38	100	54	99	72	98	91	94	
Membrane-type EIA GDH	34	100	52	100	71	99	91	98	
Well-type EIA toxins A/B	69	99	83	98	91	96	98	87	
Membrane-type EIA toxins A/B	81	99	90	98	95	95	99	83	
NAAT	46	100	64	100	80	99	94	96	

PPV and NPV for different categories of index tests at hypothetical CDI prevalences of 5, 10, 20 and 50%

Pooled estimates of sensitivity and specificity compared to cell cytotoxicity neutralization assay were used to calculate the predictive values. CDI, *Clostridium difficile* infection; EIA, enzyme immunoassay; GDH, glutamate dehydrogenase; NAAT, nucleic acid amplification test; NPV, negative predictive value; PPV, positive predictive value.

No single commercial test can be used as a stand-alone test for diagnosing CDI as a result of inadequate positive predictive values at low CDI prevalence.

✓ Therefore, the use of a two-step algorithm is recommended

Crobach et al., CMI, 2016

Laboratory diagnostics of CDI

M.J.T. Crobach et al. / Clinical Microbiology and Infection 22 (2016) S63-S81

Crobach et al., CMI, 2016

How common are co-infections in children?

In children, the likelihood of C. difficile colonization or co-infection with other intestinal pathogens should always be considered.

Analysis of 31 studies (1,718 patients who tested positive C. difficile, 20.7% (range 0-100%) had coinfection.

In children, the CDI test should not be the only test in case of diarrhoea!

de Graaf H, Pai S, Burns DA, Karas JA, Enoch DA, Faust SN. Co-infection as a confounder for the role of Clostridium difficile infection in children with diarrhoea: a summary of the literature. Eur J Clin Microbiol Infect Dis. 2015;34(7):1281-7.

 Table 2
 Number of reported gastrointestinal co-infections in
 C. difficile-positive patients by pathogen

Pathogen	Number of co-infection reports (%)
Viruses	164 (73.9)
Rotavirus	97 (43.7)
Adenovirus	32 (14.4)
Norovirus	17 (7.7)
Astrovirus	9 (4.1)
Sapovirus	5 (2.3)
Others ^a	4 (1.8)
Bacteria	53 (23.9)
E. coli	17 (7.7)
Enteropathogenic	8 (47.1)
Enterotoxigenic	3 (17.6)
Verocytotoxin-producing	4 (23.5)
O18	1 (5.9)
Not specified	1 (5.9)
Salmonella spp.	11 (5.0)
Campylobacter spp.	11 (5.0)
Yersinia spp.	6 (2.7)
Others ^b	8 (3.6)
Parasites	5 (2.3)
Blastocystis hominis	1 (0.45)
Entamoeba histolytica	2 (0.9)
Giardia spp.	2 (0.9)

^aCalicivirus (n=2), coxsackievirus (n=1), enterovirus (n=1)

^b Bacillus cereus (n=3), Aeromonas spp. (n=2), Shigella spp. (n=2), *Vibrio cholerae* (n=1)

Stool testing: Dept. Med. Mic. FNM

- 20 targets (AusDiagnostics (panel M)
- Community acquired diarrhoea

Internal evaluation: Krutova et al., JCM, 2019 Healthcare-assoc. and community acq. diarrhoea

C. difficile toxiny A/B

Culture of *C. difficile*-why?

Stool sample and alcohol 1:1, 30 minutes. Suppressing of other bacteria in sample, germination of spores. Culture on selective media, anaerobic atmosphere 24-48 hrs.

Antimicrobial susceptibility testing and characterisation of strain for epidemiologic purposes.

Guidance documents USA/Europe

> Clin Infect Dis. 2018 Mar 19;66(7):987-994. doi: 10.1093/cid/ciy149.

Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)

L Clifford McDonald ¹, Dale N Gerding ², Stuart Johnson ² ³, Johan S Bakken ⁴, Karen C Carroll ⁵, Susan E Coffin ⁶, Erik R Dubberke ⁷, Kevin W Garey ⁸, Carolyn V Gould ¹, Ciaran Kelly ⁹, Vivian Loo ¹⁰, Julia Shaklee Sammons ⁶, Thomas J Sandora ¹¹, Mark H Wilcox ¹²

Clin Microbiol Infect. 2021 Dec;27 Suppl 2:S1-S21. doi: 10.1016/j.cmi.2021.09.038. Epub 2021 Oct 20.

European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults

```
Joffrey van Prehn<sup>1</sup>, Elena Reigadas<sup>2</sup>, Erik H Vogelzang<sup>3</sup>, Emilio Bouza<sup>2</sup>, Adriana Hristea<sup>4</sup>,
Benoit Guery<sup>5</sup>, Marcela Krutova<sup>6</sup>, Torbjorn Norén<sup>7</sup>, Franz Allerberger<sup>8</sup>, John E Coia<sup>9</sup>,
Abraham Goorhuis<sup>10</sup>, Tessel M van Rossen<sup>3</sup>, Rogier E Ooijevaar<sup>11</sup>, Karen Burns<sup>12</sup>,
Bente R Scharvik Olesen<sup>13</sup>, Sarah Tschudin-Sutter<sup>14</sup>, Mark H Wilcox<sup>15</sup>, Maria J G T Vehreschild<sup>16</sup>,
Fidelma Fitzpatrick<sup>17</sup>, Ed J Kuijper<sup>18</sup>;
Guideline Committee of the European Study Group on Clostridioides difficile
```

Practice Guideline > Clin Infect Dis. 2021 Sep 7;73(5):755-757. doi: 10.1093/cid/ciab718.

Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults

Stuart Johnson ¹², Valéry Lavergne ³⁴, Andrew M Skinner ¹², Anne J Gonzales-Luna ⁵, Kevin W Garey ⁵, Ciaran P Kelly ⁶, Mark H Wilcox ⁷

Clinical Microbiology and Infection 28 (2022) 1085–1090 Contents lists available at ScienceDirect

Clinical Microbiology and Infection

СМ

AND INFECTION

💥 ESCMID 🗉

IER journal homepage: www.clinicalmicrobiologyandinfection.com

Narrative review

How to: Clostridioides difficile infection in children

```
Marcela Krutova <sup>1, 7, 8, *</sup>, Tim G.J. de Meij <sup>2</sup>, Fidelma Fitzpatrick <sup>3, 7, 8</sup>, Richard J. Drew <sup>4, 7</sup>, Mark H. Wilcox <sup>5, 7</sup>, Ed J. Kuijper <sup>6, 7, 8</sup>
```


European guidance documents do not include children, a separate document (expert opinion).

Antimicrobials approved for CDI treatment

Pharmacokinetic differences of metronidazole, vancomycin and fidaxomicin.

Krůtová et al., 2022

Overview of pharmacodynamic, pharmacokinetic and microbiological properties for oral administration of metronidazole, vancomycin and fidaxomicin.

Passive immunisation

Bezlotoxumab (ZINPLAVATM) is a human monoclonal antibody that binds to *Clostridioides difficile* toxin B indicated to reduce the recurrence of CDI.

Should only be used in conjunction with antibacterial drug treatment of CDI!

Clinical Trial > N Engl J Med. 2017 Jan 26;376(4):305-317. doi: 10.1056/NEJMoa1602615.

The rate of recurrent C. difficile infection was significantly lower with bezlotoxumab alone than with placebo (MODIFY I: 17% [67 of 386] vs. 28% [109 of 395]; adjusted difference, **-10.1** percentage points; 95% confidence interval [CI], -15.9 to -4.3; P<0.001; MODIFY II: 16% [62 of 395] vs. 26% [97 of 378]; adjusted difference, -**9.9** percentage points; 95% CI, -15.5 to -4.3; P<0.001)

1.ZINPLAVA2.Damaged gut epithelial cells3.Toxin B4.ZINPLAVA binding to toxin B

FMT: Feacal microbiota transplantation

Table 2

Donor screening by laboratory screening of faeces and serum

 Clostridium difficile (PCR) Helicobacter pylori (antigen test) Bacterial gastroenteritis: (PCR, followed by culture) Salmonella spp. Campylobacter spp., Campylobacter jejuni, C. coli, Shigella spp., Yersinia enterocolitica and Y. pseudotuberculosis, Aeromonas spp., Plesiomonas shigelloides, and Shiga Toxin-producing E. coli Antibiotic-resistant bacteria (culture); ESBL and/or carbapenemase-producing bacteria, vancomycin-resistant enterococci, and methicillin-resistant Staphylococcus aureus Viral pathogens (PCR): Norovirus serotype I+II, Astrovirus, Sapovirus, Rotavirus, Adenovirus 40/41, Adenovirus non-40/41, Enterovirus, Parechovirus, Hepatitis E Parasites (PCR): Giardia lamblia, Entamoeba histolytica, Cryptosporidium parvum and C. hominis, Microsporidium spp, Strongyloïdes^a Microscopy for ova cysts and bruce

Questionnaire: 1 day before donation of faeces

Stool frequency/pattern, general health, use of antibiotics, travel history, sexual behaviour Terveer et al., 2017

[69]: e.g. Blastocystis hominis

Future FMT? Live biotherapeutics

Benech et al., 2024

Currently valid guidance document for CDI treatment

		Initial CDI		1 st recurrence		≥2 nd recurrence
Standard of Care (SoC)	1 st	Fidaxomicin* 200 mg bid 10 days		SoC + Bezlotoxumab		FMT
	2 nd	Vancomycin 125 mg qid 10 days		Fidaxomicin** 200 mg bid 10 days		SoC + Bezlotoxumab
Hiah risk of recurrence**	1 st	Fidaxomicin** 200 mg bid 10 days				
	2 nd	SoC + Bezlotoxumab				
		Metronidazole		Vancomycin		Vancomycin
Preferred options not available		500mg tid 10 days		taper and pulse ^{\$}		taper and pulse ^{\$}
Severe CDI Oral administration			sible: l	Vancomycin or Fidaxomicin ocal delivery ^{\$\$} +/- adjunctive i	.v. met	ronidazole or i.v. tigecycline
Severe-complicated CDI & Refractory severe CDI		Multi Cor	idiscipl nsider i	Vancomycin or Fidaxomicin inary approach with surgical c .v. tigecycline and FMT when	onsult refract	ation ory

guided order by the CDI episode. Fidaxomicin is the drug of choice, but its price is still high. In practice, vancomycin (p.o.) is often used. Patients with recurrent CDI should be offered EMTI

CDI treatment should be

should be offered FMT! Be careful, if peristalsis is not already preserved, the treatment will not work!

* Risk stratification for risk of recurrence may be applied for selective use of fidaxomicin in case of limited access or resources.

** Consider extended fidaxomicin: 200 mg bid on day 1-5, 200 mg q48h on day 7-25. Most important risk factor for recurrence is age >65-70 years. Additional risk factor(s) to consider are healthcareassociated CDI, prior hospitalization ≤ 3 months, prior CDI episode, continued non-CDI antibiotic use, and PPI therapy started during/after CDI diagnosis. The risk of recurrence is assumed higher with more risk factors present.

^{\$} Vancomycin taper and pulse: 2 weeks 125 mg qid, followed by 1 week 125 mg bid, then 1 week 125 mg qd, then 1 week 125 mg q48h, and finally 125 mg q72h for 1 week.

\$\$ Rectal or nasoduodenal delivery

Severe (complicated) course of CDI

Severe - complicated course is defined by the presence of one of the following factors that must be assigned to CDI: hypotension, septic shock, increased serum lactate, ileus, toxic megacolon, perforation of the intestine or any fulminant course of the disease (i.e. rapid deterioration of the patient's condition).

Treatment, if CDI is suspected in a severe course, we treat immediately and at the same time take a sample for microbiology!

Consult with the surgeon.

Oral treatment: fidaxomicin or vancomycin.

After consideration: intravenous administration of tigecycline 50 mg twice daily (100 mg loading dose) or metronidazole 500 mg three times daily should be added on a case-by-case basis.

If oral treatment is not possible, intraluminal (gastroduodenal or colonoscopic) administration of vancomycin or fidaxomicin in combination with IV therapy should be attempted, see above.

Intravenous therapy alone will never reach high concentrations of the antibiotic in the stool, which is necessary to eradicate *C. difficile*!

Shortened regimens for CDI treatment?

	Shortened treatment regimen	Standard treatment regimen	
	(n=25)	(n=22)	P value
Patient characteristics			
Gender (%)			0.58
Male	11 (44.0)	7 (31.8)	
Female	14 (56.0)	15 (68.2)	
Age, median, y (range)	76 (66.0–83.0)	74.5 (73.0-82.8)	0.20
Recurrence risk (mean)	3.3 (1.2)	2.4 (1.2)	
CDI treatment (%)			0.79
Vancomycin	21 (84.0)	20 (90.9)	
Fidaxomicin	4 (16.0)	2 (9.1)	
Blood parameters			
Leucocyte count at the beginning, cells/10 ⁹ /L	10.0 (6.2–13.2)	10.8 (8.6–14.5) ^b	0.15
Leucocyte count at the end, cells/10 ⁹ /L	7.5 (6.5–9.1) ^b	7.0 (5.6–9.4) ^b	0/76
C-reactive protein at the beginning, mg/L	78.3 (42.5–115.7)	49.9 (30.9–85.4) ^b	0.93
C-reactive protein at the end, mg/L	30.4 (13.2–54.9) ^b	11.0 (6.8–37.1) ^b	0.92
CDI characteristics and outcomes (%)			
First episode at the hospital admission	22 (88.0)	17 (77.3)	NA
Recurrent CDI at the hospital admission	3 (12.0)	3 (13.6)	
Other than first CDI episode at the hospital admission	0 (0.0)	2 (9.1)	
Recurrent CDI during follow-up	2 (8.0)	5 (22.7)	0.24

Table 1. Comparison of study and control groups^a

NA, not available. ^aData are *n* (%), median (IQR) or mean (SD). ^bMissing data in the dataset.

An Initiated Randomized Blinded Clinical Trial at Bulovka Hospital

Anti-epidemic measures/contact precautions

The patient's skin and surroundings (toilet) are contaminated with *C. difficile* spores! You can easily transmit them (hands, shared medical devices).

Guidance document for C. difficile spread prevention

9_Clostridioides difficile postup pro personál, final

Více informací: IOS_21/2009 Zajištění hygienické a protiepidemické péče, příloha č. 2, v platném znění Verze 07/2024 (Verze č. 2)

Clinical Microbiology and Infection 24 (2018) 1051-1054

Guidelines

Guidance document for prevention of *Clostridium difficile* infection in acute healthcare settings

S. Tschudin-Sutter ^{1,*}, E.J. Kuijper ², A. Durovic ¹, M.J.G.T. Vehreschild ³, F. Barbut ⁴, C. Eckert ⁴, F. Fitzpatrick ⁵, M. Hell ⁶, T. Norèn ⁷, J. O'Driscoll ⁸, J. Coia ⁹, P. Gastmeier ¹⁰, L. von Müller ¹¹, M.H. Wilcox ¹², A.F. Widmer ¹ on behalf of the Committee[†]

Every hospital should have such a document.

Anti-epidemic measures/contact precautions

A patient with diarrhoea should have already been isolated

Reported CDI test positivity =

Initiation of anti-epidemic measures = to prevent the spread

Everyone has to follow them, otherwise they don't work!

Patient isolation - single room/toilet

Explain to the patient and visitors what is happening

A notice should be placed on the outer door of the isolation room, advising all visitors to contact nursing staff before entering.

The door should always be closed when possible, except in the entrance and exit. Fans must not be used as they may recirculate spores in the environment. **Key indicators**

Point prevalence survey of healthcare-associated infections and antimicrobial use in acute care hospitals

2022-2023

CZ	ECHIA						
Numbe Stan	r of hospitals 39 Idard protocol 39						
Numbe	er of patients 12296						
		Min.	25 th percentile	EU/EEA country median	75 th percentile	Max.	Counti
	Healthcare-associated infection (AMR) indicators	s (HAI	s) and a	ntimicr	obial res	sistanc	e
	HAI prevalence* (% patients with HAI)	3.0	5.1	6.8	8.2	13.8	6.7
	Composite index** of AMR (% antimicrobial-resistant isolates)	7.9	15.4	21.8	38.2	68.7	29.8
E	Infection prevention and contro indicators	ol (IPC)) and dia	agnostic	: stewar	dship	
	IPC nurses (full-time equivalents (FTEs) per 250 beds)	0.28	0.98	1.25	1.54	3.28	0.82
	Beds with alcohol-based handrub dispenser at point of care (% beds)	18.5	43.4	49.2	69.7	100	42.4
	Beds in single rooms (% beds)	3.2	7.1	15.8	35.2	56.5	8.6
	Blood culture sets (number per 1000 patient-days)	12.4	28.0	44.7	68.9	167.1	27.6
	Antimicrobial use (AU) and anti	microb	oial stew	ardship	indicat	ors	
	AU prevalence (% patients with AU)	20.8	29.7	36.0	43.8	56.5	30.9
	Duration of surgical prophylaxis >1 day	15.8	31.2	38.1	60.1	79.8	49.6

ECDC "School report": Czech Republic – PPS 2022-2023

Legend:

Better than both EU/EEA country median and the 25th (or 75th) percentile

- Better than EU/EEA country median, but worse than the 25th (or 75th) percentile
- Worse than EU/EEA country median, but better than the 75th (or 25th) percentile
- Worse than both EU/EEA country median and the 75th (or 25th) percentile

What should I do if I don't have a single room?

-Priority - patient with faecal incontinence -Patient cohorting

-Fellow patients without ATBs and immunosuppression

*HAI prevalence should be interpreted with caution, as it depends on patient mix, diagnostic capacity, sensitivity of HAI case finding and country representativeness of the sample of hospitals.

(% of antimicrobials for surgical prophylaxis)

Antimicrobials reviewed and changed

during treatment (%)

**The percentage of the sum of isolates of the following resistant microorganisms divided by the sum of the isolates for which results from antimicrobial susceptibility testing were reported: *Staphylococcus aureus* resistant to meticillin (MRSA), *Enterococcus faecium* and *Enterococcus faecalis* resistant to vancomycin, Enterobacterales resistant to third-generation cephalosporins, and *Pseudomonas aeruginosa* and *Acinetobacter baumannii* resistant to carbapenems

6.2

13.9

19.5

24.1

31.3

18.9

Anti-epidemic measures/contact precautions

Frequent cleaning and disinfection of the area (Terminal room clear Personalised equipment

Gloves and gowns when entering the room (to the patient) Hands must be washed before putting on gloves!

Gloves are ESSENTIAL!

Gloves need to be changed! When?

If they are visibly contaminated If I'm moving from a dirty to a clean area of patient care

Hand hygiene!! Before putting on new gloves and after patient care

Avoid contaminating yourself and the environment with contaminated gloves!

National CDI surveillance

ISIN (Informační systém infekčních nemocí) -dříve EPIDAT

Czech and Slovak system for reporting infectious diseases. Code A04: Other bacterial Intestinal infections

EPIS (Epidemiologický informační systém)

CDI is one of the mandatory notifiable infectious diseases

European CDI surveillance

Table 1. Information collected for different CDI surveillance options

	Minimal surveillance	Light surveillance	Enhanced surveillance	Form
rmation	 Minimum CDI surveillance for each hospital (aggregated numerator data) Hospital data for each hospital (aggregated denominator data) 	 Minimum CDI surveillance for each hospital (aggregated numerator data) Hospital data for each hospital (aggregated denominator data) 	 Minimum CDI surveillance for each hospital (aggregated numerator data) Hospital data for each hospital (aggregated denominator data) 	• Form H (aggregated numerator and denominator data)
ected info		 Information on each CDI case (case-based numerator data) 	Information on each CDI case (case-based numerator data)	Form C (case-based numerator data)
S			• Microbiological data (for the first 5 consecutively detected cases in each participating healthcare facility: characterisation, susceptibility testing and typing of each <i>C.</i> <i>difficile</i> isolate)	• Form M (one form for each <i>C. difficile</i> isolate)
irveillance period	Recommended: continuous a The recommended minimum December, or from 1 January to of the month. *The pilot study of first day of a month.	surveillance for 12 months, start n surveillance period is three cons o 31 March. The absolute minimu demonstrated that completion of	ting on the first* day of the month. secutive months, preferably from 1 Octo im surveillance period is one month, star Form H is made much easier by starting	ober to 31 rting on the first day g surveillance on the

CDI CASE FORM

Hospital
Patient identification
Initials Gender Sample receipt
Year of birth Sample ID
Department of hospitalization
Date of hospitalization
Patient's underlying disease
Other information
GDH Toxin A/B PCR Test result release
1st episode / recurrence: 🔲 1st CDI episode
Recurrence Number of recurrences
(recurrence - development of symptoms more than 2 weeks and less than 8 weeks from the first positive result)
ATB treatment in the last 4 week
Previous hospitalization in the last four weeks:
Same hospital Other hospital Longterm care facility Rehabilitation None
Previous hospitalization in the last three months:
CDI symptoms on admission to hospital: Yes Date of symptom onset
No Date of symptom onset
Complicated course of illness (CDI as reason: community hospitalization, ICU admission, toxic megacolon, colectomy, death)
Start date of CDI ATB treatment ATB
Patient isolation: Separate room Not isolated
Cohorting Unknown
Patient discharged Patient died CDI contributed to death
Date of discharge or death of patient: CDI probably contributed to death
CDI not contributed to death
Date Signature
CLEAR FORM PRINT

ECDC, CDI surveillance protocol v2.4, 32 pages

Š

Krutova M. - Faculty Hospital Motol

Why should we characterize *C. difficile* isolates (CDI cases)? Name the CDI case!

Monitoring of the occurrence and spread within healthcare facility

C. difficile PCR ribotyping

WEBRIBO

Ribotyping – Implementation into routine practice

Materiál: Stolice	
Vyšetření: toxigenní Clostridium difficile	 antigen, Cl. difficile - kultivace, PCR vyšetření toxínu C.difficile
C. difficile - antigen	
GDH: POZITIVNÍ	
Toxiny A/B: POZITIVNÍ	
Kultivace cílená na C. difficile	
Nález 1: Clostridium difficile	
	ANTIBIOGRAM - MIC v mg/l (strip)
vankomycin	0,5 C metronidazol 0,125 C
C. difficile - charakterizace kmer	ne
Gen toxinu A: POZITIVNÍ	
Gen toxinu B: POZITIVNÍ	
Gen binárního toxinu: negativní	
Ribotyp: 001	
Zkratky: C = citlivý, R = rezister ATB střediskem	ntní, I = intermediální, * = výsledek k dispozici po konzultaci s
Telefonické hlášení: 25.10.2024-16:24 MUDr. Šulc Rac Clostridium difficile - pozitivn a toxinu	lek (Korbová Hana) ní nález antigenu
Kódy pro pojišťovnu: 82031(1), 82058(1)	, 82067(3), 82117(2)
LAB kontrola: Mgr. Krůtová Marcela, Ph.	D. VŠ kontrola: 29.10.2024-18:00 MUDr. Hurych Jakub, Ph.D.
trana: 1/1	UNIS-STEINER, © 1991-2024, rev. 31-01-24/MIC 05.11.2024-05:3

PCR ribotyping national data

52 ribotyping profiles

Zíková J., diploma thesis

RT=ribotype, NR=new ribotype

Geographical distribution of participating hospitals

C. difficile – ribotyping – FN Motol

PCR ribotyping – Patients vs. Other sources

One isolate of ribotype 001 in wild boar!

Krutova et al., 2018; Kecerova et al., 2019; Masarikova et al., 2020; Cizek et al., 2022

C. difficile ribotype 001 wild boar vs. patients

Safe Antibiotics for Patients at Risk of CDI – *C. difficile* Colonization?

Rupnik et al., 2009

Safe antibiotics for patients at risk of CDI? The effect of antibiotics on the composition of the gut microbiota

- ✓ Antibiotics cause significant changes in the intestinal microflora. These changes include a decrease in bacterial diversity,
- \checkmark changes in the abundance of certain bacteria and an increase in antibiotic resistance.
- The longest duration of changes was observed after treatment with ciprofloxacin (one year), clindamycin (two years) and clarithromycin with metronidazole (four years). However, these findings are limited by the follow-up period.
 (Zimmermann and Curtis, JI, 2019)

Risky ATB fluoroquinolones and clindamycin

Frequently used ATB Cephalosporins or piperacillin tazobactam?

0

PPT

We don't know the mechanisms yet

Zíková J., diploma thesis

Carbapenems

Zíková J., diploma thesis

We don't know the mechanism yet.

Linezolid at risk!!

Presence of *cfr*B gene, which also causes resistance to clindamycin and erythromycin!

Zíková J., diploma thesis

Extraintestinal C. difficile infections

MICROBIOLOGICAL FINDINGS AND TREATMENT

2nd day

Decubius a-d: polymicrobial findings: MRSA, Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, and Alcaligenes faecalis.

14th day

Decubitus ulcers a, b - plastic surgery

Antibiotic coverage: vancomycin and piperacillin/tazobactam

26th day

Change to cotrimoxazol

37th day

Decubitus *d*: *Pseudomonas aeruginosa*, decubitus *a-c*: normal microflora Urine: *Klebsiella pneumoniae* (ESBL positive)

Change to piperacillin/tazobactam

41st day

Drain decubitus b: ESBL-positive E. coli

Change to imipenem/cilastatin

43th day

Decubitus ulcers c, d - surgical intervention

Antibiotic coverage: imipenem/cilastatin was supplemented by vancomycin

54th day

Decubitus d: Pseudomonas aeruginosa resistant to imipenem/cilastatin

Change to: cefoperazone/sulbactam and amikacin

71st day

Decubitus d: Clostridium difficile

Change to: metronidazole (the first six days intravenously and then orally for the next eight days)

81st day

Decubitus d: surgical revision

Antibiotic coverage: piperacillin/tazobactam (20 days) and vancomycin (16 days)

Fig. 1 Localization of decubitus ulcers (a-d) and timeline of microbiological findings and antibiotic treatment

Nyč et al., 2015

Extraintestinal infections caused by *C. difficile* are rare. Examples:

- Bacteraemia with or without plaque infection
- Intra-abdominal infections, extra-abdominal infections
- abscesses (spleen, brain)
- Reactive arthritis, osteomyelitis
- Infections of prosthetic shoulder and knee joint replacements
- Non-healing wounds
- In a spore-contaminated environment
- C. difficile is only pathogen

Think about ANAEROBES

Thank you for your attention!

224435355, marcela.krutova@lfmotol.cuni.cz