Clinical aspects of the cardiovascular physiology

Milan Chovanec

Department of Physiology, 2. LFUK in Prague Cardiocenter, Na Homolce Hospital, Prague

Table of contents

- 1. Arterial hypertension: regulations, therapy mechanisms
- 2. Acute myocardial ischemia: STEMI, aetiology, mechanism of origin, therapy mechanisms
- 3. Acute heart failure, basic approaches to therapy: pharmacological approaches (inotropy, contractility, vasoactive drugs: Dobu, NOR, Adr, milrinon, vazopressin, levosimendan...) + mechanical approaches
- 4. Conductive system disorders: SA, AV blocks a cardiac pacing
- 5. Vasovagal syncope: current approache of the treatment
- 6. Cardiac arrhythmias, reentry mechanism type of tachycardia (AVNRT, AVRT, VTs....)

Elevated blood pressure – arterial hypertension

Elevated BP, MAP

Heart, vessels, kidneys interaction

• BP regulation:

• Short-term: sympathetic activation

Mid-term: RAAS

• Long-term: kidneys

BP regulation – short-term

- Seconds, minutes
- Equilibrium at different BP value
- Sympathetic / parasympathetic, reflex arc
- Effective solution to acute BP changes
- It is not very advantageous from the point of view of long-term BP regulation

BP regulation – mid-term

- Minutes, hours, days, weeks....
- Renin-angiotensin-aldosteron-system (RAAS)
- A more efficient system in the long run
- It also affects growth factors and the remodeling of blood vessels and the heart, i.e. LV hypertrophy, vessels, collateral circulation.....

BP regulation — long-term

- Days, weeks, months, years....
- Intreraction of CVS and kidneys
- Kidney = pressure valve
- The most effective way of longterm blood pressure regulation
- Changing the patient's lifestyle (low NaCl intake) is essential.....!!!!!

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Current treatment options for arterial hypertension

- Betablockers
- ACE inhibitors / AT-II receptor inhibitors
- Ca channels blockers
- Diuretics
- Peripheral antihypertensives
- Central antihypertensives

Treatment of hypertension – beta-blockers (cardioselective)

- Sympathetic inhibition (β_1 -receptors) = decrease of ino/chronotropy

Treatment of hypertension – ACEi /ARB

- Peripheral (arteriolar) vasodilation = decrease of SVR

Treatment of hypertension – Ca blockers

- Inhibition of contraction of the arteriolar SMCs – decrease of SVR

Treatment of hypertension – diuretics

 Diuretics = increase water loss in kidneys

Decreased preload

Decreased venous return, CVP

Treatment of hypertension – central and peripheral antihypertensives

• Decresed sympathetic activation – central (CNS) vs. Peripheral (vessels)

Peripheral (vascular) vasodilation

Decreases SVR

Decreased inotropy, chronotropy

Arterial hypertension - summary

Inotropy, chronotropy

• SVR, afterload

Venous return, preload

• Sympathetic / parasympathetic aktivation

Acute myocardial ischemia

- One of the most common causes of morbidity and mortality in people in the developed world
- It is closely related to the proces of atherosclerosis
- Bernoulli's law: relationship between the kinetic and the potential energy

Atherosclerotic plague rupture

Exposure of the lipid core of the plaque is thrombogenic

Platelet activation

Activation of the coagulation cascade

Acute vessel occlusion = acute ischemia

Mechanism of acute vascular occlusion - haemocoagulation activation

Mechanism of acute vascular occlusion – treatment principle

• <u>Inhibition of coagulation processes</u> (antiagregation, antikoagulation, ...trombolysis

mechanical restoration of flow through the vessel

Percutaneous corronary intervention - PCI

Mechanical treatment of acute myocardial ischemia

Acute myocardial ischemia – summary

• The process of atherosclerosis is essential !!!

Plaque rupture = induction of hemocoagulation

Hemocoagulation = <u>acute</u> occlusion of a blood vessel

- Treatment principle:
 - Inhibition of hemocoagulation (antiaggregation, anticoagulation, thrombolysis...)
 - Mechanical occlusion of the vessel, PCI

Acute heart failure

• Acute heart failure = kardiogenic heamodynamical shock

shock = heart failure

 Heart failure = the heart is unable to pump blood around the body properly (organ needs)

• Aetiology: ischemia, infection, arrhythmia, mechanical injury....

Acute heart failure – treatment principle

To treat the cause of heart failure is essential !!!!!!!

- Pharmacotherapy:
 - homeometric regulation of myocardial contraction
 - Increasing SVR thereby maintaining MAP and perfusion of the brain and the heart
 - Heterometric regulation

Mechanical treatment:

Acute heart failure - pharmacotherapy

Acute heart failure – mechanical treatment: percutaneous mechanical support

Percutaneous mechanical support

Impella LP 2.5, 3.5 CP, 5.0

Augmentation of CO: 2,5–5,0L/min

Extracorporeal membraneous oxygenation - ECMO

V-A konfiguration

Inflow cannula 20-23Fr

Outflow cannula 15-19F

The heart and the lung functional replacement

Augmentation of CO: 4,5–7,0L/min

TandemHeart

Augmentation of CO: 3,5-5,0L/min

Acute heart failure – summary

 Primary heart involvement. The myocardium is unable to maintain of the organs needs for blood perfusion

- ALWAYS focus on the underlying cause!!!!
- Pharmacotherapy + mechanical treatment

Difference with chronic heart failure

Conductive system dissorders – cardiac pacing

Cardiac pacing

The firs cardiac pacing in human patient

- October 8th **1958**
- Karolinska University, Stokholm, Sweden
- Epicardial electrode implantation by cardiosurgical approach

Ake Senning, cardiosurgeon

Rune Elmquist, inventing and ingeneering

RIMEM V00 Pacemaker, March 1965

Doc. MUDr. Bohumil Peleška, DrSc

Ing. Vladimír Bičík

Rimem, Thomayerova Nemocnice, Praha - Krč

PATENTOVÁ LISTINA

čislo 124901

ÚRAD PRO PATENTY A VYNÁLEZY V PRAZE UDĚLIL PODLE § 19 ZÁKONA Č. 34/1957 Sb. PATENT NA VYNÁLEZ UVEDENÝ V PŘIPOJENÉM PATENTOVÉM SPISU

PUVODCE VYNALEZU: Doc. MUDr. Bohumil Peleška, Praha

1967

1970 vs. 2000

Leadless cardiac pacing – MicraTM

NEMOCNICE

Vasovagal syncope

Short-term regulation of blood pressure - autonomic nervous regulation

Sympathetic / Parasympathetic

Neural arch

Syncope = short-term loss of consciousness

Vasovagal = inadequate activation/inhibition between sympathetic / parasym.

Regardless of age, rather younger patients

Very unpleasant symptoms, injuries,

Rapid sharp drop in BP when changing body position....

• Rapid, sudden changes in heart rate

Pachon et al, Europace 2011

Pachon et al, Europace 2005

Masáž karotického sinu

Sympathetic / Parasympathetic system – anatomy

Radiofrekvency ablation - principle

RF Ablation: Technique

The Electrical Circuit of RF Ablation

The RF is concentrated at the ablation surface (catheter tip-tissue contact) and disperses throughout the body to a large surface electrode (indifferent electrode)

Vazovagal synkope – treatment principle, RF ablation

Pachon et al, Europace 2011

Pachon et al, Europace 2011

The most common cause of cardiac arrhythmias

 Pathology of the conduction system – the presence of at least one nonphysiological pathway (AV node, atria, ventricles...) or pathological anatomy is required

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Ventricular tachycardia – ischemic substrate based

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

AVRT

Reentry mechanism – treatment

pharmacotherapy – very limited effectiveness

RF ablation – interruption of the reentry circuit!!!!

