The Heart II.

(CO, preload, afterload, contractility...)

Milan Chovanec

Department of Physiology

2nd Medical School, Charles University, Prague

• Cardiac cycle, cardiac output

Preload

Afterload

• Contractility – inotropy

• Relationship between CO, preload, afterload, contractility, venous return...

The Heart = pump

- Device pumping blood in cycles
- Filling (diastole) / ejecting (systole)
- pressure / volume work

isotonicisometriccontractionrelaxation

The Heart Cycle

- Atrial contraction
- isovolumetric ventricular contraction
- Ejection
- Isovolumetric ventricular relaxation
- Passive ventricular filling

1. Atrial contraction

2. Isovolumetric contraction

3. Fast ejection

4. Slow ejection

5. Isovolumetric relaxation

6. Fast filling

7. Slow filling

Pressure / Volume Relationship

Cardiac Output

$$CO = SV \cdot HR$$

Cardiac Index (CI) = CO / BSA

When the heart in unable to pump sufficiently to maintain blood flow to meet the body's needs = **the heart failure**

Increasing of the heart rate leads to shortening of diaslole (filling). Since some the heart rate **more increase of HR leads to decreasing of CO!!!**

Relationship between CO and age

Relationship between CO and excercise

Measurement of CO

• <u>Echo:</u>

• Diluting methods:

• Fick principle:

Diameter of LVOT= calc.of area of LVOT

Dye dilution – experiments

Velocity of flow in LVOT = VTI in LVOT

Thermodilution – common in critical ill patients

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Preload

 Tension of contraction increases on the length of sarcomere at the end of diastole

Increased filling leads to faster and stronger contraction

Venous return, CVP

HETEROMETRIC REGULATION OF CONTRACTION

Frank-Starling relationship

Frank-Starling

"Experiments carried out in this laboratory have shown that in an isolated heart [...] (within physiological limits) the larger the diastolic volume [...] the greater is the energy of its contraction."

EH Starling & MB Visscher. The regulation of the energy output of the heart. J Physiol 1926/62:243-261.

Isometric contraction

síla kontrakce

Force -

Isotonic contraction

Frank-Starling mechanism (Heterometric regulation of contraction)

Frank-Starling mechanism (Heterometric regulation of contraction)

Frank-Starling mechanism

Increased filling – faster and stronger contraction, why?

- Prolonged sarcomere:
 - More actin-myosin interactions more ATP, more energy
 - Increased sensitivity of troponin C to Ca²⁺
 - Increased intracelular [Ca²⁺]
 - Decreased diameter of muscle fiber actin+myozin closer together

Frank-Starling mechanism – ventricular compliance (Heterometric regulation of contraction)

CO and Venous Return

CO and Venous Return

Relationship between CO and Venous Return

Factors Determining Ventricular Preload

- Venous Pressure, venous return, CVP
- Ventricular compliance
- Heart Rate filling time, time of diastole
- Atrial contraction more important in tachycardia, atrial fibrillation
- Inflow resistance Tri stenosis, Mi stenosis
- Outflow resistance PAP, Pu stenosis, hypertension, Ao stenosis
- Ventricular contractility decreased contractility leads to increased preload

Afterload

Load against which the heart must contract to eject blood

Characterized by SVR (small arteries, arterioles)

• Can be measured like wall stress:

$$\sigma \propto \frac{\mathbf{P} \cdot \mathbf{r}}{\mathbf{h}}$$

Afterload: force / velocity relationship

Afterload

Contractility - inotropy

- Contractility (inotropy) = the force of contraction
- Sarcomere lenght is changing by different mechanism than changing of interaction actin-myozin:
 - Increased influx Ca²⁺
 - Increased release of Ca²⁺ from SR
 - Increased sensitivity of troponin C to Ca²⁺
- Factors influencing inotropy:

Inotropy

Inotropy

Inotropy vs. afterload

Interaction: preload, afterload, inotropy

Increased preload:

- increased SV and CO
- SVR not changed
- Primal vascular tone caused to relative increase of afterload:

Interaction: preload, afterload, inotropy

Increased afterload:

- decreased SV and CO
- decreased CO is not able pumps whole Venous Return
- Increased Venous Return leads to increase preload

Interaction: preload, afterload, inotropy

Increased inotropy:

- Increased CO and decreased ESV
- SVR not changed
- Relative increased afterload
- Increased afterload caused decreased contractility
- Decreased contractility caused decreased preload

Increased sympathetic activation

(increased heart stimulation + venous splanchnic vasoconstriction + arteriolar vasodilation)

A – equilibrium between CO anad Venous Return

Increased sympathetic activation

(increased heart stimulation + venous splanchnic vasoconstriction + arteriolar vasodilation)

A – equilibrium between CO anad Venous Return

Heart failure

