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1 Introduction

1 Introduction

A Boolean algebra B is a structure over a language L which consists of two
constants, denoted 0 and 1, one unary operation of a complement −, and two
binary operations of meet ∧ and join ∨. Using the properties of the binary
operations, it is possible to define an ordering ≤ on B in which 0 is the least
element and 1 the greatest element. The ordering ≤ is called a lattice, which
means that every two elements of B have the supremum and infimum in ≤.

Unlike groups and rings which are motivated by the algebraic properties of the
operations + and × on structures such as Z or R, Boolean algebras are based
on the properties of the classical propositional logic and the set-theoretical
operations of intersection, union, and complement.

We will start by introducing the notion of a lattice, distributive lattice, and
Boolean algebra. After verifying some basic properties, we review the most
familiar examples of Boolean algebras (for instance the clopen algebra of the
Cantor space or Lindenbaum-Tarski algebras corresponding to first-order the-
ories). We show how to generalize the binary operations to infinite setting
and use these notions to define a complete Boolean algebra. Next we move to
representation theorems: we show that up to isomorphism all Boolean alge-
bras are algebras of sets, moreover determined by a simple topology (Stone’s
duality). We finish by showing that all atomless countable Boolean algebras
are isomorphic – a result analogous to the famous theorem of Cantor that all
countable dense linear orders without end-points are isomorphic.

Due to the limited scope of the lecture, there are necessarily important and
interesting topics which will be omitted. For a more detailed discussion of
Boolean algebras, we recommend [1] and [2].

1.1 Notational conventions

We use the same notation for a structure and its domain. For instance
if B is a Boolean algebra, we write B = 〈B,∧,∨,−, 0, 1〉. In rare cases
when this convention may be confusing, we explicitly refer to an algebra B,
or to the domain of an algebra B. Some special algebras are denoted by
descriptions, as in CO(X, τ): the clopen (closed and open) algebra of the
topological space (X, τ). If we need to distinguish operations between sev-
eral algebras, we add superscripts, as in B = 〈B,∧B,∨B,−B, 0B, 1B〉 and
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2 Lattices, partial orders, and Boolean algebras

A = 〈A,∧A,∨A,−A, 0A, 1A〉.

To avoid mixing up the algebraic join symbol ∨ and the disjunction (usually
denoted by ∨ as well), we use the word “or” instead. For the conjuction, we
will use &, so there is no danger of confusing ∧ (meet) and &; however, for
reasons of symmetry, we often use “and” instead of &.

The symbol ⇔ stands for “if and only if”. Theories and axioms are denoted
by sans serif font, as in AC (Axiom of Choice), CH (Continuum Hypothe-
sis), GCH (Generalized Continuum Hypothesis), T (variable for a theory),
PA (Peano Arithmetics), ZF (Zermelo-Fraenkel set theory without AC), ZFC
(Zermelo-Fraenkel set theory with AC). We assume throughout that ZFC is
a consistent theory.

Natural numbers are denoted by ω, rational by Q, real by R, and irrational
by I.

Remark 1.1 Some simpler claims in the text are left without a proof. The
idea is that the reader should provide missing proofs as an exercise.

2 Lattices, partial orders, and Boolean algebras

A lattice is a simple algebraic structure which corresponds to a partially
ordered set where every two elements have the supremum and the infimum.
We will later learn that the canonical partial order of a Boolean algebra is a
lattice.

2.1 Lattices

Definition 2.1 Let M be a nonempty set. We say that 〈M,≤〉 is a non-
strict partial order if ≤ is a reflexive, transitive and anti-symmetric relation
on M . We say that 〈M,<〉 is a strict partial order if < is an anti-reflexive
and transitive relation on M .

Often we omit the mentioning of “non-strict” and “strict” when we refer to
partially ordered sets. We use the typographical convention that ≤ (and its
variants) denote the non-strict order, while < (and its variants) denote the
strict order. It is easy to go from one to another:
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2 Lattices, partial orders, and Boolean algebras

Observation 2.2 (i) Let 〈M,≤〉 be a non-strict partial order. If we define
for all x, y ∈M ,

x < y ⇔ x ≤ y and x 6= y,

then 〈M,<〉 is a strict partial order.
(ii) Let 〈M,<〉 be a strict partial order. If we define for all x, y ∈M ,

x ≤ y ⇔ x < y or x = y,

then 〈M,≤〉 is a non-strict partial order.

Proof. Exercise. �

We now introduce basic terminology concerning partial orders. Let 〈M,≤〉
be a partial order and X ⊆M . Let x, y, z range over the elements of M :

(2.1)

– x is the least element of X ⇔ x ∈ X and for all y ∈ X, x ≤ y.
– x is a minimal element of X ⇔ x ∈ X and there is no y ∈ X such that
y < x.

– x is a lower bound of X ⇔ for all y ∈ X, x ≤ y.
– x is the infimum of X ⇔ x is the greatest lower bound of X.
– x is the greatest element of X ⇔ x ∈ X and for all y ∈ X, x ≥ y.
– x is a maximal element of X ⇔ x ∈ X and there is no y ∈ X such that
y > x.

– x is a upper bound of X ⇔ for all y ∈ X, x ≥ y.
– x is the supremum of X ⇔ x is the least upper bound of X.

Note that if a supremum (infimum) exists, then it is unique.

Definition 2.3 (Algebraic definition of a lattice) Let ∧ and ∨ be binary
functional symbols. We say that M = 〈M,∧,∨〉 is a lattice if M satisfies the
following formulas for all x, y, z ∈M :

L1 Associativity. x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z.
L2 Commutativity. x ∨ y = y ∨ x, x ∧ y = y ∧ x
L3 Idempotence. x ∨ x = x, x ∧ x = x
L4 Absorption. x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x

If M is a lattice, we can define a partial order ≤ on M as follows

(2.2) x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y.
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2 Lattices, partial orders, and Boolean algebras

The relation≤ is called the canonical ordering ofM , or the associated ordering
of M .

Observation 2.4 The relation ≤ in (2.2) is a partial order and is correctly
defined.

Proof. We first show that the definition of ≤ makes sense, ie. that x ∨ y = y
is true if and only if x∧y = x is true. If x∨y = y, then x∧y = x∧(x∨y) = x
(by absorption). Conversely, if x∧ y = x, then x∨ y = y∨x = y∨ (x∧ y) = y
(again by absorption).

We now show that ≤ is a partial order (using the definition with ∧). We
show first that ≤ is reflexive: x ≤ x if and only if x ∧ x = x, which is true
by idempotence. Transitivity: x ≤ y ≤ z implies x ≤ z by the following
argument using associativity: if x ∧ y = x and y ∧ z = y, then x ∧ z =
(x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ y = x. To show that ≤ is anti-symmetric, we
need to argue that x ≤ y and y ≤ x already implies x = y: this follows by
commutativity x = x ∧ y = y ∧ x = y. �

A lattice can be defined equivalently by putting additional requirements on
the relation ≤.

Definition 2.5 (Set-theoretic definition of a lattice) We say that M =
〈M,≤〉 is a lattice if M satisfies the following formulas (axioms) for all x, y ∈
M .

L’1 ≤ is a partial order on M .
L’2 Every pair {x, y} of elements in M has a supremum and infimum in M .

We denote this supremum and infimum as sup(x, y) and inf(x, y).

One can show that there is a one-to-one correspondence between the algebraic
and set-theoretic definitions of a lattice: if 〈M,∧,∨〉 is a lattice, then the
canonical order ≤ yields a lattice 〈M,≤〉; conversely, if 〈M,≤〉 is a lattice
and we define for all x, y in M , x ∧ y = inf(x, y) and x ∨ y = sup(x, y), then
〈M,∧,∨〉 is a lattice (the inequivalances (2.4) introduced in the next section
are useful for this).

Examples: While all linearly ordered sets are lattices, the notion of a lattice
is more interesting with non-linearly ordered sets. An important example
of a lattice is the powerset of a non-empty set X with the inclusion as an
ordering: 〈P(X),⊆〉, or equivalently with the intersection and union as the
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2 Lattices, partial orders, and Boolean algebras

binary operations: 〈P(X),∩,∪〉. If Y is a subset of P(X), which is closed
under intersection and union (i.e. for all a, b ∈ Y, a ∩ b ∈ Y and a ∪ b ∈ Y ),
then also 〈Y,⊆〉 is a lattice. Perhaps a less familiar example of a lattice
is the natural numbers with the divisibility relation |: 〈ω, |〉 (for m,n ∈ ω,
m|n ⇔ (∃k ∈ ω)mk = n). It is easy to check that the corresponding binary
operations for 〈ω, |〉 are the least common multiplier and the greatest common
factor.

2.2 Distributive lattices

Sometimes it is useful to add the following axioms to the axioms of a lattice:

(2.3) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

We call these axioms (2.3) axioms of distributivity.

Observation 2.6 Every lattice satisfies the following formulas, for all x, y, z:

x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z) and (x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z).

Proof. We first show that each lattice satisfies the following formulas:

(2.4)

– (∀x, y, z)(x ≤ z & y ≤ z)→ x ∨ y ≤ z,
– (∀x, y, z)(x ≤ y & x ≤ z)→ x ≤ y ∧ z.

To prove the first formula in (2.4), we need to show that x∨ y ∨ z = z; using
the assumptions we have: z = z ∨ z = x ∨ z ∨ y ∨ z = x ∨ y ∨ z as required.
Note that we have used the definition x ≤ y ⇔ x ∨ y = y. The proof of the
second formula is analogous.

We will prove just the first formula x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z) (the proof
of the second formula is analogous). As its antecedent is connected by the
operation ∨, it is enough to show separately that x ≤ (x ∨ y) ∧ (x ∨ z) and
y ∧ z ≤ (x ∨ y) ∧ (x ∨ z). However, to prove x ≤ (x ∨ y) ∧ (x ∨ z), it is again
by (2.4) sufficient to show x ≤ x ∨ y and x ≤ x ∨ z, but this is immediate.
Similarly for y ∧ z: y ∧ z ≤ y ≤ x ∨ y, and y ∧ z ≤ z ≤ x ∨ z. �

However, the full distributivity in (2.3) does not always hold. For instance,
the following lattice violates distributivity:

8



2 Lattices, partial orders, and Boolean algebras

u
a b c

0

Indeed: a ∨ (b ∧ c) = a ∨ 0 = a, while (a ∨ b) ∧ (a ∨ c) = u ∧ u = u.

We now show that the two formulas in (2.3) are equivalent over lattices, i.e.
if we assume distributivity for ∨, we can prove it for ∧, and conversely.

Observation 2.7 In every lattice the following are equivalent:

(i) (∀x, y, z)[x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)],
(ii) (∀x, y, z)[x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)].

Proof. Assume (i) is true. We want to show that (ii) is true as well. By
Observation 2.6, it suffices to show that

(2.5) x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z).

Since we can assume distributivity for ∨, we use it to obtain (x∧y)∨(x∧z) =
[(x ∧ y) ∨ x] ∧ [(x ∧ y) ∨ z)]. By (2.4) and another appeal to distributivity
for ∨ and to absorption, to show (2.5), it suffices to show (a) x ∧ (y ∨ z) ≤
(x ∧ y) ∨ x = x and (b) x ∧ (y ∨ z) ≤ (x ∧ y) ∨ z = (z ∨ x) ∧ (z ∨ y). The
inequality (a) is obvious. As regards the inequality (b), applying (2.4) again,
it suffices to show that x ∧ (y ∨ z) ≤ z ∨ x and x ∧ (y ∨ z) ≤ z ∨ y. The first
inequality holds because x ∧ (y ∨ z) ≤ x ≤ z ∨ x, and the second is again
obvious. The converse is proved analogously. �

2.3 Boolean algebras

Definition 2.8 Let ∧,∨ be binary functional symbols, − a unary functional
symbol, and 0, 1 two constants. A Boolean algebra is a structure

B = 〈B,∧,∨,−, 0, 1〉,

where ∧ and ∨ are binary functions from B2 to B, − is a unary function from
B to B, and 0, 1 are two elements of B. B satisfies the following formulas
for all x, y, z ∈ B:

B1 Associativity of ∨,∧: x∧ (y ∧ z) = (x∧ y)∧ z, x∨ (y ∨ z) = (x∨ y)∨ z.
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2 Lattices, partial orders, and Boolean algebras

B2 Commutativity of ∨,∧: x ∧ y = y ∧ x, x ∨ y = y ∨ x.
B3 Absorption. x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x.
B4 Distributivity of ∨,∧: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x ∨ (y ∧ z) =

(x ∨ y) ∧ (x ∨ z).
B5 Complement. x ∨ (−x) = 1, x ∧ (−x) = 0.

Remark 2.9 A one-element structure with 0 = 1 is called a trivial Boolean
algebra. Depending on our choice, we might postulate that such a structure
will not be considered: just add a new axiom 0 6= 1.

Notice that every Boolean algebra is a lattice (axioms B1–B3). This allows
us to define the canonical ordering of a Boolean algebra by

(2.6) x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y.

Also note that for all x ∈ B,
0 ≤ x ≤ 1,

i.e. 0 is the least element and 1 the greatest element in the ordering ≤. To
see this, recall that 0 ≤ x is equivalent to 0 ∧ x = 0, and 0 = x ∧ (−x) =
x∧ x∧ (−x) = x∧ 0. The inequality x ≤ 1 follows similarly, using the axiom
x ∨ (−x) = 1.

Definition 2.10 A structure 〈M,∧,∨, 0, 1〉 is called a complemented lattice
if it is a lattice with the least element 0 and greatest element 1 such that for
every x ∈ M there exists in M a complement x′ satisfying x ∨ x′ = 1 and
x ∧ x′ = 0.

By the above definition, a Boolean algebra is a distributive complemented
lattice. We show that distributivity implies the uniqueness of complement.

Observation 2.11 If B is a Boolean algebra then −x is the unique comple-
ment of x.

Proof. Assume that y is a complement of x, i.e. x ∧ y = 0 and x ∨ y = 1. We
want to show that −x = y.

−x = −x ∧ (x ∨ y)

= (−x ∧ x) ∨ (−x ∧ y)

= 0 ∨ (−x ∧ y)

= −x ∧ y
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2 Lattices, partial orders, and Boolean algebras

The last line is equivalent to −x ≤ y. The converse y ≤ −x is shown by
starting with −x = −x ∨ (x ∧ y). �

Now we show some more properties of the operations in Boolean algebras.

Observation 2.12 The following formulas are true in every Boolean algebra:

(i) −− x = x,
(ii) −x = −y → x = y,

(iii) (de Morgan’s laws) −(x ∨ y) = −x ∧ −y,−(x ∧ y) = −x ∨ −y.

Proof. (i) By uniqueness of complement, axiom B5 claims that x is the
complement of −x.

(ii) If two elements are identical, so are their complements, that is − − x =
−− y, which by (i) implies x = y.

(iii) We argue for the first formula, the second one follows analogously. We
show that −x ∧−y is the complement of x ∨ y. To this effect it is enough to
show that (−x ∧ −y) ∧ (x ∨ y) = 0 and (−x ∧ −y) ∨ (x ∨ y) = 1. But this
follows immediately by distributive laws. �

Now we show how the operations interact with the partial order.

Observation 2.13 Following formulas hold in all Boolean algebras.

(i) x0 ≤ x1 & y0 ≤ y1 → x0 ∨ y0 ≤ x1 ∨ y1,
(ii) x0 ≤ x1 & y0 ≤ y1 → x0 ∧ y0 ≤ x1 ∧ y1,

(iii) x0 ≤ x1 ↔ −x1 ≤ −x0.

Proof. (i)-(ii). Follows by straightforward manipulation. (iii) Follows by
de Morgan’s laws: assuming x0 ∨ x1 = x1, we argue that −x1 ∧ −x0 =
−(x1 ∨ x0) = −x1. �

2.4 Subalgebras and homomorphisms

Definition 2.14 Let B = 〈B,∧B,∨B,−B, 0B, 1B〉 be a Boolean algebra and
let A be a subset of B which satisfies the following:

(i) 0B ∈ A, 1B ∈ A,
(ii) For all a, b ∈ A, −Ba ∈ A, a ∧B b ∈ A, and a ∨B b ∈ A.
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2 Lattices, partial orders, and Boolean algebras

Then the structure A = 〈A,∧A,∨A,−A, 0A, 1A〉 is called a subalgebra of B,
where 0A = 0B, 1A = 1B, and ∧A is the restriction of ∧B to A, and similarly
for ∨A and −A.

Observation 2.15 Show that if A and B are as above, then A is a Boolean
algebra.

Proof. Exercise. �

Definition 2.16 Let

A = 〈A,∧A,∨A,−A, 0A, 1A〉

and
B = 〈B,∧B,∨B,−B, 0B, 1B〉

be Boolean algebras. Let f : A → B be a function. f is called a homomor-
phism if the following hold for all x, y ∈ A:

(i) f(0A) = 0B and f(1A) = 1B.
(ii) f(x ∧A y) = f(x) ∧B f(y), f(x ∨A y) = f(x) ∨B f(y), and f(−Ax) =
−Bf(x).

If f is injective, then f is called an embedding. If f is injective and onto,
then f is called an isomorphism.

If f is a homomorphism from an algebra A to an algebra B, we write f : A→
B. An isomorphism is denoted by f : A ∼= B.

Observation 2.17 Assume f : A → B is a homomorphism. Then the fol-
lowing hold:

(i) f [A] = {b ∈ B | (∃a ∈ A)(f(a) = b)} is closed under the constants and
operations in B and therefore determines a subalgebra of B, which we
denote f [A].

(ii) If f : A→ B is an embedding, f [A] is isomorphic to A via f .

Proof. Exercise. �

We finish this section with a useful observation which says that a question
concerning the existence of an isomorphism between two Boolean algebras
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3 Examples of Boolean algebras

can be reduced to a question concerning the existence of an isomorphism be-
tween the two canonical partial orders (the upside being that an isomorphism
between two partial orders is easier to verify).

Observation 2.18 Two Boolean algebras A and B are isomorphic as alge-
braic structures if and only if their canonical partial orders are isomorphic
(with 0 being the least and 1 the greatest element in the order).

Proof. We give only a sketch of proof. Observation 2.11 implies that it is
enough to find an isomorphism between A and B with respect to ∧,∨, 0, 1
because the operation of complement is definable in the language ∧,∨, 0, 1.
Using ideas appearing in the paragraph after Definition 2.5, one can conclude
that the existence of an isomorphism with respect to ∧,∨, 0, 1 is equivalent
to the existence of an isomorphism with respect to the canonical ordering ≤
with the condition that we map 0A to 0B and 1A to 1B. �

3 Examples of Boolean algebras

In this section, we give examples of Boolean algebras and discuss their prop-
erties. Let us note that if B is a Boolean algebra, then by the size of B we
mean the size of the domain of B.

3.1 The two-element Boolean algebra

By Observation 2.18, all two-element Boolean algebras A and B are isomor-
phic via a function which sends 0A to 0B and 1A to 1B. In particular up to iso-
morphism the truth table algebra for propositional logic 〈{0, 1},∧,∨,¬, 0, 1〉
is the unique two-element Boolean algebra. Another representation of the
same algebra is the powerset algebra of a one-element set (see the next sec-
tion 3.2). We denote this unique two-element Boolean algebra by 2, and its
domain by {0, 1}.

3.2 Powerset algebras

Let X be a set and P(X) its powerset. Then the algebra

P(X) = 〈P(X),∪,∩,−, ∅, X〉

13



3 Examples of Boolean algebras

is a Boolean algebra, with 0 being interpreted by ∅ and 1 by X.

The size of a powerset algebra is determined by the size of X: if the size of
X is κ (κ can be a finite or infinite cardinal number), then

|P(X)| = 2κ.

We will later show that every finite Boolean algebra is isomorphic to a pow-
erset algebra for some finite X; in particular, a finite Boolean algebra has size
2n for some n ∈ ω. However, it is not true that every infinite Boolean algebra
is isomorphic to a powerset algebra: for instance in Section 3.3.1 we define a
countable Boolean algebra which cannot be a powerset algebra because there
is no cardinal number κ such that 2κ = ω.

3.3 Algebras of sets

Let X be a non-empty set and let Y ⊆P(X) be closed under the operations
of the powerset algebra P(X). Then

〈Y,∪,∩,−, ∅, X〉

is a subalgebra of P(X) and it is a Boolean algebra (see Definition 2.14).

Definition 3.1 Let X,Y be as above. Then we call 〈Y,∪,∩,−, ∅, X〉 an al-
gebra of sets (on X).

It is worth noting that the canonical ordering on an algebra of sets is the
inclusion relation ⊆. Also note that a powerset algebra is a special case of an
algebra of sets. We shall prove later in Theorem 5.14 that up to isomorphism,
all Boolean algebras are algebras of sets.

We give some examples of algebras of sets below in Sections 3.3.1, 3.4.1, 3.4.2,
and 3.4.3.

3.3.1 Finite-cofinite algebras

Let X be a non-empty set. We call a ⊆ X cofinite in X if X \ a is finite. Let

(3.7) B = {a ⊆ X | a is finite or cofinite}.
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3 Examples of Boolean algebras

Then 〈B,∪,∩,−, ∅, X〉 is an algebra of sets on X because B is closed under
the operations of the powerset algebra P(X). (Exercise.)

Lemma 3.2 Assume X is a set of size κ ≥ ω. Then the finite-cofinite algebra
B defined in (3.7) has size κ.

Proof. The set of all finite subsets of an infinite κ has size κ; similarly, the set
of all complements of finite subsets has size κ. Since the union of two infinite
sets of size κ has size κ, we are done. �

3.4 Topological constructions

Let X be a set. We call a subsystem τ ⊆P(X) a topology on X if τ satisfies
the following properties:

(i) X, ∅ ∈ τ ,
(ii) If A,B ∈ τ then also A ∩B ∈ τ ,
(iii) If A be a subset of τ , then

⋃
A is in τ .

The pair (X, τ) is called a topological space. The sets in τ are called open; if
A is open, then X \A is called closed. A system B ⊆P(X) is called a basis
of τ if B ⊆ τ and every A ∈ τ can be expressed as a union of elements in B.

The system of open sets together with operations ∪,∩,− does not necessarily
form an algebra of sets because open sets are generally not closed under the
complement operation. However, we can use a topological space to define a
Boolean algebra if we restrict our attention to open sets which are both open
and closed:

Definition 3.3 If (X, τ) is a topological space, we call A ⊆ X a clopen set if
both A and X \A are open. Let CO(X, τ) denote the system of clopen subsets
of (X, τ).

Observation 3.4 If (X, τ) is a topological space, then the system of clopen
subsets of X forms a Boolean algebra of sets which we denote CO(X, τ) =
〈CO(X, τ),∪,∩,−, ∅, X〉.

Proof. By the definition of a topological space, ∅ and X are clopen. It
remains to verify that CO(X, τ) is closed under operations −,∩,∪. Let A,B
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be clopen. By definition of being clopen, −A is clopen. To show that A ∪B
is clopen, we need to show that it is both open and closed. A ∪ B is open
because A and B are open and hence their union is open. A∪B is also closed
because −(A ∪ B) = −A ∩ −B is open since A,B are closed. Closure under
intersection follows by de Morgan’s rules. �

While the definition of the clopen algebra seems somewhat special, we will
learn that every Boolean algebra is up to isomorphism a clopen algebra of
some topological space (see Theorem 5.16).

We get some more familiarity with this notion in the following sections where
we introduce the standard topologies on the real numbers, irrational numbers
and the Cantor space.

3.4.1 Real numbers

Now we define the standard topology of the real line R.

Definition 3.5 (Topology of the real line τR) A set A ⊆ R is in τR if
and only if for every x ∈ A there is an interval (a, b) of real numbers a < b
such that x ∈ (a, b) and (a, b) ⊆ A.

Observation 3.6 The system τR is a topology on R.

Proof. Exercise. �

Observation 3.7 Assume BR contains as elements all intervals of the form
(r0, r1) where r0 < r1 are rational numbers (we call (r0, r1) an open interval
with rational endpoints). Then BR is a basis of τR.

Proof. We know that rational numbers are dense in R: for every two real
numbers r0 < r1 there is a rational number q such that r0 < q < r1. If
A is open then for each x ∈ A we can find by denseness an open interval
Bx ⊆ A with rational endpoint (that is Bx ∈ BR) such that x ∈ Bx; thus
A =

⋃
x∈ABx. �

It follows that the topology of real numbers has a countable basis. Moreover,
since rational numbers Q are dense in R in the topological sense (every open
set contains a rational number), we say that the topology of real numbers is
separable.
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Corollary 3.8 There are 2ℵ0 open subsets of R, i.e. |τR| = |R|.

Proof. Clearly there are at least 2ℵ0 many open sets because (−r, r) is an
open set for every r ∈ R, r 6= 0.

Conversely, every open set O ∈ τR is expressible as a union of some sets
from the basis. It follows that the number of all open sets is at most the
number of all subsets of the basis: if O is open, then for some XO ⊆ BR,
O =

⋃
{B |B ∈ XO}. Since the basis is countable, the number of all subsets

of the basis is 2ℵ0 . It follows that there at most 2ℵ0 open sets. �

The system 〈τR,∪,∩,−, ∅,R〉 is not an algebra of sets since it is not closed
under complements (for instance the complement of an open interval (a, b)
is not open because there is no open interval which contains a (or b) and is
included in R\(a, b)). However, we know that CO(R, τR) is a Boolean algebra.
We show that it is in fact isomorphic to 2:

Observation 3.9 The topological space (R, τR) has only two clopen sets: ∅
and R. The algebra CO(R, τR) is therefore isomorphic to 2.

Proof. Assume A is open but not equal to ∅ or R. We will show that the
complement of A (denoted as −A) is not open. Choose some real number x
which is not in A. Then either A ∩ {r ∈ R | r < x} or A ∩ {r ∈ R | r > x}
must be non-empty. Without loss of generality assume that Ax = A ∩ {r ∈
R | r < x} is non-empty. Ax is bounded from above and so has a supremum;
let x0 be this supremum. It is obvious that x0 ≤ x.

We argue that x0 cannot be in A, and hence is in −A, but no open interval
containing x0 can be a subset of −A. This will imply that −A is not open.

If x = x0, then x0 ∈ −A and no open interval (r0, r1) can contain x and
be included in −A: assume for contradiction that (r0, r1) contains x and is
included in −A; then Ax ∩ (r0, x) = ∅, and because x0 is the supremum of
Ax, it must be that x0 ≤ r0; but because r0 < x = x0 this is a contradiction.

Assume x0 < x. If x0 were in A (and so also in Ax), then there must be by
openness of Ax an open interval (r0, r1) included in Ax containing x0 such
that r0 < x0 < r1. However as x0 is the supremum, this would imply that
x0 ≥ r1, which is a contradiction. It follows that x0 is not in A. Now we
can argue as in the case x = x0 and conclude there can be no open interval
included in −A containing x0. �
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3.4.2 Irrational numbers

Let I denote the set of irrational numbers and let (I, τI) be the topology of
the real line restricted to I, that is

A ⊆ I is in τI ⇔ there is A′ in τR such that A = A′ ∩ I.

Observation 3.10 BI = {(r0, r1) ∩ I | r0 < r1 rational numbers} is a clopen
base of τI.

Proof. Let 〈Bi | i ∈ ω〉 be some enumeration of the base BR of τR where each
Bi is of the form (r0, r1) for some rational numbers r0 < r1. We will show
that BI = {Bi ∩ I | i ∈ ω} is a clopen base of τI.

Each Bi ∩ I is easily seen to be closed since the end points r0 and r1 are not
elements of I, and so I \ (Bi ∩ I) is open. Thus each Bi ∩ I is clopen.

To show that BI is a base, let A be in τI. By definition of τI, there is
A′ ∈ τR and A = A′ ∩ I. We can write A′ =

⋃
i∈J Bi for some J . But clearly,

(
⋃
i∈J Bi) ∩ I =

⋃
i∈J(Bi ∩ I) as required. �

Since BI is infinite, CO(I, τI) is an infinite Boolean algebra. In fact, the
following holds:

Corollary 3.11 The size of CO(I, τI) is 2ℵ0.

Proof. There are at most 2ℵ0 clopen sets, since there are at most 2ℵ0 open
sets in τR, and so in τI.

Conversely, for every n ∈ ω, consider the clopen set In = (n, n + 1) ∩ I. We
will use the sets In to express 2ℵ0 many clopen sets. For every a ⊆ ω consider
the union Xa =

⋃
{In |n ∈ a}; it is easy to check that Xa is a clopen set (Xa

is a closed set because the complement I \Xa is open: given any r ∈ I \Xa,
there are s1 < r < s2 rational number such that (s1, s2) ∩ I is included in
I \ Xa). Now notice that if a 6= a′ are two subsets of ω, then Xa 6= Xa′ . It
follows that there are at least as many clopen sets as the number of subsets
of ω, i.e. 2ℵ0 . �

3.4.3 Cantor space

An important property of topological spaces is compactness. We will now
introduce a compact space which has many similarities with (R, τR) and (I, τI),
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but also some differences (one of them is compactness because neither (R, τR)
nor (I, τI) is compact). Let (X, τ) be a topological space. We say that C ⊆
P(X) is an open cover if

⋃
C = X and all elements in C are open.

Definition 3.12 We say that (X, τ) is compact if every open cover of X
has a finite subcover, i.e. if C is an open cover of X, then there exists finite
C ∗ ⊆ C such that

⋃
C ∗ = X.

Notice that (R, τR) is not compact: for instance no cover formed by open
intervals of length 1 has a finite subcover.

If (X, τ) is a topological space, there is a natural construction for a topology
on the product space X × X: the basis of the topology τX×X is the set of
all “rectangles” A × B, where A,B ∈ τ . A basis uniquely determines the
topology τX×X : a set C is in τX×X if C =

⋃
A for some collection A of

basic sets.

In general, we can define a product of any length, but we will limit ourselves
to the following special case.

Let us consider the two-element space 2 = {0, 1} with the discrete topology
τ , i.e. τ = P(2) (a topology is discrete if all subsets of X are open). Let
us consider the product space which takes as its domain ω-many copies of 2,
that is the set 2ω, with the following base of open sets: a set O ⊆ 2ω is a
basic open set whenever there exists n = {0, . . . , n − 1} and σ : n → 2 such
that

(3.8) O = Oσ = {f ∈ 2ω |σ ⊆ f},

i.e. O contains all sequences of 0, 1 which on the first n arguments agree with
σ. The product topology τ2ω = τ on 2ω is determined by basic open sets:

τ = {X ⊆ 2ω |X is a union of a collection of basic open sets}.

It is easy to check that the collection of basic open sets is closed under in-
tersection (if we add ∅ to it), and is therefore a base of the topology τ . The
topology τ is called the product topology on 2ω.

Definition 3.13 The topological space (2ω, τ) is called the Cantor space.
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The space (2ω, τ) is similar to the space (R, τR) – it has the same size as R,
the respective topologies have the same size, it has a countable base and it is
separable – but also some important differences, one of them being:

Lemma 3.14 Every basic open set in 2ω is clopen.

Proof. Let O be a basic open set determined by some σ : n→ 2. We need to
show that it is also closed, or equivalently that 2ω −O is open. Clearly,

2ω −O =
⋃
{Oσ′ |σ′ : n→ 2, σ 6= σ′}.

Hence 2ω − O is a union of open sets, and is therefore open. It follows that
O is closed. �

Since every base set is clopen, the family of clopen sets CO(2ω, τ) is infinite.
In order to determine the size of CO(2ω, τ), we will use the notion of com-
pactness. The discrete topological space on 2 is trivially compact because
it is finite. A natural question is whether the product space (2ω, τ) is also
compact. By Tychonoff product theorem, which we take as a fact (for more
details, see for instance [3, Theorem 7.4]), the answer is positive: the product
space (2ω, τ) is compact.

We use compactness of (2ω, τ) to argue that any clopen set A ⊆ 2ω is in
fact a finite union of basic clopen sets. Since the number of finite subsets
of a countable set is again countable, it follows that the number of clopen
sets is just countable. Before we do this properly (in Theorem 3.16), let us
define another important property of Boolean algebra, which will be useful
in discussing the properties of CO(2ω, τ).

Definition 3.15 Let B be a Boolean algebra. An element a in B is an atom
if 0 < a and there is no b ∈ B such that 0 < b < a; in other words a is a
minimal element in the set B −{0} = B+ (positive elements of B). If B has
no atoms, we call B atomless.

Theorem 3.16 The algebra CO(2ω, τ) is an atomless countable Boolean al-
gebra.

Proof. We first show that every clopen set is a union of basic sets. So let
A ⊆ 2ω be clopen. Since it is open, there is a family X of basic open sets such
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that A =
⋃
X. Since A is also closed, the collection of sets C = X ∪{2ω \A}

is an open cover of 2ω. Since the Cantor space is compact, there exists a finite
subcover {C0, . . . , Cn−1} ⊆ C such that C0 ∪ . . .∪Cn−1 = 2ω. It follows that
for some i ∈ {0, . . . , n−1}, 2ω\A = Ci, and A =

⋃
{Cj | j ∈ {0, . . . , n−1}, j 6=

i}. Thus A is a finite union of basic sets.

To show that the algebra is atomless, we need to show that if A is a clopen
set, then there is a non-empty clopen set A′ such that A′ ( A. Clearly, it
suffices to consider the case when A is a base set. So let σ be a finite sequence
of 0 and 1 such that A = Oσ. Pick any σ′ which properly extends σ: σ ( σ′,
then A′ = Oσ′ ( Oσ is as required. �

In Theorem 6.5, we will learn that up to isomorphism there is exactly one
atomless countable Boolean algebra (and CO(2ω, τ) is its canonical represen-
tation).

Remark 3.17 The Cantor space can also be described as follows. Consider
the closed interval [0, 1] on R. Define a sequence 〈Ci | i ∈ ω〉 of closed subsets
of [0, 1] as follows: C0 = [0, 1], C1 = [0, 13 ]∪ [23 , 1], C2 = [0, 19 ]∪ [29 ,

1
3 ]∪ [23 ,

7
9 ]∪

[89 , 1], etc. (in the next step divide each segment into three equal pieces and
remove the open middle interval). Denote

K =
⋂
n∈ω

Cn.

It can be shown that K has size 2ω and it is a compact subset of [0, 1] in the
topology τR restricted to K. It can also be shown that K (with the topology
τR) is homeomorphic to the Cantor space (2ω, τ), where a homeomorphism is
a bijection between the spaces which preserves open sets in both directions
(the existence of a homeomorphism means that the two topological spaces
are the same as regards topology).

3.5 Lindenbaum-Tarski algebras

Let T be a first-order theory over a language L. For ϕ,ψ formulas in L, define
the following relation:

(3.9) ϕ ≡ ψ ⇔ T ` ϕ↔ ψ.

The relation ≡ is an equivalence relation. We denote by [ϕ] the equivalence
class of ϕ.
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Let B(T) the set of all equivalence classes:

(3.10) B(T) = {[ϕ] |ϕ a formula of L}

The operations on B(T) are defined as follows:

(i) [ϕ] ∨ [ψ] = [ϕ ∨ ψ]
(ii) [ϕ] ∧ [ψ] = [ϕ & ψ]
(iii) −[ϕ] = [¬ϕ]
(iv) 1 = [ϕ→ ϕ]
(v) 0 = [ϕ ∧ ¬ϕ]

We show that the operations are correctly defined and

B(T) = 〈B(T),∧,∨,−, 0, 1〉

is a Boolean algebra.

By correctness of definition we mean that the definition of the operations
does not depend on the particular formula we pick from the equivalence class
of [ϕ] or [ψ] (we call this property congruence): if α ≡ ϕ and β ≡ ψ, then
[ϕ ∨ ψ] = [α ∨ β], and similarly for other operations. The congruence follows
easily by the axioms of the predicate calculus:

(3.11) ` (α↔ ϕ & β ↔ ψ)→ (α ∨ β ↔ ϕ ∨ ψ),

and similarly for all operations. [Hint. To argue for (3.11), notice that it
suffices to show that (3.11) is a propositional tautology. It means that we
can disregard the issue of free variables in α, β, ϕ, ψ which complicates some
arguments for predicate tautologies.]1

To argue that B(T) is a Boolean algebra, we need to show that B(T) satisfies
all axioms of Boolean algebras. This follows easily by the fact that propo-
sitional connectives over {0, 1} behave as a Boolean algebra: for instance to
show that [α] ∧ ([β] ∨ [γ]) = ([α] ∧ [β]) ∨ ([α] ∧ [γ]), it suffices to notice that
[α & (β ∨ γ)] = [(α & β) ∨ (α & γ)] is trivially true since

(3.12) ` α & (β ∨ γ)↔ (α & β) ∨ (α & γ).

The other axioms are similar.
1The so called Equivalences Theorem in predicate logic states that α ↔ α′ ` ϕ ↔ ϕ′,

where ϕ′ is created from ϕ by replacing occurrences of α in ϕ by α′; however it is not
generally true that ` (α ↔ α′) → (ϕ ↔ ϕ′). The problem is in free variables possibly
occurring in the formulas.
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An important subalgebra of B(T) is called the Lindenbaum-Tarski algebra of
T, which we will denote LT (T). The domain of LT (T) is defined as follows:

(3.13) LT (T) = {[σ] |σ is a sentence in L}.

Note that LT (T) is generally a proper subalgebra of B(T) because it is not
true that every formula is provably equivalent to a sentence.2

Theorem 3.18 Every Boolean algebra is isomorphic to a Lindenbaum-Tarski
algebra LT (T) for some T.

Proof. We will not prove this theorem. If you are interested, see [2, Theorem
9.10, and Exercise 5 in Section 9]. �

We will now study how the properties of T influence the properties of LT (T).

Observation 3.19 Let T be a theory.

(i) T is consistent ⇔ LT (T) is a non-trivial algebra (i.e. contains at least
two elements).

(ii) T is complete and consistent ⇔ LT (T) has exactly two elements.

Proof. Exercise. [Hint to (ii): If T ` σ then σ ∈ 1, and if T 6` σ then σ ∈ 0.]
�

The above observation shows that from the point of Boolean algebras, com-
plete theories T are uninteresting because their associated algebras LT (T)
are the unique two-element algebra.

If T is incomplete, the algebra LT (T) may become more complex. In fact,
if T is consistent, recursively axiomatizable and extends Peano Arithmetics
PA, its algebra LT (T) is isomorphic to the algebra CO(2ω, τ) introduced in
Section 3.4.3. In order to show this, we will use the following Fact:

Fact 3.20 (2nd Gödel Incompleteness Theorem) Let T be a consistent
first-order theory which is recursively axiomatizable and such that T contains
PA. Then for every sentence σ such that T ∪ {σ} is consistent, there exists a
formal Σ1 definition pTq of T such that

T ∪ {σ} 6` Con(pTq ∪ {pσq}),
2 Recall that the following is true: T ` ϕ(x) ⇔ T ` (∀x)ϕ. This however does not

imply T ` ϕ(x) ↔ (∀x)ϕ.
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where Con(pTq∪{pσq}) is a sentence in the language of T which claims that
the formal theory pTq ∪ {pσq} is consistent.

Theorem 3.21 If PA is consistent, then LT (PA) is a countable atomless
Boolean algebra. In fact if T is consistent, recursively axiomatizable, has a
finite language, and contains PA, then LT (T) is a countable atomless Boolean
algebra (for instance ZFC is such a theory).

Proof. Since in PA has a finite language, the number of all formulas is count-
able. It follows that LT (PA) is at most countable because it is a partition
of the set of all sentences. We will show that if σ is a sentence such that
[σ] 6= 0, then we can find a sentence σ′ such that [σ′] < [σ]. This will show
that LT (PA) is atomless, and also infinite (and therefore countable).

Let a sentence σ be given. If PA ∪ {σ} is inconsistent, then PA ` ¬σ, and
hence [σ] = 0 and we are done.

If PA ∪ {σ} is consistent, set

σ′ = σ & Con(pPAq ∪ {pσq}).

Notice that [σ′] ≤ [σ] because PA ` σ′ → σ. It remains to show PA 6` σ → σ′,
and so [σ′] 6= [σ]. Assume for contradiction that PA ` σ → σ′. This implies

PA ∪ {σ} ` Con(pPAq ∪ {pσq}).

This contradicts the 2nd Gödel Incompleteness Theorem stated above, with
PA substituted for T. �

In Theorem 6.5, we show that up to isomorphism there is exactly one atom-
less countable Boolean algebra. It follows in particular that CO(2ω, τ) and
LT (PA) are isomorphic.

4 Properties of Boolean algebras

We know that the operations ∧ and ∨ on a Boolean algebra B correspond to
the infima and suprema of two-element subsets of B. In order to obtain more
information about B, we will focus our attention on the canonical ordering
of B. This will allow us to extend the notions of supremum and infimum to
infinite subsets of B. These considerations will lead to important notions of
infinite operations, complete algebras, and regular subalgebras.
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4.1 Infinite operations

Let B be a Boolean algebra and M = {mi | i ∈ I} a subset of B. If M has a
supremum, or infimum, in the canonical ordering of a Boolean algebra, then
we denote it as

∨
M =

∨
i∈I mi, or

∧
M =

∧
i∈I mi. To denote in which

algebra we are working at the given moment, we may write
∨BM , or

∧BM .

Example. It often happens that some subsets of B do not have a supremum
or infimum. Let B be the finite/cofinite algebra on ω, i.e. B = {A ⊆ ω |A is
finite or cofinite}. For n ∈ ω, let us denote by An the set of all even numbers
smaller or equal to n; note that each An is in B. Then A = {An |n ∈ ω} does
not have a supremum in B.

We show some simple arithmetics concerning infinite operations.

Lemma 4.1 Let B be a Boolean algebra and let M = {mi | i ∈ I} be a subset
of B and assume that the supremum

∨
i∈I mi of {mi | i ∈ I} and infimum∧

i∈I mi of {mi | i ∈ I} exist. Then the right-hand sides in (i) and (ii) also
exists and:

(i) (de Morgan’s law) −
∨
i∈I mi =

∧
i∈I −mi, −

∧
i∈I mi =

∨
i∈I −mi

(ii) (distributivity) b ∧
∨
i∈I mi =

∨
i∈I(b ∧mi), b ∨

∧
i∈I mi =

∧
i∈I(b ∨mi)

Proof. We show just −
∨
i∈I mi =

∧
i∈I −mi and b ∧

∨
i∈I mi =

∨
i∈I(b ∧mi);

the dual versions are proved analogously.

(i). Denote a =
∨
i∈I mi. We want to show that −a is the infimum of

−M = {−mi | i ∈ I}. For every mi, a ≥ mi implies −a ≤ −mi and so −a
is a lower bound of −M . Let b another lower bound of −M : it means that
−b is an upper bound of M ; this implies that a ≤ −b which is equivalent to
−a ≥ b as required.

(ii). Note that this proof will use the existence of a complement, not just the
(finite) distributivity of a Boolean algebra guaranteed by the axioms. First
note that the relationships in (2.4) are in fact equivalences; each Boolean
algebra satisfies:

(4.14)

– (∀x, y, z)(x ≤ z ∧ y ≤ z)↔ x ∨ y ≤ z,
– (∀x, y, z)(x ≤ y ∧ x ≤ z)↔ x ≤ y ∧ z.
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We will show that b∧
∨
i∈I mi is the supremum of {b∧mi | i ∈ I}. It is clearly

an upper bound. To show that it is the least such we argue as follows: let a be
an upper bound of {b∧mi | i ∈ I}. By monotonicity of ∨, this implies −b∨a ≥
−b∨ (b∧mi), which implies −b∨ a ≥ −b∨mi by distributivity. By (4.14), it
also in particular holds that −b ∨ a ≥ mi. As i was arbitrary, it means that
−b∨ a is an upper bound of {mi | i ∈ I}. This implies that

∨
i∈I mi ≤ −b∨ a.

By monotonicity of ∧, we have that b∧
∨
i∈I mi ≤ b∧ (−b∨ a) = b∧ a. Again

by (4.14), we in particular have that b ∧
∨
i∈I mi ≤ a, so that b ∧

∨
i∈I mi is

really the supremum as desired. �

4.2 Complete algebras, the σ-algebra of Borel sets

Definition 4.2 Let κ be an infinite regular cardinal. We call a Boolean al-
gebra B κ-complete if supremum and infimum exists for every M such that
|M | < κ. If κ is ω1-complete, we say that B is σ-complete. If B is κ-complete
for all κ, then we say that B is complete (equivalently, B is complete if every
subset of B has the supremum and the infimum).

Every Boolean algebra is ω-complete, because if X = {x1, . . . , xn} ⊆ B is a
finite subset of B, then x1∧· · ·∧xn is the infimum of X in B, and x1∨· · ·∨xn
the supremum of X in B. This implies that every finite Boolean algebra is
complete.

Observation 4.3 For every non-empty X, the powerset algebra P(X) is
complete.

Proof. Hint. For every Y ⊆ P(X),
⋃
Y is the supremum and

⋂
Y is the

infimum of Y in P(X). �

The following lemma says that with Boolean algebras, it suffices to verify
completeness just for either of the two infinite operation: infimum or supre-
mum.

Lemma 4.4 Let B be a Boolean algebra and let κ be a regular infinite car-
dinal. Then the following are equivalent:

(i) Every X ⊆ B of size < κ has the supremum.
(ii) Every X ⊆ B of size < κ has the infimum.
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Proof. (i)→(ii). This is a simple consequence of Lemma 4.1(i): if X has
size < κ, then −X = {−x |x ∈ X} has size the same size as X, and by our
assumption −X has the supremum and so X has the infimum:

−
∨
−X =

∧
−−X =

∧
X.

The proof of the converse direction is analogous. �

Corollary 4.5 The following are equivalent for a Boolean algebra B:

(i) B is complete.
(ii) Every subset of B has the supremum.

(iii) Every subset of B has the infimum.

Proof. As in Lemma 4.4. �

Definition 4.6 We say that an algebra of sets B = 〈B,∩,∪,−, 0, X〉 on
some non-empty set X is a σ-algebra (of sets) if B is closed under countable
unions and intersections of elements in B. So in particular B is σ-complete.

Remark 4.7 Note that the notion of a σ-algebra is stronger than the notion
of a σ-complete algebra of sets: with the σ-algebra we require that the supre-
mum and infimum of a countable X are of a specific form, i.e. equal to

⋃
X

or
⋂
X, respectively; σ-completeness just requires that there is some element

of B which is the supremum, or infimum, of X in B.

An important example of a σ-algebra of sets is the collection of Borel sets
on the real line R. Let us denote Borel sets on R by Borel(R). Borel(R) is
defined as the least σ-algebra of sets containing all open sets in the topology
(R, τR):
(4.15)

Borel(R) =
⋂
{B |B is a σ-algebra on R containing all open sets in τR}.

Lemma 4.8 〈Borel(R),∪,∩,−, ∅,R〉 is a σ-algebra of sets.

Proof. First note that the system

Y = {B |B is a σ-algebra on R containing all open sets in τR}

27



4 Properties of Boolean algebras

is non-empty because the power set algebra P(R) is closed under countable
unions and intersections.

We show that Borel(R) is closed under complement, and countable intersec-
tions and unions. SinceX ∈ Borel(R) is equivalent toX being in everyB ∈ Y ,
it follows immediately that −X is in every B ∈ Y , and so −X ∈ Borel(R).
Similarly, if Z is a countable subset of Borel(R), then it is a countable subset
of every σ-algebra in Y , and hence its intersection (and union) is present in
every σ-algebra in Y , and so in Borel(R). �

Remark 4.9 It can be shown that CH (The Continuum Hypothesis) holds
for the Borel sets in the following sense: every Borel set A is either at most
countable, or has the size |R|. Hence if there is a counterexample to CH,
it must be more complicated than Borel sets. Intuitively, Borel sets are the
“well-behaved subsets” of the real line.

4.3 Regular subalgebras and completions

Definition 4.10 A subalgebra A of a Boolean algebra B is called a regular
subalgebra if for every M ⊆ A the following hold:

(i) If
∨AM exists, then

∨BM exists, and they are equal
(ii) If

∧AM exists, then
∧BM exists, and they are equal.

Definition 4.11 We say that A is a dense subalgebra of B if for every
0 < b ∈ B there is 0 < a ∈ A such that a ≤B b.

Notice that the definition of denseness refers to elements in B which are
greater than 0 (such elements are called positive).

Before proceeding, we show a useful equivalent formulation of the canonical
ordering x ≤ y on a Boolean algebra.

Observation 4.12 Let B be a Boolean algebra, and ≤ its canonical ordering.
The for all x, y ∈ B,

(4.16) x ≤ y ⇔ x ∧ −y = 0.

Proof. From left to right: Since x∧ y = x, x∧−y is equal to x∧ y ∧−y = 0.
From right to left: x = x∧ (y ∨−y) = (x∧ y)∨ (x∧−y) = x∧ y because the
second expression is equal to 0 by our assumption. �

28



4 Properties of Boolean algebras

Note that x 6≤ y is thus equivalent to x ∧ −y being a positive element.

Denseness is an important concept because it (among other things) implies
regularity.

Lemma 4.13 Every dense subalgebra of a Boolean algebra B is regular in
B.

Proof. Let A be a dense subalgebra of B.

Let M ⊆ A be a subset of A and let a =
∨AM exist. We want to show

that a is the supremum of M in B. a is clearly an upper bound of M in B
because the canonical orderings of A and B coincide on elements of A. So
let b ∈ B be an upper bound of M , we want to show that a ≤ b. Assume for
contradiction that a 6≤ b. By (4.16), a ∧ −b is a positive element in B. By
denseness of A in B, there exists a′ in A such that 0 < a′ ≤ a∧−b. We show
that a ∧ −a′ is an upper bound of M in A and that a ∧ −a′ < a; this leads
to contradiction because all upper bounds must be greater or equal to a. Let
m ∈ M be given: m ≤ a is true because a is an upper bound; but since b is
also an upper bound, we obtain m ≤ b ≤ −a′ because a′ ≤ −b. It follows that
m ≤ a ∧ −a′ and so a ∧ −a′ is indeed an upper bound. It holds a ∧ −a′ ≤ a;
assume now that a ∧ −a′ = a: this means that a ≤ −a′; however we also
know that a′ ≤ a, which together implies a′ ≤ −a′ (which is equivalent to
a′ ∧ −a′ = a′). The last inequality can only be true if a′ is equal to 0, but
a′ > 0. Contradiction.

For the case of
∧AM we argue as follows. Denote by −M the set {−m |m ∈

M}). The following holds:∧AM = −
∨A−M = −

∨B −M =
∧BM,

where the first and the third identity holds because of the de Morgan laws in
Lemma 4.1, and the middle one follows from the proof for

∨AM in the first
part of this proof. �

The following theorem claims that there is a canonical procedure which will
construct for every Boolean algebra B a complete algebra B′ such that B is
a dense (and hence regular) subalgebra of B′. Moreover, this B′ is unique
and is called the completion of B. Complete Boolean algebras can be used to
define a generalized truth-evaluation of first-order formulas, which takes its
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5 Representations of Boolean algebras

values in a complete Boolean algebra. It can be shown that the usual Com-
pletion theorem for first order logic still holds with respect to this generalized
satisfaction.

Fact 4.14 Every Boolean algebra has a unique completion where the original
algebra is dense (and hence regular).

We will not prove this theorem; for a proof, see [1] or [2, Section 4.3].

5 Representations of Boolean algebras

We will show in this section that every Boolean algebra is isomorphic to an
algebra of sets. In Section 5.1 we show this for a special case of algebras, the so
called atomic Boolean algebras. In Section 5.2 we show this for all algebras.
Finally, in Section 5.3, we give a topological version of the representation
theorem (Stone’s duality).

5.1 Atomic and complete Boolean algebras

Recall that if B is a Boolean algebra, we denote by B+ the set of all non-zero
elements of B. We call an element of B+ a positive element of B. A positive
element a ∈ B+ is called an atom if there is no b ∈ B+ such that b < a. The
set of all atoms of B will be denoted by At(B). B is called atomless if it has
no atoms. B is called atomic if there is an atom below every element of B+.

Examples. Every finite algebra is atomic. For every X, the powerset algebra
P(X) is atomic. The clopen algebra CO(2ω, τ) is atomless.

We will now give several equivalent definitions of an atom.

Lemma 5.1 Let B be a Boolean algebra. The following are equivalent for
every a ∈ B:

(i) a is an atom.
(ii) For every x ∈ B, a ≤ x or a ≤ −x, but not both.

(iii) a > 0 and for all x, y ∈ B, a ≤ x ∨ y ⇔ (a ≤ x or a ≤ y).

Proof. (i) → (ii). If a ≤ x and a ≤ −x, then a ≤ x ∧ −x = 0 which cannot
be true because a is an atom. Assume now that a 6≤ x; by (4.16) this is
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5 Representations of Boolean algebras

equivalent to a ∧ −x being a positive element: 0 < a ∧ −x ≤ a; since a is an
atom, it must hold a ∧ −x = a which is equivalent to a ≤ −x.

(ii) → (iii). a is clearly positive because a = 0 would imply a ≤ x ∧−x. One
side of the equivalence in (iii) is obvious: if a ≤ x or a ≤ y then also a ≤ x∨y.
We show the converse. So assume a ≤ x ∨ y and a 6≤ x. By (ii) this means
that a ≤ −x, and hence also a ≤ (x ∨ y) ∧ −x = y ∧ −x, and so a ≤ y as
required.

(iii) → (i). Assume 0 < b ≤ a; we wish to show b = a. a = a ∧ (b ∨ −b) =
(a∧ b)∨ (a∧−b) = b∨ (a∧−b) since by our assumption b ≤ a, a∧ b = b. By
(iii), either a ≤ b or a ≤ (a ∧ −b); in the first case, we have a ≤ b and b ≤ a,
and therefore a = b. In the second case, we have a ≤ −b, which together with
b ≤ a implies b = 0, and this contradicts our assumption. �

For the following theorem, recall the notion from Section 2.4.

Theorem 5.2 For every Boolean algebra B, the map f from B to the pow-
erset algebra P(At(B)) defined by

(5.17) f(x) = {a ∈ At(B) | a ≤ x}

is a homomorphism.3 Moreover:

(i) If B is atomic, f is an embedding.
(ii) If B is a complete Boolean algebra, f is onto.

Thus if (i) and (ii) hold together, f is an isomorphism.

Proof. We first verify that f is a homomorphism. Let B = 〈B,∧,∨,−, 0, 1〉
be a Boolean algebra and x, y elements of B.

Clearly, f(0) = ∅ and f(1) = At(B). The complement: f(−x) = {a ∈
At(B) | a ≤ −x}; by Lemma 5.1(ii), f(−x) = At(B) \ f(x). The join opera-
tion: f(x∨ y) = {a ∈ At(B) | a ≤ x∨ y}; by Lemma 5.1(iii), f(x∨ y) is equal
to the union of f(x) = {a ∈ At(B) | a ≤ x} and f(y) = {a ∈ At(B) | a ≤ y}
and so f(x ∨ y) = f(x) ∪ f(y). The meet operation: f(x ∧ y) = f(x) ∩ f(y)
because a ≤ x ∧ y ⇔ a ≤ x & a ≤ y.

Assume now that B is atomic. We want to show that f is an embedding. Let
x, y be elements in B such that x 6= y. Without loss of generality let x 6≤ y.

3If B has no atoms, then P(At(B)) is a degenerate Boolean algebra with 0 = 1.
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But then x ∧ −y is positive and there is an atom a ≤ x ∧ −y. This implies
that a ≤ x and so a ∈ f(x), while a ≤ −y implies that a ∈ f(−y), and so
a 6∈ f(y). Hence f(x) 6= f(y) as required.

Finally, let B a complete algebra. Let Y be an arbitrary non-empty element
of P(At(B)): ∅ 6= Y = {yi | i ∈ I} ⊆ At(B), for some index set I. We
will show that Y = f(s) where s =

∨
Y , proving that f is onto P(At(B)).

First we show Y ⊆ f(s). Let a in Y be arbitrary. Then a ≤ s since s is the
supremum of Y , and hence a ∈ f(s). For the converse direction f(s) ⊆ Y ,
first realize that if a 6= a′ are two distinct atoms, then

(5.18) a ∧ a′ = 0.

To see that (5.18) is true, realise that if we assume 0 < a ∧ a′, then 0 <
a ∧ a′ ≤ a and 0 < a ∧ a′ ≤ a′, and since a, a′ are atoms, this implies
a = a∧a′ = a′, which contradicts our assumption a 6= a′. If a is in f(s), then
a ≤ s =

∨
Y , and so a ∧

∨
i∈I yi = a > 0. By the generalized distributivity,

this is equal to
∨
i∈I(a ∧ yi). For contradiction assume that a 6∈ Y ; then∨

i∈I(a ∧ yi) =
∨
i∈I 0 = 0 by (5.18), which is a contradiction. It follows that

a ∈ Y , concluding f(s) = Y . �

Corollary 5.3 (i) Every atomic Boolean algebra is isomorphic to an alge-
bra of sets. Every complete and atomic Boolean algebra is isomorphic
to a powerset algebra.

(ii) The finite Boolean algebras are, up to isomorphism, exactly the powerset
algebra of finite sets. In particular, the size of a finite algebra B is 2n

for some n ∈ ω.
(iii) Two finite Boolean algebras are isomorphic if and only if they have the

same cardinality.

Proof. (i). If a Boolean algebra B is atomic, then the homomorphism f from
Theorem 5.2 is an embedding and therefore B is isomorphic to f [B], which is
a subalgebra of P(At(B)). If B is also complete, then f is an isomorphism.

(ii). Every finite algebra B is both complete and atomic; by (i), B is isomor-
phic to P(At(B)). It follows that the size of B is 2n, where n is the number
of atoms of B.

(iii). The direction from left to right follows because an isomorphism is a
bijection. To prove the converse direction, let A,B be finite Boolean algebras
of the same cardinality. By (ii), A ∼= P(At(A)) and B ∼= P(At(B)). Since A
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and B have the same cardinality, the cardinality of At(A) and At(B) must also
be the same. It follows that any bijection between At(A) and At(B) generates
an isomorphism between P(At(A)) and P(At(B)), and hence between A and
B. �

5.2 Stone’s representation theorem

In order to generalize Theorem 5.2 to a non-atomic Boolean algebra B, we
need an object which will play the role of atoms in Theorem 5.2. Instead of
atoms, we will consider certain subsets of B, called ultrafilters. Ultrafilters
are more complex than atoms, and to obtain non-trivial ultrafilters, it is
necessary to use some form of AC.

Definition 5.4 A filter F on a Boolean algebra B is a subset F of B such
that:

(i) 1 ∈ F ,
(ii) If x ∈ F and x ≤ y, then y ∈ F ,
(iii) If x, y ∈ F , then x ∧ y ∈ F .

We say that F is a proper filter if 0 6∈ F , or equivalently, if F 6= B.

Lemma 5.5 The property of being a filter F on B can be equivalently defined
by these two conditions.

(i) 1 ∈ F ,
(ii) x ∧ y ∈ F ⇔ x ∈ F and y ∈ F

Proof. Let F be a filter on B according to Definition 5.4. We need to show
that x ∧ y ∈ F implies x ∈ F and y ∈ F . This is true because x ∧ y ≤ x and
x ∧ y ≤ y.

Conversely, let F satisfy the conditions in the lemma. We need to show that
x ∈ F and x ≤ y implies y ∈ F . Since x ≤ y is equivalent to x ∧ y = x, it
follows x ∧ y ∈ F and hence y ∈ F by (ii). �

Notice that if F is a filter, the condition (ii) in Lemma 5.5 cannot be gener-
alized for disjunction: it is not true that every filter satisfies

(5.19) x ∨ y ∈ F ⇔ x ∈ F or y ∈ F.
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Consider the Frechet filter on ω which we denote by Frechet(ω), where

Frechet(ω) = {x ⊆ ω |ω \ x is finite}.

Frechet(ω) is a proper filter on the Boolean algebra P(ω). If x is the set of
all even numbers including 0 and y is the set of all odd numbers, x ∪ y ∈
Frechet(ω), but x 6∈ Frechet(ω) and y 6∈ Frechet(ω). The generalization for
disjunction will hold for a suitable strengthening of the notion of a filter,
called an ultrafiter. Ultrafilters will be introduced below in Definition 5.7.

Let B be a Boolean algebra. We say that a subset X ⊆ B has the finite
intersection property (FIP) if for every n ∈ ω and every sequence x0, . . . , xn
of elements of X, x0 ∧ . . . ∧ xn 6= 0.

Lemma 5.6 Let B be a Boolean algebra. Every X ⊆ B with FIP can be
extended into a proper filter F .

Proof. Define

(5.20) F = {y ∈ B | ∃n ∈ ω and x0, . . . , xn ∈ X such that x0∧ . . .∧xn ≤ y}.

As F has FIP, no element in F is equal to 0, and hence F is proper. If
x, y are in F , then x ≥ x0 ∧ . . . ∧ xn and y ≥ y0 ∧ . . . ∧ ym for some n,m
and elements x0, . . . , xn, y0, . . . , ym in X. Clearly x ∧ y is in F because it is
greater than x0 ∧ . . . ∧ xn ∧ y0 ∧ . . . ∧ ym. Lastly, if y ≥ x for some x ∈ F ,
then y ≥ x ≥ x0 ∧ . . . ∧ xn, for some x0, . . . , xn in X. �

Definition 5.7 A proper filter F on a Boolean algebra B is called

(i) maximal if there is no proper filter F ′ which strictly includes F , i.e.
there is no F ′ such that F ⊆ F ′ but F 6= F ′.

(ii) an ultrafilter if for all x ∈ B, either x ∈ F or −x ∈ F .
(iii) prime if (5.19) holds for F .

Observation 5.8 Let B be a Boolean algebra and F a proper filter on B.
The F is maximal if and only if for every x 6∈ F , there is some x′ ∈ F such
that x′ ∧ x = 0.

Proof. To prove the equivalence from left to right, assume for contradiction
that there exists x 6∈ F such that x′ ∧ x is non-zero for every x′ ∈ F . Then
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F ∪ {x} has FIP because for every finite sequence x1, . . . , xn from F , x′ =
x1∧ . . .∧xn is also in F , and so x1∧ . . . xn∧x = x′∧x. By Lemma 5.6, there
is a proper filter extending F ∪ {x}, which is impossible if F is maximal.

Conversely, assume F is not maximal and F ′ is a proper filter which strictly
extends F . Then there is some x ∈ F ′ \F , and since F ′ is proper, x∧x′ must
be non-zero for all x′ ∈ F . �

Lemma 5.9 The following are equivalent for every proper filter F on a Boolean
algebra B:

(i) F is a maximal filter.
(ii) F is an ultrafilter.

(iii) F is prime.

Proof. (i)→(ii). Let x 6∈ F be given. We aim to show that −x ∈ F . Since F
is maximal, by Observation 5.8 there must be some y ∈ F such that x∧y = 0,
which is equivalent to y ≤ −x, and so −x ∈ F .

(ii)→(iii). One side of the equivalence (5.19) is obvious: x ∈ F or y ∈ F
implies x ∨ y ∈ F in every filter F . To show the converse, let x ∨ y ∈ F
be given and assume that x 6∈ F . This implies that −x ∈ F and hence
−x ∧ (x ∨ y) = −x ∧ y must be in F . By Lemma 5.5(ii), y ∈ F .

(iii)→(i). Let x 6∈ F be arbitrary. We want to show that there is some y ∈ F
such that x ∧ y = 0. Clearly, x ∨ −x ∈ F and since F is prime, this implies
x ∈ F or −x ∈ F . By our assumption, x 6∈ F , and so −x ∈ F . Hence
x ∧ −x = 0 as required. �

Ultrafilters can be used to define useful homomorphisms:

Corollary 5.10 Let B be a Boolean algebra and F an ultrafilter on B. Then
the function f : B → {0, 1} defined by

(5.21) f(x) = 1 if x ∈ F, and f(x) = 0 if x 6∈ F

is a homomorphism from the Boolean algebra B onto the Boolean algebra 2.

Proof. Because F is a proper filter, we obtain f(0) = 0 and F (1) = 1, and
also f(x ∧ y) = f(x) ∧ f(y) due to (ii) in Lemma 5.5. The characteriza-
tion of an ultrafilter in Definition 5.7 (ii) implies f(−x) = −(f(x)), and the
characterization (iii) implies f(x ∨ y) = f(x) ∨ f(y). �

35



5 Representations of Boolean algebras

We will now prove a theorem which implies that for every Boolean algebra
B, there are many ultrafilters on B.

Theorem 5.11 (Boolean prime ideal theorem, BPI) Let B be a Boolean
algebra. Every X ⊆ B with FIP can be extended to an ultrafilter.

Proof. Let FB be the set of all proper filters on B ordered by inclusion ⊆.
Note that a maximal proper filter from Lemma 5.9 is a maximal element of
FB in the ordering ⊆.

We wish to apply Zorn’s lemma (Principle of Maximality) to 〈FB,⊆〉; in
order to do that we need to check that if F ′ ⊆ FB is a linearly ordered
subfamily, then it has an upper bound in FB. Clearly, F =

⋃
F ′ is an upper

bound of F ′ in the inclusion relation because F ′ ⊆ F for every F ′ ∈ F ′. It
remains to show that F is in FB. If x, y are in F , then x ∈ Fx and y ∈ Fy
for some proper filters Fx and Fy in F ′; since F ′ is linearly ordered, we can
assume without loss of generality Fx ⊆ Fy, and so x, y ∈ Fy and x ∧ y ∈ Fy
and so x∧ y ∈ F . If x ∈ F and y ≥ x, then for some Fx in F ′, x ∈ Fx and so
y ∈ Fx, and hence y ∈ F . F is clearly proper because otherwise 0 would be
in some F ′ ∈ F ′, which is impossible because all elements of F ′ are proper.
It follows that 〈FB,⊆〉 satisfies the assumption of Zorn’s lemma for every
Boolean algebra B.

Let F be a proper filter extending X: X ⊆ F (such an F exists by Lemma
5.20). By Zorn’s lemma there is a maximal filter U in 〈F ,⊆〉 above the filter
F : F ⊆ U . Thus U extends X and by Lemma 5.9, U is an ultrafilter. �

Notice we have proved BPI in ZFC. It is known that BPI cannot be proved
in ZF alone. However, it also known that ZF + BPI is too weak to prove
AC. Thus BPI is considered as a weaker choice principle, yet strong enough
to prove for instance the completeness theorem for the first-order predicate
logic. For more details, see [2].

Remark 5.12 The name BPI is motivated historically by the notion of an
ideal which is a dual to a filter. For a Boolean algebra B, we say that I ⊆ B
is a proper ideal if (i) 0 ∈ I, 1 6∈ I, (ii) if x ∈ I and y ≤ x, then y ∈ I, and
finally (iii) if x, y ∈ I, then x ∨ y ∈ I. It is routine to show that if F is a
proper filter then F ∗ = {x ∈ B | − x ∈ F} is a proper ideal (called the dual
ideal to F ), and conversely if I is a proper ideal then I∗ = {x ∈ B | − x ∈ I}
is a proper filter (called the dual filter to I). We say that a proper ideal I is
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a prime ideal if for every x ∈ B, either x ∈ I or −x ∈ I. It follows that the
dual filter I∗ is an ultrafilter if and only if I is a prime ideal.

We now have all tools necessary to prove Stone’s representation theorem.
Before proving the theorem, we first show a connection between atoms and
certain ultrafilters to motivate the construction.

Lemma 5.13 Let B be a Boolean algebra. Then

(i) For every x > 0 in B, Fx = {y ∈ B |x ≤ y} is a proper filter. We call
this filter a principal filter generated by x.

(ii) For every x > 0 in B, Fx = {y ∈ B |x ≤ y} is an ultrafilter if and only
if x is an atom in B.

Proof. (i). For every x > 0, {x} has FIP, and hence Fx is a proper filter by
Lemma 5.6.

(ii). In the direction from left to right, we argue exactly as in Lemma
5.1(iii)→(i): Assuming Fx is an ultrafilter, fix some b such that 0 ≤ b < x.
We aim to show that b = 0. Clearly x = b ∨ (x ∧ −b), and so b or x ∧ −b
must be in Fx by Lemma 5.9 because x ∈ Fx. However x 6≤ b, and so b 6∈ Fx.
Hence x ∧ −b must be in Fx, which implies x ≤ x ∧ −b by the definition of
Fx, and so in particular x ≤ −b. This implies x ∧ b = 0. However, by the
assumption b < x, x ∧ b = b, and so b = 0.

In the converse direction, we also argue as in Lemma 5.1, this time we use
the implication (i)→(ii). If x is an atom, then for every y either x ≤ y or
x ≤ −y. It follows that Fx is an ultrafilter. �

If a Boolean algebra B is atomic, there is a straightforward correspondence
between the atoms and the principal ultrafilters generated by these atoms.
In fact, it is easy to reprove Theorem 5.2 using the principal ultrafilters Fa
for a ∈ At(B): Modify the definition of f in (5.17) by setting f(x) to be
the collection of all principal ultrafilters Fa, a ∈ At(B), which contain x as
an element. If B is non-atomic, then there are no principal ultrafilters. In
Theorem 5.14, the solution is to use all ultrafilters and define f(x) as the
collection of all ultrafilters which contain x as an element. BPI guarantees
that f(x) is well defined.

Theorem 5.14 (Stone) Every Boolean algebra is isomorphic to some alge-
bra of sets.
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Proof. Let B = 〈B,∧,∨,−, 0, 1〉 be an arbitrary Boolean algebra. Let us
denote by Ult(B) the family of all ultrafilters on B. Define a function f from
B to P(Ult(B)) by

(5.22) f(x) = {U ∈ Ult(B) |x ∈ U}.

We claim that f is an isomorphism between B and the algebra of sets f [B]
(f [B] is the subalgebra of the powerset algebra P(Ult(B)) determined by the
range of f ; see Section 2.4).

We first verify that f is a homomorphism between the algebrasB and P(Ult(B)),
which in particular guarantees that f [B] is closed under operations and con-
stants in P(Ult(B)) and therefore determines a subalgebra f [B] (see Obser-
vation 2.17(i)). Clearly f(1) = Ult(B) and f(0) = ∅. f(x ∧ y) = f(x) ∩ f(y)
by Lemma 5.5(ii); f(−x) = Ult(B) \ f(x) by the definition of an ultrafilter,
and f(x ∨ y) = f(x) ∪ f(y) by Lemma 5.9(iii).

By Observation 2.17(ii), the proof is finished once we show that f is an
embedding. Let x 6= y be two elements in B, and so x 6≤ y or y 6≤ x. Assume
without loss of generality that x 6≤ y; then x∧−y 6= 0, and therefore the two-
element set {x,−y} has FIP. By BPI, there is an ultrafilter U which contains
x and −y. It follows that U ∈ f(x), but U 6∈ f(y), and hence f(x) 6= f(y).

�

5.3 Stone’s topological duality

Definition 5.15 Let (X, τ) be a topological space.

(i) We say that (X, τ) is totally disconnected if every two distinct element
x, y in X can be separated by clopen sets, for all x 6= y in X there are
two disjoint clopen sets Ox and Oy such that x ∈ Ox and y ∈ Oy.

(ii) We say that (X, τ) is a Boolean space if it is a compact totally discon-
nected space.

For the following Theorem 5.16, recall the notation from Theorem 5.14. Also
recall that if (X, τ) is a topological space, then CO(X, τ) denotes the clopen
subsets of X, and CO(X, τ) denotes the clopen algebra with the domain
CO(X, τ).

Theorem 5.16 For every Boolean algebra B there exists a Boolean space
(Ult(B), τ) such that B is isomorphic to CO(Ult(B), τ). It follows that every
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Boolean algebra is up to isomorphism a clopen algebra of some topological
space.

Proof. Let f be the isomorphism between B and f [B] from Theorem 5.14.
Notice that f [B] is closed under intersections: if f(x) and f(y) are in f [B],
then f(x) ∩ f(y) = f(x ∧ y), and f(x ∧ y) is in f [B]. In particular, f [B] is
a basis of a certain topology τ on Ult(B): A ∈ τ if and only if A is a union
of some sets in f [B]. We show that (Ult(B), τ) is as desired (τ is called the
Stone’s topology on Ult(B)).

First notice that for each x ∈ B, f(x) is clopen: f(x) is open because it is in
the base of the topology τ ; it is closed because the complement Ult(B) \ f(x)
is open since it is equal to f(−x). Now it follows easily that the space it
totally disconnected: if F 6= G are in Ult(B), there is some x ∈ B such that
x ∈ F and −x ∈ G. Then f(x) and f(−x) separate F,G.

Next we show that the space is compact, and therefore Boolean. Let C be
an open cover of Ult(B); without loss of generality, we can take C to be
composed of the basic sets, i.e. C = {f(x) |x ∈ A} for some A ⊆ B. Assume
for contradiction that no finite subset of C covers the whole space Ult(B).
This means that for every n ∈ ω, and every sequence x1, . . . , xn of elements
in A,

f(x1) ∪ . . . ∪ f(xn) = f(x1 ∨ . . . ∨ xn) 6= Ult(B),

or equivalently

(5.23) x1 ∨ . . . ∨ xn 6= 1 ⇔ −x1 ∧ . . . ∧ −xn 6= 0.

It follows by the righthand side of (5.23) that the family −A = {−x |x ∈ A}
has FIP. Let U be an ultrafilter extending −A. We show that U is not covered
by C , which contradicts the fact that C is a cover. Assume that U ∈ f(x) for
some x ∈ A. Since U extends −A, −x ∈ U . However, since U ∈ f(x), it also
holds x ∈ U . This is a contradiction, and therefore (Ult(B), τ) is compact.

Finally we show that the function f is an isomorphism between B and
CO(Ult(B), τ). By the fact that every f(x), x ∈ B, is clopen in τ , f [B] ⊆
CO(Ult(B), τ); by Theorem 5.14, f : B → CO(Ult(B), τ) is an embedding.
It remains to show it is onto, i.e. f [B] = CO(Ult(B), τ). Let X be a clopen
set. As it is open, X is a union of some sets in the base: X =

⋃
x∈A f(x)

for some A ⊆ B. As X is closed, Y = Ult(B) \ X is open. It follows that
C = {f(x) |x ∈ A} ∪ {Y } is an open cover of Ult(B). By compactness, there
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6 Atomless countable Boolean algebras

are finitely many x1, . . . , xn from A such that

X = f(x1) ∪ . . . f(xn) = f(x1 ∨ . . . ∨ xn).

It follows that X is in the range of f , and we are done. �

It may be interesting to review the relationship between the subfamilies of
P(Ult(B)) appearing in Theorems 5.14 and 5.16: We have

f [B] = CO(Ult(B), τ) ⊆ τ ⊆P(Ult(B)).

Stone’s duality makes it possible to study general Boolean algebra by topo-
logical tools.

6 Atomless countable Boolean algebras

6.1 Uniqueness

In this section we show that up to isomorphism there is exactly one atomless
countable Boolean algebra.

Definition 6.1 Let B be a Boolean algebra and z a positive element in B.
We say that P ⊆ B is a partition of z if

(i) 0 6∈ P ,
(ii)

∨
P = z,

(iii) For all x 6= y in P , x ∧ y = 0.

If z = 1, we say that P is a partition of B.

Note that if P ⊆ B is infinite, then
∨
P may or may not exist in B. We will

only consider finite partitions, and therefore
∨
P will always exist.

If P and Q are two partitions of B, we say that P refines Q, in symbols
P � Q, if for every x ∈ P there is some y ∈ Q such that x ≤ y. Note that
if P � Q, then for every y ∈ Q, the set {x ∈ P |x ≤ y} is a partition of y
(Exercise).

Definition 6.2 Let B a Boolean algebra and P a finite partition of B. Let
B〈P 〉 denote the following subset of B:

(6.24) B〈P 〉 = {b ∈ B | (∃X ⊆ P ) b =
∨
X}
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6 Atomless countable Boolean algebras

Lemma 6.3 Let B a Boolean algebra and P a finite partition of B. Then
B〈P 〉 is an atomic subalgebra of B and P is the set of all atoms in B〈P 〉. In
particular the size of B〈P 〉 is 2|P |.

Proof. It is enough to show that B〈P 〉 is closed under the constants and
operations in B.

B〈P 〉 contains 0 because
∨
∅ = 0, and 1 because

∨
P = 1.

Let a =
∨
X and b =

∨
Y in B〈P 〉, for some X,Y subsets of P .

• The operation ∨.
a ∨ b =

∨
X ∨

∨
Y =

∨
(X ∪ Y ), which is clearly in B〈P 〉.

• The operation ∧.

(6.25) a ∧ b =
∨
X ∧

∨
Y =

∨
{x ∧ y |x ∈ X & y ∈ Y }.

The last identity holds by distributivity.

It remains to show that W = {x ∧ y |x ∈ X, y ∈ Y } is a subset of
P ; then (6.25) can be used to conclude that B〈P 〉 is closed under the
operation ∧. But clearly, for arbitrary x ∈ X and y ∈ Y , x∧y is either 0
if x 6= y, or x if x = y since P is a partition. It follows that W = X ∩Y ,
and so W ⊆ P .

• The operation −.
We first prove that if x is in P , then

(6.26) − x =
∨

(P \ {x}) ∈ B〈P 〉.

Let us denote
∨

(P \ {x}) = y. To show (6.26), it is enough to argue
that x∧ y = 0 and x∨ y = 1; then we can conclude by Observation 2.11
that y = −x. But this is easy: x ∧ y =

∨
{x ∧ z | z ∈ P \ {x}} = 0, and

x ∨ y =
∨
P = 1.

Now we can conclude that B〈P 〉 is closed under the complement: −a =
−
∨
X =

∧
{−x |x ∈ X}. By (6.26), −x is in B〈P 〉 for every x ∈ X,

and since B〈P 〉 is closed under the operation ∧ (6.25), we conclude that∧
{−x |x ∈ X} is also in B〈P 〉.

41



6 Atomless countable Boolean algebras

B〈P 〉 is finite (even if B is infinite) because P is finite: every element b ∈
B〈P 〉 is determined by a subset X ⊆ P , and there only 2|P | of these, hence
|B〈P 〉| ≤ 2|P |. We show that in fact the size of B〈P 〉 is equal to 2|P |. B〈P 〉
is atomic with the set P as atoms: each x ∈ P is an atom and if b =

∨
X

for X ⊆ P is not in P , then for every x ∈ X we have 0 < x < b, and hence
b is not an atom. By Corollary 5.3, B〈P 〉 is isomorphic to P(P ), and so in
particular the size of B〈P 〉 is 2|P |. �

Note that if B is a Boolean algebra and a partition P refines a partition Q,
then B〈Q〉 ⊆ B〈P 〉: if

∨
X is an element of B〈Q〉 for some X ⊆ Q, then∨

{y ∈ P | (∃x ∈ X) y ≤ x} in B〈P 〉 is equal to
∨
X.

Recall that by Corollary 5.3 an isomorphism between finite Boolean algebras
is determined by any bijection between their sets of atoms. In the present
context, we can formulate this result as follows:

Lemma 6.4 Let A,B be Boolean algebras and P ⊆ A a partition of A and
Q ⊆ B a partition of B. If |P | = |Q|, then any bijection f between P and Q
extends to an isomorphism f̄ between A〈P 〉 and B〈Q〉.

Proof. Assume that f : P → Q is a bijection. We extend f to f̄ by setting

(6.27) f̄(
∨
X) =

∨
{f(x) | f(x) ∈ X},

for every X ⊆ P . In order to verify that f̄ is the desired isomorphism between
A〈P 〉 and B〈Q〉, it suffices to show that f̄ is an isomorphism between the
canonical partial orders (see Observation 2.18). Clearly f̄(0) = 0, and f̄(1) =
1.

If b ≤ b′, where b =
∨
X and b′ =

∨
X ′, note that the following statements are

equivalent:
∨
X ≤

∨
X ′ ⇔ X ⊆ X ′ ⇔ {f(x) |x ∈ X} ⊆ {f(x′) |x′ ∈ X}

⇔
∨
{f(x) |x ∈ X} ≤

∨
{f(x′) |x′ ∈ X ′}. �

The above analysis of Boolean algebras determined by partitions can be used
to construct an isomorphism between atomless countable Boolean algebras.

Theorem 6.5 All countable atomless Boolean algebras are isomorphic.

Proof. Let A and B be two countable atomless Boolean algebras. We will
construct an isomorphism between A and B.

42
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Let 〈ai | 0 ≤ i < ω〉 be an enumeration of elements of A. Set P0 = {1}. We
will construct a sequence of partitions of A, 〈Pi | i < ω〉, such that Pi+1 � Pi
and ai ∈ A〈Pi+1〉. We will require that every element x ∈ Pi is partitioned
into exactly two elements in Pi+1.

Assuming Pi has been constructed, we define Pi+1. For every x ∈ Pi we add
into Pi+1 exactly two elements x0 and x1 which partition x. We distinguish
two cases. (i) If 0 < x ∧ ai < x, set x0 = x ∧ ai and x1 = x ∧ (−ai). (ii)
Otherwise choose an arbitrary partition {x0, x1} of x. Notice that x0 and x1
always exist because A is atomless. By construction,

(6.28) ai =
∨
{x ∧ ai |x ∈ Pi & 0 < (x ∧ ai) < x}∨∨

{x′ ∈ Pi+1 | (∃x ∈ Pi) x ≤ ai & x′ ≤ x},

and so ai ∈ A〈Pi+1〉 as required.

As every element in Pi is refined by two elements in Pi+1, |Pi| = 2i for every
i ∈ ω. Since the construction eventually captures every ai,

(6.29) A =
⋃
i∈ω

A〈Pi〉.

Given an enumeration 〈bi | 1 ≤ i < ω〉 of B, we can repeat the above con-
struction and obtain a sequence of partitions 〈Qi | i ∈ ω〉 such that

(6.30) B =
⋃
i∈ω

B〈Qi〉,

where the size of Qi is 2i and Qi+1 refines Qi for every i (by refining every
element in Qi into exactly two elements).

By induction, we construct a sequence of partial isomorphisms 〈f̄i | i ∈ ω〉
such that f̄i ⊆ f̄i+1 for every i ∈ ω and f̄i is an isomorphism between A〈Pi〉
and B〈Qi〉. Define f̄0 to be the isomorphism between {0A, 1A} and {0B, 1B}.
Assuming f̄i has already been constructed, in order to define f̄i+1, we first
define a suitable bijection fi+1 between Pi+1 and Qi+1, and then extend fi+1

to f̄i+1 by Lemma 6.4. For every x ∈ Pi, let {x0, x1} be the partition of x in
Pi+1 and {y0, y1} the partition of f̄i(x) in Qi+1. Define fi+1 as follows: for
every x ∈ Pi,

fi+1(x0) = y0 and fi+1(x1) = y1.
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6 Atomless countable Boolean algebras

Let f̄i+1 be as in Lemma 6.4. It remains to show that f̄i ⊆ f̄i+1. For
∨
X ∈

A〈Pi〉, let us denote by X∗ the set {y ∈ Pi+1 | (∃x ∈ X) y < x}. Clearly,∨
X =

∨
X∗, and f̄i(

∨
X) = f̄i+1(

∨
X∗).

We finish the proof by arguing that

(6.31) F =
⋃
i∈ω

f̄i

is the desired isomorphism between A and B. Let ai ≤A aj in A be given,
we wish to show that this is equivalent to F (ai) ≤B F (aj) in B. Setting
k = max(i, j) + 1, both ai and aj are elements of A〈Pk〉. Since f̄k is an
isomorphism, we can conclude that F (ai) = f̄k(ai) ≤B f̄k(aj) = F (aj) in the
subalgebra B〈Qk〉, and also in B. The converse direction is the same. �

Example. The canonical example of a countable atomless Boolean algebra
is the Clopen algebra of the Cantor space, CO(2ω, τ). Another interesting
example is the Lindenbaum-Tarski algebra of theories such as PA and ZFC.

Let T be a theory and κ an infinite cardinal. If T has models of size κ and all
models of T of size κ are isomorphic, we say that T is κ-categorical. Theorem
6.5 implies that the theory of atomless Boolean algebras is ℵ0-categorical.
Categoricity is useful in showing that certain theories are complete:

Theorem 6.6 The first order theory of atomless Boolean algebras is com-
plete.

Proof. Let T denote the first order theory which contains the usual axioms of
Boolean algebras plus the formula which says that there is no element which
has an atom below it:

(6.32) (∀x 6= 0)(∃y)0 < y < x.

We will show that for every sentence σ

(6.33) T ` σ ⇔ CO(2ω, τ) |= σ.

In particular for every σ, either T ` σ or T ` ¬σ. The direction from left to
right is obvious because CO(2ω, τ) is a model of T. For the converse, assume
for contradiction CO(2ω, τ) |= σ and T 6` σ. It follows T ∪ {¬σ} is consistent
and has a countable model M , which is atomless by (6.32). By Theorem 6.5,
M must be isomorphic to CO(2ω, τ). However M |= ¬σ and CO(2ω, τ) |= σ.
Contradiction. �
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6 Atomless countable Boolean algebras

6.2 Antichains in Boolean algebras

An antichain is a certain subset of a Boolean algebra which provide structural
information about the algebra. For instance by showing that every infinite
Boolean algebra contains an infinite antichain, we can easily prove that any
infinite complete Boolean algebra has size at least 2ω, so in particular the
algebra CO(2ω, τ) is not complete.

Definition 6.7 Let B be a Boolean algebra. We say that two elements x 6= y
in B are disjoint if

x ∧ y = 0.

We say that a subset A of B is an antichain if all x in A are non-zero and
pairwise disjoint, i.e. if x 6= y are in A, then x and y are disjoint.

It is easy to see that if x, y are disjoint, then they are incomparable in the
canonical ordering of the Boolean algebra.

The complement operation in a Boolean algebra B allows us to define a binary
operation of subtraction:

x− y = x ∧ −y,

for arbitrary x, y in B.

We will use this operation in the following lemma.

Theorem 6.8 Let B be a complete Boolean algebra which has an antichain
of size ω. Then the size of B is at least 2ω.

Proof. Let A = {ai | i < ω} be a countable antichain in B. We will construct
a bijection i from the powerset of ω into B, thus showing

(6.34) |P(ω)| = 2ω ≤ |B|.

Given X a subset of ω, define a subset of AX of A by AX = {an |n ∈ X}.
Define i : P(ω)→ B by

i(X) =
∨
AX , for every X ⊆ ω.

Since B is complete, the supremum
∨
AX exists for every AX , and so the

definition of i makes sense.

45
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We will show that if X 6= Y are two subsets of ω, then i(X) 6= i(Y ), thus
showing (6.34). Assume for contradiction that there are X 6= Y such that
x =

∨
AX =

∨
AY . Without loss of generality, let i be some element of ω

such that i ∈ X and i 6∈ Y . We will show that x− ai is strictly smaller than
x, but it is still an upper bound of AY , which contradicts the assumption
that x is the supremum of AY .

The element x is an upper bound of AY , and so x ≥ aj for every aj ∈ AY .
Since i 6∈ Y , and aj ∧ ai = 0 for every j 6= i, x− ai is still an upper bound of
AY :

aj ≤ x− ai, or equivalently aj ∧ x ∧ −ai = aj , for every j ∈ Y .

Since ai ≤ x and ai > 0, we obtain

x− ai < x,

as desired. �

In order to apply this result to CO(2ω, τ), we need to check if CO(2ω, τ)
contains an infinite antichain. In fact, a more general result is true:

Lemma 6.9 Every infinite Boolean algebra B contains:

(i) An infinite decreasing sequence.
(ii) An infinite antichain.

Proof. Assume first that B is not atomic. Then there exists an element x > 0
in B for which there exists no atom a < x. This implies that there exists an
infinite decreasing sequence x = x0 > x1 > x2 > . . ., which shows (i). From
this sequence one can define an antichain as follows: set for each i ∈ ω,

ai = xi − xi+1.

Then {ai | i ∈ ω} is an infinite antichain, which shows (ii).

Now assume that B is atomic. Realize that B must contain an infinite number
of atoms: the function f in (5.17) in Theorem 5.2 is injective because B is
atomic, and thus P(At(B)) and also At(B) must be infinite. It follows that
At(B) is an infinite antichain, which shows (ii). Let {ai | i ∈ ω} be a countable
subset of At(B); use this set to define a decreasing chain as follows: set for
each i ∈ ω,

xi = −
∨
{an |n ≤ i}.

Then −a0 = x0 > x1 > x2 > . . . is a decreasing chain, which shows (i). �
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6 Atomless countable Boolean algebras

Corollary 6.10 CO(2ω, τ) is not complete.

Proof. Follows by Theorem 6.8 and Lemma 6.9. �

We have shown that the least size of an infinite complete Boolean algebra is
2ω. Notice that there are complete Boolean algebra of size 2ω: for instance
the powerset algebra P(ω).

Remark 6.11 By Theorem 6.5, the atomless countable Boolean algebra is
unique. By Fact 4.14, the completion of the atomless countable Boolean
algebra exists and is also unique up to isomorphism. This unique completion
of the atomless countable Boolean algebra is called the Cohen algebra, and is
sometimes denoted by C. By Theorem 6.8, C has size at least 2ω; in fact, it
can be shown that

|C| = 2ω.

Cohen algebra is named after P. Cohen who proved in 1962 that if ZF is
consistent, so is ZFC + ¬CH. The method of proof he used is called forcing.
In modern terminology, forcing can be defined with respect to a complete
Boolean algebra. The original Cohen’s proof can be viewed as a forcing with
the Cohen algebra C.
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