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And the Lord God formed man of the dust of the 
ground, and breathed into his nostrils the breath of 
life; and man became a living soul. (Genesis 2, 7)
And the rib, which the Lord God had taken from 
man, made he a woman, and brought her unto the 
man. (Genesis 2, 22)
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Oxygen

Joseph Priestley 1774

Antoine Laurent Lavoisier
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O2 in atmosphere only recently
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Mitochondria

endosymbiosis -1.5 bil years
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O2 (& CO2) transport

n small organisms – diffusion
n short diffusion distance
n large surface area relative to volume

n larger organisms – diffusion + conduction
n conduction in aquatic organisms – bringing water to 

diffusion surface (O2 in water << in air)
n conduction in terrestrial vertebrates:

n breathing
n circulation
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Breathing in vertebrates

n amphibians – 
„swallowing“ air + skin

n reptiles
n dinosaurs – similar to birds
n others – similar to mammals

n birds – parabronchi  
+ air sacs (7-9)

n mammals - alveoli
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Breathing in mammals
n branching airways (dead space; total resistance↓)
n alveoli (large surface area)
n diffusion (short diffusion distance)
n perfusion
n ventilation:

n active inspiration 
(negative pressure)

• diaphragm, 
external intercostal muscles

n passive resting exhalation
• chest weight, lung elasticity
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Intercostal muscles in breathing
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Determinants of lung gas transport 
n Lung ventilation  (V̇)

n how O2 and CO2 reach the alveolocapillary membrane

n what determines the amount of gas that is exchanged between the 
atmosphere and the alveoli

• dead space (VD)
• functional residual capacity (FRC)

n Diffusion in the lungs (D)
n determines the passage of O2 and CO2 across the alveolocapillary 

membrane 

n Pulmonary perfusion (Q)
n how venous blood is led into lungs form periphery
n how O2 - rich blood with little CO2 is led from lungs to periphery

n Pulmonary ventilation/perfusion ratio (V̇/Q)
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Resting lung position 
(end-expiration)

n lung „elastic recoil“
                     x

n chest tendency to expand 
   ⇓

n slight negative pressure in 
intrapleural space (PIP<PB)
(PIP ∼ -5 cmH2O)       
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Interpleural space

n very thin
n filled with fluid (∼8-10 ml)

n non-compressible – transduction of pressures

n pressure measured in esophagus
n in mammals absent 

only in elephants
(pleurae connected
by loose ligament)
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Breath cycle 
n interpleural pressure (PIP) controlled 

by the brain (via respiratory muscles)
n transpulmonary pressure (PTP) = PA - PIP

n follows PIP with a short delay
n end of inspiration & expiration: PTP = -PIP 
n determines volume (VL) 

- together with compliance

n alveolar pressure (PA) = PIP - PTP

n PA - PB determines flow 
- together with resistance

At the beginning of inspiration & expiration 
more energy of ∆PIP for the dynamic 
component of work (flow), for the rest of the 
cycle more for the static component (VL)

(1 cmH2O ∼ 0.75 mmHg∼ 0.1 kPa)
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Spirometry

n Ventilatory volumes 
& capacities
(“static”)

n Breath flow velocity 
(pneumotachograph)
(„dynamic“)
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Ventilatory volumes

10 sec

0.3-0.5 l

request for 
max inspiration

request for 
max exspiration

max expiration after max inspiration

tidal volume 
(VT)

inspiratory 
reserve 
volume 

(IRV)
1.9-3.3 l

exspiratory
reserve volume 

0.7-1.5 l

breathing frequency
12-16 breaths/min

vital capacity
= IRV + VT + ERV

2.9-5 l

residual volume (RV)
~1.2 l   (20-25 ml/kg)

Capacities:
Inspiratory reserve
= VT + IRV
Exspiratory reserve
= VT + ERV
Total = VC + RV
Functional residual
(FRC) = ERV + RV

inspir. muscles cannot generate more force for further lung 
distension

expir. muscles cannot generate more force for further chest volume reduction
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Measuring FRC - plethysmograph
P1 x V1 = P2 x V2 (Boyle’s law)
(resp. ideal gas law: PxV=nRT)

n breathing from outside w/ valve open
n P1 & V1 at the end of resting expiration 

(V1 = FRC)
n valve closed
n small attempt at inspiration (→ ∆V, ∆P)
n P2 & V2 (P1 - ∆P; V1 + ∆V)
n P1 x FRC = (P1 - ∆P) x (V1 + ∆V) 
n FRC = ∆V x [(P1 - ∆P)/∆P]

n after max exspiration: RV

pressure

volume
changes

valve

Body
plethysmograph

Includes air trapping

airway
closure

tracheal
pressure
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C1 * V1 C2 * (V1 + V2)

V1

C1 C2

V2

Measuring FRC – dilution methods
c1 x V1 = c2 x V2 (= amount)

n He dilution 
(closed method)

• breathing from 
& into a bag 
w/ known initial [He]
(usually 10% in O2)

• C1 x V1 = C2 x (V1 + V2)

n N2 washout
(open method)

• inhaling from an O2 storage, exhaling into empty bag

• N2: amount: CP x FRC = CS x VS 
(CP = initial, CS a VS = in spirometer)

Dose not include air trapping 
(that can be quantified from the 

difference against pletysmography)
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Static compliance
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Static compliance & surface tension 
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Surface tension

n inside water volume: molecules act on each other 
equally in all directions – cancels out

n on surface: only from below & laterally – pulling in 
→ lateral pull

n on bubble surface
like a strait-jacket – 
increases pressure inside, 
preventing further ↓r

n LaPlace law:  P = 2T/r
n → smaller bubble empties into larger (T1/r1 = T2/r2)

Pierre-Simon, 
marquis de Laplace
(1806)
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Surfactant: Type II. alveolar cells

n amphiphilic - hydrophobic & hydrophilic groups 
n hydrophobic group extends out of water phase – pulls 

molecule out 
n proteins ∼10%

n plasmatic proteins (1/2)
n apolipoproteins (surfactant 

proteins SP-A, SP-B, SP-C, SP-D)

n 85% of lipids are phosphatidylcholins 
n mostly dipalmitoylphosphatidylcholin (DPPC)
n phosphatidylglycerol - 11% of lipids
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Surfactant prevents alveolar collapse

no surfactant with surfactant

P = const.

P = 2T/r

T/r T/r T/r T/r

30

Aging:  ↓elasticity
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Airway resistance
n 1/3 = upper respiratory tract 

(nose, pharynx, larynx)
n mouth less resistance than nose (exertion)

n middle airways relatively high 
resistance (flow high, total cross 
sectional area still quite low)

n peripheral airways low resistance

pararell: 1/Rtot = 1/R1 + 1/R2 + 1/R3 + ...
(vs. serial: Rtot = R1 + R2 + R3 + ...)
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Turbulent flow
n movement of molecules in all directions → extra energy needed
n Reynolds number: Re = 2rvd/η (>2000 → turbulence)
n large airways:

Re>2000
n small airways:

Re<2000

• laminar – silent
• turbulent - sounds
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Airway resistance

n Vb = (PA-PB)/R
n R = (8/π) x (ν x l)/r4 

(Hagen-Poiseuille)
n R = (PA-PB)/Vb  

= airway resistance
(+20% is tissue resistance 
- friction of lungs & thoracic tissue at their 
movement against each other)
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Regulation of airway resistance

n n. vagus – bronchoconstriction

n sympathicus – β2 dilatation 
(NA weak agonist, adrenaline strong agonist)

n histamine,... - bronchoconstriction
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Spirogram
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Flow-volume loops
peak expiratory flow rate (PEFR)
(in the first 20% of the maneuver)

FEF50

peak inspiratory flow rate ≥ PEFR
(~ halfway between RV and TLC)

effort independent flow (AW compression)
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Work of breathing

FIBROSIS

ASTHMA

f VT

↓ ↑
↑ ↓

W = F/d
→ P/∆V
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Dead space 

alveolus

airways
alveolar air from 
previous exhalation

end of expiration

VT

150 ml

350 ml
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Dead space 

alveolus

alveolar air from 
previous exhalation

VT

airways
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Dead space 

alveolus

airways
alveolar air from 
previous exhalation

VT
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Dead space 

alveolus

airways
alveolar air from 
previous exhalation

VT
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Dead space 

alveolus

airways
alveolar air from 
previous exhalation

inhaled air that fills airways 
(not getting into alveoli)

end of inspiration

n V8A = (VT – VD) . f
n V8D ∼ 30% V8T 

inhaled air that 
participates in 
gas exchange
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Dead space (VD)

n volume, which is 
n ventilated, 
n but does not participate in gas exchange

n anatomical
n functional (alveolar)

physiological
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Relationship between tidal volume, 
frequency & effective ventilation

Minute
ventilation

ml/min

Tidal
volume

ml

Frequency
c/min

Alveolar
ventilation

ml/min

Dead space
ventilation

ml/min

Effective
ventil.

%

8000 250 32 3200 4800 40

8000 500 16 5600 2400 70

8000 1000 8 6800 1200 85

Why not to breathe with minimal frequency?

Work of breathing

FRC
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Measuring VD: Fowler

n single-breath 
N2 washout
n 100% O2 (0% N2) inhaled
n on exhalation, first 0% N2

from VD, then mixture

n or exhaled [CO2]
n virtually 0% CO2 at inspiration

VD

A=B

70



11/14/23

21

Measuring VD: Bohr

mixed exhaled CO2 (PECO2) 
= CO2 from VD + CO2 from VA  

→ the higher VD the more CO2 from VD (~0) "dilutes" CO2 
from VA
 
VD/VT = (PACO2-PECO2) / PACO2   (Bohr equation)

PACO2 – end-expiratory (or PaCO2)

Christian Bohr
(1855–1911)
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Why FRC/RV?
n prevents collapse  of airways & alveoli 

(→ compliance)
n buffers PaO2 extremes during breathing cycle 

(perfusion is steady → relatively stable PaO2)
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That is (also) why we prefer to 
hyperventilate by ↑ inspiration

SO2 at ↓ FRC

SO2 at normal FRC
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FRC     in pregnancy
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FRC depends on body posture
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FRC závisí na poloze těla
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Alveolar ventilation must get rid of all 
CO2 produced in the body

n at rest V8CO2 ∼ 200 ml/min
n V8A ∼ 5250 ml/min (350 x 15) 
⇓

n 200 ml CO2 in 5250 ml of alveolar air → FACO2 ∼3.8%
n V8CO2 = V̇A	x FACO2 →
n V"A = (K * V"CO2) / PACO2  (K = 0.863)

(alveolar ventilation equation)
n can be used to measure  VbA (PACO2 ∼ PaCO2)
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Respiratory hyperbole:
to maintain PACO2 with ↑VWCO2 → VWA must ↑
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Uneven ventilation: gravity

n apex relatively overinflated 
at FRC (higher PTP)

n on a flatter part of P/V curve
n ∆PIP on inspiration even in the 

whole chest  (∼2.5 cmH2O)
n → ↑ ∆V near base than in apex
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Uneven ventilation: gravity

87

­ resistance & ¯ compliance ® 
¯ ventilation at normal f
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Lung diffusion capacity

n solubility of CO2 > O2 → diffusion capacity for CO2 is 
not limiting → diffusion capacity for O2 (DLO2) used to 
characterize diffusion in the lungs 

n DLO2 = VRO2/(PAO2-PcO2) 
n VRO2 (O2 consumption) measured by spirometry 
n PAO2 = end-expiratory PO2

n problem:  
how to detect PcO2 (in pulmonary capillaries)?!

use CO !solution:
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Diffusion capacity for CO (DLCO)

n intensely & rapidly binds to Hb 
n PcCO ~ 0   
n DLCO= VRCO/(PACO-PvCO [=0])  
→  CO disappearance from 
alveolar gas during breath 
holding

n conversion factor: 
DLO2 = 1.23 x DLCO
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Perfusion & diffusion limitation of gas 
transport
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