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Ode to an Old Fiddle
From the Musical World of London (1834);

1

The poor fiddler’s ode to his old fiddle

Torn
Worn

Oppressed I mourn
B a d
S a d

Three-quarters mad
Money gone
Credit none
Duns at door
Half a score
Wife in lain
Twins again
Others ailing
Nurse a railing
Billy hooping
Betsy crouping
Besides poor Joe
With fester’d toe.

Come, then, my Fiddle,
Come, my time-worn friend,

With gay and brilliant sounds
Some sweet tho’ transient solace lend,
Thy polished neck in close embrace
I clasp, whilst joy illumines my face.
When o’er thy strings I draw my bow,
My drooping spirit pants to rise;
A lively strain I touch—and, lo!
I seem to mount above the skies.
There on Fancy’s wing I soar

Heedless of the duns at door;
Oblivious all, I feel my woes no more;

But skip o’er the strings,
As my old Fiddle sings,

“Cheerily oh! merrily go!
“Presto! good master,
“You very well know
“I will find Music,

“If you will find bow,
“From E, up in alto, to G, down below.”

Fatigued, I pause to change the time
For some Adagio, solemn and sublime.

With graceful action moves the sinuous arm;
My heart, responsive to the soothing charm,

Throbs equably; whilst every health-corroding care
Lies prostrate, vanquished by the soft mellifluous air.
More andmore plaintive grown, my eyeswith tears o’erflow,
And Resignation mild soon smooths my wrinkled brow.
Reedy Hautboy may squeak, wailing Flauto may squall,
The Serpent may grunt, and the Trombone may bawl;
But, by Poll,∗ my old Fiddle’s the prince of them all.

Could e’en Dryden return, thy praise to rehearse,
His Ode to Cecilia would seem rugged verse.

Now to thy case, in flannel warm to lie,
Till call’d again to pipe thymaster’s eye.

∗Apollo.

1Quoted in Nicolas Slonimsky’s Book of Musical Anecdotes, reprinted by Schirmer,
1998.
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INTRODUCTION ix

Preface

This book has been a long time in the making. My interest in the
connections between mathematics and music started in earnest in the early
nineties, when I bought a second-hand synthesizer. This beast used a sim-
ple frequency modulation model to produce its sounds, and I was fascinated
at how interesting and seemingly complex the results were. Trying to un-
derstand what was going on led me on a long journey through the nature
of sound and music and its relations with mathematics, a journey that soon
outgrew these origins.

Eventually, I had so much material that I decided it would be fun to
try to teach a course on the subject. This ran twice as an undergraduate
mathematics course in 2000 and 2001, and then again in 2003 as a Fresh-
man Seminar. The responses of the students were interesting: each seemed
to latch onto certain aspects of the subject and find others less interesting;
but which parts were interesting varied radically from student to student.

With this in mind, I have tried to put together this book in such a way
that different sections can be read more or less independently. Nevertheless,
there is a thread of argument running through the book; it is described in
the introduction. I strongly recommend the reader not to try to read this
book sequentially, but at least to read the introduction first for orientation
before dipping in.

The mathematical level of different parts of the book varies tremen-
dously. So if you find some parts too taxing, don’t despair. Just skip around
a bit.

I’ve also tried to write the book in such a way that it can be used as
the text for an undergraduate course. So there are exercises of varying diffi-
culty, and outlines of answers in an appendix.

Cambridge University Press has kindly allowed me to keep a version of
this book available for free online. No version of the online book will ever be
identical to the printed book. Some ephemeral information is contained in
the online version that would be inappropriate for the printed version; and
the quality of the images in the printed version is much higher than in the
online version. Moreover, the online version is likely to continue to evolve,
so that references to it will always be unstable.

Introduction

What is it about intervals such as an octave and a perfect fifth that
makes them more consonant than other intervals? Is this cultural, or inherent
in the nature of things? Does it have to be this way, or is it imaginable that we
could find a perfect octave dissonant and an octave plus a little bit consonant?

The answers to these questions are not obvious, and the literature on
the subject is littered with misconceptions. One appealing and popular, but
incorrect explanation is due to Galileo Galilei, and has to do with periodic-
ity. The argument goes that if we draw two sine waves an exact octave apart,
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one has exactly twice the frequency of the other, so their sum will still have
a regularly repeating pattern

whereas a frequency ratio slightly different from this will have a constantly
changing pattern, so that the ear is “kept in perpetual torment”.

Unfortunately, it is easy to demonstrate that this explanation cannot
be correct. For pure sine waves, the ear detects nothing special about a pair
of signals exactly an octave apart, and a mistuned octave does not sound un-
pleasant. Interval recognition among trained musicians is a factor being de-
liberately ignored here. On the other hand, a pair of pure sine waves whose
frequencies only differ slightly give rise to an unpleasant sound. Moreover, it
is possible to synthesize musical sounding tones for which the exact octave
sounds unpleasant, while an interval of slightly more than an octave sounds
pleasant. This is done by stretching the spectrum from what would be pro-
duced by a natural instrument. These experiments are described in Chap-
ter 4.

The origin of the consonance of the octave turns out to be the instru-
ments we play. Stringed and wind instruments naturally produce a sound
that consists of exact integer multiples of a fundamental frequency. If our
instruments were different, our musical scale would no longer be appropri-
ate. For example, in the Indonesian gamelan, the instruments are all percus-
sive. Percussive instruments do not produce exact integer multiples of a fun-
damental, for reasons explained in Chapter 3. So the western scale is inap-
propriate, and indeed not used, for gamelan music.

We begin the first chapter with another fundamental question that
needs sorting out before we can properly get as far as a discussion of conso-
nance and dissonance. Namely, what’s so special about sine waves anyway,
that we consider them to be the “pure” sound of a given frequency? Could
we take some other periodically varying wave and define it to be the pure
sound of this frequency?

The answer to this has to do with the way the human ear works. First,
the mathematical property of a pure sine wave that’s relevant is that it is
the general solution to the second order differential equation for simple har-
monic motion. Any object that is subject to a returning force proportional
to its displacement from a given location vibrates as a sine wave. The fre-
quency is determined by the constant of proportionality. The basilar mem-
brane inside the cochlea in the ear is elastic, so any given point can be de-
scribed by this second order differential equation, with a constant of propor-
tionality that depends on the location along the membrane.
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The result is that the ear acts as a harmonic analyser. If an incom-
ing sound can be represented as a sum of certain sine waves, then the corre-
sponding points on the basilar membrane will vibrate, and that will be trans-
lated into a stimulus sent to the brain.

This focuses our attention on a second important question. To what
extent can sound be broken down into sine waves? Or to put it another way,
how is it that a string can vibrate with several different frequencies at once?
The mathematical subject that answers this question is called Fourier analy-
sis, and is the subject of Chapter 2. The version of the theory in which peri-
odic sounds are decomposed as a sum of integer multiples of a given frequency
is the theory of Fourier series. Decomposing more general, possibly non-
periodic sounds gives rise to a continuous frequency spectrum, and this leads
to the more difficult theory of Fourier integrals. In order to accommodate dis-
crete spectra into the theory of Fourier integrals, we need to talk about distri-
butions rather than functions, so that the frequency spectrum of a sound is al-
lowed to have a positive amount of energy concentrated at a single frequency.

Chapter 3 describes the mathematics associated with musical instru-
ments. This is done in terms of the Fourier theory developed in Chapter 2, but
it is really only necessary to have the vaguest of understanding of Fourier the-
ory for this purpose. It is certainly not necessary to have worked through the
whole of Chapter 2. For the discussion of drums and gongs, where the answer
does not give integer multiples of a fundamental frequency, the discussion de-
pends on the theory of Bessel functions, which is also developed in Chapter 2.

Chapter 4 is where the theory of consonance and dissonance is dis-
cussed. This is used as a preparation for the discussion of scales and tem-
peraments in Chapters 5 and 6. The fundamental question here is: why does
the modern western scale consist of twelve equally spaced notes to an octave?
Where does the twelve come from? Has it always been this way? Are there
other possibilities?

The emphasis in these chapters is on the relationship between rational
numbers and musical intervals. We concentrate on the development of the
standard Western scales, from the Pythagorean scale through just intona-
tion, the meantone scale, and the irregular temperaments of the sixteenth to
nineteenth centuries until finally we reach the modern equal tempered scale.

We also discuss a number of other scales such as the 31 tone equal tem-
perament that gives a meantone scale with arbitrary modulation. There are
even some scales not based on the octave, such as the Bohlen–Pierce scale
based on odd harmonics only, and the scales of Wendy Carlos.

These discussions of scale lead us into the realm of continued frac-
tions, which give good rational approximations to numbers such as log2(3)

and log2(
4
√

5).
After our discussion of scales, we break off our main thread to consider

a couple of other subjects where mathematics is involved in music. The first
of these is computers and digital music. In Chapter 7 we discuss how to repre-
sent sound and music as a sequence of zeros and ones, and again we find that
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we are obliged to use Fourier theory to understand the result. So for example,
Nyquist’s theorem tells us that a given sample rate can only represent sounds
whose spectrum stops at half that frequency. We describe the closely related
z-transform for representing digital sounds, and then use this to discuss signal
processing, both as a method of manipulating sounds and of producing them.

This leads us into a discussion of digital synthesizers in Chapter 8,
where we find that we are again confronted with the question of what it is that
makes musical instruments sound the way they do. We discover that most
interesting sounds do not have a static frequency spectrum, so we have to
understand the evolution of spectrum with time. It turns out that for many
sounds, the first small fraction of a second contains the critical clues for iden-
tifying the sound, while the steadier part of the sound is less important. We
base our discussion around FM synthesis; although this is an old-fashioned
way to synthesize sounds, it is simple enough to be able to understand a lot
of the salient features before taking on more complex methods of synthesis.

In Chapter 9 we change the subject almost completely, and look into
the role of symmetry in music. Our discussion here is at a fairly low level, and
one could write many books on this subject alone. The area of mathemat-
ics concerned with symmetry is group theory, and we introduce the reader to
some of the elementary ideas from group theory that can be applied to music.

I should close with a disclaimer. Music is not mathematics. While
we’re discussing mathematical aspects of music, we should not lose sight of
the evocative power of music as a medium of expression for moods and emo-
tions. About the numerous interesting questions this raises, mathematics has
little to say.

Why do rhythms and melodies, which are composed of
sound, resemble the feelings, while this is not the case for
tastes, colours or smells? Can it be because they are mo-
tions, as actions are also motions? Energy itself belongs to
feeling and creates feeling. But tastes and colours do not
act in the same way.

Aristotle, Prob. xix. 29

Books

I have included an extensive annotated bibliography, and have also in-
dicated which books are still in print. This information may be slightly out
of date by the time you read this.

There are a number of good books on the physics and engineering as-
pects of music. Dover has kept some of the older ones in print, so they are
available at relatively low cost. Among them are Backus [3], Benade [10],
Berg and Stork [11], Campbell and Greated [15], Fletcher and Rossing [39],
Hall [50], Helmholtz [55], Jeans [61], Johnston [66], Morgan [95], Nederveen
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[98], Olson [100], Pierce [108], Rigden [117], Roederer [123], Rossing [128],
Rayleigh [114], Taylor [137].

Books on psychoacoustics include Buser and Imbert [14], Cook (Ed.)
[20], Deutsch (Ed.) [30], Helmholtz [55], Howard and Angus [58], Moore
[93], Sethares [134], Von Békésy [9], Winckel [145], Yost [148], and Zwicker
and Fastl [149]. A decent book on physiological aspects of the ear and hear-
ing is Pickles [107].

Books including a discussion of the development of scales and tem-
peraments include Asselin [2], Barbour [5], Blackwood [12], Daniélou [28],
Deva [31], Devie [32], Helmholtz [55], Hewitt [56], Isacoff [60], Jedrze-
jwski [62, 63], Jorgensen [67], Lattard [73], Lindley and Turner-Smith [80],
Lloyd and Boyle [81], Mathieu [88], Moore [94], Neuwirth [99], Padgham
[102], Partch [103], Pfrogner [105], Rameau [113], Ruland [130], Vogel
[140, 141, 142], Wilkinson [144] and Yasser [147]. Among these, I partic-
ularly recommend the books of Barbour and Helmholtz. The Bohlen–Pierce
scale is described in Chapter 13 of Mathews and Pierce [87].

There are a number of good books about computer synthesis of musi-
cal sounds. See for example Dodge and Jerse [33], Moore [94], and Roads
[119, 120]. For FM synthesis, see also Chowning and Bristow [17]. For com-
puters and music (which to a large extent still means synthesis), there are a
number of volumes consisting of reprinted articles from the Computer Mu-
sic Journal (M.I.T. Press). Among these are Roads [118], and Roads and
Strawn [122]. Other books on electronic music and the role of computers in
music include Cope [21, 22, 23, 24], Mathews and Pierce [87], Moore [94]
and Roads [119]. Some books about MIDI (Musical Instrument Digital In-
terface) are Rothstein [129], and de Furia and Scacciaferro [41]. A standard
work on digital audio is Pohlmann [109].

Books on random music and fractal music include Xenakis [146], John-
son [65] and Madden [85].

Popular magazines about electronic and computer music include “Key-
board” and “Electronic Musician” which are readily available at magazine
stands.
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CHAPTER 1

Waves and harmonics

1.1. What is sound?

The medium for the transmission of music is sound. A proper under-
standing of music entails at least an elementary understanding of the nature
of sound and how we perceive it.

Sound consists of vibrations of the air. To understand sound properly,
we must first have a good mental picture of what air looks like. Air is a gas,
which means that the atoms and molecules of the air are not in such close
proximity to each other as they are in a solid or a liquid. So why don’t air
molecules just fall down on the ground? After all, Galileo’s experiment at
the leaning tower of Pisa tells us that objects should fall to the ground with
equal acceleration independently of their size and mass.

The answer lies in the extremely rapid motion of these atoms and
molecules. The mean velocity of air molecules at room temperature under
normal conditions is around 450–500 meters per second (or somewhat over
1000 miles per hour), which is considerably faster than an express train at
full speed. We don’t feel the collisions with our skin, only because each air
molecule is extremely light, but the combined effect on our skin is the air
pressure which prevents us from exploding!

The mean free path of an air molecule is 6× 10−8 meters. This means
that on average, an air molecule travels this distance before colliding with
another air molecule. The collisions between air molecules are perfectly elas-
tic, so this does not slow them down.

We can now calculate how often a given air molecule is colliding. The
collision frequency is given by

collision frequency =
mean velocity

mean free path
∼ 1010 collisions per second.

So now we have a very good mental picture of why the air molecules don’t
fall down. They don’t get very far down before being bounced back up again.
The effect of gravity is then observable just as a gradation of air pressure, so
that if we go up to a high elevation, the air pressure is noticeably lower.

So air consists of a large number of molecules in close proximity, con-
tinually bouncing off each other to produce what is perceived as air pressure.
When an object vibrates, it causes waves of increased and decreased pres-
sure in the air. These waves are perceived by the ear as sound, in a manner

1



2 1. WAVES AND HARMONICS

to be investigated in the next section, but first we examine the nature of the
waves themselves.

Sound travels through the air at about 340 meters per second (or 760
miles per hour). This does not mean that any particular molecule of air is
moving in the direction of the wave at this speed (see above), but rather that
the local disturbance to the pressure propagates at this speed. This is similar
to what is happening on the surface of the sea when a wave moves through
it; no particular piece of water moves along with the wave, it is just that the
disturbance in the surface is propagating.

There is one big difference between sound waves and water waves,
though. In the case of the water waves, the local movements involved in the
wave are up and down, which is at right angles to the direction of propagation
of the wave. Such waves are called transverse waves. Electromagnetic waves
are also transverse. In the case of sound, on the other hand, the motions in-
volved in the wave are in the same direction as the propagation. Waves with
this property are called longitudinal waves.

−→ Direction of motion

Longitudinal waves

Sound waves have four main attributes which affect the way they are
perceived. The first is amplitude, which means the size of the vibration, and
is perceived as loudness. The amplitude of a typical everyday sound is very
minute in terms of physical displacement, usually only a small fraction of a
millimeter. The second attribute is pitch, which should at first be thought of
as corresponding to frequency of vibration. The third is timbre, which corre-
sponds to the shape of the frequency spectrum of the sound (see §§1.7 and
2.15). The fourth is duration, which means the length of time for which the
note sounds.

These notions need to be modified for a number of reasons. The first
is that most vibrations do not consist of a single frequency, and naming a
“defining” frequency can be difficult. The second related issue is that these
attributes should really be defined in terms of the perception of the sound,
and not in terms of the sound itself. So for example the perceived pitch of a
sound can represent a frequency not actually present in the waveform. This
phenomenon is called the “missing fundamental,” and is part of a subject
called psychoacoustics.

Attributes of sound

Physical Perceptual
Amplitude Loudness
Frequency Pitch
Spectrum Timbre
Duration Length
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Further reading:

Harvey Fletcher, Loudness, pitch and the timbre of musical tones and their relation

to the intensity, the frequency and the overtone structure, J. Acoust. Soc. Amer. 6

(2) (1934), 59–69.

1.2. The human ear

In order to get much further with understanding sound, we need to
study its perception by the human ear. This is the topic of this section. I
have borrowed extensively from Gray’s Anatomy for this description.

The ear is divided into three parts, called the outer ear, the middle ear
or tympanum and the inner ear or labyrinth. The outer ear is the visible part
on the outside of the head, called the pinna (plural pinnæ) or auricle, and
is ovoid in form. The hollow middle part, or concha is associated with fo-
cusing and thereby magnifying the sound, while the outer rim, or helix ap-
pears to be associated with vertical spatial separation, so that we can judge
the height of a source of sound.

hammer

anvil
stirrup

eardrum

meatus

eustachian tube

outer ear

cochlea

semicircular canals

concha

The concha channels the sound into the auditory canal, called the mea-
tus auditorius externus (or just meatus). This is an air filled tube, about 2.7
cm long and 0.7 cm in diameter. At the inner end of the meatus is the ear
drum, or tympanic membrane.

The ear drum divides the outer ear from the middle ear, or tympanum,
which is also filled with air. The tympanum is connected to three very small
bones (the ossicular chain) which transmit the movement of the ear drum
to the inner ear. The three bones are the hammer, or malleus, the anvil, or
incus, and the stirrup, or stapes. These three bones form a system of levers
connecting the ear drum to a membrane covering a small opening in the in-
ner ear. The membrane is called the oval window.
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The inner ear, or labyrinth, consists of two parts, the osseous labyrinth,1 con-
sisting of cavities hollowed out from the substance of the bone, and the mem-
branous labyrinth, contained in it. The osseous labyrinth is filled with var-
ious fluids, and has three parts, the vestibule, the semicircular canals and
the cochlea. The vestibule is the central cavity which connects the other two
parts and which is situated on the inner side of the tympanum. The semicir-
cular canals lie above and behind the vestibule, and play a role in our sense
of balance. The cochlea is at the front end of the vestibule, and resembles a
common snail shell in shape. The purpose of the cochlea is to separate out
sound into various frequency components (the meaning of this will be made
clearer in Chapter 2) before passing it onto the nerve pathways. It is the
functioning of the cochlea which is of most interest in terms of the harmonic
content of a single musical note, so let us look at the cochlea in more detail.

1(Illustrations taken from the 1901 edition of Anatomy, Descriptive and Surgical, Henry
Gray, F.R.S.)



1.2. THE HUMAN EAR 5

The cochlea twists roughly two and three quarter times from the outside to
the inside, around a central axis called the modiolus or columnella. If it could
be unrolled, it would form a tapering conical tube roughly 30 mm (a little
over an inch) in length.

The cochlea, uncoiled

Basal end Apical end

Oval window

Round window

Helicotrema
Basilar membrane

At the wide (basal) end where it meets the rest of the inner ear it is about 9
mm (somewhat under half an inch) in diameter, and at the narrow (apical)
end it is about 3 mm (about a fifth of an inch) in diameter. There is a bony
shelf or ledge called the lamina spiralis ossea projecting from the modiolus,
which follows the windings to encompass the length of the cochlea. A second
bony shelf called the lamina spiralis secundaria projects inwards from the
outer wall. Attached to these shelves is a membrane called the membrana
basilaris or basilar membrane. This tapers in the opposite direction than the
cochlea, and the bony shelves take up the remaining space.

�
��

A
AA

�
�
�
�

Lamina spiralis ossea

Lamina spiralis secundaria

Basilar membrane

The basilar membrane divides the interior of the cochlea into two parts
with approximately semicircular cross-section. The upper part is called the
scala vestibuli and the lower is called the scala tympani. There is a small
opening called the helicotrema at the apical end of the basilar membrane,
which enables the two parts to communicate with each other. At the basal
end there are two windows allowing communication of the two parts with
the vestibule. Each window is covered with a thin flexible membrane. The
stapes is connected to the membrane called the membrana tympani secun-
daria covering the upper window; this window is called the fenestra ovalis or
oval window, and has an area of 2.0–3.7 mm2. The lower window is called the
fenestra rotunda or round window, with an area of around 2 mm2, and the
membrane covering it is not connected to anything apart from the window.
There are small hair cells along the basilar membrane which are connected



6 1. WAVES AND HARMONICS

with numerous nerve endings for the auditory nerves. These transmit infor-
mation to the brain via a complex system of neural pathways. The hair cells
come in four rows, and form the organ of Corti on the basilar membrane.

Now consider what happens when a sound wave reaches the ear. The
sound wave is focused into the meatus, where it vibrates the ear drum. This
causes the hammer, anvil and stapes to move as a system of levers, and so
the stapes alternately pushes and pulls the membrana tympani secundaria in
rapid succession. This causes fluid waves to flow back and forth round the
length of the cochlea, in opposite directions in the scala vestibuli and the
scala tympani, and causes the basilar membrane to move up and down.

Let us examine what happens when a pure sine wave is transmitted by
the stapes to the fluid inside the cochlea. The speed of the wave of fluid in
the cochlea at any particular point depends not only on the frequency of the
vibration but also on the area of cross-section of the cochlea at that point,
as well as the stiffness and density of the basilar membrane. For a given fre-
quency, the speed of travel decreases towards the apical end, and falls to al-
most zero at the point where the narrowness causes a wave of that frequency
to be too hard to maintain. Just to the wide side of that point, the basilar
membrane will have to have a peak of amplitude of vibration in order to ab-
sorb the motion. Exactly where that peak occurs depends on the frequency.
So by examining which hairs are sending the neural signals to the brain, we
can ascertain the frequency of the incoming sine wave.

The statement that the ear picks out frequency components of an in-
coming sound is known as “Ohm’s acoustic law”. The description above of
how the brain “knows” the frequency of an incoming sine wave is due to Her-
mann Helmholtz, and is known as the place theory of pitch perception.

Measurements made by von Békésy in the 1950s support this theory.
The drawings at the top of page 7 are taken from his 1960 book [9] (Fig. 11-
43). They show the patterns of vibration of the basilar membrane of a ca-
daver for various frequencies.

The spectacular extent to which the ear can discriminate between fre-
quencies very close to each other is not completely explained by the passive
mechanics of the cochlea alone, as reflected by von Békésy’s measurements.
More recent research shows that a sort of psychophysical feedback mechanism
sharpens the tuning and increases the sensitivity. In other words, there is in-
formation carried both ways by the neural paths between the cochlea and the
brain, and this provides active amplification of the incoming acoustic stimu-
lus. The outer hair cells are not just recording information, they are actively
stimulating the basilar membrane. See the figure at the bottom of page 7.

One result of this feedback is that if the incoming signal is loud, the
gain will be turned down to compensate. If there is very little stimulus, the
gain is turned up until the stimulus is detected. An annoying side effect of
this is that if mechanical damage to the ear causes deafness, then the neu-
ral feedback mechanism turns up the gain until random noise is amplified,
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Von Békésy’s drawings of patterns of
vibration of the basilar membrane.
The solid lines are from measure-
ments, while the dotted lines are ex-
trapolated.

so that singing in the ear, or tinnitus results. The deaf person does not even
have the consolation of silence.

The phenomenon of masking is easily explained in terms of Helmholtz’s
theory. Alfred Meyer (1876) discovered that an intense sound of a lower pitch
prevents us from perceiving a weaker sound of a higher pitch, but an intense

Feedback in the cochlea, picture from Jonathan Ashmore’s article
in [71]. In this figure, OHC stands for “outer hair cells” and BM
stands for “basilar membrane”.
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sound of a higher pitch never prevents us from perceiving a weaker sound of
a lower pitch. The explanation of this is that the excitation of the basilar
membrane caused by a sound of higher pitch is closer to the basal end of the
cochlea than that caused by a sound of lower pitch. So to reach the place of
resonance, the lower pitched sound must pass the places of resonance for all
higher frequency sounds. The movement of the basilar membrane caused by
this interferes with the perception of the higher frequencies.

Further reading:

Anthony W. Gummer, Werner Hemmert and Hans-Peter Zenner, Resonant tectorial
membrane motion in the inner ear: Its crucial role in frequency tuning, Proc. Natl.
Acad. Sci. (US) 93 (16) (1996), 8727–8732.

James Keener and James Sneyd, Mathematical physiology, Springer-Verlag, Ber-
lin/New York, 1998. Chapter 23 of this book describes some fairly sophisticated
mathematical models of the cochlea.

Brian C. J. Moore, Psychology of hearing [93].

James O. Pickles, An introduction to the physiology of hearing [107].

Christopher A. Shera, John J. Guinan, Jr. and Andrew J. Oxenham, Revised es-
timates of human cochlear tuning from otoacoustic and behavioral measurements,
Proc. Natl. Acad. Sci. (US) 99 (5) (2002), 3318–3323.

William A. Yost, Fundamentals of hearing. An introduction [148].

Eberhard Zwicker and H. Fastl, Psychoacoustics: facts and models [149].

1.3. Limitations of the ear

In music, frequencies are measured in Hertz (Hz), or cycles per second.
The approximate range of frequencies to which the human ear responds is
usually taken to be from 20 Hz to 20,000 Hz. For frequencies outside this
range, there is no resonance in the basilar membrane, although sound waves
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of frequency lower than 20 Hz may often be felt rather than heard.2 For com-
parison, here is a table of hearing ranges for various animals.3

Species Range (Hz)
Turtle 20–1,000
Goldfish 100–2,000
Frog 100–3,000
Pigeon 200–10,000
Sparrow 250–12,000
Human 20–20,000
Chimpanzee 100-20,000
Rabbit 300–45,000
Dog 50–46,000
Cat 30–50,000
Guinea pig 150–50,000
Rat 1,000–60,000
Mouse 1,000–100,000
Bat 3,000–120,000
Dolphin (Tursiops) 1,000–130,000

Sound intensity is measured in decibels or dB. Zero decibels represents
a power intensity of 10−12 watts per square meter, which is somewhere in the
region of the weakest sound we can hear. Adding ten decibels (one bel) mul-
tiplies the power intensity by a factor of ten. So multiplying the power by
a factor of b adds 10 log10(b) decibels to the level of the signal. This means

2But see also: Tsutomi Oohashi, Emi Nishina, Norie Kawai, Yoshitaka Fuwamoto and
Hiroshi Imai, High-frequency sound above the audible range affects brain electric activity and
sound perception, Audio Engineering Society preprint No. 3207 (91st convention, New York
City). In this fascinating paper, the authors describe how they recorded gamelan music with
a bandwidth going up to 60 KHz. They played back the recording through a speaker sys-
tem with an extra tweeter for the frequencies above 26 KHz, driven by a separate amplifier
so that it could be switched on and off. They found that the EEG (Electroencephalogram)
of the listeners’ response, as well as the subjective rating of the recording, was affected by
whether the extra tweeter was on or off, even though the listeners denied that the sound was
altered by the presence of this tweeter, or that they could hear anything from the tweeter
played alone. They also found that the EEG changes persisted afterwards, in the absence
of the high frequency stimulation, so that long intervals were needed between sessions.

Another relevant paper is: Martin L. Lenhardt, Ruth Skellett, Peter Wang and Alex M.
Clarke, Human ultrasonic speech perception, Science, Vol. 253, 5 July 1991, 82-85. In this
paper, they report that bone-conducted ultrasonic hearing has been found capable of sup-
porting frequency discrimination and speech detection in normal, older hearing-impaired,
and profoundly deaf human subjects. They conjecture that the mechanism may have to do
with the saccule, which is a small spherical cavity adjoining the scala vestibuli of the cochlea.

Research of James Boyk has shown that unlike other musical instruments, for the cym-
bal, roughly 40% of the observable energy of vibration is at frequencies between 20 kHz
and 100 kHz, and showed no signs of dropping off in intensity even at the high end of
this range. This research appears in There’s life above 20 kilohertz: a survey of musical-
instrument spectra up to 102.4 kHz, published on the Caltech Music Lab web site in 2000.

3Taken from R. Fay, Hearing in Vertebrates. A Psychophysics Databook. Hill-Fay As-
sociates, Winnetka, Illinois, 1988.
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that the scale is logarithmic, and n decibels represents a power density of
10(n/10)−12 watts per square meter.

Often, decibels are used as a relative measure, so that an intensity ra-
tio of ten to one represents an increase of ten decibels. As a relative mea-
sure, decibels refer to ratios of powers whether or not they directly represent
sound. So for example, the power gain and the signal to noise ratio of an am-
plifier are measured in decibels. It is worth knowing that log10(2) is roughly
0.3 (to five decimal places it is 0.30103), so that a power ratio of 2:1 repre-
sents a difference of about 3 dB.

To distinguish from the relative measurement, the notation dB SPL
(Sound Pressure Level) is sometimes used to refer to the absolute measure-
ment of sound described above. It should also be mentioned that rather than
using dB SPL, use is often made of a weighting curve, so that not all fre-
quencies are given equal importance. There are three standard curves, called
A, B and C. It is most common to use curve A, which has a peak at about
2000 Hz and drops off substantially to either side. Curves B and C are flat-
ter, and only drop off at the extremes. Measurements made using curve A
are quoted as dBA, or dBA SPL to be pedantic.

dBA weighting

−80

−40

gain
(dB)

10 100 1000 10,000 Hz

The threshold of hearing is the level of the weakest sound we can hear.
Its value in decibels varies from one part of the frequency spectrum to an-
other. Our ears are most sensitive to frequencies a little above 2000 Hz, where
the threshold of hearing of the average person is a little above 0 dB. At 100
Hz the threshold is about 50 dB, and at 10,000 Hz it is about 30 dB. The
average whisper is about 15–20 dB, conversation usually happens at around
60–70 dB, and the threshold of pain is around 130 dB.

The relationship between sound pressure level and perception of loud-
ness is frequency dependent. The following graph, due to Fletcher and Mun-
son4 shows equal loudness curves for pure tones at various frequencies.

4H. Fletcher and W. J. Munson, Loudness, its definition, measurement and calcula-
tion, J. Acoust. Soc. Amer. 5 (2) (1933), 82–108.
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The unit of loudness is the phon, which is defined as follows. The listener
adjusts the level of the signal until it is judged to be of equal intensity to a
standard 1000 Hz signal. The phon level is defined to be the signal pressure
level of the 1000 Hz signal of the same loudness. The curves in this graph
are called Fletcher–Munson curves, or isophons.

The amount of power in watts involved in the production of sound is
very small. The clarinet at its loudest produces about one twentieth of a
watt of sound, while the trombone is capable of producing up to five or six
watts of sound. The average human speaking voice produces about 0.00002
watts, while a bass singer at his loudest produces about a thirtieth of a watt.

The just noticeable difference or limen is used both for sound intensity
and frequency. This is usually taken to be the smallest difference between
two successive tones for which a person can name correctly 75% of the time
which is higher (or louder). It depends in both cases on both frequency and
intensity. The just noticeable difference in frequency will be of more concern
to us than the one for intensity, and the following table is taken from Pierce
[108]. The measurements are in cents, where 1200 cents make one octave
(for further details of the system of cents, see §5.4).
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Frequency Intensity (dB)
(Hz) 5 10 15 20 30 40 50 60 70 80 90

31 220 150 120 97 76 70
62 120 120 94 85 80 74 61 60

125 100 73 57 52 46 43 48 47
250 61 37 27 22 19 18 17 17 17 17
550 28 19 14 12 10 9 7 6 7

1,000 16 11 8 7 6 6 6 6 5 5 4
2,000 14 6 5 4 3 3 3 3 3 3
4,000 10 8 7 5 5 4 4 4 4
8,000 11 9 8 7 6 5 4 4

11,700 12 10 7 6 6 6 5

It is easy to see from this table that our ears are much more sensitive to small
changes in frequency for higher notes than for lower ones. When referring to
the above table, bear in mind that it refers to consecutive notes, not simul-
taneous ones. For simultaneous notes, the corresponding term is the limit of
discrimination. This is the smallest difference in frequency between simulta-
neous notes, for which two separate pitches are heard. We shall see in §1.8
that simultaneous notes cause beats, which enable us to notice far smaller
differences in frequency. This is very important to the theory of scales, be-
cause notes in a scale are designed for harmony, which is concerned with clus-
ters of simultaneous notes. So scales are much more sensitive to very small
changes in tuning than might be supposed.

Vos5 studied the sensitivity of the ear to the exact tuning of the notes
of the usual twelve tone scale, using two-voice settings from Michael Praeto-
rius’ Musæ Sioniæ, Part VI (1609). His conclusions were that scales in which
the intervals were not more than 5 cents away from the “just” versions of
the intervals (see §5.5) were all close to equally acceptable, but then with in-
creasing difference the acceptability decreases dramatically. In view of the
fact that in the modern equal tempered twelve tone system, the major third
is about 14 cents away from just, these conclusions are very interesting. We
shall have much more to say about this subject in Chapter 5.

Exercises

1. Power intensity is proportional to the square of amplitude. How many decibels
represent a doubling of the amplitude of a signal?

2. (Multiple choice) Two independent 70 dB sound sources are heard together. How

loud is the resultant sound, to the nearest dB?

(a) 140 dB, (b) 76 dB, (c) 73 dB, (d) 70 dB, (e) None of the above.

5J. Vos, Subjective acceptability of various regular twelve-tone tuning systems in two-
part musical fragments, J. Acoust. Soc. Amer. 83 (6) (1988), 2383–2392.
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1.4. Why sine waves?

What is the relevance of sine waves to the discussion of perception of
pitch? Could we make the same discussion using some other family of peri-
odic waves, that go up and down in a similar way?

The answer lies in the differential equation for simple harmonic mo-
tion, which we discuss in the next section. To put it briefly, the solutions to
the differential equation

d2y

dt2
= −κy

are the functions
y = A cos

√
κt+B sin

√
κt,

or equivalently
y = c sin(

√
κt+ φ)

(see §1.8 for the equivalence of these two forms of the solution).

−φ√
κ

c

y

t

y = c sin(
√
κt+ φ)

The above differential equation represents what happens when an object is
subject to a force towards an equilibrium position, the magnitude of the force
being proportional to the distance from equilibrium.

In the case of the human ear, the above differential equation may be
taken as a close approximation to the equation of motion of a particular point
on the basilar membrane, or anywhere else along the chain of transmission
between the outside air and the cochlea. Actually, this is inaccurate in sev-
eral regards. The first is that we should really set up a second order partial
differential equation describing the motion of the surface of the basilar mem-
brane. This does not really affect the results of the analysis much except
to explain the origins of the constant κ. The second inaccuracy is that we
should really think of the motion as forced damped harmonic motion in which
there is a damping term proportional to velocity, coming from the viscosity
of the fluid and the fact that the basilar membrane is not perfectly elastic. In
§§1.10–1.11, we shall see that forced damped harmonic motion is also sinu-
soidal, but contains a rapidly decaying transient component. There is a res-
onant frequency corresponding to the maximal response of the damped sys-
tem to the incoming sine wave. The third inaccuracy is that for loud enough
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sounds the restoring force may be nonlinear. This will be seen to be the pos-
sible origin of some interesting acoustical phenomena. Finally, most musical
notes do not consist of a single sine wave. For example, if a string is plucked,
a periodic wave will result, but it will usually consist of a sum of sine waves
with various amplitudes. So there will be various different peaks of ampli-
tude of vibration of the basilar membrane, and a more complex signal is sent
to the brain. The decomposition of a periodic wave as a sum of sine waves is
called Fourier analysis, which is the subject of Chapter 2.

1.5. Harmonic motion

Consider a particle of mass m subject to a force F towards the equilib-
rium position, y = 0, and whose magnitude is proportional to the distance y
from the equilibrium position,

F = −ky.
Here, k is just the constant of proportionality. Newton’s laws of motion give
us the equation

F = ma

where

a =
d2y

dt2

is the acceleration of the particle and t represents time. Combining these
equations, we obtain the second order differential equation

d2y

dt2
+
ky

m
= 0. (1.5.1)

We write ẏ for
dy

dt
and ÿ for

d2y

dt2
as usual, so that this equation takes the form

ÿ + ky/m = 0.

The solutions to this equation are the functions

y = A cos(
√
k/m t) +B sin(

√
k/m t). (1.5.2)

The fact that these are the solutions of this differential equation is the
explanation of why the sine wave, and not some other periodically oscillat-
ing wave, is the basis for harmonic analysis of periodic waves. For this is the
differential equation governing the movement of any particular point on the
basilar membrane in the cochlea, and hence governing the human perception
of sound.

Exercises

1. Show that the functions (1.5.2) satisfy the differential equation (1.5.1).

2. Show that the general solution (1.5.2) to equation (1.5.1) can also be written in
the form

y = c sin(
√
k/mt+ φ).

Describe c and φ in terms of A and B. (If you get stuck, take a look at §1.8).
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1.6. Vibrating strings

In this section, we make a first pass at understanding vibrating strings.
In Section 3.2 we return to this topic and do a better analysis using partial
differential equations.

Consider a vibrating string, anchored at both ends. Suppose at first
that the string has a heavy bead attached to the middle of it, so that the
mass m of the bead is much greater than the mass of the string. Then the
string exerts a force F on the bead towards the equilibrium position whose
magnitude, at least for small displacements, is proportional to the distance
y from the equilibrium position,

F = −ky.
According to the last section, we obtain the differential equation

d2y

dt2
+
ky

m
= 0.

whose solutions are the functions

y = A cos(
√
k/m t) +B sin(

√
k/m t),

where the constants A and B are determined by the initial position and ve-
locity of the bead.

A
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If the mass of the string is uniformly distributed, then more vibrational
“modes” are possible. For example, the midpoint of the string can remain
stationary while the two halves vibrate with opposite phases. On a guitar,
this can be achieved by touching the midpoint of the string while plucking
and then immediately releasing. The effect will be a sound exactly an octave
above the natural pitch of the string, or exactly twice the frequency. The use
of harmonics in this way is a common device among guitar players. If each
half is vibrating with a pure sine wave then the motion of a point other than
the midpoint will be described by the function

y = A cos(2
√
k/m t) +B sin(2

√
k/m t).



16 1. WAVES AND HARMONICS
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If a point exactly one third of the length of the string from one end is
touched while plucking, the effect will be a sound an octave and a perfect fifth
above the natural pitch of the string, or exactly three times the frequency.
Again, if the three parts of the string are vibrating with a pure sine wave, with
the middle third in the opposite phase to the outside two thirds, then the mo-
tion of a non-stationary point on the string will be described by the function

y = A cos(3
√
k/m t) +B sin(3

√
k/m t).

A
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In general, a plucked string will vibrate with a mixture of all the modes
described by multiples of the natural frequency, with various amplitudes.
The amplitudes involved depend on the exact manner in which the string is
plucked or struck. For example, a string struck by a hammer, as happens in
a piano, will have a different set of amplitudes than that of a plucked string.
The general equation of motion of a typical point on the string will be

y =

∞∑

n=1

(
An cos(n

√
k/m t) +Bn sin(n

√
k/m t)

)
.

This leaves us with a problem, to which we shall return in the next
two chapters. How can a string vibrate with a number of different frequen-
cies at the same time? This forms the subject of the theory of Fourier series
and the wave equation. Before we are in a position to study Fourier series,
we need to understand sine waves and how they interact. This is the subject
of §1.8. We shall return to the subject of vibrating strings in §3.2, where we
shall develop the wave equation and its solutions.

1.7. Sine waves and frequency spectrum

Since angles in mathematics are measured in radians, and there are 2π
radians in a cycle, a sine wave with frequency ν in Hertz, peak amplitude c
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and phase φ will correspond to a sine wave of the form

c sin(2πνt+ φ). (1.7.1)

The quantity ω = 2πν is called the angular velocity. The role of the angle φ
is to tell us where the sine wave crosses the time axis (look back at the graph
in §1.4). For example, a cosine wave is related to a sine wave by the equa-
tion cos x = sin(x+ π

2 ), so a cosine wave is really just a sine wave with a dif-
ferent phase. G"

440 Hz

For example, modern concert pitch6 places the note A above middle C
at 440 Hz so this would be represented by a wave of the form

c sin(880πt + φ).

This can be converted to a linear combination of sines and cosines using the
standard formulae for the sine and cosine of a sum:

sin(A+B) = sinA cosB + cosA sinB (1.7.2)

cos(A+B) = cosA cosB − sinA sinB. (1.7.3)

So we have
c sin(ωt+ φ) = a cosωt+ b sinωt

where
a = c sinφ b = c cosφ.

Conversely, given a and b, c and φ can be obtained via

c =
√
a2 + b2 tanφ = a/b.

We end this section by introducing the concept of spectrum, which plays
an important role in understanding musical notes. The spectrum of a sound
is a graph indicating the amplitudes of various different frequencies in the
sound. We shall make this more precise in §2.15. But for the moment, we
leave it as an intuitive notion, and illustrate with a picture of the spectrum
of a vibrating string with fundamental frequency ν =

√
k/m/2π as above.

6Historically, this was adopted as the U.S.A. Standard Pitch in 1925, and in May 1939
an international conference in London agreed that this should be adopted as the modern
concert pitch. Before that time, a variety of standard frequencies were used. For example,
in the time of Mozart, the note A had a value closer to 422 Hz, a little under a semitone
flat to modern ears. Before this time, in the Baroque and earlier, there was even more vari-
ation. For example, in Tudor Britain, secular vocal pitch was much the same as modern
concert pitch, while domestic keyboard pitch was about three semitones lower and church
music pitch was more than two semitones higher.



18 1. WAVES AND HARMONICS

6amplitude

-
ν 2ν 3ν 4ν frequency

This graph illustrates a sound with a discrete frequency spectrum with
frequency components at integer multiples of a fundamental frequency, and
with the amplitude dropping off for higher frequencies. Some sounds, such
as white noise, have a continuous frequency spectrum, as in the diagram be-
low. Making sense of what these terms might mean will involve us in Fourier
theory and the theory of distributions.

6amplitude

-
frequency

white noise

It is worth noticing that some information is lost when passing to the
frequency spectrum. Namely, we have lost all information about the phase
of each frequency component.

Exercises

1. Use the equation cos θ = sin(π/2 + θ) and equations (1.8.9)–(1.8.10) to express

sinu+ cos v as a product of trigonometric functions.

1.8. Trigonometric identities and beats

What happens when two pure sine or cosine waves are played at the
same time? For example, why is it that when two very close notes are played
simultaneously, we hear “beats”? Since this is the method by which strings
on a piano are tuned, it is important to understand the origins of these beats.

The answer to this question also lies in the trigonometric identities
(1.7.2) and (1.7.3). Since sin(−B) = − sinB and cos(−B) = cosB, replac-
ing B by −B in equations (1.7.2) and (1.7.3) gives

sin(A−B) = sinA cosB − cosA sinB (1.8.1)

cos(A−B) = cosA cosB + sinA sinB. (1.8.2)
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Adding equations (1.7.2) and (1.8.1)

sin(A+B) + sin(A−B) = 2 sinA cosB (1.8.3)

which may be rewritten as

sinA cosB = 1
2(sin(A+B) + sin(A−B)). (1.8.4)

Similarly, adding and subtracting equations (1.7.3) and (1.8.2) gives

cos(A+B) + cos(A−B) = 2 cosA cosB (1.8.5)

cos(A−B)− cos(A+B) = 2 sinA sinB, (1.8.6)

or

cosA cosB = 1
2(cos(A+B) + cos(A−B)) (1.8.7)

sinA sinB = 1
2(cos(A−B)− cos(A+B)). (1.8.8)

This enables us to write any product of sines and cosines as a sum or differ-
ence of sines and cosines. So for example, if we wanted to integrate a prod-
uct of sines and cosines, this would enable us to do so.

We are actually interested in the opposite process. So we set u = A+B
and v = A−B. Solving for A and B, this gives A = 1

2(u+v) and B = 1
2 (u−v).

Substituting in equations (1.8.3), (1.8.5) and (1.8.6), we obtain

sinu+ sin v = 2 sin 1
2(u+ v) cos 1

2(u− v) (1.8.9)

cos u+ cos v = 2cos 1
2(u+ v) cos 1

2(u− v) (1.8.10)

cos v − cos u = 2 sin 1
2(u+ v) sin 1

2(u− v) (1.8.11)

This enables us to write any sum or difference of sine waves and cosine waves
as a product of sines and cosines. Exercise 1 at the end of this section ex-
plains what to do if there are mixed sines and cosines.

y

t

y = sin(12t) + sin(10t) = 2 sin(11t) cos(t)
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So for example, suppose that a piano tuner has tuned one of the three
strings corresponding to the note A above middle C to 440 Hz. The second
string is still out of tune, so that it resonates at 436 Hz. The third is being
damped so as not to interfere with the tuning of the second string. Ignoring
phase and amplitude for a moment, the two strings together will sound as

sin(880πt) + sin(872πt).

Using equation (1.8.9), we may rewrite this sum as

2 sin(876πt) cos(4πt).

This means that we perceive the combined effect as a sine wave with fre-
quency 438 Hz, the average of the frequencies of the two strings, but with
the amplitude modulated by a slow cosine wave with frequency 2 Hz, or half
the difference between the frequencies of the two strings. This modulation is
what we perceive as beats. The amplitude of the modulating cosine wave has
two peaks per cycle, so the number of beats per second will be four, not two.
So the number of beats per second is exactly the difference between the two
frequencies. The piano tuner tunes the second string to the first by tuning
out the beats, namely by adjusting the string so that the beats slow down to
a standstill.

If we wish to include terms for phase and amplitude, we write

c sin(880πt+ φ) + c sin(872πt + φ′).

where the angles φ and φ′ represent the phases of the two strings. This gets
rewritten as

2c sin(876πt + 1
2(φ+ φ′)) cos(4πt+ 1

2 (φ− φ′)),
so this equation can be used to understand the relationship between the phase
of the beats and the phases of the original sine waves.

If the amplitudes are different, then the beats will not be so pronounced
because part of the louder note is “left over”. This prevents the amplitude
going to zero when the modulating cosine takes the value zero.

Exercises

1. A piano tuner comparing two of the three strings on the same note of a piano
hears five beats a second. If one of the two notes is concert pitch A (440 Hz), what
are the possibilities for the frequency of vibration of the other string?

2. Evaluate

∫ π/2

0

sin(3x) sin(4x) dx.

3. (a) Setting A = B = θ in formula (1.8.7) gives the double angle formula

cos2 θ = 1
2 (1 + cos(2θ)). (1.8.12)

Draw graphs of the functions cos2 θ and cos(2θ). Try to understand formula (1.8.12)
in terms of these graphs.

(b) Setting A = B = θ in formula (1.8.8) gives the double angle formula

sin2 θ = 1
2 (1− cos(2θ)). (1.8.13)
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Draw graphs of the functions sin2 θ and cos(2θ). Try to understand formula (1.8.13)
in terms of these graphs.

4. In the formula (1.7.1), the factor c is called the peak amplitude, because it de-
termines the highest point on the waveform. In sound engineering, it is often more
useful to know the root mean square, or RMS amplitude, because this is what de-
termines things like power consumption. The RMS amplitude is calculated by in-
tegrating the square of the value over one cycle, dividing by the length of the cycle
to obtain the mean square, and then taking the square root. For a pure sine wave
given by formula (1.7.1), show that the RMS amplitude is given by

√

ν

∫ 1
ν

0

[c sin(2πνt+ φ)]2 dt =
c√
2
.

5. Use equation (1.8.8) to write sin kt sin 1
2 t as 1

2 (cos(k− 1
2 )t−cos(k+ 1

2 )t). Show that

n∑

k=1

sinkt =
cos 1

2 t− cos(n+ 1
2 )t

2 sin 1
2 t

=
sin 1

2 (n+ 1)t sin 1
2nt

sin 1
2 t

. (1.8.14)

Similarly, show that
n∑

k=1

cos kt =
sin(n+ 1

2 )t− sin 1
2 t

2 sin 1
2 t

=
cos 1

2 (n+ 1)t sin 1
2nt

sin 1
2 t

. (1.8.15)

6. Two pure sine waves are sounded. One has frequency slightly greater or slightly

less than twice that of the other. Would you expect to hear beats? [See also Exer-

cise 1 in Section 8.10]

1.9. Superposition

Superposing two sounds corresponds to adding the corresponding wave
functions. This is part of the concept of linearity . In general, a system is lin-
ear if two conditions are satisfied. The first, superposition, is that the sum of
two simultaneous input signals should give rise to the sum of the two outputs.
The second condition, homogeneity, says that magnifying the input level by a
constant factor should multiply the output level by the same constant factor.

Superposing harmonic motions of the same frequency works as follows.
Two simple harmonic motions with the same frequency, but possibly differ-
ent amplitudes and phases, always add up to give another simple harmonic
motion with the same frequency. We saw some examples of this in the last
section. In this section, we see that there is an easy graphical method for
carrying this out in practice.

Consider a sine wave of the form c sin(ωt + φ) where ω = 2πν. This
may be regarded as the y-component of circular motion of the form

x = c cos(ωt + φ)

y = c sin(ωt + φ).
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Since sin2 θ+cos2 θ = 1, squaring and adding these equations shows that the
point (x, y) lies on the circle

x2 + y2 = c2

with radius c, centred at the origin. As t varies, the point (x, y) travels coun-
terclockwise round this circle ν times in each second, so ν is really measur-
ing the number of cycles per second around the origin, and ω is measuring
the angular velocity in radians per second. The phase φ is the angle, mea-
sured counterclockwise from the positive x-axis, subtended by the line from
(0, 0) to (x, y) when t = 0.

(x, y) at t = 0

x
c

y

φ

Now suppose that we are given two sine waves of the same frequency,
say c1 sin(ωt+φ1) and c2 sin(ωt+φ2). The corresponding vectors at t = 0 are

(x1, y1) = (c1 cosφ1, c1 sinφ1)

(x2, y2) = (c2 cosφ2, c2 sinφ2).

To superpose (i.e., add) these sine waves, we simply add these vectors to give

(x, y) = (c1 cosφ1 + c2 cosφ2, c1 sinφ1 + c2 sinφ2)

= (c cos φ, c sin φ).

(x1, y1)

(x2, y2)

(x, y)

x

y
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We draw a copy of the line segment (0, 0) to (x1, y1) starting at (x2, y2),
and a copy of the line segment (0, 0) to (x2, y2) starting at (x1, y1), to form
a parallelogram. The amplitude c is the length of the diagonal line drawn
from the origin to the far corner (x, y) of the parallelogram formed this way.
The angle φ is the angle subtended by this line, measured as usual counter-
clockwise from the x-axis.

Exercises

1. Write the following expressions in the form c sin(2πνt+ φ):

(i) cos(2πt)

(ii) sin(2πt) + cos(2πt)

(iii) 2 sin(4πt+ π/6)− sin(4πt+ π/2).

2. Read Appendix C. Use equation (C.1) to interpret the graphical method de-
scribed in this section as motion in the complex plane of the form

z = cei(ωt+φ).

1.10. Damped harmonic motion

Damped harmonic motion arises when in addition to the restoring force
F = −ky, there is a frictional force proportional to velocity,

F = −ky − µẏ.
For positive values of µ, the extra term damps the motion, while for nega-
tive values of µ it promotes or forces the harmonic motion. In this case, the
differential equation we obtain is

mÿ + µẏ + ky = 0. (1.10.1)

This is what is called a linear second order differential equation with constant
coefficients. To solve such an equation, we look for solutions of the form

y = eαt.

Then ẏ = αeαt and ÿ = α2eαt. So for y to satisfy the original differential
equation, α has to satisfy the auxiliary equation

mY 2 + µY + k = 0. (1.10.2)

If the quadratic equation (1.10.2) has two different solutions, Y = α and
Y = β, then y = eαt and y = eβt are solutions of (1.10.1). Since equation
(1.10.1) is linear, this implies that any combination of the form

y = Aeαt +Beβt

is also a solution. The discriminant of the auxiliary equation (1.10.2) is

∆ = µ2 − 4mk.
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If ∆ > 0, corresponding to large damping or forcing term, then the so-
lutions to the auxiliary equation are

α = (−µ+
√

∆)/2m

β = (−µ−
√

∆)/2m,

and so the solutions to the differential equation (1.10.1) are

y = Ae(−µ+
√

∆)t/2m +Be(−µ−
√

∆)t/2m. (1.10.3)

In this case, the motion is so damped that no sine waves can be discerned.
The system is then said to be overdamped, and the resulting motion is called
dead beat.

If ∆ < 0, as happens when the damping or forcing term is small, then
the system is said to be underdamped. In this case, the auxiliary equation
(1.10.2) has no real solutions because ∆ has no real square roots. But −∆ is
positive, and so it has a square root. In this case, the solutions to the auxi-
lary equation are

α = (−µ+ i
√
−∆)/2m

β = (−µ− i
√
−∆)/2m,

where i =
√
−1. See Appendix C for a brief introduction to complex num-

bers. So the solutions to the original differential equation are

y = e−µt/2m(Aeit
√
−∆/2m +Be−it

√
−∆/2m).

We are really interested in real solutions. To this end, we use relation (C.1)
to write this as

y = e−µt/2m((A+B) cos(t
√
−∆/2m) + i(A−B) sin(t

√
−∆/2m)).

So we obtain real solutions by taking A′ = A+ B and B′ = i(A − B) to be
real numbers, giving

y = e−µt/2m(A′ sin(t
√
−∆/2m) +B′ cos(t

√
−∆/2m)). (1.10.4)

The interpretation of this is harmonic motion with a damping factor of
e−µt/2m.

The special case ∆ = 0 has solutions

y = (At+B)e−µt/2m. (1.10.5)

This borderline case resembles the case ∆ > 0, inasmuch as harmonic mo-
tion is not apparent. Such a system is said to be critically damped.

Examples

1. The equation
ÿ + 4ẏ + 3y = 0 (1.10.6)

is overdamped. The auxiliary equation

Y 2 + 4Y + 3 = 0
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factors as (Y + 1)(Y + 3) = 0, so it has roots Y = −1 and Y = −3. It follows that
the solutions of (1.10.6) are given by

y = Ae−t +Be−3t.

t

y

y = e−t + e−3t

2. The equation
ÿ + 2ẏ + 26y = 0 (1.10.7)

is underdamped. The auxiliary equation is

Y 2 + 2Y + 26 = 0.

Completing the square gives (Y + 1)2 + 25 = 0, so the solutions are Y = −1± 5i. It
follows that the solutions of (1.10.7) are given by

y = e−t(Ae5it +Be−5it),

or
y = e−t(A′ cos 5t+B′ sin 5t). (1.10.8)

t

y

y = e−t sin 5t

3. The equation
ÿ + 4ẏ + 4y = 0 (1.10.9)

is critically damped. The auxiliary equation

Y 2 + 4Y + 4 = 0

factors as (Y + 2)2 = 0, so the only solution is Y = −2. It follows that the solutions
of (1.10.9) are given by

y = (At+B)e−2t.

t

y

y = (t+ 1
10 )e−2t
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Exercises

1. Show that if ∆ = µ2 − 4mk > 0 then the functions (1.10.3) are real solutions of
the differential equation (1.10.1).

2. Show that if ∆ = µ2 − 4mk < 0 then the functions (1.10.4) are real solutions of
the differential equation (1.10.1).

3. Show that if ∆ = µ2 − 4mk = 0 then the auxiliary equation (1.10.2) is a perfect

square, and the functions (1.10.5) satisfy the differential equation (1.10.1).

1.11. Resonance

Forced harmonic motion is where there is a forcing term f(t) (often
taken to be periodic) added into equation (1.10.1) to give an equation of the
form

mÿ + µẏ + ky = f(t). (1.11.1)

This represents a damped system with an external stimulus f(t) applied to
it. We are particularly interested in the case where f(t) is a sine wave, be-
cause this represents forced harmonic motion. Forced harmonic motion is re-
sponsible for the production of sound in most musical instruments, as well
as the perception of sound in the cochlea. We shall see that forced harmonic
motion is what gives rise to the phenomenon of resonance.

There are two steps to the solution of the equation. The first is to
find the general solution to equation (1.10.1) without the forcing term, as de-
scribed in §1.10, to give the complementary function. The second step is to
find by any method, such as guessing, a single solution to equation (1.11.1).
This is called a particular integral. Then the general solution to the equation
(1.11.1) is the sum of the particular integral and the complementary function.

Examples

1. Consider the equation
ÿ + 4ẏ + 5y = 10t2 − 1. (1.11.2)

We look for a particular integral of the form y = at2 + bt+ c. Differentiating, we get
ẏ = 2at+ b and ÿ = 2a. Plugging these into (1.11.2) gives

2a+ 4(2at+ b) + 5(at2 + bt+ c) = 10t2 + t− 3.

Comparing coefficients of t2 gives 5a = 10 or a = 2. Then comparing coefficients of t
gives 8a+5b = 1, so b = −3. Finally, comparing constant terms gives 2a+4b+5c =
−3, so c = 1. So we get a particular integral of y = 2t2−3t+1. Adding the comple-
mentary function (1.10.8), we find that the general solution to (1.11.2) is given by

y = 2t2 − 3t+ 1 + e−2t(A′ cos t+B′ sin t).

2. As a more interesting example, to solve

ÿ + 4ẏ + 5y = sin 2t, (1.11.3)

we look for a particular integral of the form

y = a cos 2t+ b sin 2t.
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Equating coefficients of cos 2t and sin 2t we get two equations:

−8a+ b = 1

a+ 8b = 0.

Solving these equations, we get a = − 8
65 , b = 1

65 . So the general solution to (1.11.3) is

y =
sin 2t− 8 cos 2t

65
+ e−2t(A′ cos t+B′ sin t).

The case of forced harmonic motion of interest to us is the equation

mÿ + µẏ + ky = R cos(ωt+ φ). (1.11.4)

This represents a damped harmonic motion (see §1.10) with forcing term of
amplitude R and angular velocity ω.

We could proceed as above to look for a particular integral of the form

y = a cosωt+ b sinωt

and proceed as in the second example above. However, we can simplify the
calculation by using complex numbers (see Appendix C). Since this differen-
tial equation is linear, and since

Rei(ωt+φ) = R(cos(ωt+ φ) + i sin(ωt + φ))

it will be enough to find a particular integral for the equation

mÿ + µẏ + ky = Rei(ωt+φ), (1.11.5)

which represents a complex forcing term with unit amplitude and angular ve-
locity ω. Then we take the real part to get a solution to equation (1.11.4).

We look for solutions of equation (1.11.5) of the form y = Aei(ωt+φ),

with A to be determined. We have ẏ = Aiωei(ωt+φ) and ÿ = −Aω2ei(ωt+φ).
So plugging into equation (1.11.5) and dividing by ei(ωt+φ), we get

A(−mω2 + iµω + k) = R

or

A =
R

−mω2 + iµω + k
.

So the particular integral, which actually represents the eventual “steady
state” solution to the equation since the complementary function is decay-
ing, is given by

y =
Rei(ωt+φ)

−mω2 + iµω + k
.

The bottom of this expression is a complex constant, and so this solution
moves around a circle in the complex plane. The real part is then a sine wave
with the radius of the circle as amplitude and with a phase determined by
the argument of the bottom.
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The amplitude of the resulting vibration, and therefore the degree of
resonance (since we started with a forcing term of unit amplitude) is given
by taking the absolute value of this solution,

|y| = R√
(k −mω2)2 + µ2ω2

.

This amplitude magnification reaches its maximum when the derivative of
(k −mω2)2 + µ2ω2 vanishes, namely when

ω =

√
k

m
− µ2

2m2
,

when we have amplitude mR/(µ
√
km− µ2/4). The above value of ω is called

the resonant frequency of the system. Note that this value of ω is slightly less
than the value which one may expect from Equation (1.10.4) for the comple-
mentary function:

ω =

√
−∆

2m
=

√
k

m
− µ2

4m2
,

which is already less than the value of ω for the corresponding undamped
system:

ω =

√
k

m
.

Example. Consider the forced, underdamped equation

ÿ + 2ẏ + 30y = 10 sinωt.

The above formula tells us that the amplitude of the resulting steady state sine wave
solution is 10/

√
900− 56ω2 + ω4, which has its maximum value at ω =

√
28.

5 10 angular frequency ω
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Without the damping term, the amplitude of the steady state solution to the
equation

ÿ + 30y = 10 sinωt,

is equal to 10/|30− ω2|. It has an “infinitely sharp” peak at ω =
√

30.
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5 10 angular frequency ω
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At this stage, it seems appropriate to introduce the terms resonant fre-
quency and bandwidth for a resonant system. The resonant frequency is the
frequency for which the amplitude of the steady state solution is maximal.
Bandwidth is a vague term, used to describe the width of the peak in the
above graphs. So in the damped example above, we might want to describe
the bandwidth as being from roughly 41

2 to 61
2 , while for the undamped ex-

ample it would be somewhat wider. Sometimes, the term is made precise by
taking the interval between the two points either side of the peak where the
amplitude is 1/

√
2 times that of the peak. Since power is proportional to

square of amplitude, this corresponds to a factor of two in the power, or a
difference of 10 log10(2) dB, or roughly 3 dB.



CHAPTER 2

Fourier theory

To be sung to the tune of Gilbert and Sullivan’s Modern Major General:

I am the very model of a genius mathematical,
For I can do mechanics, both dynamical and statical,

Or integrate a function round a contour in the complex plane,
Yes, even if it goes off to infinity and back again;

Oh, I know when a detailed proof’s required and when a guess’ll do
I know about the functions of Laguerre and those of Bessel too,

I’ve finished every tripos question back to 1948;
There ain’t a function you can name that I can’t differentiate!

There ain’t a function you can name that he can’t differentiate [Tris]

I’ve read the text books and I can extremely quickly tell you where
To look to find Green’s Theorem or the Principle of d’Alembert

Or I can work out Bayes’ rule when the loss is not Quadratical
In short I am the model of a genius mathematical!

For he can work out Bayes’ rule when the loss is not Quadratical
In short he is the model of a genius mathematical!

Oh, I can tell in seconds if a graph is Hamiltonian,
And I can tell you if a proof of 4CC’s a phoney ’un

I read up all the journals and I’m ready with the latest news,
And very good advice about the Part II lectures you should choose.

Oh, I can do numerical analysis without a pause,
Or comment on the far-reaching significance of Newton’s laws

I know when polynomials are soluble by radicals,
And I can reel off simple groups, especially sporadicals.

For he can reel off simple groups, especially sporadicals [Tris]

Oh, I like relativity and know about fast moving clocks
And I know what you have to do to get round Russell’s paradox

In short, I think you’ll find concerning all things problematical
I am the very model of a genius mathematical!

In short we think you’ll find concerning all things problematical
He is the very model of a genius mathematical!

Oh, I know when a matrix will be diagonalisable
And I can draw Greek letters so that they are recognizable

And I can find the inverse of a non-zero quaternion
I’ve made a model of a rhombicosidodecahedron;

Oh, I can quote the theorem of the separating hyperplane
I’ve read MacLane and Birkhoff not to mention Birkhoff and MacLane

My understanding of vorticity is not a hazy ’un
And I know why you should (and why you shouldn’t) be a Bayesian!

For he knows why you should (and why you shouldn’t) be a Bayesian! [Tris]

I’m not deterred by residues and really I am quite at ease
When dealing with essential isolated singularities,

In fact as everyone agrees (and most are quite emphatical)
I am the very model of a genius mathematical!

In fact as everyone agrees (and most are quite emphatical)
He is the very model of a genius mathematical!

—from CUYHA songbook, Cambridge (privately distributed) 1976.

30
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2.1. Introduction

How can a string vibrate with a number of different frequencies at the
same time? This problem occupied the minds of many of the great mathe-
maticians and musicians of the seventeenth and eighteenth century. Among
the people whose work contributed to the solution of this problem are Marin
Mersenne, Daniel Bernoulli, the Bach family, Jean-le-Rond d’Alembert, Leon-
hard Euler, and Jean Baptiste Joseph Fourier.

In this chapter, we discuss Fourier’s theory of harmonic analysis. This
is the decomposition of a periodic wave into a (usually infinite) sum of sines
and cosines. The frequencies involved are the integer multiples of the fun-
damental frequency of the periodic wave, and each has an amplitude which
can be determined as an integral. A superb book on Fourier series and their
continuous frequency spectrum counterpart, Fourier integrals, is Tom Körner
[70]. The reader should be warned, however, that the level of sophistication
of Körner’s book is much greater than the level of this chapter.

Mathematically, this chapter is probably more demanding than the rest
of the book , with the exception of Appendix W. It is not necessary to un-
derstand everything in this chapter before reading further, but some famil-
iarity with the concepts of Fourier theory will certainly be useful.

2.2. Fourier coefficients

Engraving of Jean Baptiste Joseph Fourier
(1768–1850) by Boilly (1823)
Académie des Sciences, Paris
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Fourier introduced the idea that periodic functions can be analysed by
using trigonometric series as follows.1 The functions cos θ and sin θ are peri-
odic with period 2π, in the sense that they satisfy

cos(θ + 2π) = cos θ

sin(θ + 2π) = sin θ.

In other words, translating by 2π along the θ axis leaves these functions un-
affected. There are many other functions f(θ) which are periodic of period
2π, meaning that they satisfy the equation

f(θ + 2π) = f(θ).

We need only specify the function f on the half-open interval [0, 2π) in any
way we please, and then the above equation determines the value at all other
values of θ.

0 2π 4π 6π 8π

A periodic function with period 2π

Other examples of periodic functions with period 2π are the constant func-
tions, and the functions cos(nθ) and sin(nθ) for any positive integer n. Neg-
ative values of n give us no more, since

cos(−nθ) = cos(nθ),

sin(−nθ) = − sin(nθ).

More generally, we can write down any series of the form

f(θ) = 1
2a0 +

∞∑

n=1

(an cos(nθ) + bn sin(nθ)), (2.2.1)

where the an and bn are constants. So 1
2a0 is just a constant—the reason

for the factor of 1
2 will be explained in due course. Such a series is called a

1The basic ideas behind Fourier series were introduced in Jean Baptiste Joseph Fourier,
La théorie analytique de la chaleur, F. Didot, Paris, 1822. Fourier was born in Auxerre,
France in 1768 as the son of a tailor. He was orphaned in childhood and was educated by
a school run by the Benedictine order. He was politically active during the French Revolu-
tion, and was almost executed. After the revolution, he studied in the then new Ecole Nor-
male in Paris with teachers such as Lagrange, Monge and Laplace. In 1822, with the pub-
lication of the work mentioned above, he was elected secretaire perpetuel of the Académie
des Sciences in Paris. Following this, his role seems principally to have been to encourage
younger mathematicians such as Dirichlet, Liouville and Sturm, until his death in 1830.
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trigonometric series. Provided that there are no convergence problems, such
a series will always define a function satisfying f(θ + 2π) = f(θ).

The question which naturally arises at this stage is, to what extent can
we find a trigonometric series whose sum is equal to a given periodic func-
tion? To begin to answer this question, we first ask: given a function defined
by a trigonometric series, how can the coefficients an and bn be recovered?

The answer lies in the formulae (for m ≥ 0 and n ≥ 0)
∫ 2π

0
cos(mθ) sin(nθ) dθ = 0 (2.2.2)

∫ 2π

0
cos(mθ) cos(nθ) dθ =





2π if m = n = 0

π if m = n > 0

0 otherwise

(2.2.3)

∫ 2π

0
sin(mθ) sin(nθ) dθ =

{
π if m = n > 0

0 otherwise
(2.2.4)

These equations can be proved by using equations (1.8.4)–(1.8.8) to rewrite
the product of trigonometric functions inside the integral as a sum before in-
tegrating.2 The extra factor of two in (2.2.3) for m = n = 0 will explain the
factor of 1

2 in front of a0 in (2.2.1).
This suggests that in order to find the coefficent am, we multiply f(θ)

by cos(mθ) and integrate. Let us see what happens when we apply this pro-
cess to equation (2.2.1). Provided we can pass the integral through the infi-
nite sum, only one term gives a non-zero contribution. So for m > 0 we have
∫ 2π

0

cos(mθ)f(θ) dθ =

∫ 2π

0

cos(mθ)
(

1
2a0 +

∞∑

n=1

(an cos(nθ) + bn sin(nθ))
)
dθ

= 1
2a0

∫ 2π

0

cos(mθ) dθ +

∞∑

n=1

(
an

∫ 2π

0

cos(mθ) cos(nθ) dθ + bn

∫ 2π

0

cos(mθ) sin(nθ) dθ
)

= πam.

Thus we obtain, for m > 0,

am =
1

π

∫ 2π

0
cos(mθ)f(θ) dθ. (2.2.5)

A standard theorem of analysis says that provided the sum converges uni-
formly then the integral can be passed through the infinite sum in this way.3

2The relations (2.2.2)–(2.2.4) are sometimes called orthogonality relations. The idea is
that the integrable periodic functions form an infinite dimensional vector space with an in-

ner product given by 〈f, g〉 = 1
2π

R 2π

0
f(θ)g(θ) dθ. With respect to this inner product, the

functions sin(mθ) (m > 0) and cos(mθ) (m ≥ 0) are orthogonal, or perpendicular.
3A series of functions fn on [a, b] converges uniformly to a function f if given ε > 0

there exists N > 0 (not depending on x) such that for all x ∈ [a, b] and all n ≥ N ,
|fn(x)− f(x)| < ε. See for example Rudin, Principles of Mathematical Analysis, third ed.,
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Under the same conditions, we obtain for m > 0

bm =
1

π

∫ 2π

0
sin(mθ)f(θ) dθ. (2.2.6)

The functions am and bm defined by equations (2.2.5) and (2.2.6) are called
the Fourier coefficients of the function f(θ).

We can now explain the appearance of the coefficient of one half in
front of the a0 in equation (2.2.1). Namely, since π is one half of 2π and
cos(0θ) = 1 we have

a0 =
1

π

∫ 2π

0
cos(0θ)f(θ) dθ (2.2.7)

which means that the formula (2.2.5) for the coefficient am holds for allm ≥ 0.
It would be nice to think that when we use equations (2.2.5), (2.2.6)

and (2.2.7) to define am and bm, the right hand side of equation (2.2.1) al-
ways converges to f(θ). This is true for nice enough functions f , but un-
fortunately, not for all functions f . In §2.4, we investigate conditions on f
which ensure that this happens.

Of course, any interval of length 2π, representing one complete period,
may be used instead of integrating from 0 to 2π. It is sometimes more con-
venient, for example, to integrate from −π to π:

am =
1

π

∫ π

−π
cos(mθ)f(θ) dθ

bm =
1

π

∫ π

−π
sin(mθ)f(θ) dθ.

In practice, the variable θ will not quite correspond to time, because
the period is not necessarily 2π seconds. If the period is T seconds then the
fundamental frequency is given by ν = 1/T Hz (Hertz, or cycles per second).
The correct substitution is θ = 2πνt. Setting F (t) = f(2πνt) = f(θ) and
substituting in (2.2.1) gives a Fourier series of the form

F (t) = 1
2a0 +

∞∑

n=1

(an cos(2nπνt) + bn sin(2nπνt)),

and the following formula for Fourier coefficients.

am = 2ν

∫ T

0
cos(2mπνt)F (t) dt, (2.2.8)

bm = 2ν

∫ T

0
sin(2mπνt)F (t) dt. (2.2.9)

Example. The square wave sounds vaguely like the waveform produced by a clar-
inet, where odd harmonics dominate. It is the function f(θ) defined by f(θ) = 1 for

McGraw-Hill 1976, Corollary to Theorem 7.16. We shall have more to say about this defi-
nition in §2.5.
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0 ≤ θ < π and f(θ) = −1 for π ≤ θ < 2π (and then extend to all values of θ by
making it periodic, f(θ + 2π) = f(θ)).

0 2π 4π

This function has Fourier coefficients

am =
1

π

(∫ π

0

cos(mθ) dθ −
∫ 2π

π

cos(mθ) dθ

)

=
1

π

([
sin(mθ)

m

]π

0

−
[
sin(mθ)

m

]2π

π

)
= 0

bm =
1

π

(∫ π

0

sin(mθ) dθ −
∫ 2π

π

sin(mθ) dθ

)

=
1

π

([
−cos(mθ)

m

]π

0

−
[
−cos(mθ)

m

]2π

π

)

=
1

π

(
− (−1)m

m
+

1

m
+

1

m
− (−1)m

m

)

=

{
4/mπ (m odd)

0 (m even)

Thus the Fourier series for this square wave is
4
π (sin θ + 1

3 sin 3θ + 1
5 sin 5θ + . . . ). (2.2.10)

Let us examine the first few terms in this series:

θ

4
π (sin θ + 1

3 sin 3θ)
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θ

4
π (sin θ + 1

3 sin 3θ + 1
5 sin 5θ)

θ

4
π (sin θ + 1

3 sin 3θ + · · ·+ 1
13 sin 13θ)

θ

4
π (sin θ + 1

3 sin 3θ + · · ·+ 1
27 sin 27θ)

Some features of this example are worth noticing. The first observa-
tion is that these graphs seem to be converging to a square wave. But they
seem to be converging quite slowly, and getting more and more bumpy in
the process. Next, observe what happens at the point of discontinuity of the
original function. The Fourier coefficients did not depend on what value we
assigned to the function at the discontinuity, so we do not expect to recover
that information. Instead, the series is converging to a value which is equal
to the average of the higher and the lower values of the function. This is a
general phenomenon, which we shall discuss in §2.5.

Finally, there is a very interesting phenomenon which is happening
right near the discontinuity. There is an overshoot, which never seems to get
any smaller.

Does this mean that the series is not converging properly? Well, not
quite. At each given value of θ, the series is converging just fine. It’s just
when we look at values of θ closer and closer to the discontinuity that we find
problems. This is because of a lack of uniform convergence. This overshoot
is called the Gibbs phenomenon, and we shall discuss it in more detail in §2.5.
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Exercises

1. Prove equations (2.2.2)–(2.2.4) by rewriting the products of trigonometric func-
tions inside the integral as sums before integrating.

2. Are the following functions of θ periodic? If so, determine the smallest period, and
which multiples of the fundamental frequency are present. If not, explain why not.

(i) sin θ + sin 5
4θ.

(ii) sin θ + sin
√

2 θ.

(iii) sin2 θ.

(iv) sin(θ2).

(v) sin θ + sin(θ + π
3 ).

3. Draw graphs of the functions sin(220πt) + 1
2 sin(440πt) and sin(220πt) +

1
2 cos(440πt). Explain why these sound the same, even though the graphs look quite
different.

4. Let α be a real number with |α| < 1. Use complex exponentials, as in Appendix

C, to find the sum of the Fourier series
∑∞

n=1 α
n sinnθ.

2.3. Even and odd functions

A function f(θ) is said to be even if f(−θ) = f(θ), and it is said to
be odd if f(−θ) = −f(θ). For example, cos θ is even, while sin θ is odd. Of
course, most functions are neither even nor odd. If a function happens to be
both even and odd, then it is zero, because we have f(θ) = f(−θ) = −f(θ).

Given any function f(θ), we can obtain an even function by taking the
average of f(θ) and f(−θ), i.e., 1

2(f(θ) + f(−θ)). Similarly, 1
2(f(θ)− f(−θ))

is an odd function. These add up to give the original function f(θ), so we
have written f(θ) as a sum of its even part and its odd part,

f(θ) =
f(θ) + f(−θ)

2
+
f(θ)− f(−θ)

2
.

To see that this is the unique way to write the function as a sum of an even
function and an odd function, let us suppose that we are given two expres-
sions f(θ) = g1(θ)+h1(θ) and f(θ) = g2(θ)+h2(θ) with g1 and g2 even, and
h1 and h2 odd. Rearranging g1 + h1 = g2 + h2, we get g1 − g2 = h2 − h1.
The left side is even and the right side is odd, so their common value is both
even and odd, and hence zero. This means that g1 = g2 and h1 = h2.

Multiplication of even and odd functions works like addition (and not
multiplication) of even and odd numbers:

× even odd
even even odd
odd odd even

Now for any odd function f(θ), and for any a > 0, we have
∫ 0

−a
f(θ) dθ = −

∫ a

0
f(θ) dθ
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so that ∫ a

−a
f(θ) dθ = 0.

So for example, if f(θ) is even and periodic with period 2π, then sin(mθ)f(θ)
is odd, and so the Fourier coefficients bm are zero, since

bm =
1

π

∫ 2π

0
sin(mθ)f(θ) dθ =

1

π

∫ π

−π
sin(mθ)f(θ) dθ = 0.

Similarly, if f(θ) is odd and periodic with period 2π, then cos(mθ)f(θ) is
odd, and so the Fourier coefficients am are zero, since

am =
1

π

∫ 2π

0
cos(mθ)f(θ) dθ =

1

π

∫ π

−π
cos(mθ)f(θ) dθ = 0.

This explains, for example, why am = 0 in the example on page 34. The
square wave is not quite an even function, because f(π) 6= f(−π), but chang-
ing the value of a function at a finite set of points in the interval of integra-
tion never affects the value of an integral, so we just replace f(π) and f(−π)
by zero to obtain an even function with the same Fourier coefficients.

There is a similar explanation for why b2m = 0 in the same example, us-
ing a different symmetry. The discussion of even and odd functions depended
on the symmetry θ 7→ −θ of order two. For periodic functions of period 2π,
there is another symmetry of order two, namely θ 7→ θ + π. The functions
f(θ) satisfying f(θ+π) = f(θ) are half-period symmetric, while functions sat-
isfying f(θ + π) = −f(θ) are half-period antisymmetric. Any function f(θ)
can be decomposed into half-period symmetric and antisymmetric parts:

f(θ) =
f(θ) + f(θ + π)

2
+
f(θ)− f(θ + π)

2
.

Multiplying half-period symmetric and antisymmetric functions works in the
same way as for even and odd functions.

If f(θ) is half-period antisymmetric, then
∫ 2π

π
f(θ) dθ = −

∫ π

0
f(θ) dθ

and so ∫ 2π

0
f(θ) dθ = 0.

Now the functions sin(mθ) and cos(mθ) are both half-period symmet-
ric if m is even, and half-period antisymmetric if m is odd. So we deduce
that if f(θ) is half-period symmetric, f(θ + π) = f(θ), then the Fourier co-
efficients with odd indices (a2m+1 and b2m+1) are zero, while if f(θ) is anti-
symmetric, f(θ+ π) = −f(θ), then the Fourier coefficients with even indices
a2m and b2m are zero (check that this holds for a0 too!). This corresponds to
the fact that half-period symmetry is really the same thing as being periodic
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with half the period, so that the frequency components have to be even mul-
tiples of the defining frequency; while half-period antisymmetric functions
only have frequency components at odd multiples of the defining frequency.

In the example on page 34, the function is half-period antisymmetric,
and so the coefficients a2m and b2m are zero.

Exercises

1. Evaluate

∫ 2π

0

sin(sin θ) sin(2θ) dθ.

2. Think of tan θ as a periodic function with period 2π (even though it could be
thought of as having period π). Using the theory of even and odd functions, and
the theory of half-period symmetric and antisymmetric functions, which Fourier co-
efficients of tan θ have to be zero? Find the first non-zero coefficient.

3. Which Fourier coefficients vanish for a periodic function f(θ) of period 2π satis-

fying f(θ) = f(π − θ)? What about f(θ) = −f(π − θ)?

[Hint: Consider the symmetry θ 7→ π − θ, and compare

∫ π/2

−π/2

f(θ) dθ with

∫ 3π/2

π/2

f(θ) dθ for antisymmetric functions with respect to this symmetry.]

2.4. Conditions for convergence

Unfortunately, it is not true that if we start with a periodic function
f(θ), form the Fourier coefficients am and bm according to equations (2.2.5)
and (2.2.6) and then form the sum (2.2.1), then we recover the original func-
tion f(θ). The most obvious problem is that if two functions differ just at a
single value of θ then the Fourier coefficients will be identical. So we cannot
possibly recover the function from its Fourier coefficients without some fur-
ther conditions. However, if the function is nice enough, it can be recovered in
the manner indicated. The following is a consequence of the work of Dirichlet.

Theorem 2.4.1. Suppose that f(θ) is periodic with period 2π, and that
it is continuous and has a bounded continuous derivative except at a finite
number of points in the interval [0, 2π]. If am and bm are defined by equa-
tions (2.2.5) and (2.2.6) then the series defined by equation (2.2.1) converges
to f(θ) at all points where f(θ) is continuous.

Proof. See Körner [70], Theorem 1 and Chapters 15 and 16. �

An important special case of the above theorem is the following. A C1

function is defined to be a function which is differentiable with continuous
derivative. If f(θ) is a periodic C1 function with period 2π, then f ′(θ) is con-
tinuous on the closed interval [0, 2π], and hence bounded there. So f(θ) sat-
isfies the conditions of the above theorem.

It is important to note that continuity, or even differentiability of f(θ)
is not sufficient for the Fourier series for f(θ) to converge to f(θ). Paul
DuBois-Reymond constructed an example of a continuous function for which
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the coefficients am and bm are not bounded. The construction is by no means
easy and we shall not give it here. The reader may form the impression at
this stage that the only purpose for the existence of such functions is to be-
set theorems such as the above with conditions, and that in real life, all func-
tions are just as differentiable as we would like them to be. This point of
view is refuted by the observation that many phenomena in real life are gov-
erned by some form of Brownian motion. Functions describing these phe-
nomena will tend to be everywhere continuous but nowhere differentiable.4

In music, noise is an example of the same phenomenon. Many of the func-
tions employed in musical synthesis are not even continuous. Sawtooth func-
tions and square waves are typical examples.

However, the question of convergence of the Fourier series is not the
same as the question of whether the function f(θ) can be reconstructed from
its Fourier coefficients an and bn. At the age of 19, Fejér proved the remark-
able theorem that any continuous function f(θ) can be reconstructed from
its Fourier coefficients. His idea was that if the partial sums sm defined by

sm = 1
2a0 +

m∑

n=1

(an cos(nθ) + bn sin(nθ)) (2.4.1)

converge, then their averages

σm =
s0 + · · ·+ sm

m+ 1

converge to the same limit. But it is conceivable that the σm could converge
without the sm converging. This idea for smoothing out the convergence had
already been around for some time when Fejér approached the problem. It
had been used by Euler and extensively studied by Cesàro, and goes by the
name of Cesàro summability.

Theorem 2.4.2 (Fejér). If f(θ) is a Riemann integrable periodic func-
tion then the Cesàro sums σm converge to f(θ) as m tends to infinity at ev-
ery value of θ where f(θ) is continuous.5

Proof. We shall prove this theorem in §2.7. See also Körner [70], Chap-
ter 2. �

4The first examples of functions which are everywhere continuous but nowhere differ-
entiable were constructed by Weierstrass, Abhandlungen aus der Functionenlehre, Springer
(1886), p. 97. He showed that if 0 < b < 1, a is an odd integer, and ab > 1 + 3π

2
then

f(t) =
P∞

n=1 b
n cos an(2πν)t is a uniformly convergent sum, and that f(t) is everywhere

continuous but nowhere differentiable. G. H. Hardy, Weierstrass’s non-differentiable func-
tion, Trans. Amer. Math. Soc. 17 (1916), 301–325, showed that the same holds if the
bound on ab is replaced by ab > 1. Manfred Schroeder, Fractals, chaos and power laws,
W. H. Freeman and Co., 1991, p. 96, points out that functions of this form can be thought
of as fractal waveforms. For example, if we set a = 213/12, then doubling the speed of this
function will result in a tone which sounds similar to the original, but lowered by a semi-
tone and softer by a factor of b. This sort of self-similarity is characteristic of fractals.

5Continuous functions are Riemann integrable, so Fejér’s theorem applies to all con-
tinuous periodic functions.
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We shall interpret this theorem as saying that every continuous func-
tion may be reconstructed from its Fourier coefficients. But the reader should
bear in mind that if the function does not satisfy the hypotheses of Theorem
2.4.1 then the reconstruction of the function is done via Cesàro sums, and
not simply as the sum of the Fourier series.

There are other senses in which we could ask for a Fourier series to
converge. One of the most important ones is mean square convergence.

Theorem 2.4.3. Let f(θ) be a continuous periodic function with pe-
riod 2π. Then among all the functions g(θ) which are linear combinations of
cos(nθ) and sin(nθ) with 0 ≤ n ≤ m, the partial sum sm defined in equation
(2.4.1) minimises the mean square error of g(θ) as an approximation to f(θ),

1

2π

∫ 2π

0
|f(θ)− g(θ)|2 dθ.

Furthermore, in the limit as m tends to infinity, the mean square error of sm
as an approximation to f(θ) tends to zero.

Proof. See Körner [70], Chapters 32–34. �

Exercises

1. Show that the function f(x) = x2 sin(1/x2) is differentiable for all values of x,
but its derivative is unbounded around x = 0.

2. Find the Fourier series for the periodic function f(θ) = | sin θ| (the absolute value
of sin θ). In other words, find the coefficients am and bm using equations (2.2.5) and
(2.2.6). You will need to divide the interval from 0 to 2π into two subintervals in or-
der to evaluate the integral.
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3. Let φ(θ) be the periodic sawtooth function with period 2π defined by φ(θ) =
(π − θ)/2 for 0 < θ < 2π and φ(0) = φ(2π) = 0. Find the Fourier series for φ(θ).6
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4. Find the Fourier series of the continuous periodic triangular wave function de-
fined by

f(θ) =

{
π
2 − θ 0 ≤ θ ≤ π
θ − 3π

2 π ≤ θ ≤ 2π

and f(θ + 2π) = f(θ).

�
�A

A
A
A
A
A�

�
�
�
�
�A

A
A
A
A
A�

�
�
�
�
�A

A
A
A
A
A�

�
�
�
�
�A

A
A
A
A
A

5. (a) Show that if f(θ) is a bounded (and Riemann integrable) periodic function
with period 2π then the Fourier coefficients am and bm defined by (2.2.5)–(2.2.7) are
bounded.

(b) If f(θ) is a differentiable periodic function with period 2π, find the rela-
tionship between the Fourier coefficients am(f), bm(f) for f(θ) and the Fourier co-
efficients am(f ′), bm(f ′) for the derivative f ′(θ). [Hint: use integration by parts]

(c) Show that if f(θ) is a k times differentiable periodic function with period
2π, and the kth derivative f (k)(θ) is bounded, then the Fourier coefficients am and
bm of f(θ) are bounded by a constant multiple of 1/mk.

We see from this question that smoothness of f(θ) is reflected in rapidity of
decay of the Fourier coefficients.

6. Find the Fourier series for the function f(θ) defined by f(θ) = θ2 for −π ≤ θ ≤ π
and and then extended to all values of θ by periodicity, f(θ + 2π) = f(θ). Evaluate

your answer at θ = 0 and at θ = π, and use your answer to find
∑∞

n=1
(−1)n

n2 and∑∞
n=1

1
n2 .

6The sawtooth waveform is approximately what is produced by a violin or other bowed
string instrument. This is because the bow pulls the string, and then suddenly releases
it when the coefficient of static friction is exceeded. The coefficient of dynamic friction is
smaller, so once the string is released by the bow, it will tend to continue moving rapidly
until the other extreme of its trajectory is reached. See §3.4.



2.5. THE GIBBS PHENOMENON 43

2.5. The Gibbs phenomenon

A function defined on a closed interval is said to be piecewise contin-
uous if it is continuous except at a finite set of points, and at those points
the left limit and right limit exist although they may not be equal. When we
talk of the size of a discontinuity of a piecewise continuous function f(θ) at
θ = a, we mean the difference f(a+)− f(a−), where

f(a+) = lim
θ→a+

f(θ), f(a−) = lim
θ→a−

f(θ)

denote the left limit and the right limit at that point. A periodic function is
said to be piecewise continuous if it is so on a closed interval forming a pe-
riod of the function.

Many of the functions encountered in the theory of synthesized sound
are piecewise continuous but not continuous. These include waveforms such
as the square wave and the sawtooth function.

Denote by φ(θ) the piecewise continuous periodic sawtooth function
defined by φ(θ) = (π − θ)/2 for 0 < θ < 2π, φ(0) = 0, and φ(θ + 2π) = φ(θ).
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Then given any piecewise continuous periodic function f(θ), we may add
some finite set of functions of the form Cφ(θ + α) (with C and α constants)
to make the left limits and right limits at the discontinuities agree. We can
then just change the values of the function at the discontinuities, which will
not affect the Fourier series, to make the function continuous. It follows that
in order to understand the Fourier series for piecewise continuous functions
in general, it suffices to understand the Fourier series of continuous functions
together with the Fourier series of the single function φ(θ). The Fourier se-
ries of this function (see Exercise 3 of §2.4) is

φ(θ) =
∞∑

n=1

sinnθ

n
.
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At the discontinuity (θ = 0), this series converges to zero because all the terms
are zero. This is the average of the left limit and the right limit at this point.
It follows that for any piecewise continuous periodic function, the Cesàro
sums σm described in §2.4 converge everywhere, and at the points of discon-
tinuity σm converges to the average of the left and right limit at the point:

lim
m→∞

σm(a) = 1
2(f(a+) + f(a−)).

A further examination of the function φ(θ) shows that the convergence
around the point of discontinuity is not as straightforward as one might sup-
pose. Namely, setting

φm(θ) =

m∑

n=1

sinnθ

n
, (2.5.1)

although it is true that we have pointwise convergence, in the sense that for
each point a we have limm→∞ φm(a) = φ(a), this convergence is not uniform.

The definition in analysis of pointwise convergence is that given a
value a of θ and given ε > 0, there exists N such that m ≥ N implies
|φm(a) − φ(a)| < ε. Uniform convergence means that given ε > 0, there ex-
ists N (independent of a) such that for all values a of θ, m ≥ N implies
|φm(a)−φ(a)| < ε. What happens with the Fourier series for the above func-
tion φ is that there is an overshoot, the size of which does not tend to zero
as m gets larger. The peak of the overshoot gets closer and closer to the dis-
continuity though, so that for any particular value a of θ, convergence holds.
But choosing ε smaller than the size of the overshoot shows that uniform
convergence fails. This overshoot is called the Gibbs phenomenon.7

θ

sin θ + 1
2 sin 2θ + · · ·+ 1

14 sin 14θ

To demonstrate the reality of the overshoot, we shall compute its size
in the limit. The first step is to differentiate φm(θ) to find its local maxima
and minima. We concentrate on the interval 0 ≤ θ ≤ π, since φm(2π − θ) =

7Josiah Willard Gibbs described this phenomenon in a series of letters to Nature in
1898 in correspondence with A. E. H. Love. He seems to have been unaware of the previ-
ous treatment of the subject by Henry Wilbraham in his article On a certain periodic func-
tion, Cambridge & Dublin Math. J. 3 (1848), 198–201.
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−φm(θ). We have

φ′m(θ) =
m∑

n=1

cosnθ =
sin 1

2mθ cos 1
2(m+ 1)θ

sin 1
2θ

(see Exercise 6 of §1.8). So the zeros of φ′m(θ) occur at θ = (2k+1)π
m+1 and

θ = 2kπ
m , 0 ≤ k ≤ ⌊m−1

2 ⌋.8
Now sin 1

2θ is positive throughout the interval 0 ≤ θ ≤ 2π. At θ =
(2k+1)π
m+1 , sin 1

2mθ has sign (−1)k while cos 1
2(m+ 1)θ changes sign from (−1)k

to (−1)k+1, so that φ′m(θ) changes from positive to negative. It follows that

θ = (2k+1)π
m+1 is a local maximum of φm. Similarly, at θ = 2kπ

m , cos 1
2(m + 1)θ

has sign (−1)k while sin 1
2mθ changes sign from (−1)k−1 to (−1)k, so that

φ′m(θ) changes from negative to positive. It follows that θ = 2kπ
m is a local

minimum of φm(θ). These local maxima and minima alternate.
The first local maximum value of φm(θ) for 0 ≤ θ ≤ 2π happens at

π
m+1 . The value of φm(θ) at this maximum is

φm

(
π

m+1

)
=

m∑

n=1

1
n sin

(
nπ
m+1

)
=

π

m+ 1

m∑

n=1

sin
(

nπ
m+1

)

(
nπ
m+1

) .

This is the Riemann sum for ∫ π

0

sin θ

θ
dθ

with m + 1 equal intervals of size π
m+1 (note that lim

θ→0

sin θ

θ
= 1 so that we

should define the integrand to be 1 when θ = 0 to make a continuous func-
tion on the closed interval 0 ≤ θ ≤ π). Therefore the limit as m tends to
infinity of the height of the first maximum point of the sum of the first m
terms in the Fourier series for φ(θ) is

∫ π

0

sin θ

θ
dθ ≈ 1.8519370.

This overshoots the maximum value π
2 ≈ 1.5707963 of the function φ(θ) by

a factor of 1.1789797. Of course, the size of the discontinuity is not π
2 but

π, so that as a proportion of the size of the discontinuity, the overshoot is
about 8.9490%.9 It follows that for any piecewise continuous function, the
overshoot of the Fourier series just after a discontinuity is this proportion of
the size of the discontinuity.

8The notation ⌊x⌋ denotes the largest integer less than or equal to x.
9This value was first computed by Maxime Bôcher, Introduction to the theory of

Fourier’s series. Ann. of Math. (2) 7 (1905–6), 81–152. A number of otherwise reputable
sources overstate the size of the overshoot by a factor of two for some reason probably as-
sociated with uncritical copying.
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After the function overshoots, it then returns to undershoot, then over-
shoot again, and so on, each time with a smaller value than before. An ar-
gument similar to the above shows that the value at the kth critical point

of φm(θ) tends to
∫ kπ
0

sin θ
θ dθ as m tends to infinity. Thus for example the

first undershoot (k = 2) has a value with a limit of about 1.4181516, which
undershoots π

2 by a factor of 0.9028233. The undershoot is therefore about
4.8588% of the size of the discontinuity.

The Gibbs phenomenon can be interpreted in terms of the response of
an amplifier as follows. No matter how good your amplifier is, if it has a
sharp frequency cutoff and you feed it a square wave, the output will over-
shoot at the discontinuity by roughly 9%. To get rid of the overshoot it is
necessary to have a more gradual frequency cutoff.

Manufacturers of cathode ray tubes also have to contend with this prob-
lem. The beam is being made to run across the tube from left to right lin-
early and then switch back suddenly to the left. Much effort goes into pre-
venting the overshoot from causing problems.

As mentioned above, the Gibbs phenomenon is a good example to il-
lustrate the distinction between pointwise convergence and uniform conver-
gence. For pointwise convergence of a sequence of functions fn(θ) to a func-
tion f(θ), it is required that for each value of θ, the values fn(θ) must con-
verge to f(θ). For uniform convergence, it is required that the distance be-
tween fn(θ) and f(θ) is bounded by a quantity which depends on n and not
on θ, and which tends to zero as n tends to infinity. In the above example,
the distance between the nth partial sum of the Fourier series and the origi-
nal function can at best be bounded by a quantity which depends on n and
not on θ, but which tends to roughly 0.28114. So this Fourier series con-
verges pointwise, but not uniformly.

Exercises

1. Show that ∫ x

0

sin θ

θ
dθ =

∞∑

n=0

(−1)nx2n+1

(2n + 1)(2n + 1)!
.

Use this formula to verify the approximate value of
∫ π
0

sin θ
θ dθ given in the

text.



2.6. COMPLEX COEFFICIENTS 47

2.6. Complex coefficients

The theory of Fourier series is considerably simplified by the introduc-
tion of complex exponentials. See Appendix C for a quick summary of com-
plex numbers and complex exponentials. The relationships (C.1)–(C.3)

eiθ = cos θ + i sin θ cos θ =
eiθ + e−iθ

2

e−iθ = cos θ − i sin θ sin θ =
eiθ − e−iθ

2i

mean that equation (2.2.1) can be rewritten as10

f(θ) =

∞∑

n=−∞
αne

inθ (2.6.1)

where α0 = 1
2a0, and for m > 0, αm = 1

2am + 1
2ibm and α−m = 1

2am − 1
2ibm.

Conversely, given a series of the form (2.6.1) we can reconstruct the series
(2.2.1) using a0 = 2α0, am = αm + α−m and bm = i(αm − α−m) for m > 0.
Equations (2.2.2)–(2.2.4) are replaced by the single equation11

∫ 2π

0
eimθeinθ dθ =

{
2π if m = −n
0 if m 6= −n

and equations (2.2.5)–(2.2.7) are replaced by

αm =
1

2π

∫ 2π

0
e−imθf(θ) dθ. (2.6.2)

Exercises

1. For the square wave example discussed in §2.2, show that

αm =

{
2/imπ m odd

0 m even.

10Note that we are dealing with complex valued functions of a real periodic variable,
and not with functions of a complex variable here.

11Over the complex numbers, to interpret this equation as an orthogonality rela-
tion (see the footnote on page 33), the inner product needs to be taken to be 〈f, g〉 =
1
2π

R 2π

0
f(θ)g(θ) dθ.
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so that the Fourier series is
∞∑

n=−∞

2

i(2n+ 1)π
ei(2n+1)θ.

2.7. Proof of Fejér’s Theorem

We are now in a position to prove Fejér’s Theorem 2.4.2. This section
may safely be skipped on first reading.

In terms of the complex form of the Fourier series, the partial sums
(2.4.1) become

sm =

m∑

n=−m
αne

inθ, (2.7.1)

and so the Cesàro sums σm are given by

σm(θ) =
s0 + · · ·+ sm

m+ 1

=
1

m+ 1

m∑

j=0

j∑

n=−j
αne

inθ

=
1

m+ 1

(
α−me

−imθ + 2α−(m−1)e
−i(m−1)θ + 3α−(m−2)e

−i(m−2)θ + . . .

+ · · · +mα−1e
−iθ + (m+ 1)α0e

0 +mα1e
iθ + · · ·+ αme

imθ
)

=

m∑

n=−m

m+ 1− |n|
m+ 1

αne
inθ.

=

m∑

n=−m

m+ 1− |n|
m+ 1

(
1

2π

∫ 2π

0
e−inxf(x) dx

)
einθ

=
1

2π

∫ 2π

0
f(x)

(
m∑

n=−m

m+ 1− |n|
m+ 1

ein(θ−x)
)
dx

=
1

2π

∫ 2π

0
f(x)Km(θ − x) dx

where

Km(y) =

m∑

n=−m

m+ 1− |n|
m+ 1

einy.

The functions Km are called the Fejér kernels.
The substitution y = θ − x shows that

1

2π

∫ 2π

0
f(x)Km(θ − x) dx =

1

2π

∫ 2π

0
f(θ − y)Km(y) dy

By examining what happens when a geometric series is squared, for y 6= 0
we have

Km(y) =
1

m+ 1

(
e−imy + 2e−i(m−1)y + · · ·+ (m+ 1)e0 + · · ·+ eimy

)
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=
1

m+ 1
(e−i

m
2
y + e−i(

m
2
−1)y + · · ·+ ei

m
2
y)2 (2.7.2)

=
1

m+ 1

(
ei

m+1
2
y − e−im+1

2
y

ei
1
2
y − e−i 12y

)2

=
1

m+ 1

(
sin m+1

2 y

sin 1
2y

)2

,

and Km(0) = m+ 1 can also be read off from (2.7.2). Here are the graphs of
Km(y) for some small values of m.

m = 2

m = 5

m = 8

−π π

The function Km(y) satisfies Km(y) ≥ 0 for all y; for any δ > 0,

Km(y)→ 0 uniformly as m→∞ on [δ, 2π − δ]; and
∫ 2π
0 Km(y) dy = 2π. So

σm(θ) =
1

2π

∫ 2π

0
f(θ − y)Km(y) dy ≈ 1

2π

∫ δ

−δ
f(θ − y)Km(y) dy

≈ f(θ)

(
1

2π

∫ δ

−δ
Km(y) dy

)
≈ f(θ).

If f(θ) is continuous at θ, then by choosing δ small enough, the second ap-
proximation may be made as close as desired (independently of m). Then by
choosing m large enough, the first and third approximations may be made
as close as desired. This completes the proof of Fejér’s theorem.
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Exercises

1. (i) Substitute equation (2.6.2) in equation (2.7.1) to show that

sm(θ) =
1

2π

∫ 2π

0

f(x)Dm(θ − x) dx

where

Dm(y) =

m∑

n=−m

einy.

The functions Dm are called the Dirichlet kernels.

(ii) Use a substitution to show that

sm(θ) =
1

2π

∫ 2π

0

f(θ − y)Dm(y) dy.

(iii) By regarding the formula for Dm(y) as a geometric series, show that

Dm(y) =
sin(m+ 1

2 )y

sin 1
2y

.

(iv) Show that |Dm(y)| ≤ | cosec 1
2y|

(v) Sketch the graphs of the Dirichlet kernels for small values of m. What happens

as m gets large?

2.8. Bessel functions

Bessel functions12 are the result of applying the theory of Fourier se-
ries to the functions sin(z sin θ) and cos(z sin θ) as functions of θ, where z is
to be thought of at first as a real (or complex) constant, and later it will be
allowed to vary. We shall have two uses for the Bessel functions. One is un-
derstanding the vibrations of a drum in §3.6, and the other is understanding
the amplitudes of side bands in FM synthesis in §8.8.

Now sin(z sin θ) is an odd periodic function of θ, so its Fourier coeffi-
cients an (2.2.1) are zero for all n (see §2.3). Since

sin(z sin(π + θ)) = − sin(z sin θ),

the Fourier coefficients b2n are also zero (see §2.3 again). The coefficients
b2n+1 depend on the parameter z, and so we write 2J2n+1(z) for this coeffi-
cient. The factor of two simplifies some later calculations. So the Fourier ex-
pansion (2.2.1) is

sin(z sin θ) = 2

∞∑

n=0

J2n+1(z) sin(2n+ 1)θ. (2.8.1)

12Friedrich Wilhelm Bessel was a German astronomer and a friend of Gauss. He was
born in Minden on July 22, 1784. His working life started as a ship’s clerk. But in 1806, he
became an assistant at an astronomical observatory in Lilienthal. In 1810 he became direc-
tor of the then new Prussian Observatory in Königsberg, where he remained until he died
on March 17, 1846. The original context (around 1824) of his investigations of the func-
tions that bear his name was the study of planetary motion, as we shall describe in §2.11.
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Similarly, cos(z sin θ) is an even periodic function of θ, so the coefficients bn
are zero. Since

cos(z sin(π + θ)) = cos(z sin θ)

we also have a2n+1 = 0, and we write 2J2n(z) for the coefficient a2n to obtain

cos(z sin θ) = J0(z) + 2

∞∑

n=1

J2n(z) cos 2nθ. (2.8.2)

The functions Jn(z) giving the Fourier coefficients in these expansions are
called the Bessel functions of the first kind.

Equations (2.2.5) and (2.2.6) allow us to find the Fourier coefficients
Jn(z) in the above expansions as integrals. We obtain

2J2n+1(z) =
1

π

∫ 2π

0
sin(2n+ 1)θ sin(z sin θ) dθ.

The integrand is an even function of θ, so the integral from 0 to 2π is twice
the integral from 0 to π,

J2n+1(z) =
1

π

∫ π

0
sin(2n + 1)θ sin(z sin θ) dθ.

Now the function cos(2n + 1)θ cos(z sin θ) is negated when θ is replaced by
π − θ, so

1

π

∫ π

0
cos(2n+ 1)θ cos(z sin θ) dθ = 0.

Adding this into the above expression for J2n+1(z), we obtain

J2n+1(z) =
1

π

∫ π

0
[cos(2n + 1)θ cos(z sin θ) + sin(2n+ 1)θ sin(z sin θ)] dθ

=
1

π

∫ π

0
cos((2n + 1)θ − z sin θ) dθ.

In a similar way, we have

2J2n(z) =
1

π

∫ 2π

0
cos 2nθ cos(z sin θ) dθ

which a similar manipulation puts in the form

J2n(z) =
1

π

∫ π

0
cos(2nθ − z sin θ) dθ.

This means that we have the single equation for all values of n, even or odd,

Jn(z) =
1

π

∫ π

0
cos(nθ − z sin θ) dθ (2.8.3)
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which can be taken as a definition for the Bessel functions for integers n ≥ 0.
In fact, this definition also makes sense when n is a negative integer,13 and
gives

J−n(z) = (−1)nJn(z). (2.8.4)

This means that (2.8.1) and (2.8.2) can be rewritten as

sin(z sin θ) =

∞∑

n=−∞
J2n+1(z) sin(2n + 1)θ (2.8.5)

cos(z sin θ) =

∞∑

n=−∞
J2n(z) cos 2nθ. (2.8.6)

We also have
∞∑

n=−∞
J2n(z) sin 2nθ = 0

∞∑

n=−∞
J2n+1(z) cos(2n + 1)θ = 0,

because the terms with positive subscript cancel with the corresponding terms
with negative subscript. So we can rewrite equations (2.8.5) and (2.8.6) as

sin(z sin θ) =

∞∑

n=−∞
Jn(z) sin nθ (2.8.7)

cos(z sin θ) =

∞∑

n=−∞
Jn(z) cos nθ. (2.8.8)

So using equation (1.7.2) we have

sin(φ+ z sin θ) = sinφ cos(z sin θ) + cosφ sin(z sin θ)

= sinφ
∞∑

n=−∞
Jn(z) cos nθ + cosφ

∞∑

n=−∞
Jn(z) sin nθ

=
∞∑

n=−∞
Jn(z)(sin φ cos nθ + cosφ sinnθ).

Finally, recombining the terms using equation (1.7.2), we obtain

sin(φ+ z sin θ) =
∞∑

n=−∞
Jn(z) sin(φ+ nθ). (2.8.9)

13For non-integer values of n, the above formula is not the correct definition of Jn(z).
Rather, one uses the differential equation (2.10.1). See for example Whittaker and Wat-
son, A course in modern analysis, Cambridge University Press, 1927, p. 358.
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This equation will be of fundamental importance for FM synthesis in §8.8.
A similar argument gives

cos(φ+ z sin θ) =

∞∑

n=−∞
Jn(z) cos(φ+ nθ), (2.8.10)

which can also be obtained from equation (2.8.9) by replacing φ by φ+ π
2 , or

by differentiating with respect to φ, keeping z and θ constant.
Here are graphs of the first few Bessel functions:

z1 2 3 4 5 6

1

0

−1

J0(z)

z1 2 3 4 5 6

1

0

−1

J1(z)

z1 2 3 4 5 6

1

0

−1

J2(z)

Exercises

1. Replace θ by π
2 − θ in equations (2.8.1) and (2.8.2) to obtain the Fourier series

for sin(z cos θ) and cos(z cos θ).

2. Deduce equation (2.8.10) from equation (2.8.9).
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2.9. Properties of Bessel functions

From equation (2.8.9), we can obtain relationships between the Bessel
functions and their derivatives, as follows. Differentiating (2.8.9) with re-
spect to z, keeping θ and φ constant, we obtain

sin θ cos(φ+ z sin θ) =

∞∑

n=−∞
J ′
n(z) sin(φ+ nθ) (2.9.1)

On the other hand, multiplying equation (2.8.10) by sin θ and using (1.8.4),
we have

sin θ cos(φ+ z sin θ) =

∞∑

n=−∞
Jn(z).

1
2

(
sin(φ+ (n+ 1)θ)− sin(φ+ (n− 1)θ)

)

=

∞∑

n=−∞

1
2

(
Jn−1(z)− Jn+1(z)

)
sin(φ+ nθ). (2.9.2)

In the last step, we have split the sum into two parts, reindexed by replacing n
by n−1 and n+1 respectively in the two parts, and then recombined the parts.

We would like to compare formulae (2.9.1) and (2.9.2) and deduce that

J ′
n(z) = 1

2

(
Jn−1(z) − Jn+1(z)

)
(2.9.3)

In order to do this, we need to know that the functions sin(φ+nθ) are inde-
pendent. This can be seen using Fourier series as follows.

Lemma 2.9.1. If
∞∑

n=−∞
an sin(φ+ nθ) =

∞∑

n=−∞
a′n sin(φ+ nθ),

as an identity between functions of φ and θ, where an and a′n do not depend
on θ and φ, then each coefficient an = a′n.

Proof. Subtracting one side from the other, we see that we must prove
that if

∑∞
n=−∞ cn sin(φ+nθ) = 0 (where cn = an−a′n) then each cn = 0. To

prove this, we expand using (1.7.2) to give
∞∑

n=−∞
cn sinφ cosnθ +

∞∑

n=−∞
cn cosφ sinnθ = 0.

Putting φ = 0 and φ = π
2 in this equation, we obtain

∞∑

n=−∞
cn cosnθ = 0, (2.9.4)

∞∑

n=−∞
cn sinnθ = 0. (2.9.5)
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Multiply equation (2.9.4) by cosmθ, integrate from 0 to 2π and divide
by π. Using equation (2.2.3), we get cm + c−m = 0. Similarly, from equa-
tions (2.9.5) and (2.2.4), we get cm − c−m = 0. Adding and dividing by two,
we get cm = 0. �

This completes the proof of equation (2.9.3). As an example, setting
n = 0 in (2.9.3) and using (2.8.4), we obtain

J1(z) = −J ′
0(z). (2.9.6)

In a similar way, we can differentiate (2.8.9) with respect to θ, keeping
z and φ constant to obtain

z cos θ cos(φ+ z sin θ) =

∞∑

n=−∞
nJn(z) cos(φ+ nθ). (2.9.7)

On the other hand, multiplying equation (2.8.10) by z cos θ and using (1.8.7),
we obtain

z cos θ cos(φ+ z sin θ)

=
∞∑

n=−∞
Jn(z).

z
2

(
cos(φ+ (n+ 1)θ) + cos(φ+ (n− 1)θ)

)

=
∞∑

n=−∞

z
2

(
Jn−1(z) + Jn+1(z)

)
cos(φ+ nθ). (2.9.8)

Comparing equations (2.9.7) and (2.9.8) and using Lemma 2.9.1, we obtain
the recurrence relation

Jn(z) =
z

2n

(
Jn−1(z) + Jn+1(z)

)
. (2.9.9)

Exercises

1. Show that

∫ ∞

0

J1(z) dz = 1.

[You may use the fact that lim
z→∞

J0(z) = 0]

2.10. Bessel’s equation and power series

Using equations (2.9.3) and (2.9.9), we can now derive the differential
equation (2.10.1) for the Bessel functions Jn(z). Using (2.9.3) twice, we ob-
tain

J ′′
n(z) = 1

2(J ′
n−1(z) − J ′

n+1(z))

= 1
4Jn−2(z)− 1

2Jn(z) + 1
4Jn+2(z).

On the other hand, substituting (2.9.9) into (2.9.3), we obtain

J ′
n(z) = 1

2

(
z

2(n−1)(Jn−2(z) + Jn(z))− z
2(n+1) (Jn(z) + Jn+2(z))

)

= z
4(n−1)Jn−2(z) + z

2(n2−1)
Jn(z) − z

4(n−1)Jn+2(z).
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In a similar way, using (2.9.9) twice gives

Jn(z) = z
2n

(
z

2(n−1)(Jn−2(z) + Jn(z)) + z2

2(n+1) (Jn(z) + Jn+2(z))
)

= z
4n(n−1)Jn−2(z) + z2

n2−1
Jn(z) + z2

4n(n+1)Jn+2(z).

Combining these three formulae, we obtain

J ′′
n(z) + 1

zJ
′
n(z)− n2

z2 Jn(z) = −Jn(z),
or

J ′′
n(z) +

1

z
J ′
n(z) +

(
1− n2

z2

)
Jn(z) = 0. (2.10.1)

We now discuss the general solution to Bessel’s Equation, namely the
differential equation

f ′′(z) +
1

z
f ′(z) +

(
1− n2

z2

)
f(z) = 0. (2.10.2)

This is an example of a second order linear differential equation, and once
one solution is known, there is a general procedure for obtaining all solutions.
In this case, this consists of substituting f(z) = Jn(z)g(z), and finding the
differential equation satisfied by the new function g(z). We find that

f ′(z) = J ′
n(z)g(z) + Jn(z)g

′(z),

f ′′(z) = J ′′
n(z)g(z) + 2J ′

n(z)g
′(z) + Jn(z)g

′′(z).

So substituting into Bessel’s equation (2.10.2), we obtain
(
J ′′
n(z) +

1

z
J ′
n(z) +

(
1− n2

z2

)
Jn(z)

)
g(z)+

(
2J ′

n(z) +
1

z
Jn(z)

)
g′(z) + Jn(z)g

′′(z) = 0.

The coefficient of g(z) vanishes by equation (2.10.1), and so we are left with
(

2J ′
n(z) +

1

z
Jn(z)

)
g′(z) + Jn(z)g

′′(z) = 0, (2.10.3)

This is a separable first order equation for g′(z), so we separate the variables

g′′(z)
g′(z)

= −2
J ′
n(z)

Jn(z)
− 1

z

and integrate to obtain

ln |g′(z)| = −2 ln |Jn(z)| − ln |z|+ C

where C is the constant of integration. Exponentiating, we obtain

g′(z) =
B

zJn(z)2
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where B = ±eC . Alternatively, we could have obtained this directly from
equation (2.10.3) by multiplying by zJn(z) to see that the derivative of
zJn(z)

2g′(z) is zero.
Integrating again, we obtain

g(z) = A+B

∫
dz

zJn(z)2

where the integral sign denotes a chosen antiderivative. Finally, it follows
that the general solution to Bessel’s equation is given by

f(z) = AJn(z) +BJn(z)

∫
dz

zJn(z)2
. (2.10.4)

The function

Yn(z) =
2

π
Jn(z)

∫
dz

zJn(z)2
,

for a suitable choice of constant of integration, is called Neumann’s Bessel
function of the second kind, or Weber’s function. The factor of 2/π is intro-
duced (by most, but not all authors) so that formulae involving Jn(z) and
Yn(z) look similar; we shall not go into the details. From the above integral,
it is not hard to see that Yn(z) tends to −∞ as z tends to zero from above;
we shall be more explicit about this towards the end of this section.

Next, we develop the power series for Jn(z). We begin with J0(z).
Putting z = θ = 0 in equation (2.8.2), we see that J0(0) = 1. By (2.8.4),
J0(z) is an even function of z, so we look for a power series of the form

J0(z) = 1 + a2z
2 + a4z

4 + · · · =
∞∑

k=0

a2kz
2k

where a0 = 1. Then

J ′
0(z) = 2a2z + 4a4z

3 + · · · =
∞∑

k=1

2ka2kz
2k−1,

J ′′
0 (z) = 2 · 1 a2 + 4 · 3 a4z

2 + · · · =
∞∑

k=1

2k(2k − 1)a2kz
2k−2.

Putting n = 0 in equation (2.10.1) and comparing coefficients of a2k−2,
we obtain

2k(2k − 1)a2k + 2ka2k + a2k−2 = 0,

or
(2k)2a2k = −a2k−2.

So starting with a0 = 1, we obtain a2 = −1/22, a4 = 1/(22 · 42), . . . , and by
induction on k, we have

a2k =
(−1)k

22 · 42 . . . (2k)2
=

(−1)k

2k(k!)2
.
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So we have

J0(z) = 1− z2

22
+

z4

22 · 42
− z6

22 · 42 · 62
+ · · · =

∞∑

k=0

(−1)k
(
z
2

)2k

(k!)2
. (2.10.5)

Since the coefficients in this power series are tending to zero very rapidly, it
has an infinite radius of convergence.14 So it is uniformly convergent, and
can be differentiated term by term. It follows that the sum of the power se-
ries satisfies Bessel’s equation, because that’s how we chose the coefficients.
We have already seen that there is only one solution of Bessel’s equation with
value 1 at z = 0, which completes the proof that the sum of the power series
is indeed J0(z).

Differentiating equation (2.10.5) term by term and using (2.9.6), we see
that

J1(z) =
z

2
− z3

22 · 4 +
z5

22 · 42 · 6 − · · · =
∞∑

k=0

(−1)k
(
z
2

)1+2k

k!(1 + k)!
.

Now using equation (2.9.9) and induction on n, we find that

Jn(z) =
∞∑

k=0

(−1)k(z2 )n+2k

k!(n + k)!
, (2.10.6)

with infinite radius of convergence.
From the power series, we can get information about Yn(z) as z → 0+.

For small positive values of z, Jn(z) is equal to zn/2nn! plus much smaller
terms. So 1

zJn(z)2 is equal to 22n(n!)2z−2n−1 plus much smaller terms, and∫
1

zJn(z)2
dz is equal to −22n−1n!(n − 1)!z−2n plus much smaller terms. Fi-

nally, Yn(z) is equal to −2n(n − 1)!z−n/π plus much smaller terms. In par-
ticular, this shows that Yn(z)→ −∞ as z → 0+.

Exercises

1. Show that y = Jn(αx) is a solution of the differential equation

d2y

dx2
+

1

x

dy

dx
+

(
α2 − n2

x2

)
y = 0.

Show that the general solution to this equation is given by y = AJn(αx)+BYn(αx).

2. Show that y =
√
xJn(x) is a solution of the differential equation

d2y

dx2
+

(
1 +

1
4 − n2

x2

)
y = 0.

Find the general solution of this equation.

3. Show that y = Jn(ex) is a solution of the differential equation

d2y

dx2
+ (e2x − n2)y = 0.

14For any value of z, the ratio of successive terms tends to zero, so by the ratio test
the series converges.
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Find the general solution of this equation.

4. The following exercise is another route to Bessel’s differential equation (2.10.1).

(a) Differentiate equation (2.8.9) twice with respect to z, keeping φ and θ constant.

(b) Differentiate equation (2.8.9) twice with respect to θ, keeping z and φ constant.

(c) Divide the result of (b) by z2 and add to the result of (a), and use the relation
sin2 θ + cos2 θ = 1. Deduce that

∞∑

n=−∞

(
J ′′

n (z) +
1

z
J ′

n(z) +

(
1− n2

z2

)
Jn(z)

)
sin(φ+ zθ) = 0.

(d) Finally, use Lemma 2.9.1 to show that Bessel’s equation (2.8.9) holds.

(The following exercises suppose some knowledge of complex analysis in order to
give an alternative development of the power series and recurrence relations for the
Bessel functions)

5. Show that

Jn(z) =
1

2π

∫ π

0

ei(nθ−z sin θ) dθ +
1

2π

∫ π

0

e−i(nθ−z sin θ) dθ

=
1

2π

∫ π

−π

e−i(nθ−z sin θ) dθ.

Substitute t = eiθ (so that 1
2i (t− 1

t ) = sin θ) to obtain

Jn(z) =
1

2πi

∮
t−n−1e

1
2
z(t− 1

t
) dt (2.10.7)

where the contour of integration goes counterclockwise once around the unit circle.
Use Cauchy’s integral formula to deduce that Jn(z) is the coefficient of tn in the

Laurent expansion of e
1
2
z(t− 1

t
):

e
1
2
z(t− 1

t
) =

∞∑

n=−∞
Jn(z)tn.

6. Substitute t = 2s/z in (2.10.7) to obtain

Jn(z) =
1

2πi

(z
2

)n
∮
s−n−1es− z2

4s ds.

Discuss the contour of integration. Expand the integrand in powers of z to give

Jn(z) =
1

2πi

∞∑

k=0

(−1)k

k!

(z
2

)n+2k
∮
s−n−k−1es ds

and justify the term by term integration. Show that the residue of the integrand at
s = 0 is 1/(n+ k)! when n + k ≥ 0 and is zero when n + k < 0 (note that 0! = 1).
Deduce the power series (2.10.6).

7. (a) Use the power series (2.10.6) to show that

Jn(z) = z
2n (Jn−1(z) + Jn+1(z)).

(b) Differentiate the power series (2.10.6) term by term to show that

J ′
n(z) = 1

2 (Jn−1(z)− Jn+1(z)).
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Further reading on Bessel functions:

Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions, Na-
tional Bureau of Standards, 1964, reprinted by Dover in 1965 and still in print. This
contains extensive tables of many mathematical functions including Jn(z) and Yn(z).

Frank Bowman, Introduction to Bessel functions, reprinted by Dover in 1958 and
still in print.

G. N. Watson, A treatise on the theory of Bessel functions [143] is an 800 page tome
on the theory of Bessel functions. This work contains essentially everything that was
known in 1922 about these functions, and is still pretty much the standard reference.

E. T. Whittaker and G. N. Watson, Modern Analysis, Cambridge University Press,
1927, chapter XVII.

See also Appendix B for some tables and a summary of some properties of Bessel

functions, as well as a C++ programme for calculation.

2.11. Fourier series for FM feedback and planetary motion

We shall see in §8.9 that in the theory of FM synthesis, feedback is rep-
resented by an equation of the form

φ = sin(ωt+ zφ), (2.11.1)

where ω and z are constants with |z| ≤ 1, and the equation implicitly defines
φ as a function of t. With an equation like this, we should regard it as ex-
traordinary that we can explicitly find φ as a function of t.

In the theory of planetary motion, Kepler’s laws imply that the angle
θ subtended at the centre (not the focus) of the elliptic orbit by the planet,
measured from the major axis of the ellipse, satisfies

ωt = θ − z sin θ (2.11.2)

where z is the eccentricity15 of the ellipse, a number in the range 0 ≤ z ≤ 1,
and ω = 2πν is a constant which plays the role of average angular velocity.
Again, this equation implicitly defines θ as a function of t.

Both of these equations define periodic functions of t, namely φ in the
first case and sin θ = (θ − ωt)/z in the second. In fact, they are really just
different ways of writing the same equation. To get from equation (2.11.2)
to (2.11.1), we use the substitution θ = ωt+ zφ. To go the other way, we use
the inverse substitution φ = (θ − ωt)/z.

The same functions turn up in other places too. In an exercise at the
end of this section, we describe the relevance to nonlinear acoustics.

To graph φ as a function of t, it is best to use θ as a parameter and set
t = (θ − z sin θ)/ω, φ = sin θ. Here is the result when z = 1

2 :

15The eccentricity of an ellipse is defined to be the distance from the centre to the fo-
cus, as a proportion of the major radius.
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t

φ

When |z| > 1, the parametrised form of the equation still makes sense,
but it is easy to see that the resulting graph does not define φ uniquely as a
function of t. Here is the result when z = 3

2 :

t

φ

In this section, we examine equation (2.11.2), and find the Fourier co-
efficients of φ = sin θ as a function of t, regarding z as a constant. The an-
swer is given in terms of Bessel functions. In fact, the solution of this equa-
tion in the context of planetary motion was the original motivation for Bessel
to introduce his functions Jn(z).

16

First, for convenience we write T = ωt. Next, we observe that pro-
vided |z| ≤ 1, θ − z sin θ is a strictly increasing function of θ whose domain
and range are the whole real line. It follows that solving equation (2.11.2)
gives a unique value of θ for each T , so that θ may be regarded as a contin-
uous function of T . Furthermore, adding 2π to both θ and T , or negating
both θ and T does not affect equation (2.11.2), so zφ = z sin θ = θ − T is an
odd periodic function of T with period 2π. So it has a Fourier expansion

zφ =

∞∑

n=1

bn sinnT. (2.11.3)

The coefficients bn can be calculated directly using equation (2.2.6):

bn =
1

π

∫ 2π

0
zφ sin nT dT =

2

π

∫ π

0
zφ sinnT dT.

Integrating by parts gives

bn =
2

π

[
−zφcosnT

n

]π

0

+
2

π

∫ π

0
z
dφ

dT

cosnT

n
dT.

16Bessel, Untersuchung der Theils der planetarischen Störungen, welcher aus der Be-
wegung der Sonne entsteht, Berliner Abh. (1826), 1–52.
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We have φ = 0 when T = 0 or T = π, so the first term vanishes. Rewriting
the second term, we obtain

bn =
2

nπ

∫ π

0
cosnT

d(zφ)

dT
dT.

Now

∫ π

0
cosnT dT = 0, so we can rewrite this as

bn =
2

nπ

∫ π

0
cosnT

d(zφ + T )

dT
dT =

2

nπ

∫ π

0
cosnT

dθ

dT
dT

=
2

nπ

∫ π

0
cosnT dθ.

In the last step, we have used the fact that as T increases from 0 to π, so
does θ. Substituting T = θ − z sin θ now gives

bn =
2

nπ

∫ π

0
cos(nθ − nz sin θ) dθ.

Comparing with equation (2.8.3) finally gives

bn =
2

n
Jn(nz).

Substituting back into equation (2.11.3) gives

φ = sin θ =

∞∑

n=1

2Jn(nz)

nz
sinnωt. (2.11.4)

So this equation gives the Fourier series relevant to feedback in FM synthe-
sis (2.11.1), planetary motion (2.11.2), and nonlinear acoustics (2.11.5).

Exercises

1. Show that if a function φ satisfying equation (2.11.1) is regarded as a function of
z and t, and ω is regarded as a constant, then φ is a solution of the partial differen-
tial equation

∂φ

∂z
=
φ

ω

∂φ

∂t
(2.11.5)

(See Appendix P for a brief review of partial derivatives). Show that if α is a non-
zero constant, then ψ(z, t) = αφ(αz, t) is another solution to this equation.

[Warning: This equation is nonlinear: adding solutions does not give another solu-
tion, and multiplying a solution by a scalar does not give another solution]

This equation turns out to be relevant to nonlinear acoustics. In this context,

the solutions given by applying the above dilation to equation (2.11.4) are called Fu-

bini solutions,17 in spite of the fact that they were described by Bessel more than

a century earlier. The picture given on page 61 now represents the solution for

17Eugene Fubini, Anomalies in the propagation of acoustic waves at great amplitude
(in Italian), Alta Frequenza 4 (1935), 530–581. Eugene Fubini (1913–1997) was son of the
mathematician Guido Fubini (1879–1943), after whom Fubini’s theorem is named.
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|αz| > 1, and describes an acoustic shock wave (in this context, αz is called the dis-

tortion range variable).

2.12. Pulse streams

In this section, we examine streams of square pulses. The purpose of
this is twofold. First, we wish to prepare for a discussion of analogue syn-
thesizers in Chapter 8. One method for obtaining a time varying frequency
spectrum in analogue synthesis is to use a technique called pulse width mod-
ulation (PWM).18 For this purpose, a low frequency oscillator (LFO, §8.2) is
used to control the pulse width of a square wave, while keeping the funda-
mental frequency constant.

The second purpose for looking at pulse streams is that by keeping the
pulse width constant and decreasing the frequency, we motivate the defini-
tion of Fourier transform, to be introduced in §2.13.

Let us investigate the frequency spectrum of the square wave given by

f(t) =





1 0 ≤ t ≤ ρ/2
0 ρ/2 < t < T − ρ/2
1 T − ρ/2 ≤ t < T

where ρ is some number between 0 and T , and f(t+ T ) = f(t).

−ρ/2 0 ρ/2 T

The Fourier coefficients are given by

αm =
1

T

∫ ρ/2

−ρ/2
e−2mπit/T dt =

1

mπ
sin(mπρ/T ).

for m 6= 0, and α0 = ρ/T . For example, if T = 5ρ, the frequency spectrum is
as follows

If we keep ρ constant and increase T , the shape of the spectrum stays
the same, but vertically scaled down in proportion, so as to keep the energy
density along the horizontal axis constant. It makes sense to rescale to take

18This is also used in some of the more modern analogue modeling synthesizers such
as the Roland JP-8000/JP-8080.
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account of this, and to plot Tαm instead of αm. If we do this, and increase
T while keeping ρ constant, all that happens is that the graph fills in. So for
example, removing every second peak from the original square wave

then the spectrum fills in as follows.

Letting T tend to infinity while keeping ρ constant, we obtain the
Fourier transform of a single square pulse, which (after suitable scaling) is
the function sin(ν)/ν. Here, ν is a continuously variable quantity represent-
ing frequency.

2.13. The Fourier transform

The theory of Fourier series, as described in §§2.2–2.4, decomposes pe-
riodic waveforms into infinite sums of sines and cosines, or equivalently (§2.6)
complex exponential functions of the form eint. It is often desirable to analyse
non-periodic functions in a similar way. This leads to the theory of Fourier
transforms. The theory is more beset with conditions than the theory of
Fourier series. In particular, without the introduction of generalised functions
or distributions, the theory only describes functions which tend to zero for
large positive or negative values of the time variable t. To deal with this from
a musical perspective, we introduce the theory of windowing. The point is
that any actual sound is not really periodic, since periodic functions have no
starting point and no end point. Moreover, we don’t really want a frequency
analysis of, for example, the whole of a symphony, because the answer would
be dominated by extremely phase sensitive low frequency information. We’d
really like to know at each instant what the frequency spectrum of the sound
is, and to plot this frequency spectrum against time. Now, it turns out that it
doesn’t really make sense to ask for the instantaneous frequency spectrum of
a sound, because there’s not enough information. We really need to know the
waveform for a time window around each point, and analyse that. Small win-
dow sizes give information which is more localised in time, but the frequency
components are smeared out along the spectrum. Large window sizes give in-
formation in which the frequency components are more accurately described,
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but more smeared out along the time axis. This limitation is inherent to the
process, and has nothing to do with how accurately the waveform is mea-
sured. In this respect, it resembles the Heisenberg uncertainty principle.19

If f(t) is a real or complex valued function of a real variable t, then its

Fourier transform f̂(ν) is the function of a real variable ν defined by20

f̂(ν) =

∫ ∞

−∞
f(t)e−2πiνt dt. (2.13.1)

The interpretation of this formula is that t represents time and ν represents
frequency. So f̂(ν) should be thought of as measuring how much of f(t) there
is at frequency ν. Somehow we’ve broken up the signal f(t) into periodic
components, but at all possible frequencies; reassembling the signal from its
Fourier transform is given by means of the inverse Fourier transform, de-
scribed below in (2.13.4).

Existence of a Fourier transform for a function assumes convergence of
the above integral, and this already puts restrictions on the function f(t).
A reasonable condition which ensures convergence is the following. A func-
tion f(t) is said to be L1, or absolutely integrable on (−∞,∞) if the inte-
gral

∫∞
−∞ |f(t)| dt converges. In particular, this forces f(t) to tend to zero as

|t| → ∞ (except possibly on a set of measure zero, which may be ignored),
which makes integrating by parts easier. In §2.17, we shall see how to extend
the definition to a much wider class of functions using the theory of distri-
butions. For example, we would at least like to be able to take the Fourier
tranform of a sine wave.

19In fact, this is more than just an analogy. In quantum mechanics, the probability
distributions for position and momentum of a particle are related by the Fourier trans-
form, with an extra factor of Planck’s constant ~. The Heisenberg uncertainty principle ap-
plies to the expected deviation from the average value of any two quantities related by the
Fourier transform, and says that the product of these expected deviations is at least 1

2
. So

in the quantum mechanical context the product is at least ~/2, because of the extra factor.
20There are a number of variations on this definition to be found in the literature, de-

pending mostly on the placement of the factor of 2π. The way we have set it up means that
the variable ν directly represents frequency. Most authors delete the 2π from the exponen-
tial in this definition, which amounts to using the angular velocity ω instead. This means
that they either have a factor of 1/2π appearing in formula (2.13.4), causing an annoying

asymmetry, or an even more annoying factor of 1/
√

2π in both (2.13.1) and (2.13.4).
Strictly speaking, the meaning of equation (2.13.1) should be

lim
a→−∞

lim
b→∞

Z b

a

f(t)e−2πiνt dt.

However, under some conditions this double limit may not exist, while

lim
R→∞

Z R

−R

f(t)e−2πiνt dt

may exist. This weaker symmetric limit is called the Cauchy principal value of the inte-
gral. Principal values are often used in the theory of Fourier transforms.
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Calculating the Fourier transform of a function is usually a difficult

process. As an example, we now calculate the Fourier transform of e−πt
2
.

This function is unusual, in that it turns out to be its own Fourier transform.

Theorem 2.13.1. The Fourier transform of e−πt
2

is e−πν
2
.

Proof. Let f(t) = e−πt
2
. Then

f̂(ν) =

∫ ∞

−∞
e−πt

2
e−2πiνt dt

=

∫ ∞

−∞
e−π(t2+2iνt) dt

=

∫ ∞

−∞
e−π((t+iν)2+ν2) dt.

Substituting x = t+ iν, dx = dt, we obtain

f̂(ν) =

∫ iν+∞

iν−∞
e−π(x2+ν2) dx. (2.13.2)

Now by Cauchy’s theorem, if R > 0 then
∫ iν+R

iν−R
=

∫ −R

iν−R
+

∫ R

−R
+

∫ iν+R

R
.

As R→∞, the first and last terms tend to zero, so we obtain

f̂(ν) =

∫ iν+∞

iν−∞
e−π(x2+ν2) dx. (2.13.3)

This form of the integral makes it obvious that f̂(ν) is positive and real, but
it is not obvious how to evaluate the integral. It turns out that it can be
evaluated using a trick. The trick is to square both sides, and then regard
the right hand side as a double integral.

f̂(ν)2 =

∫ ∞

−∞
e−π(x2+ν2) dx

∫ ∞

−∞
e−π(y2+ν2) dy

=

∫ ∞

−∞

∫ ∞

−∞
e−π(x2+y2+2ν2) dx dy.

We now convert this double integral over the (x, y) plane into polar coordi-
nates (r, θ). Remembering that the element of area in polar coordinates is
r dr dθ, we get

f̂(ν)2 =

∫ 2π

0

∫ ∞

0
e−π(r2+2ν2) r dr dθ.

We can easily perform the integration with respect to θ, since the integrand
is constant with respect to θ. And then the other integral can be carried out
explicitly.

f̂(ν)2 =

∫ ∞

0
2πre−π(r2+2ν2) dr
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=
[
−e−π(r2+2ν2)

]∞
0

= e−2πν2
.

Finally, since equation (2.13.3) shows that f̂(ν) is positive, taking square

roots gives f̂(ν) = e−πν
2

as desired. �

The following gives a formula for the Fourier transform of the deriva-
tive of a function.

Theorem 2.13.2. The Fourier transform of f ′(t) is 2πiνf̂(ν).

Proof. Integrating by parts, we have∫ ∞

−∞
f ′(t)e−2πiνt dt =

[
f(t)e−2πiνt

]∞
−∞ −

∫ ∞

−∞
f(t)(−2πiν)e−2πiνt dt

= 0 + 2πiνf̂(ν). �

The inversion formula is the following, which should be compared with
Theorem 2.4.1.

Theorem 2.13.3. Let f(t) be a piecewise C1 function (i.e., on any fi-
nite interval, f(t) is C1 except at a finite set of points) which is also L1.
Then at points where f(t) is continuous, its value is given by the inverse

Fourier transform

f(t) =

∫ ∞

−∞
f̂(ν)e2πiνt dν. (2.13.4)

(Note the change of sign in the exponent from equation (2.13.1))
At discontinuities, the expression on the right of this formula gives the aver-
age of the left limit and the right limit, 1

2(f(t+) + f(t−)), just as in §2.5.
Just as in the case of Fourier series, it is not true that a piecewise con-

tinuous L1 function satisfies the conclusions of the above theorem. But a de-
vice analogous to Cesàro summation works equally well here. The analogue
of averaging the first n sums is to introduce a factor of 1− |ν|/R into the in-
tegral defining the inverse Fourier transform, before taking principal values.

Theorem 2.13.4. Let f(t) be a piecewise continuous L1 function. Then
at points where f(t) is continuous, its value is given by

f(t) = lim
R→∞

∫ R

−R

(
1− |ν|

R

)
f̂(ν)e2πiνt dν.

At discontinuities, this formula gives 1
2 (f(t+) + f(t−)).

Exercises

1. (a) This part of the exercise is for people who run the Mac OS X operating sys-
tem. Go to

www.dr-lex.34sp.com/software/spectrograph.html
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and download the SpectroGraph plugin for iTunes, a frequency analysing pro-
gramme.

(b) This part of the exercise is for people who run the Windows operating
system. Download a copy of Sound Frequency Analyzer from

www.relisoft.com/freeware/index.htm

This is a freeware realtime audio frequency analysing programme for a PC running
Windows 95 or higher. Plug a microphone into the audio card on your PC, if there
isn’t one built in.

In both cases, use the programme to watch a windowed frequency spectrum
analysis of sounds such as any musical instruments you may have around, bells, whis-
tles, and so on. Experiment with various vowel sounds such as “ee”, “oo”, ”ah”, and
try varying the pitch of your voice. Both programmes use the fast Fourier trans-
form, see §7.10.

The Windows Media Player contains an elementary oscilloscope. Use “Win-
dows Update” to make sure you have at least version 7 of the Media Player, play
your favourite CD, and under View → Visualizations, choose Bars and Waves →
Scope. Notice how it is almost impossible to get much meaningful information about
how the waveform will sound, just by seeing the oscilloscope trace.

2. Find
∫∞
−∞ e−x2

dx.

[Hint: Square the integral and convert to polar coordinates, as in the proof of The-
orem 2.13.1]

3. Show that if a is a constant then the Fourier transform of f(at) is 1
a f̂(ν

a ).

4. Show that if a is a constant then the Fourier transform of f(t−a) is e−2πiνaf̂(ν).

5. Find the Fourier transform of the square wave pulse of §2.12

f(t) =

{
1 if −ρ/2 ≤ t ≤ ρ/2
0 otherwise.

6. Using Theorem 2.13.1 and integration by parts, show that the Fourier transform

of 2πt2e−πt2 is (1 − 2πν2)e−πν2

.

[Hint: Substitute x = t+ iν in the integral.]

2.14. Proof of the inversion formula

The purpose of this section is to prove the Fourier inversion formula,
Theorem 2.13.3. This says that under suitable conditions, if a function f(t)
has Fourier transform

f̂(ν) =

∫ ∞

−∞
f(t)e−2πiνt dt (2.14.1)

then the original function f(t) can be reconstructed as the Cauchy principal
value of the integral

f(t) =

∫ ∞

−∞
f̂(ν)e2πiνt dν. (2.14.2)

First of all, we have the same difficulty here as we did with Fourier series.
Namely, if we change the value of f(t) at just one point, then f̂(ν) will not
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change. So the best we can hope for is to reconstruct the average of the left
and right limits, if this exists, 1

2 (f(t+) + f(t−)).
To avoid using t both as a variable of integration and the independent

variable, let us use τ instead of t in (2.14.2). Then the Cauchy principal value
of the right hand side of (2.14.2) becomes

lim
A→∞

∫ A

−A

(∫ ∞

−∞
f(t)e−2πiνt dt

)
e2πiντ dν.

So this is the expression we must compare with f(τ), or rather with 1
2(f(τ+)+

f(τ−)). Since the outer integral just involves a finite interval, and the inner
integral is absolutely convergent, we may reverse the order of integration to
see that (2.14.2) is equal to

lim
A→∞

∫ ∞

−∞
f(t)

∫ A

−A
e2πiν(τ−t) dν dt

= lim
A→∞

∫ ∞

−∞
f(t)

[
1

2πi(τ − t)e
2πiν(τ−t)

]A

ν=−A
dt

= lim
A→∞

∫ ∞

−∞
f(t)

sin 2πA(τ − t)
π(τ − t) dt

where we’ve used (C.3) to rewrite the complex exponentials in terms of sines.
Substituting x = t − τ , t = τ + x in the

∫∞
0 part, and substituting

x = τ − t, t = τ − x in the
∫ 0
−∞ part of the above integral, we find that

(2.14.2) is equal to

lim
A→∞

∫ ∞

0
(f(τ + x) + f(τ − x))sin 2πAx

πx
dx. (2.14.3)

So we really need to understand the behaviour of sin 2πAx
πx and its integral, as

A gets large. We do this in the following theorem.

Theorem 2.14.1. (i) For A > 0, we have

∫ ∞

0

sin 2πAx

πx
dx = 1

2 ,

(ii) For any ε > 0, we have

lim
A→∞

∫ ε

0

sin 2πAx

πx
dx = 1

2 and lim
A→∞

∫ ∞

ε

sin 2πAx

πx
dx = 0.

Proof. To see that the integral converges, write

In =

∫ (n+1)/2A

n/2A

sin 2πAx

πx
dx.

Then the In alternate in sign and monotonically decrease to zero, so their
sum converges. To find the value of the integral, we first find

∫ π
2

0

sin(2n + 1)u

sinu
du =

∫ π
2

0

e(2n+1)iu − e−(2n+1)iu

eiu − e−iu du
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=

∫ π
2

0
(e2niu + e2(n−1)iu + · · ·+ e−2niu) du

=
π

2
. (2.14.4)

For the last step, the terms in the integral cancel out in pairs, so that the
only term giving a non-zero contribution is the middle one, which is e0 = 1.

Now 1
sinu − 1

u → 0 as u→ 0 (combine and use l’Hôpital’s rule, for ex-
ample), so this expression defines a nonnegative, uniformly continuous func-
tion on [0, π2 ]. An elementary estimate of the difference between consecutive
positive and negative areas then shows that

lim
n→∞

∫ π
2

0

(
1

sinu
− 1

u

)
sin(2n+ 1)u du = 0.

Combining with (2.14.4) gives

lim
n→∞

∫ π
2

0

sin(2n + 1)u

u
du =

π

2
.

Now substitute (2n + 1)u = 2πAx and divide by π to get

1

π

∫ π
2

0

sin(2n+ 1)u

u
du =

∫ 2n+1
4A

0

sin 2πAx

πx
dx→ 1

2

as n → ∞. For any given A > 0, letting n → ∞ gives (i). Given ε > 0, set
A = 2n+1

4ε and let n→∞ to get (ii). �

To prove Theorem 2.13.3, we first note that if f(t) is L1 then the Fourier
integral makes sense, and our task is to understand (2.14.2), or equivalently
(2.14.3). The idea is to use the above theorem to say that for any ε > 0,

lim
A→∞

∫ ∞

ε
(f(τ + x) + f(τ − x))sin 2πAx

πx
dx = 0,

so that (2.14.3) is equal to

lim
A→∞

∫ ε

0
(f(τ + x) + f(τ − x))sin 2πAx

πx
dx.

So at any point where lim
x→0

(f(τ + x) + f(τ − x)) exists, the theorem shows

that the above integral is equal to 1
2 lim
x→0

(f(τ + x) + f(τ − x)). In particular,

this holds for piecewise continuous functions.

2.15. Spectrum

How does the Fourier transform tell us about the frequency distribu-
tion in the original function? Well, just as in §2.6, the relations (C.1)–(C.3)
tell us how to rewrite complex exponentials in terms of sines and cosines,
and vice-versa. So the values of f̂ at ν and at −ν tell us not only about the
magnitude of the frequency component with frequency ν, but also the phase.
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If the original function f(t) is real valued, then f̂(−ν) is the complex conju-

gate f̂(ν). The energy density at a particular value of ν is defined to be the

square of the amplitude |f̂(ν)|,
Energy Density = |f̂(ν)|2.

Integrating this quantity over an interval will measure the total energy cor-
responding to frequencies in this interval. But note that both ν and −ν con-
tribute to energy, so if only positive values of ν are used, we must remember
to double the answer.

The usual way to represent the frequency spectrum of a real valued sig-
nal is to represent the amplitude and the phase of f̂(ν) separately for positive
values of ν. Recall from Appendix C that in polar coordinates, we can write
f̂(ν) as reiθ, where r = |f̂(ν)| is the amplitude of the corresponding frequency
component and θ is the phase. So r is always nonnegative, and we take θ

to lie between −π and π. Then f̂(−ν) = f̂(ν) = re−iθ, so we have already
represented the information about negative values of ν if we have given both
amplitude and phase for positive values of ν. Phase is often regarded as less
important than amplitude, and so the frequency spectrum is often displayed
just as a graph of |f̂(ν)| for ν > 0. For example, if we look at the frequency
spectrum of the square wave pulse described in §2.12 and we ignore phase in-
formation (which is just a sign in this case), we get the following picture.

1/2ρ 1/ρ 3/2ρ
ν0

1

|f̂(ν)|

In this graph, we represented frequency linearly along the horizontal
axis. But since our perception of frequency is logarithmic, the horizontal axis
is often represented logarithmically. With this convention each octave, rep-
resenting a doubling of the frequency, is represented by the same distance
along the axis.

Parseval’s identity states that the total energy of a signal is equal to
the total energy in its spectrum:∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
|f̂(ν)|2 dν.

More generally, if f(t) and g(t) are two functions, it states that
∫ ∞

−∞
f(t)g(t) dt =

∫ ∞

−∞
f̂(ν)ĝ(ν) dν. (2.15.1)

The term white noise refers to a waveform whose spectrum is flat; for
pink noise, the spectrum level decreases by 3dB per octave, while for brown
noise (named after Brownian motion), the spectrum level decreases by 6dB
per octave.
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The windowed Fourier transform was introduced by Gabor,21 and is
described as follows. Given a windowing function ψ(t) and a waveform f(t),
the windowed Fourier transform is the function of two variables

Fψ(f)(p, q) =

∫ ∞

−∞
f(t)e−2πiqtψ(t− p) dt,

for p and q real numbers. This may be thought of as using all possible time
translations of the windowing function, and pulling out the frequency com-
ponents of the result. The typical windowing function might look as follows.

- ν

It’s a good idea for the window to have smooth edges, and not just be
a simple rectangular pulse, since corners in the windowing function tend to
introduce extraneous high frequency artifacts in the windowed signal.

2.16. The Poisson summation formula

B. Kliban

When we come to study digital music in Chapter 7, we shall need to
use the Poisson summation formula.

Theorem 2.16.1 (Poisson’s summation formula).
∞∑

n=−∞
f(n) =

∞∑

n=−∞
f̂(n). (2.16.1)

21D. Gabor, Theory of communication, J. Inst. Electr. Eng. 93 (1946), 429–457.
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Proof. Define

g(θ) =

∞∑

n=−∞
f

(
θ

2π
+ n

)
.

Then the left hand side of the desired formula is g(0). Furthermore, g(θ) is
periodic with period 2π, g(θ + 2π) = g(θ). So we may apply the theory of
Fourier series to g(θ). By equation (2.6.1), we have

g(θ) =
∞∑

n=−∞
αne

inθ

and by equation (2.6.2), we have

αm =
1

2π

∫ 2π

0
g(θ)e−imθ dθ

=
1

2π

∫ 2π

0

∞∑

n=−∞
f

(
θ

2π
+ n

)
e−imθ dθ

=
1

2π

∞∑

n=−∞

∫ 2π

0
f

(
θ

2π
+ n

)
e−imθ dθ

=
1

2π

∫ ∞

−∞
f

(
θ

2π

)
e−imθ dθ

=

∫ ∞

−∞
f(t)e−2πimt dt

= f̂(m).

The third step above consists of piecing together the real line from segments
of length 2π. The fourth step is given by the substitution θ = 2πt. Finally,
we have ∞∑

n=−∞
f(n) = g(0) =

∞∑

n=−∞
αn =

∞∑

n=−∞
f̂(n). �

Warning. There are limitations on the applicability of the Poisson sum-
mation formula, coming from the limitations on applying Fourier inversion
(2.6.1). For a discussion of this point, see Y. Katznelson, An Introduction to
Harmonic Analysis, Dover 1976, p. 129.

2.17. The Dirac delta function

Dirac’s delta function δ(t) is defined by the following properties:

(i) δ(t) = 0 for t 6= 0, and

(ii)

∫ ∞

−∞
δ(t) dt = 1.

Think of δ(t) as being zero except for a spike at t = 0, so large that
the area under it is equal to one. The awake reader will immediately notice
that these properties are contradictory. This is because changing the value



74 2. FOURIER THEORY

of a function at a single point does not change the value of an integral, and
the function is zero except at one point, so the integral should be zero. Later
in this section, we’ll explain the resolution of this problem, but for the mo-
ment, let’s continue as though there were no problem, and as though equa-
tions (2.13.1) and (2.13.4) work for functions involving δ(t).

It is often useful to shift the spike in the definition of the delta function
to another value of t, say t = t0, by using δ(t− t0) instead of δ(t). The fun-
damental property of the delta function is that it can be used to pick out the
value of another function at a desired point by integrating. Namely, if we want
to find the value of f(t) at t = t0, we notice that f(t)δ(t−t0) = f(t0)δ(t−t0),
because δ(t− t0) is only non-zero at t = t0. So
∫ ∞

−∞
f(t)δ(t− t0) dt =

∫ ∞

−∞
f(t0)δ(t − t0) dt = f(t0)

∫ ∞

−∞
δ(t− t0) dt = f(t0).

Next, notice what happens if we take the Fourier transform of a delta func-
tion. If f(t) = δ(t− t0) then by equation (2.13.1)

f̂(ν) =

∫ ∞

−∞
δ(t− t0)e−2πiνt dt = e−2πiνt0 .

In other words, the Fourier transform of a delta function δ(t − t0) is a com-
plex exponential e−2πiνt0 . In particular, in the case t0 = 0, we find that the
Fourier transform of δ(t) is the constant function 1. The Fourier transform
of 1

2(δ(t − t0) + δ(t+ t0)) is

1
2(e−2πiνt0 + e2πiνt0) = cos(2πνt0)

(see equation (C.2)).
Conversely, if we apply the inverse Fourier transform (2.13.4) to the

function f̂(ν) = δ(ν − ν0), we obtain f(t) = e2πiν0t. So we can think of the
Dirac delta function concentrated at a frequency ν0 as the Fourier transform
of a complex exponential. Similarly, 1

2 (δ(ν − ν0) + δ(ν + ν0)) is the Fourier
transform of a cosine wave cos(2πν0t) with frequency ν0. We shall justify
these manipulations towards the end of this section.

The relationship between Fourier series and the Fourier transform can
be made more explicit in terms of the delta function. Suppose that f(t) is a
periodic function of t of the form

∑∞
n=−∞ αne

inθ (see equation (2.6.1)) where
θ = 2πν0t. Then we have

f̂(ν) =

∞∑

n=−∞
αnδ(ν − nν0).

So the Fourier transform of a real valued periodic function has a spike at plus
and minus each frequency component, consisting of a delta function multi-
plied by the amplitude of that frequency component.
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So what kind of a function is δ(t)? The answer is that it really isn’t a
function at all, it’s a distribution, sometimes also called a generalised func-
tion. A distribution is only defined in terms of what happens when we mul-
tiply by a function and integrate. Whenever a delta function appears, there
is an implicit integration lurking in the background.

More formally, one starts with a suitable space of test functions,22 and a
distribution is defined as a continuous linear map from the space of test func-
tions to the complex numbers (or the real numbers, according to context).

A function f(t) can be regarded as a distribution, namely we identify
it with the linear map taking g(t) to

∫∞
−∞ f(t)g(t) dt, as long as this makes

sense. The delta function is the distribution which is defined as the linear
map taking a test function g(t) to g(0). It is easy to see that this distribu-
tion does not come from an ordinary function in the above way. The argu-
ment is given at the beginning of this section. But we write distributions as
though they were functions, and we write integration for the value of a dis-
tribution on a function. So for example the distribution δ(t) is defined by∫∞
−∞ δ(t)g(t) dt = g(0), and this just means that the value of the distribution

δ(t) on the test function g(t) is g(0), nothing more nor less.
There is one warning that must be stressed at this stage. Namely, it

does not make sense to multiply distributions. So for example, the square of
the delta function does not make sense as a distribution. After all, what would∫∞
−∞ δ(t)2g(t) dt be? It would have to be δ(0)g(0), which isn’t a number!

However, distributions can be multiplied by functions. The value of a
distribution times f(t) on g(t) is equal to the value of the original distribu-
tion on f(t)g(t). As long as f(t) has the property that whenever g(t) is a
test function then so is f(t)g(t), this makes sense. Test functions and poly-
nomials satisfy this condition, for example.

22In the context of the theory of Fourier transforms, it is usual to start with the
Schwartz space S consisting of infinitely differentiable functions f(t) with the property that

there is a bound not depending on m and n for the value of any derivative f (m)(t) times
any power tn of t (m,n ≥ 0). So these functions are very smooth and all their derivatives

tend to zero very rapidly as |t| → ∞. An example of a function in S is the function e−t2 .
The sum, product and Fourier transform of functions in S are again in S. For the pur-
pose of saying what it means for a linear map on S to be continuous, the distance between
two functions f(t) and g(t) in S is defined to be the largest distance between the values of

tnf (m)(t) and tng(m)(t) as m and n run through the nonnegative integers. The space of dis-
tributions defined on S is written S

′. Distributions in S
′ are called tempered distributions.
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Distributions can also be differentiated. The way this is done is to use
integration by parts to give the definition of differentiation. So if f(t) is a
distribution and g(t) is a test function then f ′(t) is defined via

∫ ∞

−∞
f ′(t)g(t) dt = −

∫ ∞

−∞
f(t)g′(t) dt.

So for example the value of the distribution δ′(t) on the test function g(t) is
−g′(0).

To illustrate how to manipulate distributions, let us find tδ′(t). Inte-
gration by parts shows that if g(t) is a test function, then
∫ ∞

−∞
tδ′(t)g(t) dt = −

∫ ∞

−∞
δ(t)

d

dt
(tg(t)) dt = −

∫ ∞

−∞
δ(t)(tg′(t) + g(t)) dt.

Now tδ(t) = 0, so this gives −g(0). If two distributions take the same value
on all test functions, they are by definition the same distribution. So we have

tδ′(t) = −δ(t).
The reader should be warned, however, that extreme caution is necessary
when playing with equations of this kind. For example, dividing the above
equation by t to get δ′(t) = −δ(t)/t makes no sense at all. After all, what if
we were to apply the same logic to the equation tδ(t) = 0?

It is also useful at this stage to go back to the proof of Fejér’s theo-
rem give in §2.7. Basically, the reason why this proof works is that the func-
tions Km(y) are finite approximations to the distribution 2πδ(y). Approxi-
mations to delta functions, used in this way, are called kernel functions, and
they play a very important role in the theory of partial differential equations,
analogous to the role they play in the proof of Fejér’s theorem.

The Fourier transform of a distribution is defined using Parseval’s iden-
tity (2.15.1). Namely, if f(t) is a distribution, then for any function g(t) the

quantity
∫∞
−∞ f(t)g(t) dt denotes the value of the distribution on g(t). We de-

fine f̂(ν) to be the distribution whose value on ĝ(ν) is the same quantity. In

other words, the definition of f̂(ν) is
∫ ∞

−∞
f̂(ν)ĝ(ν) dν =

∫ ∞

−∞
f(t)g(t) dt.

Notice that even if we are only interested in functions, this considerably ex-
tends the definition of Fourier transforms, and that the Fourier transform of
a function can easily end up being a distribution which is not a function. For
example, we saw earlier that the Fourier transform of the function e2πiν0t is
the distribution δ(ν − ν0).

Exercises

1. Find the Fourier transform of the sine wave f(t) = sin(2πν0t) in terms of the
Dirac delta function.
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2. Show that if C is a constant then

δ(Ct) =
1

|C|δ(t).

3. The Heaviside function H(t) is defined by

H(t) =

{
1 if t ≥ 0

0 if t < 0.

Prove that the derivative of H(t) is equal to the Dirac delta function δ(t).
[Hint: Use integration by parts]

4. Show that tδ(t) = 0.

5. Using Theorem 2.13.2, show that the Fourier transform of tn is
( −1

2πi

)n
δ(n)(ν),

where δ(n) is the nth derivative of the Dirac delta function.

Further reading:

F. G. Friedlander and M. Joshi, Introduction to the theory of distributions, second
edition, CUP, 1998.

A. H. Zemanian, Distribution theory and transform analysis, Dover, 1987.

2.18. Convolution

The Fourier transform does not preserve multiplication. Instead, it
turns it into convolution. If f(t) and g(t) are two test functions, their convo-
lution f ∗ g is defined by

(f ∗ g)(t) =

∫ ∞

−∞
f(s)g(t− s) ds.

The corresponding verb is to convolve the function f with the function g.
The formula also makes sense if one of f and g is a distribution and the other
is a test function. The result is a function, but not necessarily a test func-
tion. The convolution of two distributions sometimes but not always makes
sense; for example, the convolution of two constant functions is not defined
but the convolution of two Dirac delta functions is defined.

It is easy to check that the following properties of convolution hold
whenever both sides make sense.

(i) (commutativity) f ∗ g = g ∗ f .

(ii) (associativity) (f ∗ g) ∗ h = f ∗ (g ∗ h).
(iii) (distributivity) f ∗ (g + h) = f ∗ g + f ∗ h.
(iv) (identity element) δ ∗ f = f ∗ δ = f .

Here, δ denotes the Dirac delta function.

Theorem 2.18.1. (i) f̂ ∗ g(ν) = f̂(ν)ĝ(ν),

(ii) f̂ g(ν) = (f̂ ∗ ĝ)(ν).
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Proof. To prove part (i), from the definition of convolution we have

f̂ ∗ g(ν) =

∫ ∞

−∞

∫ ∞

−∞
f(s)g(t− s)e−2πiνt ds dt

=

∫ ∞

−∞

∫ ∞

−∞
f(s)g(u)e−2πiν(s+u) ds du

=

(∫ ∞

−∞
f(s)e−2πiνs ds

)(∫ ∞

−∞
g(u)e−2πiνu du

)

= f̂(ν)ĝ(ν).

Here, we have made the substitution u = t − s. Part (ii) follows from part
(i) by the Fourier inversion formula (2.13.4); in other words, by reversing the
roles of t and ν. �

Part (i) of this theorem can be interpreted in terms of frequency fil-
ters. Applying a frequency filter to an audio signal is supposed to have the
effect of multiplying the frequency distribution of the signal, f̂(ν), by a fil-
ter function ĝ(ν). So in the time domain, this corresponds to convolving the
signal f(t) with g(t), the inverse Fourier transform of the filter function.

The output of a filter is usually taken to depend only on the input at
the current and previous times. Looking at the formula for convolution, this
corresponds to the statement that g(t), the inverse Fourier transform of the
filter function, should be zero for negative values of its argument.

The function g(t) for the filter is called the impulse response, because
it represents the output when a delta function is present at the input. The
statement that g(t) = 0 for t < 0 is a manifestation of causality.

For example, let g(t) be a delta function at zero plus a hump a little
later.

6

delta
function

0

hump

a little
later

g(t)

Then convolving a signal f(t) with g(t) will give f(t) plus a smeared echo of
f(t) a short time later. The graph of g(t) is interpreted as the impulse res-
ponse, namely what comes out when a delta function is put in (in this case,
crack — thump). These days, effects are often added to sound using a digital
filter, which uses a discrete version of this process of convolution. See §7.8
for a brief description of the theory.

Exercises

1. Show that δ′ ∗ f = −f ′. Find a formula for δ(n) ∗ f .

2. Prove the associativity formula (f ∗ g) ∗ h = f ∗ (g ∗ h).
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Further reading:

Curtis Roads, Sound transformation by convolution, appears as article 12 of Roads

et al [121], pages 411–438.

2.19. Cepstrum

The idea of cepstrum is to look for periodicity in the Fourier transform
of a signal, but measured on a logarithmic scale. So for example, this would
pick out a series of frequency components separated by octaves. So the defi-
nition of the cepstrum of a signal is

l̂n f̂(ρ) =

∫ ∞

−∞
e−2πiρν ln f̂(ν) dν.

This gives a sort of twisted up, backwards spectrum. The idea was first in-
troduced by Bogert, Healy and Tukey, who introduced the terminology. The
variable ρ is called quefrency, to indicate that it is a twisted version of fre-
quency. Peaks of quefrency are called rahmonics.

If filtering a signal corresponds to multiplying its Fourier transform by
a function, then liftering a signal is achieved by finding the cepstrum, multi-
plying by a function, and then undoing the cepstrum process. This process
is often used in the analysis of vocal signals, in order to locate and extract
formants.

Further reading:

B. P. Bogert, M. J. R. Healy and J. W. Tukey, Quefrency analysis of time series
for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking.
In Proceedings of the Symposium on Time Series Analysis, New York, Wiley 1963,
pages 209–243.

Judith C. Brown, Computer identification of wind instruments using cepstral coeffi-
cients, Proceedings of the 16th International Congress on Acoustics and 135th Meet-
ing of the Acoustical Society of America, Seattle, Washington (1998), 1889–1890.

Judith C. Brown, Computer identification of musical instruments using pattern
recognition with cepstral coefficients as features, J. Acoust. Soc. Amer. 105 (3)
(1999), 1933–1941.

D. G. Childers, D. P. Skinner and R. C. Kemerait, The cepstrum: a guide to pro-
cessing, Proc. IEEE 65 (10) (1977), 1428–1443.

M. R. Schroeder, Computer speech, Springer Series in Information Sciences, Springer-
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2.20. The Hilbert transform and instantaneous frequency

Although the notion of instantaneous frequency spectrum of a signal
makes no sense (because of the Heisenberg uncertainty principle), there is a
notion of instantaneous frequency of a signal at a point in time. The idea is
to use the Hilbert transform. If f(t) is the signal, its Hilbert transform g(t)
is defined to be the Cauchy principal value23 of the integral

g(t) =
1

π

∫ ∞

−∞

f(τ)

t− τ dτ.

This makes an analytic signal f(t) + ig(t).
For example, if f(t) = c cos(ωt + φ) then g(t) = c sin(ωt + φ) and

f(t)+ ig(t) = cei(ωt+φ). In this case, f(t)+ ig(t) is rotating counterclockwise
around the origin of the complex plane at a rate of ω radians per unit time.
This suggests that the instantaneous angular frequency ω(t) is defined as the
rate at which f(t) + ig(t) is rotating around the origin. The angle θ(t) satis-
fies24

tan θ = g(t)/f(t),

so differentiating, we obtain

sec2 θ
dθ

dt
=
f(t)g′(t)− g(t)f ′(t)

f(t)2
.

Using the relation

sec2 θ = 1 + tan2 θ =
f(t)2 + g(t)2

f(t)2
,

we obtain

ω(t) =
dθ

dt
=
f(t)g′(t)− g(t)f ′(t)

f(t)2 + g(t)2
.

So the instantaneous frequency is given by

ν(t) =
ω(t)

2π
=

1

2π

f(t)g′(t)− g(t)f ′(t)
f(t)2 + g(t)2

.

The same reasoning also leads to the notion of instantaneous amplitude
whose value is

√
f(t)2 + g(t)2. This is not the same as |f(t)|, which fails to

capture the notion of instantaneous amplitude of a signal even for a sine wave.
From the formula for Hilbert transform, it can be seen that the defini-

tions of instantaneous frequency and amplitude depend mostly on informa-
tion about the signal close to the point being considered, but they do also
have small contributions from the behaviour far away.

23i.e., g(t) = limA→∞ limε→0
1
π

“

R −ε

−A
f(τ)
t−τ

dτ +
R A

ε
f(τ)
t−τ

dτ
”

.
24The formula θ = tan−1(g(t)/f(t)) is incorrect. Why?
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Further reading:

B. Boashash, Estimating and interpreting the instantaneous frequency of a signal—
Part I: Fundamentals, Proc. IEEE 80 (1992), 520–538.

L. Rossi and G. Girolami, Instantaneous frequency and short term Fourier trans-
forms: Applications to piano sounds, J. Acoust. Soc. Amer. 110 (5) (2001), 2412–
2420.

Zachary M. Smith, Bertrand Delgutte and Andrew J. Oxenham, Chimaeric sounds

reveal dichotomies in auditory perception, Nature 416, 7 March 2002, 87–90. This

article discusses the Fourier transform and Hilbert transform as models for auditory

perception of music and speech, and concludes that both play a role.

2.21. Wavelets

The wavelet transform is a relative of the windowed Fourier transform,
in which all possible time translations and dilations are applied to a given
window, to give a function of two variables as the transform. The exponen-
tial functions used in the windowed Fourier transforms are no longer present,
but in some sense they are replaced by the use of dilations on the window-
ing function.

To be more precise, a wavelet is a function ψ(t) of a real variable t
which satisfies the admissibility condition

0 < cψ <∞
where cψ is the constant defined by

cψ =

∫ ∞

−∞

|ψ̂(ν)|2
|ν| dν.

The wavelet ψ is chosen once and for all, and is interpreted as the shape
of the window. The wavelet transform Lψ(f) of a waveform f is defined as
the function of two variables

Lψ(f)(a, b) =
1√
|a|cψ

∫ ∞

−∞
f(t)ψ

( t− b
a

)
dt

for real a 6= 0 and b.
An example of a wavelet often used in practice is the Mexican hat, de-

fined by

ψ(t) = (1− 2πt2)e−πt
2
.
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t

The Fourier transform of the Mexican hat is

ψ̂(ν) = 2πν2e−πν
2

ξ

and we have cψ = 1.
The inverse wavelet transform L∗

ψ with respect to ψ is defined as fol-

lows. If g(a, b) is a function of two real variables, then L∗
ψ(g) is the function

of the single real variable t defined by

L∗
ψ(g)(t) =

∫ ∞

−∞

∫ ∞

−∞

1√
|a|cψ

g(a, b)ψ
( t− b

a

) da db
a2

.

Note that at a = 0 the integrand is not defined, so the integral with respect
to a simply misses out this value.

Theorem 2.21.1. If f(t) is a square integrable function of a real vari-
able t then L∗

ψLψf agrees with f at almost all values of t, and in particular,

at all points where f(t) is continuous.

Further reading:

G. Evangelista, Wavelet representations of musical signals, appears as article 4 in
Roads et al [121], pages 127–154.

R. Kronland–Martinet, The wavelet transform for the analysis, synthesis, and pro-
cessing of speech and music sounds, Computer Music Journal 12 (4) (1988), 11–20.

A. K. Louis, P. Maaß and A. Rieder, Wavelets, theory and applications, Wiley, 1997.
ISBN 0471967920.

Stéphane Mallat, A wavelet tour of signal processing, Academic Press, 1998. ISBN
0124666051.

P. Polotti and G. Evangelista, Fractal additive synthesis via harmonic-band wavelets,
Computer Music Journal 25 (3) (2001), 22–37.

Curtis Roads, The computer music tutorial [119], pages 581–589.



CHAPTER 3

A mathematician’s guide to the orchestra

3.1. Introduction

Ethnomusicologists classify musical instruments into five main cate-
gories, which correspond reasonably well to the mathematical description of
the sound they produce.1

1. Idiophones, where sound is produced by the body of a vibrat-
ing instrument. This category includes percussion instruments other than
drums. It is divided into four subcategories: struck idiophones such as xylo-
phones and cymbals, plucked idiophones (lamellophones) such as the mbira
and the balafon, friction idiophones such as the (bowed) saw, and blown idio-
phones such as the aeolsklavier (a nineteenth century German instrument in
which wooden rods are blown by bellows).

2. Membranophones, where the sound is produced by the vibration
of a stretched membrane; for example, drums are membranophones. This
category also has four subdivisions: struck drums, plucked drums, friction
drums, and singing membranes such as the kazoo.

3. Chordophones, where the sound is produced by one or more vi-
brating strings. This category includes not only stringed instruments such
as the violin and harp, but also keyboard instruments such as the piano and
harpsichord.

4. Aerophones, where the sound is produced by a vibrating column
of air. This category includes woodwind instruments such as the flute, clar-
inet and oboe, brass instruments such as the trombone, trumpet and French
horn, and also various more exotic instruments such as the bullroarer and
the conch shell.

1This classification was due to Hornbostel and Sachs (Zeitschrift für Musik, 1914), who
omitted the fifth category of electrophones. This last category was added in 1961 by An-
thony Baines and Klaus P. Wachsmann in their translation of the article of Hornbostel and
Sachs.

The Hornbostel–Sachs system had antecedents. A Hindu system dating back more
than two thousand years divides instruments into four similar groups. Victor Mahillon, cu-
rator of the collection of musical instruments of the Brussels conservatoire, used a similar
classification in his 1888 catalogue of the collection.

83
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5. Electrophones, where the sound is produced primarily by elec-
trical or electronic means. This includes the modern electronic synthesizer
(analogue or digital) as well as sound generated by a computer programme.
One of the earliest electrophones was the theremin. An instrument such as
an electric guitar, where the sound is produced mechanically and amplified
and manipulated electronically, is not classified as an electrophone. An elec-
tric guitar is an example of a chordophone.

There are two main components that determine the nature of the sound
coming from a musical instrument, namely the initial transient part of the
sound, and the set of resonant frequencies making up the spectrum of the
rest of the sound. Initial transients are notoriously difficult to describe math-
ematically, but have a profound effect on our perception of the sound. We
shall return to this subject in Chapter 8. In this chapter, we shall concen-
trate on the description of resonant frequencies. It is this aspect of sound
which is most relevant to the study of musical scales.

We begin with chordophones, where we need to understand the solu-
tions of the one dimensional wave equation. This is followed by aerophones,
which are mathematically very similar. Membranophones require us to solve
the two dimensional wave equation, which gets us involved with Bessel func-
tions. Finally, idiophones involve a more complicated equation of degree four.
We leave electrophones until Chapter 8.

Further Reading:

E. M. von Hornbostel and C. Sachs, Systematik der Musikinstrumente. Ein Versuch,

Zeitschrift für Ethnologie 4/5 (1914). Translated into English by Anthony Baines

and Klaus P. Wachsmann as Classification of musical instruments, The Galpin Soci-

ety Journal 14 (1961), 3–29. This translation also appears in The Garland library of

readings in ethnomusicology, 6, ed. Kay K. Shelemay, 119–145, Garland, New York,

1961.
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3.2. The wave equation for strings

Italian Theorbo, Musée Instrumental, Brussels, Belgium

In this section, we return to the subject of §1.6, and consider the rel-
evance of Fourier series to the vibration of a string held at both ends. To
make a more accurate analysis, we need to regard the displacement y as a
function both of time t and position x along the string. Since y is being re-
garded as a function of two variables, the appropriate equations are written
in terms of partial derivatives, and Appendix P gives a brief summary of par-
tial derivatives. The equation describing the vibration of a string is called the
wave equation in one dimension, which we now develop. This equation sup-
poses that the displacement of the string is such that its slope at any point
along its length at any time is small. For large displacements, the analysis is
harder. Note that we are only concerned here with transverse waves, namely
motion perpendicular to the string. Motion parallel to the string is called
longitudinal waves, and will be ignored here.

θ(x)

θ(x+∆x)

T

T sin θ(x)

T
T sin θ(x+∆x)

Write T for the tension on the string (in newtons = kgm/s2), and
ρ for the linear density of the string (in kg/m). Then at position x along
the string, the angle θ(x) between the string and the horizontal will satisfy

tan θ(x) =
∂y

∂x
. On a small segment of string from x to x+ ∆x, the vertical

component of force at the left end will be −T sin θ(x), and at the right end
will be T sin θ(x+ ∆x).

Provided that θ(x) is small, sin θ(x) and tan θ(x) are approximately
equal. So the difference in vertical components of force between the two ends
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of the segment will be approximately

T tan θ(x+ ∆x)− T tan θ(x) = T

(
∂y(x+ ∆x)

∂x
− ∂y(x)

∂x

)

= T∆x

∂y(x+ ∆x)

∂x
− ∂y(x)

∂x
∆x

≈ T∆x
∂2y

∂x2
. (3.2.1)

The mass of the segment of string will be approximately ρ∆x. So Newton’s

law (F = ma) for the acceleration a =
∂2y

∂t2
gives

T∆x
∂2y

∂x2
≈ (ρ∆x)

∂2y

∂t2
.

Cancelling a factor of ∆x on both sides gives

T
∂2y

∂x2
≈ ρ∂

2y

∂t2
.

In other words, as long as θ(x) never gets large, the motion of the string is
essentially determined by the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
(3.2.2)

where c =
√
T/ρ.

D’Alembert2 discovered a strikingly simple method for finding the gen-
eral solution to equation (3.2.2). Roughly speaking, his idea is to factorise
the differential operator

∂2

∂t2
− c2 ∂

2

∂x2

as ( ∂
∂t

+ c
∂

∂x

)( ∂
∂t
− c ∂

∂x

)
.

More precisely, we make a change of variables

u = x+ ct, v = x− ct.
Then by the multivariable form of the chain rule, we have

2Jean-le-Rond d’Alembert was born in Paris on November 16, 1717, and died there on
October 29, 1783. He was the illegitimate son of a chevalier by the name of Destouches,
and was abandoned by his mother on the steps of a small church called St. Jean-le-Rond,
from which his first name is taken. He grew up in the family of a glazier and his wife, and
lived with his adoptive mother until she died in 1757. But his father paid for his educa-
tion, which allowed him to be exposed to mathematics. Two essays written in 1738 and
1740 drew attention to his mathematical abilities, and he was elected to the French Acad-
emy in 1740. Most of his mathematical works were written there in the years 1743–1754,
and his solution of the wave equation appeared in his paper: Recherches sur la courbe que
forme une corde tendue mise en vibration, Hist. Acad. Sci. Berlin 3 (1747), 214–219.
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Jean-le-Rond d’Alembert (1717–1783)

∂y

∂t
=
∂y

∂u

∂u

∂t
+
∂y

∂v

∂v

∂t
= c

∂y

∂u
− c∂y

∂v
.

Differentiating again, we have

∂2y

∂t2
=

∂

∂u

(∂y
∂t

)∂u
∂t

+
∂

∂v

(∂y
∂t

)∂v
∂t

= c
(
c
∂2y

∂u2
− c ∂

2y

∂u∂v

)
− c
(
c
∂2y

∂v∂u
− c∂

2y

∂v2

)

= c2
(
∂2y

∂u2
− 2

∂2y

∂u∂v
+
∂2y

∂v2

)
.

Similarly,

∂y

∂x
=
∂y

∂u

∂u

∂x
+
∂y

∂v

∂v

∂x
=
∂y

∂u
+
∂u

∂x
,

∂2y

∂x2
=
∂2y

∂u2
+ 2

∂2y

∂u∂v
+
∂2y

∂v2
.

Then equation (3.2.2) becomes

c2
(
∂2y

∂u2
− 2

∂2y

∂u∂v
+
∂2y

∂v2

)
= c2

(
∂2y

∂u2
+ 2

∂2y

∂u∂v
+
∂2y

∂v2

)

or
∂2y

∂u∂v
= 0.

This equation may be integrated directly to see that the general solution is
given by y = f(u) + g(v) for suitably chosen functions f and g. Substituting
back, we obtain

y = f(x+ ct) + g(x− ct).
This represents a superposition of two waves, one travelling to the left and
one travelling to the right, each with velocity c.



88 3. A MATHEMATICIAN’S GUIDE TO THE ORCHESTRA

19th century lyre found in Nuba Hills, Sudan. British Museum, London.

Now the boundary conditions tell us that the left and right ends of the
string are fixed, so that when x = 0 or x = ℓ (the length of the string), we
have y = 0 (independent of t). The condition with x = 0 gives

0 = f(ct) + g(−ct)
for all t, so that

g(λ) = −f(−λ) (3.2.3)

for any value of λ. Thus

y = f(x+ ct)− f(ct− x).
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Physically, this means that the wave travelling to the left hits the end of the
string and returns inverted as a wave travelling to the right. This is called
the “principle of reflection”.
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→֒

→

→

Substituting the other boundary condition x = ℓ, y = 0 gives f(ℓ+ct) =
f(ct− ℓ) for all t, so that

f(λ) = f(λ+ 2ℓ) (3.2.4)

for all values of λ. We summarise all the above information in the following
theorem.

Theorem 3.2.1 (d’Alembert). The general solution of the wave equa-
tion

∂2y

∂t2
= c2

∂2y

∂x2

is given by
y = f(x+ ct) + g(x− ct).

The solutions satisfying the boundary conditions y = 0 for x = 0 and for
x = ℓ, for all values of t, are of the form

y = f(x+ ct)− f(−x+ ct) (3.2.5)

where f satisfies f(λ) = f(λ+ 2ℓ) for all values of λ.

One interesting feature of d’Alembert’s solution to the wave equation is
worth emphasizing. Although the wave equation only makes sense for func-
tions with second order partial derivatives, the solutions make sense for any
continuous periodic function f . (Discontinuous functions cannot represent
displacement of an unbroken string!) This allows us, for example, to make
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Marin Mersenne (1588–1648)

sense of the plucked string, where the initial displacement is continuous, but
not even once differentiable. This is a common phenomenon when solving
partial differential equations. A technique which is very often used is to
rewrite the equation as an integral equation, meaning an equation involving
integrals rather than derivatives. Integrable functions are much more gen-
eral than differentiable functions, so one should expect a more general class
of solutions.

Equation (3.2.4) means that the function f appearing in d’Alembert’s
solution is periodic with period 2ℓ, so that f has a Fourier series expansion.
So for example if only the fundamental frequency is present, then the func-
tion f(x) takes the form f(x) = C cos((πx/ℓ) + φ). If only the nth harmonic
is present, then we have f(x) = C cos((nπx/ℓ) + φ),

y = C cos

(
nπ(x+ ct)

ℓ
+ φ

)
− C cos

(
nπ(−x+ ct)

ℓ
+ φ

)
. (3.2.6)

The theory of Fourier series allows us to write the general solution as a
combination of the above harmonics, as long as we take care of the details of
what sort of functions are allowed and what sort of convergence is intended.

Using equation (1.8.9), we can rewrite the nth harmonic solution (3.2.6)
as

y = 2C sin
(nπx

ℓ

)
sin

(
nπct

ℓ
+ φ

)
. (3.2.7)



3.3. INITIAL CONDITIONS 91

This is Bernoulli’s solution to the wave equation.3 Thus the frequency of the
nth harmonic is given by 2πν = nπc/ℓ, or replacing c by its value

√
T/ρ,

ν = (n/2ℓ)
√
T/ρ.

This formula for frequency was essentially discovered by Marin Mersenne4 as
his “laws of stretched strings”. These say that the frequency of a stretched
string is inversely proportional to its length, directly proportional to the
square root of its tension, and inversely proportional to the square root of
the linear density.

Exercises

1. Piano wire is manufactured from steel of density approximately 5,900 kg/m3.
The manufacturers recommend a stress of approximately 1.1 × 109 Newtons/m2.
What is the speed of propagation of waves along the wire? Does it depend on cross-
sectional area? How long does the string need to be to sound middle C (262 Hz)?

2. By what factor should the tension on a string be increased, to raise its pitch by
a perfect fifth? Assume that the length and linear density remain constant.
[A perfect fifth represents a frequency ratio of 3:2]

3. Read the beginning of Appendix M on music theory, and then explain why the

back of a grand piano is shaped in a good approximation to an exponential curve.

3.3. Initial conditions

In this section, we see that in the analysis of the wave equation (3.2.2)
described in the last section, specifying the initial position and velocity of
each point on the string uniquely determines the subsequent motion.

Let s0(x) and v0(x) be the initial vertical displacement and velocity of
the string as functions of the horizontal coordinate x, for 0 ≤ x ≤ ℓ. These
must satisfy s0(0) = s0(ℓ) = 0 and v0(0) = v0(ℓ) = 0 to fit with the bound-
ary conditions at the two ends of the string.

The first step is to extend the definitions of s0 and v0 to all values
of x using the reflection principle. If we specify that s0(−x) = −s0(x) and
v0(−x) = −v0(x), so that s0 and v0 are odd functions of x, this extends the
domain of definition to the values −ℓ ≤ x ≤ ℓ. The values match up at −ℓ
and ℓ, so we can extend to all values of x by specifying periodicity with pe-
riod 2ℓ; namely that s0(x+ 2ℓ) = s0(x) and v0(x+ 2ℓ) = v0(x).

3Daniel Bernoulli, Réflections et éclairissements sur les nouvelles vibrations des cordes,
Exposées dans les Mémoires de l’Academie de 1747 et 1748, Royal Academy, Berlin, (1755),
147ff.

4Marin Mersenne, Harmonie Universelle, Sebastien Cramoisy, Paris, 1636–37. Trans-
lated by R. E. Chapman as Harmonie Universelle: The Books on Instruments, Martinus
Nijhoff, The Hague, 1957. Also republished in French by the CNRS in 1975 from a copy
annotated by Mersenne.
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Now we simply substitute into the solution given by d’Alembert’s the-
orem. Namely, we know that

y = f(x+ ct)− f(−x+ ct) (3.3.1)

where f is periodic with period 2ℓ. Differentiating with respect to t gives the
formula for velocity

∂y

∂t
= cf ′(x+ ct)− cf ′(x− ct).

Substituting t = 0 in both the equation and its derivative gives the following
equations

f(x)− f(−x) = s0(x) (3.3.2)

cf ′(x)− cf ′(−x) = v0(x). (3.3.3)

Integrating equation (3.3.3) and noting that v0(0) = 0, we obtain

cf(x) + cf(−x) =

∫ x

0
v0(u) du.

We divide this equation by c to obtain a formula for f(x) + f(−x). So we
can then add equation (3.3.2) and divide by two to obtain f(x). This gives

f(x) = 1
2s0(x) +

1

2c

∫ x

0
v0(u) du.

Putting this back into equation (3.3.1) gives

y = 1
2(s0(x+ ct)− s0(−x+ ct)) +

1

2c

(∫ x+ct

0
v0(u) du−

∫ −x+ct

0
v0(u) du

)
.

Using the fact that v0 is an odd function, we have
∫ −x+ct

x−ct
v0(u) du = 0.

So we can rewrite the solution as

y = 1
2(s0(x+ ct) + s0(x− ct)) +

1

2c

∫ x+ct

x−ct
v0(u) du.

It is now easy to check that this is the unique solution satisfying both the
initial conditions and the boundary conditions.

So for example, if the initial velocity is zero, as is the case for a plucked
string, then the solution is given by

y = 1
2(s0(x+ ct) + s0(x− ct)).

In other words, the initial displacement moves both ways along the string,
with velocity c, and the displacement at time t is the average of the two trav-
elling waves.
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Let’s see how this works in practice. Choose a satisfying 0 < a < 1,
and set

s0(x) =

{
x/a 0 ≤ x ≤ a
(ℓ− x)/(ℓ− a) a ≤ x ≤ 1.

�
��

PPPPPPPPq q q
0 a ℓ

We use the reflection principle to extend this to a periodic function of period
2ℓ as described above.
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Now we let this wave travel both left and right, and average the two result-
ing functions. Here is the resulting motion of the plucked string.

?

t�
��

PPPPPPPPq q
�

���PPPPPPq q
�����PPPPPq q
PPP�����PPPq q
PPPPP�����q q
PPPPPP����
q q
PPPPPPPP�

��
q q
PPPPPP����
q q

etc.

Exercises

1. (Effect of errors in initial conditions) Consider two sets of initial conditions for
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the wave equation (3.2.2), s0(x) and v0(x), s
′
0(x) and v′0(x), and let y and y′ be the

corresponding solutions. If we have bounds (not depending on x) on the distance
between these initial conditions,

|s0(x)− s′0(x)| < εs, |v0(x)− v′0(x)| < εv,

show that the distance between y and y′ satisfies

|y − y′| < εs +
ℓεv

2c

(independently of x and t). This means, in particular, that the solution to the wave

equation (3.2.2) depends continuously on the initial conditions.

Further reading:

J. Beament, The violin explained: components, mechanism, and sound [7].

R. Courant and D. Hilbert, Methods of mathematical physics, I, Interscience, 1953,
§V.3.

L. Cremer, The physics of the violin [25].

Neville H. Fletcher and Thomas D. Rossing, The physics of musical instruments
[39]. Part III, String instruments.

T. D. Rossing, The science of sound [128], §10.

3.4. The bowed string

Ousainou Chaw on the riti, from Jacqueline Cogdell DjeDje,
“Turn up the volume! A celebration of African music,” UCLA 1999, p. 105.
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Helmholtz5 carried out experiments on bowed violins, using a vibra-
tion microscope to produce Lissajous figures. He discovered that the motion
of the string at every point describes a triangular pattern, but with slopes
which depend on the point of observation. Near the bow, the displacement
is as follows,

@@�������@
@

@@�������@
@

@@

whereas nearer the bridge it looks as follows.

This means that the graph of velocity against time has the following form

where the area under the axis equals the area above, and the width of the
trough decreases towards the bridge.

The interpretation of this motion is that the bowing action alternates
between two distinct phases. In one phase, the bow sticks to the string and
pulls it with it. In the other phase, the bow slides against the string. This
form of motion reflects the fact that the coefficient of static friction is higher
than the coefficient of dynamic friction.

The resulting motion of the entire string has the following form. The
envelope of the motion is described by two parabolas, a lower one and an in-
verted upper one. Inside this envelope, at any point of time the string has
two straight segments from the two ends to a point on the envelope. This
point circulates around the envelope as follows.

�

-

?

bow

bridge

To understand this behaviour mathematically, we must solve the fol-
lowing problem. What are the solutions to the wave equation (3.2.2) satis-
fying not only the boundary conditions y = 0 for x = 0 and for x = ℓ, for
all values of t, but also the condition that the value of y as a function of t

5See section V.4 of [55].
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is prescribed for a particular value x0 of x and for all t. Of course, the pre-
scribed motion at x = x0 must have the right periodicity, because all solu-
tions of the wave equation do:

y(x0, t+ 2ℓ/c) = y(x0, t).

It is tempting to try to solve this problem using d’Alembert’s solution
of the wave equation (Theorem 3.2.1). The problems we run into when we
try to do this are interesting. For example, let’s suppose that x0 = ℓ/2. Then
we have

f(ℓ/2 + ct)− f(−ℓ/2 + ct) = y(ℓ/2, t).

Replacing t by t+ ℓ/c in this equation, we get

f(3ℓ/2 + ct)− f(ℓ/2 + ct) = y(ℓ/2, t+ ℓ/c).

Adding, we get

f(3ℓ/2 + ct)− f(−ℓ/2 + ct) = y(ℓ/2, t) + y(ℓ/2, t+ ℓ/c).

But f is supposed to be periodic with period 2ℓ, so

f(3ℓ/2 + ct) = f(−ℓ/2 + ct).

This means that we have

y(ℓ/2, t+ ℓ/c) = −y(ℓ/2, t).
So not every periodic function with period 2ℓ/c will work as the function
y(ℓ/2, t). The function is forced to be half-period antisymmetric, so that only
odd harmonics are present (see §2.3). This is only to be expected. After all,
the even harmonics have a node at x = ℓ/2, so how could we expect to in-
volve even harmonics in the value of y(x, t) at x = ℓ/2?

Similar problems occur at x = ℓ/3. The harmonics divisible by three
are not allowed to occur in y(ℓ/3, t), because they have a node at x = ℓ/3.
This is a problem at every rational proportion of the string length.

It is becoming clear that Bernoulli’s form (3.2.7) of the solution of the
wave equation is going to be easier to use for this problem than d’Alembert’s.

Since we are interested in functions y(x0, t) of the form shown in the
diagrams at the beginning of this section, we may choose to measure time in
such a way that y(x0, t) is an odd function of t, so that only sine waves and
not cosine waves come into the Fourier series. So we set

y(x0, t) =

∞∑

n=1

bn sin

(
nπct

ℓ

)
.

Since the wave equation is linear, we can work with one frequency com-
ponent at a time. So we set y(x0, t) = bn sin(nπct/ℓ). We look for solutions
of the form

f(x) = cn cos
(nπx

ℓ
+ φn

)

and we want to determine cn and φn in terms of bn. We plug into d’Alembert’s
equation (3.2.5)

y(x0, t) = f(x0 + ct)− f(−x0 + ct)
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to get

bn sin

(
nπct

ℓ

)
= cn cos

(
nπ(x0 + ct)

ℓ
+ φn

)
+ cn cos

(
nπ(−x0 + ct)

ℓ
+ φn

)
.

Using equation (1.8.11), this becomes

bn sin

(
nπct

ℓ

)
= 2cn sin

(nπx0

ℓ

)
sin

(
nπct

ℓ
+ φn

)
.

Since this is supposed to be an identity between functions of t, we get φn = 0
and

bn = 2cn sin
(nπx0

ℓ

)
.

We now have a problem, very similar to the problem we ran into when we
tried to use d’Alembert’s solution. Namely, if sin(nπx0/ℓ) happens to be zero
and bn 6= 0, then there is no solution. So if x0 is a rational multiple of ℓ then
some frequency components are forced to be missing from y(x0, t). Apart
from that, we have almost solved the problem. The value of cn is

cn =
bn

2 sin(nπx0/ℓ)

and so

f(x) =

∞∑

n=1

bn sin(nπx/ℓ)

2 sin(nπx0/ℓ)
. (3.4.1)

The solution of the wave equation is then given by plugging this into the for-
mula (3.2.5). Using equation (1.8.9) we get

y = f(x+ ct)− f(−x+ ct) =
∞∑

n=1

bn
sin(nπx/ℓ) cos(nπct/ℓ)

sin(nπx0/ℓ)
.

The only thing that isn’t clear so far is when the sum (3.4.1) converges.
This is a point that we shall finesse by using Helmholtz’s observation that in
the case of a bowed string, for any chosen value of x0 we have a triangular
waveform

y(x0, t) =




A t
α −α ≤ t ≤ α

A
ℓ− ct
ℓ− cα α ≤ t ≤ 2ℓ

c − α
where α is some number depending on x0, determining how long the lead-
ing edge of the triangular waveform lasts at the position x0 along the string.
The quantity A also depends on x0, and represents the maximum amplitude
of the vibration at that point. Using equation (2.2.9), we then calculate

bn =
c

ℓ

∫ α

−α
A
t

α
sin

(
nπct

ℓ

)
dt+

c

ℓ

∫ 2ℓ
c
−α

α
A
ℓ− ct
ℓ− cα sin

(
nπct

ℓ

)
dt

=
2Aℓ2

n2π2cα(ℓ− cα)
sin
(nπcα

ℓ

)
,
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so that

cn =
Aℓ2

n2π2cα(ℓ− cα)

sin(nπcα/ℓ)

sin(nπx0/ℓ)
.

Since the ratios of the cn can’t depend on the value of x0 which we chose for
our initial measurements, the only way this can work is if the two sine terms
in this equation are equal, namely if

πcα

ℓ
=
πx0

ℓ
,

or
α = x0/c.

So if we measure the vibration at x0 then the proportion α/(ℓ/c) of the cy-
cle spent in the trailing part of the triangular wave is equal to x0/ℓ. In par-
ticular, if we measure at the bowing point, we obtain the following principle.

The proportion of the cycle for which the bow slips on the
string is the same as the proportion of the string between
the bow and the bridge.

Now A is just some constant depending on x0. Since cn doesn’t de-
pend on x0, the constant A/cα(ℓ− cα) = A/x0(ℓ− x0) must be independent
of x0. If we write K for this quantity, we obtain a formula for amplitude in
terms of position along the string,

A = Kx0(ℓ− x0).

This formula explains the parabolic amplitude envelope for the vibration of
the bowed string.

Further reading:

L. Cremer, The physics of the violin [25].

F. G. Friedlander, On the oscillations of a bowed string, Math. Proc. Camb. Phil.
Soc. 49 (3) (1953), 516–530.

Joseph B. Keller, Bowing of violin strings, Comm. Pure and Appl. Math. 6 (1953),
483–495.

B. Lawergren, On the motion of bowed violin strings, Acustica 44 (1980), 194–206.

C. V. Raman, On the mechanical theory of the vibrations of bowed strings and of mu-
sical instruments of the violin family, with experimental verification of the results:
Part I, Indian Assoc. Cultivation Sci. Bull. 15 (1918), 1–158.

J. C. Schelleng, The bowed string and the player, J. Acoust. Soc. Amer. 53 (1)
(1973), 26–41.

J. C. Schelleng, The physics of the bowed string, Scientific American 235 (1) (1974),
87–95. Reproduced in Hutchins, The Physics of Music, W. H. Freeman and Co, 1978.

Lily M. Wang and Courtney B. Burroughs, Acoustic radiation from bowed violins,

J. Acoust. Soc. Amer. 110 (1) (2001), 543–555.
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3.5. Wind instruments

To understand the vibration of air in a tube or pipe, we introduce two
variables, displacement and acoustic pressure. Both of these will end up sat-
isfying the wave equation, but with different phases.

We consider the air in the tube to have a rest position, and the wave
motion is expressed in terms of displacement from that position. So let x de-
note position along the tube, and let ξ(x, t) denote the displacement of the
air at position x at time t. The pressure also has a rest value, namely the
ambient air pressure ρ. We measure the acoustic pressure p(x, t) by subtract-
ing ρ from the absolute pressure P (x, t), so that

p(x, t) = P (x, t)− ρ.
Hooke’s law in this situation states that

p = −B ∂ξ
∂x

where B is the bulk modulus of air. Newton’s second law of motion implies
that

∂p

∂x
= −ρ∂

2ξ

∂t2
.

Combining these equations, we obtain the equations

∂2ξ

∂x2
=

1

c2
∂2ξ

∂t2
(3.5.1)

and
∂2p

∂x2
=

1

c2
∂2p

∂t2
. (3.5.2)

where c =
√
B/ρ. These equations are the wave equation for displacement

and acoustic pressure respectively.
The boundary conditions depend upon whether the end of the tube is

open or closed. For a closed end of a tube, the displacement ξ is forced to be
zero for all values of t. For an open end of a tube, the acoustic pressure p is
zero for all values of t.

Bone flute from Henan province, China, 6000 b.c.e. Picture from Music
in the age of Confucius, p. 90. The oldest known flute is 35,000 years
old, made from the tusk of the now extinct woolly mammoth. It was dis-
covered in a German cave in December 2004.

So for a tube open at both ends, such as the flute, the behaviour of
the acoustic pressure p is determined by exactly the same boundary condi-
tions as in the case of a vibrating string. It follows that d’Alembert’s solu-
tion given in §3.2 works in this case, and we again get integer multiples of
a fundamental frequency. The basic mode of vibration is a sine wave, repre-
sented by the following diagram. The displacement is also a sine wave, but
with a different phase.



100 3. A MATHEMATICIAN’S GUIDE TO THE ORCHESTRA

pressure displacement

Bear in mind that the vertical axis in this diagram actually represents
horizontal displacement or pressure, and not vertical, because of the longitu-
dinal nature of air waves. Furthermore, the two parts of the graphs only rep-
resent the two extremes of the motion. In these diagrams, the nodes of the
pressure diagram correspond to the antinodes of the displacement diagram
and vice versa. The second and third vibrational modes will be represented
by the following diagrams.

Tubes or pipes which are closed at one end behave differently, because
the displacement is forced to be zero at the closed end. So the first two modes
are as follows. In these diagrams, the left end of the tube is closed.

pressure displacement

It follows that for closed tubes, odd multiples of the fundamental fre-
quency dominate. For example, as mentioned above, the flute is an open
tube, so all multiples of the fundamental are present. The clarinet is a closed
tube, so odd multiples predominate.

Conical tubes are equivalent to open tubes of the same length, as il-
lustrated by the following diagrams. These diagrams are obtained from the
ones for the open tube, by squashing down one end.

pressure displacement
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The oboe has a conical bore so again all multiples are present. This
explains why the flute and oboe overblow at the octave, while the clarinet
overblows at an octave plus a perfect fifth, which represents tripling the fre-
quency. The odd multiples of the fundamental frequency dominate for a clar-
inet, although in practice there are small amplitudes present for the even
ones from four times the fundamental upwards as well.

At this point, it should be mentioned that for an open end, p = 0 is
really only an approximation, because the volume of air just outside of the
tube is not infinite. A good way to adjust to make a more accurate represen-
tation of an actual tube is to work in terms of an effective length, and con-
sider the tube to end a little beyond where it really does. The following di-
agram shows the effective length for the fundamental vibrational mode of a
flute, with all holes closed.

The end correction is the amount by which the effective length exceeds the
actual length, and under normal conditions it is usually somewhere around
three fifths of the width of the tube.

The effect of an open hole is to decrease the effective length of the tube.
Here is a diagram of the first vibrational mode with one open hole.

The effective length of the tube can be seen by continuing the left part of
the wave as though the hole doesn’t exist, and seeing where the wave ends.
This is represented by the dotted lines in the diagram. The larger the hole,
the greater the effect on the effective length.

So what happens when the flutist blows into the mouthpiece of the
flute? How does this cause a note to sound? The following pictures, adapted
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from stroboscopic experiments of Coltman using smoke particles, show how
the airstream varies with time. The arrow represents the incoming air stream.

ւ ւ ւ ւ ւ ւ ւ ւ

This air pattern results in a series of vortices being sent down the tube.
When the vortices get to the end of the tube, they are reflected back up.
They reach the beginning of the tube and are reflected again. Some of these
will be out of phase with the new vortices being generated, and some will
be in phase. The ones that are in phase reinforce, and feed back to build
up a coherent tone. This in turn makes it more favourable for vortices to be
formed in synchronization with the tone.

Further reading:

R. Dean Ayers, Lowell J. Eliason and Daniel Mahgerefteh, The conical bore in mu-
sical acoustics, Amer. J. Physics 53 (6) (1985), 528–537.

Giles Brindley, The standing wave-patterns of the flute, Galpin Society Journal 24
(1971), 5–15.

John W. Coltman, Acoustics of the flute, Physics Today 21 (11) (1968), 25–32.
Reprinted in Rossing [125].

Neville H. Fletcher and Thomas D. Rossing, The physics of musical instruments
[39]. Part IV, Wind instruments.

Ian Johnston, Measured tones [66], pages 207–233.

C. J. Nederveen, Acoustical aspects of woodwind instruments [98].

T. D. Rossing, The science of sound [128], §12.
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3.6. The drum

The Timpani (Gerard Hoffnung)

Consider a circular drum whose skin has area density (mass per unit
area) ρ. If the boundary is under uniform tension T , this ensures that the
entire surface is under the same uniform tension. The tension is measured in
force per unit distance (newtons per meter).

To understand the wave equation in two dimensions, for a membrane
such as the surface of a drum, the argument is analogous to the one dimen-
sional case. We parametrise the surface with two variables x and y, and we
use z to denote the displacement perpendicular to the surface. Consider a
rectangular element of surface of width ∆x and length ∆y. Then the ten-
sion on the left and right sides is T∆y, and the argument which gave equa-
tion (3.2.1) in the one dimensional case shows in this case that the difference
in vertical components is approximately

(T∆y)

(
∆x

∂2z

∂x2

)
.

Similarly, the difference in vertical components between the front and back
of the rectangular element is approximately

(T∆x)

(
∆y

∂2z

∂y2

)
.

So the total upward force on the element of surface is approximately

T∆x∆y

(
∂2z

∂x2
+
∂2z

∂y2

)
.
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The mass of the element of surface is approximately ρ∆x∆y, so Newton’s
second law of motion gives

T∆x∆y

(
∂2z

∂x2
+
∂2z

∂y2

)
≈ (ρ∆x∆y)

∂2z

∂t2
.

Dividing by ∆x∆y, we obtain the wave equation in two dimensions, namely
the partial differential equation

ρ
∂2z

∂t2
= T

(
∂2z

∂x2
+
∂2z

∂y2

)
.

As in the one dimensional case, we set c =
√
T/ρ, which will play the role of

the speed of the waves on the membrane. So the wave equation becomes

∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
.

Converting to polar coordinates (r, θ) and using equation (P.4), we obtain

∂2z

∂t2
= c2

(
∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2
∂2z

∂θ2

)
. (3.6.1)

We look for separable solutions of this equation, namely solutions of the form

z = f(r)g(θ)h(t).

The reason for looking for separable solutions will be explained further in the
next section. Substituting this into the wave equation, we obtain

f(r)g(θ)h′′(t) = c2
(
f ′′(r)g(θ)h(t) +

1

r
f ′(r)g(θ)h(t) +

1

r2
f(r)g′′(θ)h(t)

)
.

Dividing by f(r)g(θ)h′′(t) gives

h′′(t)
h(t)

= c2
(
f ′′(r)
f(r)

+
1

r

f ′(r)
f(r)

+
1

r2
g′′(θ)
g(θ)

)
.

In this equation, the left hand side only depends on t, and is independent of r
and θ, while the right hand side only depends on r and θ, and is independent
of t. Since t, r and θ are three independent variables, this implies that the
common value of the two sides is independent of t, r and θ, so that it has to
be a constant. We shall see in the next section that this constant has to be a
negative real number, so we shall write it as −ω2. So we obtain two equations,

h′′(t) = −ω2h(t), (3.6.2)

f ′′(r)
f(r)

+
1

r

f ′(r)
f(r)

+
1

r2
g′′(θ)
g(θ)

= −ω
2

c2
. (3.6.3)

The general solution to equation (3.6.2) is a multiple of the solution

h(t) = sin(ωt+ φ),
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where φ is a constant determined by the initial temporal phase. Multiplying
equation (3.6.3) by r2 and rearranging, we obtain

r2
f ′′(r)
f(r)

+ r
f ′(r)
f(r)

+
ω2

c2
r2 = −g

′′(θ)
g(θ)

.

The left hand side depends only on r, while the right hand side depends only
on θ, so their common value is again a constant. This makes g(θ) either a
sine function or an exponential function, depending on the sign of the con-
stant. But the function g(θ) has to be periodic of period 2π since it is a func-
tion of angle. So the common value of the constant must be the square of an
integer n, so that

g′′(θ) = −n2g(θ)

and g(θ) is a multiple of sin(nθ + ψ). Here, ψ is another constant represent-
ing spatial phase. So we obtain

r2
f ′′(r)
f(r)

+ r
f ′(r)
f(r)

+
ω2

c2
r2 = n2.

Multiplying by f(r), dividing by r2 and rearranging, this becomes

f ′′(r) +
1

r
f ′(r) +

(
ω2

c2
− n2

r2

)
f(r) = 0.

Now Exercise 2 in §2.10 shows that the general solution to this equation is
a linear combination of Jn(ωr/c) and Yn(ωr/c). But the function Yn(ωr/c)
tends to −∞ as r tends to zero, so this would introduce a singularity at the
centre of the membrane. So the only physically relevant solutions to the above
equation are multiples of Jn(ωr/c). So we have shown that the functions

z = AJn(ωr/c) sin(ωt+ φ) sin(nθ + ψ)

are solutions to the wave equation.
If the radius of the drum is a, then the boundary condition which we

must satisfy is that z = 0 when r = a, for all values of t and θ. So it follows
that Jn(ωa/c) = 0. This is a constraint on the value of ω. The function Jn
takes the value zero for a discrete infinite set of values of its argument. So ω
is also constrained to an infinite discrete set of values.

It turns out that linear combinations of functions of the above form
uniformly approximate the general, twice continuously differentiable solution
of (3.6.1) as closely as desired, so that these form the drum equivalent of the
sine and cosine functions of Fourier series.

Here is a table of the first few zeros of the Bessel functions. For more,
see Appendix B.

k J0 J1 J2 J3 J4

1 2.40483 3.83171 5.13562 6.38016 7.58834

2 5.52008 7.01559 8.41724 9.76102 11.06471

3 8.65373 10.17347 11.61984 13.01520 14.37254
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We have seen that to choose a vibrational mode, we must choose a nonneg-
ative integer n and we must choose a zero of Jn(z). Denoting the kth zero
of Jn by jn,k, the corresponding vibrational mode has frequency (cjn,k/2πa),
which is jn,k/j0,1 times the fundamental frequency. The stationary points
have the following pictures. Underneath each picture, we have recorded the
value of jn,k/j0,1 for the relative frequency.
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In the late eighteenth century, Chladni6 discovered a way to see nor-
mal modes of vibration. He was interested in the vibration of plates, but
the same technique can be used for drums and other instruments. He placed
sand on the plate and then set it vibrating in one of its normal modes, us-
ing a violin bow. The sand collects on the stationary lines and gives a pic-
ture similar to the ones described above for the drum. A picture of Chladni
patterns on a kettledrum can be found on page 107.

In practice, for a drum in which the air is confined (such as a kettle-
drum) the fundamental mode of the drum is heavily damped, because it in-
volves compression and expansion of the air enclosed in the drum. So what
is heard as the fundamental is really the mode with n = 1, k = 1, namely the
second entry in the top row in the above diagram. The higher modes mostly
involve moving the air from side to side. The inertia of the air has the effect
of raising the frequency of the modes with n = 0, especially the fundamen-
tal, while the modes with n > 0 are lowered in frequency in such a way as
to widen the frequency gaps. For an open drum, on the other hand, all the
vibrational frequencies are lowered by the inertia of the air, but the ones of
lower frequency are lowered the most.

The design of the orchestral kettledrum carefully utilises the inertia of
the air to arrange for the modes with n = 1, k = 1 and n = 2, k = 1 to have
frequency ratio approximating 3:2, so that we might expect to perceive a

6E. F. F. Chladni, Entdeckungen über die Theorie des Klanges, Weidmanns Erben und
Reich, Leipzig, 1787.
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Chladni patterns on a kettledrum
from Risset, Les instruments de l’orchestre
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missing fundamental at half the actual fundamental frequency. Furthermore,
the modes with n = 3, 4 and 5 (still with k = 1) are arranged to approxi-
mate frequency ratios of 4:2, 5:2 and 6:2 with the n = 1, k = 1 mode, which
might be expected to accentuate the perception of the missing fundamental.
In fact some listeners perceive the actual fundamental and some the missing
fundamental as the pitch of the drum. For further information on this issue,
see the discussion on pages 417–8 of Campbell and Greated. The frequency
of the n = 1, k = 1 mode is called the nominal frequency of the drum.

It is not true that the air in the kettle of a kettledrum acts as a res-
onator. A kettledrum can be retuned by a little more than a perfect fourth,
whereas if the air were acting as a resonator, it could only do so for a small
part of the frequency range. In fact, the resonances of the body of air are usu-
ally much higher in pitch, and do not have much effect on the overall sound.
A more important effect is that the underside of the drum skin is prevented
from radiating sound, and this makes the radiation of sound from the upper
side more efficient.

Exercises

1. The women of Portugal (never the men) play a double sided square drum called

an adufe. Find the separable solutions (i.e., the ones of the form z = f(x)g(y)h(t))

to the wave equation for a square drum. Write the answer in the form of an essay,

with title: “What does a square drum sound like?”. Try to integrate the words with

the mathematics. Explain what you’re doing at each step, and don’t forget to an-

swer the title question (i.e., describe the frequency spectrum).

Further reading:

Murray Campbell and Clive Greated, The musician’s guide to acoustics [15], chap-
ter 10.

R. Courant and D. Hilbert, Methods of mathematical physics, I, Interscience, 1953,
§V.5.

William C. Elmore and Mark A. Heald, Physics of waves [37], chapter 2.

Neville H. Fletcher and Thomas D. Rossing, The physics of musical instruments
[39], §18.

C. V. Raman, The Indian musical drums, Proc. Indian Acad. Sci. A1 (1934), 179–
188. Reprinted in Rossing [125].

B. S. Ramakrishna and Man Mohan Sondhi, Vibrations of Indian musical drums re-
garded as composite membranes, J. Acoust. Soc. Amer. 26 (4) (1954), 523–529.

Thomas D. Rossing, Science of percussion instruments [126].
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3.7. Eigenvalues of the Laplace operator

In this section, we put the discussion of the vibrational modes of the
drum into a broader context. Namely, we explain the relationship between
the shape of a drum and its frequency spectrum, in terms of the eigenvalues
of the Laplace operator. This discussion explains the connection between the
uses of the word “spectrum” in linear algebra, where it refers to the eigen-
values of an operator, and in music, where it refers to the distribution of fre-
quency components. Parts of this discussion assume that the reader is famil-
iar with elementary vector calculus and the divergence theorem.

We write ∇2 for the operator ∂2

∂x2 + ∂2

∂y2
. This is known as the Laplace

operator (in three dimensions the Laplace operator∇2 denotes ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
;

the analogous operator makes sense for any number of variables). In this no-
tation, the wave equation becomes

∂2z

∂t2
= c2∇2z.

We consider the solutions to this equation on a closed and bounded region
Ω. So for the drum of the last section, Ω was a disc in two dimensions.

A separable solution to the wave equation is one of the form

z = f(x, y)h(t).

Substituting into the wave equation, we obtain

f(x, y)h′′(t) = c2∇2f(x, y)h(t)

or
h′′(t)
h(t)

= c2
∇2f(x, y)

f(x, y)
.

The left hand side is independent of x and y, while the right hand side is in-
dependent of t, so their common value is a constant. We write this constant
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as −ω2, because it will transpire that it has to be negative. Then we have

g′′(t) = −ω2g(t), (3.7.1)

∇2f(x, y) = −ω
2

c2
f(x, y). (3.7.2)

The first of these equations is just the equation for simple harmonic motion
with angular frequency ω, so the general solution is

g(t) = A sin(ωt+ φ).

A non-zero, twice differentiable function f(x, y) satisfying the second equa-
tion is called an eigenfunction of the Laplace operator ∇2 (or more accu-
rately, of −∇2), with eigenvalue

λ = ω2/c2. (3.7.3)

There are two important kinds of eigenfunctions and eigenvalues. The Dirich-
let spectrum is the set of eigenvalues for eigenfunctions which vanish on the
boundary of the region Ω. The Neumann spectrum is the set of eigenvalues
for eigenfunctions with vanishing derivative normal (i.e., perpendicular) to
the boundary. The latter functions are important when studying the wave
equation for sound waves, where the dependent variable is acoustic pressure
(i.e., pressure minus the average ambient pressure).

For the benefit of the reader who knows vector calculus, in Appen-
dix W we give a treatment of the solution of the wave equation, and justify
the method of separation of variables. There, you can find the proof that the
eigenvalues of −∇2 (i.e., the values of λ for which ∇2z = −λz has a non-zero
solution) are positive and real, along with many other standard facts about
the wave equation, which we now summarise.

We can choose Dirichlet eigenfunctions f1, f2, . . . of −∇2 on Ω with
eigenvalues 0 < λ1 ≤ λ2 ≤ . . . with the following properties.

(i) Every eigenfunction is a finite linear combination of eigenfunctions
fi for which the λi are equal.

(ii) Each eigenvalue is repeated only a finite number of times.

(iii) lim
n→∞

λn =∞.

(iv) (Completeness) Every continuous function can be written as a
sum of an absolutely and uniformly convergent series of the form f(x, y) =∑

i aifi(x, y).

The eigenvalue λi determines the frequency of the corresponding vibra-
tion via (3.7.3):

ωi = c
√
λi, νi = c

√
λi/2π. (3.7.4)

(recall that angular velocity ω is related to frequency ν by ω = 2πν).
Initial conditions for the wave equation on Ω are specified by stipulating

the values of z and ∂z
∂t for (x, y) in Ω, at t = 0. To solve the wave equation sub-

ject to these initial conditions, we use completeness to write z =
∑

i aifi(x, y)
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and ∂z
∂t =

∑
i bifi(x, y) at t = 0. Then the unique solution is given by

z =
∑

λ

fi(x, y)

(
ai cos(c

√
λ t) +

bi

c
√
λ

sin(c
√
λ t)

)
.

For further details, see Appendix W, and in particular, equation (W.37).
We have phrased the above discussion in terms of the two dimensional

wave equation, but the same arguments work in any number of dimensions.
For example, in one dimension it corresponds to the vibrational modes of a
string, and we recover the theory of Fourier series.

An interesting problem, which was posed by Mark Kac in 1965 and
solved by Gordon, Webb and Wolpert in 1991, is whether one can hear the
shape of a drum. In other words, can one tell the shape of a simply connected
closed region in two dimensions from its Dirichlet spectrum? Simply con-
nected just means there are no holes in the region. Based on a method de-
veloped by Sunada a few years previously, Gordon, Webb and Wolpert found
examples of pairs of regions with the same Dirichlet spectrum. The example
which appears in their paper is the following.

@
@�

�

@
@

�
�

�
�

�
�

Admittedly, it had probably not occurred to anyone to make drums using vi-
brating surfaces of these shapes, prior to this investigation. Many other pairs
of regions with the same Dirichlet spectrum have been found. An example
is worked out in detail at the end of Appendix W; this and many more can
be found in the paper of Buser, Conway, Doyle and Semmler listed below. It
is still not known whether there are any convex examples, though Watanabe
has produced examples of convex shapes which can be determined by their
Dirichlet spectrum.

There is an extensive literature relating eigenvalues to the shape of the
region. One example is Hayman’s Theorem, which states that in order for a
drum to produce a deep note, it must contain a large circular region. Osser-
man improved Hayman’s result, and the following theorem is a precise state-
ment of the improved result.
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Theorem 3.7.1 (Hayman, Osserman). Let Ω be a simply connected
closed bounded region in the plane, and let λ be the smallest Dirichlet eigen-
value of the Laplace operator on the region Ω. Then Ω contains a circular
region of radius at least 1

2λ .

Further reading:

P. Buser, J. H. Conway, P. Doyle and K.-D. Semmler, Some planar isospectral do-
mains, International Mathematics Research Notices (1994), 391–400.

S. J. Chapman, Drums that sound the same, Amer. Math. Monthly 102 (2) (1995),
124–138.

Tobin Driscoll, Eigenmodes of isospectral drums, SIAM Rev. 39 (1997), 1-17.

Carolyn Gordon, David L. Webb, and Scott Wolpert, One cannot hear the shape of
a drum, Bulletin of the Amer. Math. Soc. 27 (1992), 134–138.

Carolyn Gordon, David L. Webb, and Scott Wolpert, Isospectral plane domains and
surfaces via Riemannian orbifolds, Invent. Math. 110 (1992), 1–22.

W. K. Hayman, Some bounds for principal frequency, Applicable Anal. 7 (1977/8),
247–254.

V. E. Howle and Lloyd N. Trefethen, Eigenvalues and musical instruments, J. Com-
putational & Appl. Math. 135 (2001), 23–40.

Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73, (1966),
1–23.

Y. Okada, A. Shudo, S. Tasaki and T. Harayama, ‘Can one hear the shape of a
drum?’: revisited, J. Phys. A: Math. Gen. 38 (2005), L163–L170.

R. Osserman, A note on Hayman’s theorem on the bass note of a drum, Comment.
Math. Helv. 52 (1977), 545–555.

M. H. Protter, Can one hear the shape of a drum? Revisited, SIAM Rev. 29 (1987),
185–197.

K. Stewartson and R. T. Waechter, On hearing the shape of a drum: further results,
Proc. Camb. Phil. Soc. 69 (1971), 353–363.

T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. 121
(1985), 169–186.

K. Watanabe, Plane domains which are spectrally determined, Annals of Global

Analysis and Geometry 18 (2000), 447–475.
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3.8. The horn

Tuba curva, Pompeii, first century c.e.

Musée Instrumental, Brussels, Belgium

The horn, and other instruments of the brass family, can be regarded
as a hard walled tube of varying cross-section. Fortunately, the cross-section
matters more than the exact shape and curvature of the tube.

If A(x) represents the cross-section as a function of position x along
the tube, then assuming that the wavefronts are approximately planar and
propagate along the direction of the horn, equation (3.5.2) can be modified
to Webster’s horn equation

1

A(x)

∂

∂x

(
A(x)

∂p

∂x

)
=

1

c2
∂2p

∂t2
, (3.8.1)

or equivalently
∂2p

∂x2
+

1

A

dA

dx

∂p

∂x
=

1

c2
∂2p

∂t2
.

Solutions of this equation can be described using the theory of Sturm–
Liouville equations. The theory of Sturm–Liouville equations is described in
many standard texts on partial differential equations, and is a direct gener-
alization of our discussion of the wave equation in §3.6 and Appendix W.

There is one particular form of A(x) which is of physical importance
because it gives a good approximation to the shape of actual brass instru-
ments while at the same time giving an equation with relatively simple solu-
tions. Namely, the Bessel horn, with cross section of radius and area

R(x) = bx−α, A(x) = πR(x)2 = Bx−2α.

Here, the origin of the x coordinate and the constant b are chosen to give
the correct radius at the two ends of the horn, and B = πb2. Notice that the
constant B disappears when A(x) is put into equation (3.8.1). The param-
eter α is the “flare parameter” that determines the shape of the flare of the
horn. The case α = 0 gives a conical tube, and we shall usually assume that
α ≥ 0. The solutions are sums of ones of the form

p(x, t) = xα+ 1
2Jα+ 1

2
(ωx/c)(a cos ωt+ b sinωt). (3.8.2)

Here, as usual, the angular frequency ω must be chosen so that the bound-
ary conditions are satisfied at the ends of the horn.
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Exercises

1. Verify that (3.8.2) is a solution of equation (3.8.1) with the given value of
A(x). You will need to use Bessel’s differential equation (2.10.1) with n re-
placed by α+ 1

2 and z replaced by ωx/c.

Further reading:

E. Eisner, Complete solutions of the “Webster” horn equation, J. Acoust. Soc. Amer.
41 (4B) (1967), 1126–1146.

Neville H. Fletcher and Thomas D. Rossing, The physics of musical instruments
[39], §8.6.

Osman K. Mawardi, Generalized solutions of Webster’s horn theory, J. Acoust. Soc.
Amer. 21 (4) (1949), 323–330.

Thomas D. Rossing, The science of sound [128], §11.

A. G. Webster, Acoustical impedance, and the theory of horns and of the phono-

graph, Proc. Nat. Acad. Sci. (US) 5 (7) (1919), 275–282.

3.9. Xylophones and tubular bells

Xylophone, made by Yayi Coulibaly (1947), from Jacqueline Cogdell DjeDje,
“Turn up the volume! A celebration of African music,” UCLA 1999, p. 253.

In this section we examine the theory of transverse waves in a slender
stiff rod. This theory applies to instruments such as the xylophone and the
tubular bells. We shall see that in this case, just as in the case of the drum,
the vibrational modes do not consist of integer multiples of a fundamental fre-
quency. Our goal will be to derive and solve the differential equation (3.9.2).

As well as the assumptions made in §3.2 about small angles, the ba-
sic assumption we shall make in order to obtain the appropriate differential
equation is that terms coming from the resistance to motion caused by the
rotational inertia of a segment of the rod are very small compared with terms
coming from (vertical) linear inertia. This is only realistic for a slender rod.
The upshot of this assumption is that the total torque on a segment of rod
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can be taken to be zero. Recall that if we try to twist an object about an
axis, by applying a force F at distance s from the axis, then the torque ap-
plied is defined to be Fs. This is reasonable because the effect of such a turn-
ing force is proportional to the distance from the axis, as well as to the mag-
nitude of the force.

s

F

Torque = Fs

Consider a segment of rod of length ∆x, and let V (x) be the vertical
force (or shearing force) applied by the left end of the segment on the right
end of the adjacent segment.

V (x+ ∆x)

V (x)

M(x+ ∆x)M(x)

∆x
2

The torque on the segment due to this shearing force is

−V (x)

(
∆x

2

)
− V (x+ ∆x)

(
∆x

2

)
≈ −V (x)∆x

(the minus sign is because we regard counterclockwise as the positive direc-
tion for torque). Since we are regarding rotational inertia as negligible, this
means that the torque, or bending moment, M(x) applied by the segment on
the adjacent segment satisfies

M(x+ ∆x)−M(x)− V (x)∆x ≈ 0,

or

V (x) ≈ M(x+ ∆x)−M(x)

∆x
.

Taking limits as ∆x→ 0, we obtain

V (x) =
dM(x)

dx
.
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The upward force on the segment can now be calculated as

V (x)− V (x+ ∆x) ≈ −∆x
dV (x)

dx
≈ −∆x

d2M(x)

dx2
.

Now the functions V (x), M(x), etc. are really functions of both x and
t; we have suppressed the dependence on t in the above discussion. So we re-
ally need to write the total upwards force on the segment as

−∆x
∂2M(x, t)

∂x2
.

If the linear density of the rod is ρ (measured in kg/m) then the mass
of the segment is ρ∆x. Writing y for the vertical displacement, Newton’s sec-
ond law of motion gives

−∆x
∂2M

∂x2
= ρ∆x

∂2y

∂t2
,

or
∂2y

∂t2
+

1

ρ

∂2M

∂x2
= 0. (3.9.1)

Now the bending moment M causes the rod to bend, and so there is
a close relationship between M and ∂2y/∂x2. To understand this relation-
ship, we must begin by introducing the concepts of stress, strain and Young’s
modulus. If a force F = F2 − F1 stretches or compresses a stiff slender rod
of length L and cross-sectional area A,

F2F1

L

then the length will increase by an amount ∆L. The tension stress (or just
the tension) is defined to be

f = F/A.

The tension strain (or extension) is defined to be the proportional increase
in length,

ǫ = ∆L/L.

Hooke’s law for a stiff rod states that the extension is proportional to the
tension,

f = Eǫ.

The constant of proportionality E is called the Young’s modulus7 (or longi-
tudinal elasticity). Values for the Young’s modulus for various materials at
room temperature (18oC) are given in the following table.

7Named after the British physicist and physician Thomas Young (1773–1829).
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Material Young’s modulus (N/m2)

Aluminium 7.05 × 1010

Brass 9.7–10.4 × 1010

Copper 12.98 × 1010

Gold 7.8 × 1010

Iron 21.2 × 1010

Lead 1.62 × 1010

Silver 8.27 × 1010

Steel 21.0 × 1010

Zinc 9.0 × 1010

Glass 5.1–7.1 × 1010

Rosewood 1.2–1.6 × 1010

Now we are ready to examine the segment of rod in more detail as it
bends. There is a neutral surface in the middle of the rod, which is neither
compressed nor stretched. It is represented by the dotted line in the dia-
gram below. One side of this surface the horizontal filaments of rod are com-
pressed, the other side they are stretched. Denote by η the distance from the
neutral surface to the filament.

η
θ(x)

θ(x+∆x)

Write R for the radius of curvature of the neutral surface, so that the
length of the segment at the neutral surface is R∆θ. The length of the fila-
ment is (R − η)∆θ, so the tension strain is −(η∆θ)/(R∆θ) = −η/R. So by
Hooke’s law, the tension stress on the filament is −Eη∆A/R, where ∆A is
the cross-sectional area of the filament.

Since the total horizontal force is supposed to be zero, we have

−E
R

∫
η dA = 0

so that
∫
η dA = 0. This says that the neutral surface passes through the

centroid of the cross-sectional area. The total bending moment is obtained
by multiplying by −η and integrating:8

M =
E

R

∫
η2 dA.

8The minus sign comes from the fact that counterclockwise moment is positive.
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The quantity I =
∫
η2 dA is called the sectional moment of the cross-section

of the rod. So we obtain M = −EI/R. Now the formula for radius of cur-

vature is R =
(
1 + (dydx )2

) 3
2 /d

2y
dx2 . Assuming that dy

dx is small, this can be ap-

proximated by the formula 1/R = d2y
dx2 , so that

M(x, t) = EI
∂2y

∂x2
.

Combining this with equation (3.9.1) gives

∂2y

∂t2
+
EI

ρ

∂4y

∂x4
= 0. (3.9.2)

This is the differential equation which governs the transverse waves on the
rod. It is known as the Euler–Bernoulli beam equation.

We look for separable solutions to equation (3.9.2). Setting

y = f(x)g(t)

we obtain

f(x)g′′(t) +
EI

ρ
f (4)(x)g(t) = 0

or
g′′(t)
g(t)

= −EI
ρ

f (4)(x)

f(x)
.

Since the left hand side does not depend on x and the right hand side does
not depend on t, both sides are constant. So

g′′(t) = −ω2g(t) (3.9.3)

f (4)(x) =
ω2ρ

EI
f(x). (3.9.4)

Equation (3.9.3) says that g(t) is a multiple of sin(ωt + φ), while equation
(3.9.4) has solutions

f(x) = A sin κx+B cos κx+ C sinhκx+D cosh κx

where

κ =
4

√
ω2ρ

EI
(3.9.5)

(see Appendix C for the hyperbolic functions sinh and cosh). The general
solution then decomposes as a sum of the normal modes

y = (A sin κx+B cos κx+ C sinhκx+D coshκx) sin(ωt + φ). (3.9.6)

The boundary conditions depend on what happens at the end of the
rod. It is these boundary conditions which constrain ω to a discrete set of
values. If an end of the rod is free, then the quantities V (x, t) and M(x, t)
have to vanish for all t, at the value of x corresponding to the end of the rod.
So ∂2y/∂x2 = 0 and ∂3y/∂x3 = 0. If an end of the rod is clamped, then the
displacement and slope vanish, so y = 0 and ∂y/∂x = 0 for all t at the value
of x corresponding to the end of the rod.
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We calculate

∂y/∂x = κ(A cos κx−B sinκx+ C cosh κx+D sinhκx) sin(ωt+ φ)

∂2y/∂x2 = κ2(−A sinκx−B cos κx+ C sinhκx+D coshκx) sin(ωt+ φ)

∂3y/∂x3 = κ3(−A cos κx+B sinκx+ C cosh κx+D sinhκx) sin(ωt+ φ).

In the case of the xylophone or tubular bell, both ends are free. We take
the two ends to be at x = 0 and x = ℓ. The conditions ∂2y/∂x2 = 0 and
∂3y/∂x3 = 0 at x = 0 give B = D and A = C. These conditions at x = ℓ give

A(sinhκℓ− sinκℓ) +B(cosh κℓ− cos κℓ) = 0

A(cosh κℓ− cos κℓ) +B(sinhκℓ+ sinκℓ) = 0.

These equations admit a non-zero solution in A and B exactly when the de-
terminant

(sinhκℓ− sinκℓ)(sinh κℓ+ sinκℓ)− (coshκℓ− cosκℓ)2

vanishes. Using the relations cosh2 κℓ−sinh2 κℓ = 1 and sin2 κℓ+cos2 κℓ = 1,
this condition becomes

coshκℓ cos κℓ = 1.

The values of κℓ for which this equation holds determine the allowed frequen-
cies via the formula (3.9.5).

Set λ = κℓ, so that λ has to be a solution of the equation

cosh λ cos λ = 1. (3.9.7)

Then equation (3.9.5) shows that the angular frequency and the frequency
are given by

ω =

√
EI

ρ

λ2

ℓ2
; ν =

ω

2π
=

√
EI

ρ

λ2

2πℓ2
. (3.9.8)

Numerical computations for the positive solutions to equation (3.9.7)
give the following values, with more accuracy than is strictly necessary.

λ1 = 4.7300407448627040260240481

λ2 = 7.8532046240958375564770667

λ3 = 10.9956078380016709066690325

λ4 = 14.1371654912574641771059179

λ5 = 17.2787596573994814380910740

λ6 = 20.4203522456260610909364112

As n increases, coshλn increases exponentially, and so cos λn has to be very
small and positive. So λn is close to (n+ 1

2)π, the nth zero of the cosine func-
tion. For n ≥ 5, the approximation
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λn ≈ (n+ 1
2 )π − (−1)n2e−(n+ 1

2
)π − 4e−2(n+ 1

2
)π (3.9.9)

holds to at least 20 decimal places.9

Using equation (3.9.8), we find that the frequency ratios as multiples
of the fundamental are given by the quantities λ2

n/λ
2
1:

n λ2
n/λ

2
1

1 1.00000000000000
2 2.75653850709996
3 5.40391763238332
4 8.93295035238193
5 13.34428669366689
6 18.63788788658119

The resulting set of frequencies is certainly inharmonic, just as in the case
of the drum. But as n increases, equation (3.9.9) shows that the higher par-
tials have ratios approximating those of the squares of odd integers.

The vibrational modes described by the above values of λ correspond
to the following pictures.

λ1

λ2

λ3

etc.

For actual instruments, rather than the idealised bar described above,
the series of partials is somewhat different. Tubular bells are the closest to
the ideal situation described above, with second and third partials at fre-
quency ratios of 2.76:1 and 5.40:1 to the fundamental.

The bars of an orchestral xylophone are made of rosewood, or some-
times of more modern materials which are more durable and keep their pitch

9This series continues as follows:

λn ≈ (n+ 1
2
)π−(−1)n2e−(n+ 1

2
)π−4e−2(n+ 1

2
)π−(−1)n 34

3
e−3(n+ 1

2
)π− 112

3
e−4(n+ 1

2
)π−· · ·

The (difficult) challenge to the reader is to compute the next few terms! As a check, m!
times the fraction in front of the mth exponential term should be an integer. The answer
to this challenge can be found in Appendix A.
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under more extreme conditions. There is a shallow arch cut out from the un-
derside, with the intention of producing frequency ratios of 3:1 and 6:1 for
the second and third partials with respect to the fundamental. These par-
tials correspond to tones an octave and a perfect fifth, respectively two oc-
taves and a perfect fifth above the fundamental.

a a
The marimba is also made of rosewood, and the vibe is made from alu-

minium. For these instruments, a deeper arch is cut out from the underside,
with the intention of producing frequency ratios of 4:1 and (usually) 10:1
with respect to the fundamental. These represent tones two octaves, respec-
tively three octaves and a major third above the fundamental.

a a
The tuning of the second partial can be made quite precise, because ma-

terial removed from different parts of the bar affect different partials. Remov-
ing material from the end increases the fundamental and the partials. Tak-
ing material away from the sides of the arch lowers the second partial, while
taking it from the centre of the arch lowers the fundamental frequency. The
third partial is harder to make accurate; this and the higher partials are part
of the artistic expression of the maker. Tuning can be carried out using stro-
boscopic equipment, which allows for tuning of the fundamental and second
partial to within plus or minus one cent (a cent is a hundredth of a semitone).

Further reading:

Antoine Chaigne and Vincent Doutaut, Numerical simulations of xylophones. I.
Time-domain modeling of the vibrating bars, J. Acoust. Soc. Amer. 101 (1) (1997),
539–557.

R. Courant and D. Hilbert, Methods of mathematical physics, I, Interscience, 1953,
§V.4.

William C. Elmore and Mark A. Heald, Physics of waves [37], Chapter 3.

Neville H. Fletcher and Thomas D. Rossing, The physics of musical instruments
[39], §19.

D. Holz, Investigations on acoustically important qualities of xylophone-bar materi-
als: Can we substitute any tropical woods by European species?, in Proc. Int. Symp.
Musical Acoustics, Jouve, Paris (1995), 351–357.
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A. M. Jones, Africa and Indonesia: the evidence of the xylophone and other musi-
cal and cultural factors, E. J. Brill, Leiden, 1964. This book contains a large num-
ber of measurements of the tuning of African and Indonesian xylophones. The au-
thor argues the hypothesis that there was Indonesian influence on African music,
and therefore visitations to Africa by Indonesians, long before the Portuguese colo-
nization of Indonesia.

James L. Moore, Acoustics of bar percussion instruments, Permus Publications,
Columbus, Ohio, 1978.

Thomas D. Rossing, Science of percussion instruments [126], Chapters 5–7.

B. H. Suits, Basic physics of xylophone and marimba bars, Amer. J. Physics 69 (7)

(2001), 743–750.

3.10. The mbira

At a lecture demonstration I once attended in Seattle, Washington, Dumisani
Maraire, a visiting artist from Zimbabwe, walked onto the stage carrying a round-
box resonator with a fifteen-key instrument inside. He turned toward the audi-
ence and raised the round-box over his head. “What is this?” he called out.

There was no response.
“All right,” he said, “it is an mbira; M-B-I-R-A. Now what did I say it was?”
A few people replied, “Mbira; it is an mbira.” Most of the audience sat still

in puzzlement.
“What is it?” Maraire repeated, as if slightly annoyed.
More people called out, “Mbira.”
“Again,” Maraire insisted.
“Mbira!” returned the audience.
“Again!” he shouted. When the auditorium echoed with “Mbira,” Maraire

laughed out loud. “All right,” he said with good-natured sarcasm, “that is the
way the Christian missionaries taught me to say ‘piano.’ ”

Paul F. Berliner, The soul of mbira.

The mbira is a popular melodic instrument of Africa, especially the
Shona people of Zimbabwe. Other names for the instrument are sanzhi,
likembe and kalimba; the general ethnomusicological category is the lamel-
lophone. It consists of a set of keys on a soundboard, usually with some kind
of resonator such as a gourd for amplifying and transmitting the sound. The
keys are usually metal, clamped at one end and free at the other. They are
depressed with the finger or thumb and suddenly released to produce the vi-
bration.

The method of the §3.9 can be used to analyse the resonant modes of
the keys of the mbira. There is no change up to the point where the bound-
ary conditions are applied to equation (3.9.6). We take the clamped end to
be at x = 0 and the free end at x = ℓ. At x = 0, the condition y = 0 gives
D = −B and ∂y/∂x = 0 gives C = −A. The conditions ∂2y/∂x2 = 0 and
∂3y/∂x3 = 0 at x = ℓ then give

−A(sinκℓ+ sinhκℓ)−B(cos κℓ+ coshκℓ) = 0

−A(cos κℓ+ coshκℓ) +B(sinκℓ− sinhκℓ) = 0.

These equations admit a non-zero solution in A and B exactly when the de-
terminant

−(sinκℓ+ sinhκℓ)(sin κℓ− sinhκℓ)− (cos κℓ+ cosh κℓ)2
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vanishes. This time, the equation reduces to

cosh κℓ cos κℓ = −1.

Setting λ = κℓ as before, we find that λ has to be a solution of the
equation

cosh λ cos λ = −1. (3.10.1)

Then the angular frequency and the frequency are again given by equation
(3.9.8). The following are the first few solutions of equation (3.10.1).

λ1 = 1.8751040687119611664453082

λ2 = 4.6940911329741745764363918

λ3 = 7.8547574382376125648610086

λ4 = 10.9955407348754669906673491

λ5 = 14.1371683910464705809170468

Picture of mbira from Zimbabwe, from Jacqueline Cogdell DjeDje,
“Turn up the volume! A celebration of African music,” UCLA 1999, p. 240.
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λ6 = 17.2787595320882363335439284

Notice that these are approximately the same as the values found in the last
section, except that there is one extra value playing the role of the funda-
mental. The analogue of equation (3.9.9) is

λn ≈ (n− 1
2 )π − (−1)n2e−(n− 1

2
)π − 4e−2(n− 1

2
)π

which holds to at least 20 decimal places for n ≥ 6. The frequency ratios as
multiples of the fundamental are given by the quantities λ2

n/λ
2
1:

n λ2
n/λ

2
1

1 1.00000000000000
2 6.26689302577067
3 17.54748193680844
4 34.38606115720300
5 56.84262292810201
6 84.91303597071318

Of course, the above figures are based on an idealised mbira with con-
stant cross section for the keys. The keys of an actual mbira are very far
from constant in cross section, and so the actual relative frequencies of the
partials may be far from what is described by the above table. But the most
prominent feature, namely that the frequencies of the partials increase quite
rapidly, holds in actual instruments.

Further reading:

Paul F. Berliner, The soul of mbira; music and traditions of the Shona people of

Zimbabwe, University of California Press, 1978. Reprinted by University of Chicago

Press, 1993.

3.11. The gong

As a first approximation, the gong can be thought of as a circular flat
stiff metal plate of uniform thickness. In practice, the gong is slightly curved,
and the thickness is not uniform, but for the moment we shall ignore this.
The stiff metal plate behaves like a mixture of the drum and the stiff rod.
So the partial differential equation governing its motion is fourth order, as in
the case of the stiff rod, but there are two directions in which to take partial
derivatives, as in the case of the drum. If z represents displacement, and x
and y represent Cartesian coordinates on the gong, then the equation is

∂2z

∂t2
+

Eh2

12ρ(1 − s2)∇
4z = 0. (3.11.1)
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This equation first appears (without the explicit value of the constant in front
of the second term) in a paper of Sophie Germain.10 In this equation, h is the

thickness of the plate, and an easy calculation shows that h2

12 = 1
h

∫ +h/2
−h/2 z

2 dz

is the corresponding sectional moment in the one thickness direction (in the
case of the stiff rod, there were two dimensions for the cross-section, so the
case of the stiff plate is easier in this regard). The quantity E is the Young’s
modulus as before, ρ is area density, and s is Poisson’s ratio. This is a mea-
sure of the ratio of sideways spreading to the compression. The extra factor
of (1− s2) in the denominator on the right hand of the above equation does
not correspond to any term in equation (3.9.2). It arises from the fact that
when the plate is bent downwards in one direction, it causes it to curl up in
the perpendicular direction along the plate.

The term ∇4z denotes

∇2∇2z =
∂4z

∂x4
+ 2

∂4z

∂x2∂y2
+
∂4z

∂y4
.

Observe the cross terms carefully. Without them, a rotational change of co-
ordinates would not preserve this operation.

In the case of the stiff rod, we had to use the hyperbolic functions as
well as the trigonometric functions. In this case, we are going to need to use
the hyperbolic Bessel functions. These are defined by

In(z) = i−nJn(iz),

and bear the same relationship to the ordinary Bessel functions that the hy-
perbolic functions sinhx and coshx do to the trigonometric functions sinx
and cos x.

Looking for separable solutions z = Z(x, y)h(t) = f(r)g(θ)h(t) to equa-
tion (3.11.1), we arrive at the equations

∇4Z = κ4Z (3.11.2)

and
∂2h

∂t2
= −ω2h (3.11.3)

where ω and κ are related by

κ4 =
12ρ(1 − s2)ω2

Eh2
.

10Sophie Germain’s paper, “Recherches sur la théorie des surfaces élastiques,” written
in 1815 and published in 1821, won her a prize of a kilogram of gold from the French Acad-
emy of Sciences in 1816. The paper contained some significant errors, but became the ba-
sis for work on the subject by Lagrange, Poisson, Kirchoff, Navier and others.

Sophie Germain is probably better known for having made one of the first significant
breakthroughs in the study of Fermat’s last theorem. She proved that if x, y and z are in-
tegers satisfying x5 +y5 = z5, then at least one of x, y and z has to be divisible by 5. More
generally, she showed that the same was true when 5 is replaced by any prime p such that
2p+ 1 is also a prime.
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Gong from the Music Research Institute in Beijing
From The Musical Arts of Ancient China, exhibit 20.

We factor equation (3.11.2) as

(∇2 − κ2)(∇2 + κ2)z = 0. (3.11.4)

So any solution to either the equation

∇2z = κ2z (3.11.5)

or to the equation
∇2z = −κ2z (3.11.6)

is also a solution to (3.11.2).

Lemma 3.11.1. Every solution z to equation (3.11.2) can be written
uniquely as z1 + z2 where z1 satisfies equation (3.11.5) and z2 satisfies equa-
tion (3.11.6).

Proof. We use a variation of the even and odd function method. If
∇4z = κ4z, we set

z1 = 1
2 (z + κ−2∇2z), z2 = 1

2(z − κ−2∇2z).

Then

∇2z1 = 1
2(∇2z + κ−2∇4z) = 1

2(∇2z + κ2z) = κ2z1,
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∇2z2 = 1
2(∇2z − κ−2∇4z) = 1

2(∇2z − κ2z) = −κ2z2.

and z1 + z2 = z.
For the uniqueness, if z′1 and z′2 constitute another choice, then rear-

ranging the equation z1 + z2 = z′1 + z′2, we have z1 − z′1 = z′2 − z2. The
common value z3 of z1 − z′1 and z′2 − z2 satisfies both equations (3.11.5) and
(3.11.6). So z3 = κ−2∇2z3 = −z3, and hence z3 = 0. It follows that z1 = z′1
and z2 = z′2. �

Solving equation 3.11.6 is just the same as in the case of the drum, and
the solutions are given as trigonometric functions of θ multiplied by Bessel
functions of r. Equation 3.11.5 is similar, except that we must use the hy-
perbolic Bessel functions instead of the Bessel functions. We then have to
combine the two classes of solutions in order to satisfy the boundary condi-
tions, just as we did with the trigonometric and hyperbolic functions for the
stiff rod. This leads us to solutions of the form

z = (AJn(κr) +BIn(κr)) sin(ωt+ φ) sin(nθ + ψ).

The boundary conditions for the gong require considerable care, and
the first correct analysis was given by Kirchoff in 1850. His boundary condi-
tions can be stated for any region with smooth boundary. Choosing coordi-
nates in such a way that the element of boundary is a small segment of the
y axis going through the origin, they are as follows.

∂2z

∂x2
+ s

∂2z

∂y2
= 0

∂3z

∂x3
+ (2− s) ∂3w

∂x∂y2
= 0.

The derivation of these equations may be found in Chapter X of the first
volume of Rayleigh’s The theory of sound [114], §216, where these bound-
ary conditions appear as equations (6). He goes on to find the normal modes
and eigenvalues by Fourier series methods. The results are similar to those
for the drum in §3.6, but the modes with k = 0 and n = 0 or n = 1 are miss-
ing; it is easy to see why if we try to imagine the corresponding vibration of
a gong. So the fundamental mode is k = 0 and n = 2. The relative frequen-
cies are tabulated in §3.6 of Fletcher and Rossing, The physics of musical in-
struments, and reproduced in the following table.

k n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

0 — — 1.000 2.328 4.11 6.30

1 1.73 3.91 6.71 10.07 13.92 18.24

2 7.34 11.40 15.97 21.19 27.18 33.31

Vibrational frequencies for a free circular plate
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Actual gongs in real life are not perfect circular plates. Many designs
feature circularly symmetric raised portions in the middle of the gong. This
modifies the frequencies of the normal modes and the character of the sound.
Often, eigenvalues become close enough together to degenerate, and then
normal modes can mix. This seems to be in evidence in Chladni’s original
drawings (see also page 106).

From E. F. F. Chladni, Traité d’acoustique, Courcier, Paris 1809.

Cymbals are similar in design, and the theory works in a similar way.
Because of the deviation from flatness, the normal modes again tend to com-
bine in interesting ways. For example, the mode (n, k) = (7, 0) and the mode
(2, 1) or (3, 1) are often close enough in frequency to degenerate into a single
compound mode (see Rossing and Peterson, 1982).

Further reading:

R. C. Colwell and J. K. Stewart, The mathematical theory of vibrating membranes
and plates, J. Acoust. Soc. Amer. 3 (4) (1932), 591–595.

R. C. Colwell, J. K. Stewart and H. D. Arnett, Symmetrical sand figures on circu-
lar plates, J. Acoust. Soc. Amer. 12 (2) (1940), 260–265.

R. Courant and D. Hilbert, Methods of mathematical physics, I, Interscience, 1953,
§V.6.

Neville H. Fletcher and Thomas D. Rossing, The physics of musical instruments
[39], §§3.5–3.6 and §20.

Karl F. Graff, Wave motion in elastic solids [47].

Philip M. Morse and K. Uno Ingard, Theoretical acoustics [96], §5.3.

J. W. S. Rayleigh, The theory of sound [114], Chapter X.

Thomas D. Rossing, Science of percussion instruments [126], Chapters 8 and 9.
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Thomas D. Rossing and Neville H. Fletcher, Nonlinear vibrations in plates and gongs,
J. Acoust. Soc. Amer. 73 (1) (1983), 345–351.

Thomas D. Rossing and R. W. Peterson, Vibrations of plates, gongs and cymbals,
Percussive Notes 19 (3) (1982), 31.

M. D. Waller, Vibrations of free circular plates. Part I: Normal modes, Proc. Phys.

Soc. 50 (1938), 70–76.

3.12. The bell

Campanile at Cattedrale di S. Giusto, Trieste Photo c©Dave Benson

A bell can be thought of as a very deformed plate; its vibrational modes
are similar in nature, but starting with n = 2. But the exact shape of the bell
is made so as to tune the various vibrational modes relative to each other.
There are five modes with special names, which are as follows. The mode
(n, k) = (2, 0) is the fundamental, and is called the hum. The prime is (2, 1),
and is tuned to twice the frequency, putting it an octave higher. There are
two different modes (3, 1), one of which has the stationary circle around the
waist, and the other nearer the rim. The one with the waist is called the
tierce, and is tuned a minor third above the prime. The other mode, some-
times denoted (3, 1♯), with the stationary circle nearer the rim is called the
quint. It is pitched a perfect fifth above the prime. The nominal mode is
(4, 1), tuned an octave above the prime, so that it is two octaves above the
hum. The nominal mode is by far the one with the largest amplitude, so
that this is the perceived pitch of the bell. Mode (4, 1♯) is sometimes called
the deciem, and is usually tuned a major third above the nominal. It can
be imagined that a great deal of skill goes into the tuning of the vibrational
modes of a bell. It is an art which has developed over many centuries. Par-
ticular attention is given to the construction of the thick ring near the rim.
The information described above is summarised in the following diagram.
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1:1
Hum

(2, 0)

2:1
Prime

(2, 1)

12:5
Tierce

(3, 1)

3:1
Quint

(3, 1♯)

4:1
Nominal

(4, 1)

5:1
Deciem

(4, 1♯)

The singing bowl. Our discussion of the bell applies equally well to other
objects such at the Tibetan singing bowl, which is used mainly for ritual pur-
poses. The singing bowl may be struck with the wooden mallet on the in-
side of the rim to set it vibrating, or it may be stroked around the outside
of the rim with the mallet to sustain a vibration in the manner of stroking a
wineglass. After the mallet is removed, the tone can often last in excess of a
minute before it is inaudible.

Singing bowl from Tibet Photo c©Dave Benson

I have a Tibetan singing bowl in my living room, which is approxi-
mately 19 cm (or 7 inches) in diameter. It has two clearly audible partials,
and some others too high to hear the pitch very precisely. The fundamental
sounds at about 196 Hz, and the second partial sounds at about 549 Hz, giv-
ing a ratio of about 2.8:1.

Chinese bells. In 1977, an extraordinary discovery was made in the Hubei
province of China. A huge burial pit was found, containing over four thou-
sand bronze items. This was the tomb of Marquis Yi of the state of Zeng,
and inscriptions date it very precisely at 433 b.c.e. The tomb contains many
musical instruments, but the most extraordinary is a set of sixty-five bronze
bells. These are able to play all twelve notes of the chromatic scale over a
range of three octaves, and further bells fill this out to a five octave range.

Each bell is roughly elliptical in cross-section. There are two separate
strike points, and the bell is designed so that the normal modes excited at
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Bell from the tomb of Marquis Yi
(middle tier, height 75cm, weight 32.2kg)

Picture from Music in the age of Confucius, p. 43.
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the strike points have essentially nothing in common. So the pereived pitches
are quite different. The strike point for the lower pitch is called the sui, and
the one for the higher pitch is the gu. The bells are tuned so that this differ-
ence is either a major third or a minor third. The separation of the modes is
achieved through the use of an elaborate set of nipples on the outer surface
of the bell. See the picture on page 131. The values of n and k are the same
for the sui and gu version of a vibrational mode, but the orientation is dif-
ferent. This may be illustrated as follows for the modes with n = 2, where
the diagram represents the movement of the lower rim.

sui gu

It seems very hard to understand how these two tone bells were cast.
The inscriptions naming the two tones were cast with the bell, so they must
have been predetermined. What’s more, the design does not just scale up
proportionally, and there is no easy formula for how to produce a larger bell
with the same musical interval. Modern physics does not lead to any under-
standing of the design procedures that were used to produce this set of bells.

Further reading:

Lothar von Falkenhausen, Suspended Music: Chime-bells in the culture of bronze age
China, University of California Press, Berkeley, 1993.

Neville H. Fletcher and Thomas D. Rossing, The physics of musical instruments
[39], §21.

M. Jing, A theoretical study of the vibration and acoustics of ancient Chinese bells,
J. Acoust. Soc. Amer. 114 (3) (2003), 1622–1628.

Yuan-Yuan Lee and Sin-Yan Shen, Chinese musical instruments, Chinese Music So-
ciety of North America, Chicago, USA, 1999.

N. McLachlan, B. K. Nikjeh and A. Hasell, The design of bells with harmonic over-
tones, J. Acoust. Soc. Amer. 114 (1) (2003), 505–511.

J. Pan, X. Li, J. Tian and T. Lin, Short sound decay of ancient Chinese music bells,
J. Acoust. Soc. Amer. 112 (6) (2002), 3042–3045.

R. Perrin and T. Chanley, The normal modes of the modern English church bell, J.
Sound Vib. 90 (1983), 29–49.

Thomas D. Rossing, The acoustics of bells, Van Nostrand Reinhold, 1984.

Thomas D. Rossing, The science of sound [128], §13.4.

Thomas D. Rossing, Science of percussion instruments [126], Chapters 11–13.
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Thomas D. Rossing, D. Scott Hampton, Bernard E. Richardson and H. John
Sathoff, Vibrational modes of Chinese two-tone bells, J. Acoust. Soc. Amer 83 (1)
(1988), 369–373.

Jenny So, Eastern Zhou ritual bronzes from the Arthur M. Sackler collections, Smith-
sonian Institution, 1995. This is a large format book with photographs and descrip-
tions of Chinese bronzes from the Eastern Zhou. Pages 357–397 describe the two
tone bells from the collection. There is also an extensive appendix (pages 431–484)
titled “Acoustical and musical studies on the Sackler bells,” by Lothar von Falken-
hausen and Thomas D. Rossing. This appendix gives a great many technical details
of the acoustics and tuning of two tone bells.

Jenny So (ed.), Music in the age of Confucius, Sackler Gallery, Washington, 2000.

This beautifully produced book contains an extensive set of photographs of the set

of bells from the tomb of Marquis Yi.

3.13. Acoustics

The basic equation of acoustics is the three dimensional wave equation,
which describes the movement of air to form sound. The discussion is sim-
ilar to the one dimensional discussion in §3.5. Recall that acoustic pressure
p is measured by subtracting the (constant) ambient air pressure ρ from the
absolute pressure P . In three dimensions, p is a function of x, y, z and t.
This is related to the displacement vector field ξ(x, y, z, t) by two equations.
The first is Hooke’s law, which in this situation can be written as

p = −B∇. ξ
where B is the bulk modulus of air. Newton’s second law of motion implies
that

∇p = −ρ∂
2ξ

∂t2
.

Putting these two equations together gives

∇2p =
1

c2
∂2p

∂t2
(3.13.1)

where c =
√
B/ρ. So p satisfies the three dimensional wave equation.

In an enclosed space, the boundary conditions are given by ∇p = 0 on
the walls of the enclosure for all t. Looking for separable solutions leads to
the theory of Dirichlet and Neumann eigenvalues, just as in the two dimen-
sional case when we discussed the drum in §3.6. So there is a certain set of
resonant frequencies for the enclosure, determined by the eigenvalues of ∇2

in the region. The same reasoning as in §3.6 leads to the conclusion that the
relationship between frequency and eigenvalue is ν = c

√
λ/2π, see equation

(3.7.4). For an enclosure of small total volume, the eigenvalues are widely
spaced. But as the volume increases, the eigenvalues get closer together. So
for example a concert hall has a large total volume, and the eigenvalues are
typically at intervals of a few Hertz, and the spacing is somewhat erratic.
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Fortunately, the ear is performing a windowed Fourier analysis with a rel-
atively short time window, so that in accordance with Heisenberg’s uncer-
tainty principle, fluctuations on a fine frequency scale are not noticed.11

There is one useful situation where we can explicitly solve the three
dimensional wave equation, namely where there is complete spherical sym-
metry. This corresponds to a physical situation where sound waves are gen-
erated at the origin in an anisotropic fashion. In this case, we convert into

11See pages 72–73 of Manfred Schroeder, Fractals, chaos and power laws, Springer-
Verlag, 1991.
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spherical coordinates, and ignore derivatives with respect to the angles. De-
noting radial distance from the origin by r, the equation becomes

∂2(rp)

∂r2
=

1

c2
∂2(rp)

∂t2
.

Regarding rp as the dependent variable, this is really just the one dimen-
sional wave equation. So d’Alembert’s Theorem 3.2.1 shows that the general
solution is given by

p = (f(r + ct) + g(r − ct))/r.
The functions f and g represent waves travelling towards and away from the
origin, respectively. Notice that the sound source needs to have finite size,
so that we do not run into problems at r = 0.

Exercises

1. Show that if u is a unit vector in some direction in three dimensions, then
the function

p(x, t) = eiω(ct−u.x)

satisfies the three dimensional wave equation (3.13.1). This (or rather its real
part) represents a sound wave travelling in the direction of u with speed c
and angular velocity ω.

2. Find the solutions to the three dimensional wave equation for an enclosed
region in the shape of a cuboid. Use separation of variables for all four vari-
ables, and place the origin at a corner of the region to make the calculations
easier.



CHAPTER 4

Consonance and dissonance

In this chapter, we investigate the relationship between consonance and
dissonance, and simple integer ratios of frequencies.

4.1. Harmonics

We saw in §3.2 and §3.5 that when a note on a stringed instrument or
a wind instrument sounds at a certain pitch, say with frequency ν, sound is
essentially periodic with that frequency. The theory of Fourier series shows
that such a sound can be decomposed as a sum of sine waves with vari-
ous phases, at integer multiples of the frequency ν, as in Bernoulli’s solution
(3.2.7) to the wave equation. The component of the sound with frequency ν
is called the fundamental . The component with frequency mν is called the
mth harmonic, or the (m − 1)st overtone. So for example if m = 3 we ob-
tain the third harmonic, or the second overtone.1

�IG
1

#
2

#
3

#
4

#
5

#
6

#
7

2#
8

#
9

#
10

#
This diagram represents the series of harmonics based on a fundamen-

tal at the C below middle C. The seventh harmonic is actually somewhat flat-
ter than the B♭ above the treble clef. In the modern equally tempered scale,
even the third and fifth harmonics are very slightly different from the notes
G and E shown above—this is more extensively discussed in Chapter 5.

There is another word which we have been using in this context: the
mth partial of a sound is the mth frequency component, counted from the
bottom. So for example on a clarinet, where only the odd harmonics are
present, the first partial is the fundamental, or first harmonic, and the sec-
ond partial is the third harmonic. This term is very useful when discussing

1I find that the numbering of overtones is confusing, and I shall not use this numbering.

136
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sounds where the partials are not simple multiples of the fundamental, such
as for example the drum, the gong, or the various instruments of the gamelan.

Exercises

1. Define the following terms, making the distinctions between them clear:

(a) the mth harmonic, (b) the mth overtone, (c) the mth partial.

4.2. Simple integer ratios

I
G

220 Hz

"440 Hz

"Why is it that two notes an octave apart
sound consonant, while two notes a little more or
a little less than an octave apart sound dissonant?
An interval of one octave corresponds to doubling
the frequency of the vibration. So for example, the
A above middle C corresponds to a frequency of
440 Hz, while the A below middle C corresponds
to a frequency of 220 Hz.

We have seen in Chapter 3 that if we play
these notes on conventional stringed or wind (but
not percussive) instruments, each note will contain
not only a component at the given frequency, but also partials corresponding
to multiples of that frequency. So for these two notes we have partials at:

440 Hz, 880 Hz, 1320 Hz, 1760 Hz, . . .

220 Hz, 440 Hz, 660 Hz, 880 Hz, 1100 Hz, 1320 Hz, . . .

On the other hand, if we play two notes with frequencies 445Hz and 220Hz,
then the partials occur at:

445 Hz, 890 Hz, 1335 Hz, 1780 Hz, . . .

220 Hz, 440 Hz, 660 Hz, 880 Hz, 1100 Hz, 1320 Hz, . . .

dB

220 440 660 880 1320 1760

Frequency (Hz)

The presence of components at 440 Hz and 445 Hz, and at 880 Hz and 890 Hz,
and so on, causes a sensation of roughness which is interpreted by the ear as
dissonance. We shall discuss at length, later in this chapter, the history of
different explanations of consonance and dissonance, and why this should be
taken to be the correct one.

Because of the extreme consonance of an interval of an octave, and its
role in the series of partials of a note, the human brain often perceives two
notes an octave apart as being “really” the same note but higher. This is so
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heavily reinforced by musical usage in almost every genre that we have dif-
ficulty imagining that it could be otherwise. When choirs sing “in unison,”
this usually means that the men and women are singing an octave apart.2

The idea that notes differing by a whole number of octaves should be con-
sidered as equivalent is often referred to as octave equivalence.

The musical interval of a perfect fifth3 corresponds to a frequency ratio
of 3:2. If two notes are played with a frequency ratio of 3:2, then the third
partial of the lower note will coincide with the second partial of the upper
note, and the notes will have a number of higher partials in common. If, on
the other hand, the ratio is slightly different from 3:2, then there will be a
sensation of roughness between the third partial of the lower note and the
second partial of the upper note, and the notes will sound dissonant.

In this manner, small integer ratios of frequencies are picked out as
more consonant than other intervals. We stress that this discussion only
works for notes whose partials are at multiples of the fundamental frequency.
Pythagoras essentially discovered this in the sixth century b.c.e.; he discov-
ered that when two similar strings under the same tension are sounded to-
gether, they give a pleasant sound if the lengths of the strings are in the ra-
tio of two small integers. This was the first known example of a law of na-
ture ruled by the arithmetic of integers, and greatly influenced the intellec-
tual development of his followers, the Pythagoreans. They considered that a
liberal education consisted of the “quadrivium,” or four divisions: numbers
in the abstract, numbers applied to music, geometry, and astronomy. They
expected that the motions of the planets would be governed by the arith-
metic of ratios of small integers in a similar way. This belief has become en-
coded in the phrase “the music of the spheres,”4 literally denoting the in-
audible sound produced by the motion of the planets, and has almost disap-
peared in modern astronomy (but see the remarks in Exercise 1 of §6.2).5

2It is interesting to speculate what effect it would have on the theory of colour if visi-
ble light had a span greater than an octave; in other words, if there were to exist two vis-
ible colours, one of which had exactly twice the frequency of the other. In fact, the span
of human vision is just shy of an octave. One might be tempted to suppose that this ex-
plains why the colours of the rainbow seem to join up into a circle, although the analysis
of this chapter suggests that this explanation is probably wrong, as light sources usually
don’t contain harmonics.

3We shall see in the next chapter that the fifth from C to G in the modern Western
scale is not precisely a perfect fifth.

4Plato, Republic, 10.617, ca. 380 b.c.e.
5The idea embodied in the phrase “the music of the spheres” is still present in the

seventeenth century work of Kepler on the motion of the planets. He called his third law
the “harmonic law,” and it is described in a work entitled Harmonices Mundi (Augsburg,
1619). However, his law properly belongs to physics, and states that the square of the pe-
riod of a planetary orbit is proportional to the cube of the maximum diameter. It is hard
to find any recognizable connection with musical harmony or the arithmetic of ratios of
small integers. Kepler’s ideas are celebrated in Paul Hindemith’s opera, Die Harmonie der
Welt, 1956–7. The title is a translation of Kepler’s.
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The Experiences of Pythagoras
(Gaffurius, 1492)

Further reading:

Jenő Keuler, The paradoxes of octave identities, Studia Musicologica Academiae Sci-

entarum Hungaricae 40 (1999), 211–224.

4.3. History of consonance and dissonance

In writing this section, I have drawn heavily on work of Tenney, and of
Plomp and Levelt. The references can be found at the end of the section.

In the history of music theory, the terms consonance and dissonance
have been used with a number of distinctly identifiable meanings. Tenney
identifies the following usages in the history of European music:

(i) From ancient Greek music theory until around the ninth century
c.e., there is no harmony in the modern sense of simultaneously sounding
notes of different pitches. The terms only refer to the relationships between
pitches in a melodic context, where the primary motivation is the develop-
ment of scales.
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(ii) In early polyphony, between around 900 and 1300 c.e., the terms
refer to the quality of the sound produced by two simultaneous notes, inde-
pendently of the musical context. In this period, only six intervals are re-
garded as consonant: the octave (2:1), fifth (3:2), fourth (4:3), octave plus
fifth (3:1), octave plus fourth (8:3), and double octave (4:1). Thirds and
sixths are regarded as dissonant; this can be traced to the fact that the pre-
dominant scale in use at the time was the Pythagorean scale, in which the
thirds and sixths are more sour than in later scales, see §5.2.

(iii) In the contrapuntal and figured bass periods, between around 1300
and 1700 c.e., there is a shift towards the effects of note aggregates in the
ambient musical context, so that the same notes can be regarded as conso-
nant in one context and dissonant in another. The set of consonances is ex-
panded to include thirds and sixths.

(iv) In the eighteenth century, Rameau’s writings introduce the con-
cept of fundamental root, and then an individual note is either consonant or
dissonant according to its relationship to the root.

(v) In the nineteenth century, Helmholtz returns to the quality of sound
produced by two simultaneous tones, but gives an explanation in terms of
beats between and roughness of upper partials of the sounds. Helmholtz’s
explanation was put on a firmer footing in the twentieth century using ideas
based on critical bandwidth on the basilar membrane, especially in the work
of Plomp and Levelt (1965). It is the work of Plomp and Levelt that will
form the basis for the discussion in this chapter.

The discovery of the relationship between musical pitch and frequency
occurred around the sixteenth or seventeenth century, with the work of
Galileo Galilei and (independently) Mersenne. Galileo’s explanation of con-
sonance was that if two notes have their frequencies in a simple integer ratio,
then there is a regularity, or periodicity to the total waveform, not present
with other frequency ratios, so that the ear drum is not “kept in perpetual
torment”. For example, two pure sine waves a perfect fifth apart (frequency
ratio 3:2) give the following picture.

One problem with this explanation is that it involves some circular
reasoning—the notes are consonant because the ear finds them consonant! A
more serious problem, though, is that experiments with tones produced us-
ing nonharmonic partials produce results which contradict this explanation,
as we shall see in §4.6.

In the seventeenth century, it was discovered that a simple note from
a conventional stringed or wind instrument had partials at integer multi-
ples of the fundamental. The eighteenth century theoretician and musician
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Rameau ([113], chapter 3) regarded this as already being enough explana-
tion for the consonance of these intervals, but Sorge6 (1703–1778) was the
first to consider roughness caused by close partials as the explanation of dis-
sonance. It was not until the nineteenth century that Helmholtz (1821–1894)
[55] sought to explain consonance and dissonance on a more scientific ba-
sis. Helmholtz based his studies on the structure of the human ear. His idea
was that for small differences between the frequencies of partials, beats can
be heard, whereas for larger frequency differences, this turns into roughness.
He claimed that for maximum roughness, the difference between the two fre-
quencies should be 30–40 Hz, independently of the individual frequencies.
For larger frequency differences, the sense of roughness disappears and con-
sonance resumes. He then goes on to deduce that the octave is consonant be-
cause all the partials of the higher note are among the partials of the lower
note, and no roughness occurs.

Plomp and Levelt, in the nineteen sixties, seem to have been the first
to carry out a thorough experimental analysis of consonance and dissonance
for a variety of subjects, with pure sine waves, and at a variety of pitches.
The results of their experiments showed that on a subjective scale of conso-
nance ranging from zero (dissonant) to one (consonant), the variation with
frequency ratio has the shape shown in the graph below. The x axis of this
graph is labelled in multiples of the critical bandwidth, defined below. This
means that the actual scale in Hertz on the horizontal axis of the graph varies
according to the pitch of the notes, but the shape of the graph remains con-
stant; the scaling factor was shown by Plomp and Levelt to be proportional
to critical bandwidth.
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The salient features of the above graph are that the maximum disso-
nance occurs at roughly one quarter of a critical bandwidth, and consonance
levels off at roughly one critical bandwidth.

It should be stressed that this curve is for pure sine waves, with no har-
monics; also that consonance and dissonance is different from recognition of
intervals. Anyone with any musical training can recognise an interval of an

6G. A. Sorge, Vorgemach der musicalischen Composition, Verlag des Autoris, Loben-
stein, 1745–1747
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octave or a fifth, but for pure sine waves, these intervals sound no more nor
less consonant than nearby frequency ratios.

Exercises

1. Show that the function f(t) = A sin(at) + B sin(bt) is periodic when the
ratio of a to b is a rational number, and non-periodic if the ratio is irrational.
[Hint: Differentiate twice and take linear combinations of the result and the
original function to get a single sine wave; use this to get information about
possible periods]

Further reading:

Galileo Galilei, Discorsi e dimonstrazioni matematiche interno à due nuove scienze
attenenti alla mecanica & i movimenti locali, Elsevier, 1638. Translated by H. Crew
and A. de Salvio as Dialogues concerning two new sciences, McGraw-Hill, 1963.

D. D. Greenwood, Critical bandwidth and the frequency coordinates of the basilar
membrane, J. Acoust. Soc. Amer. 33 (10) (1961), 1344–1356.

R. Plomp and W. J. M. Levelt, Tonal consonance and critical bandwidth, J. Acoust.
Soc. Amer. 38 (4) (1965), 548–560.

R. Plomp and H. J. M. Steeneken, Interference between two simple tones, J. Acoust.
Soc. Amer. 43 (4) (1968), 883–884.

J. Tenney, A history of ‘consonance’ and ‘dissonance’, Excelsior, New York, 1988.

4.4. Critical bandwidth

To introduce the notion of critical bandwidth, each point of the basi-
lar membrane in the cochlea is thought of as a band pass filter, which lets
through frequencies in a certain band, and blocks out frequencies outside that
band. The actual shape of the filter is certainly more complicated than this
simplified model, in which the left, top and right edges of the envelope of the
filter are straight vertical and horizontal lines. This is exactly analogous to
the definition of bandwidth given in §1.11, and introducing a smoother shape
for the filter does not significantly alter the discussion. The width of the fil-
ter in this model is called the critical bandwidth. Experimental data for the
critical bandwidth as a function of centre frequency is available from a num-
ber of sources, listed at the end of this section. Here is a sketch of the results.
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A rough calculation based on this graph shows that the size of the criti-
cal bandwidth is somewhere between a whole tone and a minor third through-
out most of the audible range, and increasing to a major third for small fre-
quencies.

Further reading:

B. R. Glasberg and B. C. J. Moore, Derivation of auditory filter shapes from notched-
noise data, Hear. Res. 47 (1990), 103–138.

E. Zwicker, Subdivision of the audible frequency range into critical bands (Frequenz-
gruppen), J. Acoust. Soc. Amer. 33 (2) (1961), 248.

E. Zwicker, G. Flottorp and S. S. Stevens, Critical band width in loudness summa-
tion, J. Acoust. Soc. Amer. 29 (5) (1957), 548–557.

E. Zwicker and E. Terhardt, Analytical expressions for critical-band rate and critical

bandwidth as a function of frequency, J. Acoust. Soc. Amer. 68 (5) (1980), 1523–

1525.

4.5. Complex tones

Plomp and Levelt took the analysis one stage further, and examined
what would happen for tones with a more complicated harmonic content.
They worked under the simplifying assumption that the total dissonance is
the sum of the dissonances caused by each pair of adjacent partials, and used
the above graph for the individual dissonances. They do a sample calcula-
tion in which a note has partials at the fundamental and its multiples up
to the sixth harmonic. The graph they obtain is shown abelow. Notice the
sharp peaks at the fundamental (1:1), the octave (1:2) and the perfect fifth
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(2:3), and the smaller peaks at ratios 5:6 (just minor third), 4:5 (just major
third), 3:4 (perfect fourth) and 3:5 (just major sixth). If higher harmonics
are taken into account, the graph acquires more peaks.
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In order to be able to draw such Plomp–Levelt curves more system-
atically, we choose a formula which gives a reasonable approximation to the
curve displayed on page 141. Writing x for the frequency difference in mul-
tiples of the critical bandwidth, we choose the dissonance function to be7

f(x) = 4|x|e1−4|x|.

This takes its maximum value f(x) = 1 when x = 1
4 , as can easily be seen by

differentiating. It satisfies f(0) = 0, and f(1.2) is small (about 0.1), but not
zero. This last feature does not quite match the graph given by Plomp and
Levelt, but a closer examination of their data shows that the value f(1.2) = 0
is not quite justified.

Further reading:

R. Plomp and W. J. M. Levelt, Tonal consonance and critical bandwidth, J. Acoust.

Soc. Amer. 38 (4) (1965), 548–560.

4.6. Artificial spectra

So what would happen if we artificially manufacture a note having par-
tials which are not exact multiples of the fundamental? It is easy to perform
such experiments using a digital synthesizer. We make a note whose partials
are at

440 Hz, 860 Hz, 1203 Hz, 1683 Hz, . . .

and another with partials at

7Sethares [134] takes for the dissonance function f(x) = e−b1x − e−b2x where b1 = 3.5
and b2 = 5.75. This needs normalizing by multiplication by about 5.5, and then gives a
graph very similar to the one I have chosen. The particular choice of function is somewhat
arbitrary, because of a lack of precision in the data as well as in the subjective definition
of dissonance. The main point is to mimic the visible features of the graph.
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225 Hz, 440 Hz, 615 Hz, 860 Hz, . . .

to represent slightly squeezed harmonics. These notes sound consonant, de-
spite the fact that they are slightly less than an octave apart, whereas scal-
ing the second down to

220 Hz, 430 Hz, 602 Hz, 841 Hz, . . .

causes a distinctly dissonant sounding exact octave.
If we are allowed to change the harmonic content of a note in this way,

we can make almost any set of intervals seem consonant. This idea was put
forward by Pierce (1966, reference below), who designed a spectrum suitable
for an equal temperament scale with eight notes to the octave. Namely, he
used the following partials, given as multiples of the fundamental frequency:

1 : 1, 2
5
4 : 1, 4 : 1, 2

5
2 : 1, 2

11
4 : 1, 8 : 1.

This may be thought of as a stretched version of the ordinary series of har-
monics of the fundamental. When two notes of the eight tone equal tem-
pered scale are played using synthesized tones with the above set of partials,
what happens is that the partials either coincide or are separated by at least
1
8 of an octave. Pierce’s conclusion is that

. . . by providing music with tones that have accurately specified
but nonharmonic partial structures, the digital computer can re-
lease music from the tyrrany of 12 tones without throwing con-
sonance overboard.

It is worth listening to the demonstration in tracks 58–61 of the Audi-
tory demonstrations CD listed at the end of this section, entitled Tones and
tuning with stretched partials. In these four tracks, we hear four different ver-
sions of a four part Bach chorale. In the first version, the chorale is played
on a synthesized instrument with exactly harmonic partials with amplitudes
inversely proportional to the harmonic number, and with exponential time
decay. The scale is equally tempered, with semitones representing frequency
ratios of the twelfth root of two (see §5.14).

In the second version, the partials of each note have been stretched,
so that the second harmonic is at 2.1 times the fundamental frequency, the
fourth harmonic is at 4.41 times the fundamental, and so on. The scale has
been stretched by the same factor, so that each semitone represents a fre-
quency ratio of the twelfth root of 2.1.

In the third version, the partials of each note are exactly harmonic, and
only the scale is stretched; and finally, in the fourth version the partials of
each note are stretched while the scale is returned to unstretched equal tem-
perament.

The results are very interesting. The first version sounds normal. The
second sounds consonant but weird, and after a while begins to sound al-
most normal. The third and fourth version both sound out of tune. Note
especially that the version with stretched partials and unstretched scale is
“in tune” according to modern equal temperament, but sounds very badly
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tuned. This is the evidence that contradicts Galileo’s explanation of conso-
nance, described in §4.3.

Further reading:

J. M. Geary, Consonance and dissonance of pairs of inharmonic sounds, J. Acoust.
Soc. Amer. 67 (5) (1980), 1785–1789.

W. Hutchinson and L. Knopoff, The acoustic component of western consonance, In-
terface 7 (1978), 1–29.

A. Kameoka and M. Kuriyagawa, Consonance theory I: consonance of dyads, J.
Acoust. Soc. Amer. 45 (6) (1969), 1451–1459.

A. Kameoka and M. Kuriyagawa, Consonance theory II: consonance of complex tones
and its calculation method, J. Acoust. Soc. Amer. 45 (6) (1969), 1460–1469.

Jenö Keuler, Problems of shape and background in sounds with inharmonic spectra,
Music, Gestalt, and Computing [76], 214–224, with examples from the accompany-
ing CD.

Max V. Mathews and John R. Pierce, Harmony and nonharmonic partials, J. Acoust.
Soc. Amer. 68 (5) (1980), 1252–1257.

John R. Pierce, Attaining consonance in arbitrary scales, J. Acoust. Soc. Amer. 40
(1) (1966), 249.

John R. Pierce, Periodicity and pitch perception, J. Acoust. Soc. Amer. 90 (4)
(1991), 1889–1893.

William A. Sethares, Adaptive tunings for musical scales, J. Acoust. Soc. Amer. 96
(1) (1994), 10–18.

William A. Sethares, Tuning, timbre, spectrum, scale [134]. This book comes with
a compact disc full of illustrative examples.

William A. Sethares, Specifying spectra for musical scales. J. Acoust. Soc. Amer.
102 (4) (1997), 2422–2431.

William A. Sethares, Consonance-based spectral mappings. Computer Music Jour-
nal 22 (1) (1998), 56–72.

Frank H. Slaymaker, Chords from tones having stretched partials. J. Acoust. Soc.
Amer. 47 (6B) (1970), 1569–1571.

E. Terhardt, Pitch, consonance, and harmony. J. Acoust. Soc. Amer. 55 (5) (1974),
1061–1069.

E. Terhardt and M. Zick, Evaluation of the tempered tone scale in normal, stretched,

and contracted intonation. Acustica 32 (1975), 268–274.

Further listening: (See Appendix R)

Auditory demonstrations CD (Houtsma, Rossing and Wagenaars), tracks 58–61 are a

demonstration of stretched partials and a stretched scale, as described in this section.
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4.7. Combination tones

When two loud notes of different frequencies f1 and f2 are played to-
gether, a note can be heard corresponding to the difference f1−f2 between the
two frequencies. This was discovered by the German organist Sorge (1744)
and Romieu (1753). Later (1754) the Italian violinist Tartini claimed to have
made the same discovery as early as 1714. Helmholtz (1856) discovered that
there is a second, weaker note corresponding to the sum of the two frequen-
cies f1 + f2, but that it is much harder to perceive. The general name for
these sum and difference tones is combination tones, and the difference notes
in particular are sometimes called Tartini’s tones. The reason (overlooked
by Helmholtz) why the sum tone is so hard to perceive is because of the phe-
nomenon of masking discussed at the end of §1.2.

It is tempting to suppose that the combination tones are a result of a
discussion similar to the discussion of beats in §1.8. However, this seems to
be misleading, as this argument would seem more likely to give rise to notes
of half the difference and half the sum of the notes, and this does not seem to
be what occurs in practice. Moreover, when we hear beats, we are not hear-
ing a sound at the beat frequency, because there is no corresponding place
on the basilar membrane for the excitation to occur. Further evidence that
these are different phenomena is that when the two tones are heard one with
each ear, beats are still discernable, while combination tones are not.

Helmholtz [55] (Appendix XII) had a more convincing explanation of
combination tones, based on the supposition that the sounds are loud enough
for nonlinearities in the response of some part of the auditory system to come
into effect.

In the presence of a quadratic nonlinearity, a damped harmonic oscilla-
tor with a sum of two sinusoidal forcing terms of different frequencies will vi-
brate with not only the two incoming frequencies but also with components
at twice these frequencies and at the sum and difference of the frequencies.
Intuitively, this is because

(sinmt+ sinnt)2 = sin2mt+ 2 sinmt sinnt+ sin2 nt

= 1
2(1− cos 2mt)+1

2(cos(m− n)t− cos(m+ n)t) + 1
2(1− cos 2nt).

So if some part of the auditory system is behaving in a nonlinear fashion, a
quadratic nonlinearity would correspond to the perception of doubles of the
incoming frequencies, which are probably not noticed because they look like
overtones, as well as sum and difference tones corresponding to the terms
cos(m+ n)t and cos(m− n)t.

Quadratic nonlinearities involve an asymmetry in the vibrating system,
whereas cubic nonlinearities do not have this property. So it seems reason-
able to suppose that the cubic nonlinearities are more pronounced in effect
than the quadratic ones in parts of the auditory system. This would mean
that combination tones corresponding to 2f1−f2 and 2f2−f1 would be more
prominent than the sum and difference. This seems to correspond to what
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is experienced in practice. These cubic terms can be heard even at low vol-
ume, while a relatively high volume is necessary in order to experience the
sum and difference tones.

Helmholtz’s theory ([55], appendix XII) was that the nonlinearity giv-
ing rise to the distortion was occurring in the middle ear, and in particular
the tympanic membrane. Measurements made by Guinan and Peake have
shown that the nonlinearities in the middle ear are insufficient to explain the
phenomenon. Current theory favours an intracochlear origin for the nonlin-
earities responsible for the sum and difference tone. Furthermore, the dis-
tortions responsible for cubic effects are now thought to have their origins in
psychophysical feedback, and are part of the normal auditory function rather
than a result of overload (see for example Pickles [107], pp. 107–109).

There is also a related concept of virtual pitch for a complex tone. If
a tone has a complicated set of partials, we seem to assign a pitch to a com-
posite tone by very complicated methods which are not well understood.
Schouten demonstrated that Helmholtz’s discussion does not completely ex-
plain what happens for these more complex sounds. If the ear is simulta-
neously subjected to sounds of frequencies 1800 Hz, 2000 Hz and 2200 Hz
then the subject hears a tone at 200 Hz, representing a “missing fundamen-
tal,” and which might be interpreted as a combination tone. However, if the
sounds have frequencies 1840 Hz, 2040 Hz and 2240 Hz then instead of hear-
ing a 200 Hz tone as would be expected by Helmholtz’s theory, the subject
actually hears a tone at 204 Hz. Schouten’s explanation for this has been
disputed in more recent work, and it is probably fair to say that the subject
is still not well understood.

Walliser has given a recipe for determining the perceived missing fun-
damental, without supplying a mechanism which explains it. His recipe con-
sists of determining the difference in frequency between two adjacent par-
tials (or harmonic components of the sound), and then approximating this
with as simple as possible a rational multiple of the lowest harmonic com-
ponent. So in the above example, the difference is 200 Hz, so we take one
ninth of 1840 Hz to give a missing fundamental of 204.4 Hz. This is an ex-
tremely good approximation to what is actually heard. Later authors have
proposed minor modifications to Walliser’s algorithm, for example by replac-
ing the lowest partial with the most “dominant” in a suitable sense. A more
detailed discussion can be found in chapter 5 of B. C. J. Moore’s book [93].

Licklider also cast doubt on Helmholtz’s explanation for combination
tones by showing that a difference tone cannot in practice be masked by a
noise with nearby frequency, while it should be masked if Helmholtz’s theory
were correct.

Combination tones and virtual pitch remain among many interesting
topics of modern psychoacoustics, and a current active area of research.

Further reading:



4.7. COMBINATION TONES 149

Dante R. Chialvo, How we hear what is not there: A neural mechanism for the miss-
ing fundamental illusion, Chaos 13 (4) (2003), 1226–1230.

Marsha G. Clarkson and E. Christine Rogers, Infants require low-frequency energy
to hear the pitch of the missing fundamental, J. Acoust. Soc. Amer. 98 (1) (1995),
148–154.

J. J. Guinan and W. T. Peake, Middle ear characteristics of anesthetized cats. J.
Acoust. Soc. Amer. 41 (5) (1967), 1237–1261.

J. C. R. Licklider, “Periodicity” pitch and “place” pitch, J. Acoust. Soc. Amer. 26
(5) (1954), 945.

Max F. Meyer, Observation of the Tartini pitch produced by sin 9x + sin 13x, J.
Acoust. Soc. Amer. 26 (4) (1954), 560–562.

Max F. Meyer, Observation of the Tartini pitch produced by sin 11x + sin 15x and
sin 11x+ 2 sin 15x, J. Acoust. Soc. Amer. 26 (5) (1954), 759–761.

Max F. Meyer, Theory of pitches 19, 15 and 11 plus a rumbling resulting from
sin 19x+ sin 15x, J. Acoust. Soc. Amer. 27 (4) (1955), 749–750.

J. Sandstad, Note on the observation of the Tartini pitch, J. Acoust. Soc. Amer. 27
(6) (1955), 1226–1227.

J. F. Schouten, The residue and the mechanism of hearing, Proceedings of the Kon-
ingklijke Nederlandse Akademie van Wetenschappen 43 (1940), 991–999.

K. Walliser, Über ein Funktionsschema für die Bildung der Periodentonhöhe aus dem

Schallreiz, Kybernetik 6 (1969), 65–72.
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4.8. Musical paradoxes

M. C. Escher, Ascending and descending (1960).

One of the most famous paradoxes of musical perception was discov-
ered by R. N. Shepard, and goes under the name of the Shepard scale. Lis-
tening to the Shepard scale, one has the impression of an ever-ascending scale
where the end joins up with the beginning, just like Escher’s famous ever
ascending staircase in his picture, Ascending and descending. This effect is
achieved by building up each note out of a complex tone consisting of ten
partials spaced at one octave intervals. These are passed through a filter so
that the middle partials are the loudest, and they tail off at both the bottom
and the top. The same filter is applied for all notes of the scale, so that af-
ter ascending through one octave, the dominant part of the sound has shifted
downwards by one partial.
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log frequency

dB

The partials present in this sound are of the form 2n.f , where f is the
lowest audible frequency component.

A related paradox, discovered by Diana Deutsch (1975), is called the
tritone paradox. If two Shepard tones are separated by exactly half an octave
(a tritone in the equal tempered scale), or a frequency factor of

√
2, then it

might be expected that the listener would be confused as to whether the in-
terval is ascending or descending. In fact, only some listeners experience con-
fusion. Others are quite definite as to whether the interval is ascending or
descending, and consistently judge half the possible cases as ascending and
the complementary half as descending.

Diana Deutsch is also responsible for discovering a number of other
paradoxes. For example, when tones of 400 Hz and 800 Hz are presented to
the two ears with opposite phase, about 99% of subjects experience the lower
tone in one ear and the higher tone in the other ear. When the headphones
are reversed, the lower tone stays in the same ear as before. See her 1974 ar-
ticle in Nature for further details.

Further reading:

E. M. Burns, Circularity in relative pitch judgments for inharmonic complex tones:
the Shepard demonstration revisited, again, Perception and Psychophys. 30 (1981),
467–472.

Diana Deutsch, An auditory illusion, Nature 251 (1974), 307–309.

Diana Deutsch, Musical illusions, Scientific American 233 (1975), 92–104.

Diana Deutsch, A musical paradox, Music Percept. 3 (1986), 275–280.

Diana Deutsch, The tritone paradox: effects of spectral variables, Perception and
Psychophys. 41 (6) (1987), 563–575.

Diana Deutsch, The tritone paradox: An influence of language on music perception,
Music Percept. 8 (1990), 335–347.

Diana Deutsch, Paradoxes of musical pitch, Scientific American 267 (1992), 88–95.

Diana Deutsch, Trevor Henthorn and Mark Dolson, Speech patterns heard in early
life influence later perception of the tritone paradox, Music Percept. 21 (3) (2004),
357–372.

J. Giangrande, B. Tuller and J. A. S. Kelso, Perceptual dynamics of circular pitch,
Music Percept. 20 (3) (2003), 241–262.
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Max F. Meyer, New illusions of pitch, American J. Psychology 75 (2) (1962), 323–
324.

Irwin Pollack, Decoupling of auditory pitch and stimulus frequency: the Shepard
demonstration revisited, J. Acoust. Soc. Amer. 63 (1) (1978), 202–206.

Frank Ragozzine, The tritone paradox and perception of single octave-related com-
plexes, Music Percept. 19 (2) (2001), 155–168.

Jean-Claude Risset, Paradoxical sounds, in Mathews and Pierce [87], pages 149–158.

Jean-Claude Risset, Pitch and rhythm paradoxes: comments on “Auditory paradox
based on fractal waveform”, J. Acoust. Soc. Amer. 80 (3) (1986), 961–962. (See
Schroeder’s article cited below)

Manfred R. Schroeder, Auditory paradox based on fractal waveform, J. Acoust. Soc.
Amer. 79 (1) (1986), 186–189.

R. N. Shepard, Circularity in judgments of relative pitch, J. Acoust. Soc. Amer. 36

(12) (1964), 2346–2353.

Further listening: (See Appendix R)

Auditory demonstrations CD (Houtsma, Rossing and Wagenaars), track 52 is a

demonstration of Shepard’s scale, followed by an analogous continuously varying

tone devised by Jean-Claude Risset.



CHAPTER 5

Scales and temperaments: the fivefold way

“A perfect fourth? cries Tom. Whoe’er gave birth
To such a riddle, should stick or fiddle
On his numbskull ring until he sing
A scale of perfect fourths from end to end.
Was ever such a noddy? Why, almost everybody
Knows that not e’en one thing perfect is on earth—
How then can we expect to find a perfect fourth?”

(Musical World, 1863)1

1Quoted in Nicolas Slonimsky’s Book of Musical Anecdotes, reprinted by Schirmer,
1998, p. 299. The picture comes from J. Frazer, A new visual illusion of direction, British
Journal of Psychology, 1908. And yes, check it out, they are concentric circles, not a spiral.
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5.1. Introduction

We saw in the last chapter that for notes played on conventional instru-
ments, where partials occur at integer multiples of the fundamental frequency,
intervals corresponding to frequency ratios expressable as a ratio of small inte-
gers are favoured as consonant. In this chapter, we investigate how this gives
rise to the scales and temperaments found in the history of western music.

Scales based around the octave are categorised by Barbour [5] into five
broad groups: Pythagorean, just, meantone, equal, and irregular systems.
The title of this chapter refers to this fivefold classification, as well as to the
use of the first five harmonics as the starting point for the development of
scales. We shall try to indicate where these five types of scales come from.

In Chapter 6 we shall discuss further developments in the theory of
scales and temperaments, and in particular, we shall study some scales which
are not based around the interval of an octave. These are the Bohlen–Pierce
scale, and the scales of Wendy Carlos.

5.2. Pythagorean scale

Pythagoras

As we saw in §4.2, Pythagoras dis-
covered that the interval of a perfect fifth,
corresponding to a frequency ratio of 3:2,
is particularly consonant. He concluded
from this that a convincing scale could be
constructed just by using the ratios 2:1
and 3:2. Greek music scales of the Pytha-
gorean school are built using only these
intervals, although other ratios of small
integers played a role in classical Greek
scales.

So for example, if we use the ratio
3:2 twice, we obtain an interval with ratio
9:4, which is a little over an octave. Re-
ducing by an octave means halving this
ratio to give 9:8. Using the ratio 3:2 again

will then bring us to 27:16, and so on.
What we now refer to as the Pythagorean scale is the one obtained by

tuning a sequence of fifths

fa–do–so–re–la–mi–ti.

This gives the following table of frequency ratios for a major scale:2

note do re mi fa so la ti do

ratio 1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

2A Pythagorean minor scale can be constructed using ratios 32:27 for the minor third,
128:81 for the minor sixth and 16:9 for the minor seventh.
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In this system, the two intervals between successive notes are a major
tone of 9:8 and a minor semitone of 256:243 or 28:35. The semitone is not
quite half of a tone in this system: two minor semitones give a frequency ra-
tio of 216:310 rather than 9:8. The Pythagoreans noticed that these were al-
most equal:

216/310 = 1.10985715 . . .

9/8 = 1.125

In other words, the Pythagorean system is based on the fact that

219 ≈ 312, or 524288 ≈ 531441,

so that going up 12 fifths and then down 7 octaves brings you back to almost
exactly where you started. The fact that this is not quite so gives rise to the
Pythagorean comma or ditonic comma, namely the frequency ratio

312/219 = 1.013643265 . . .

or just slightly more than one ninth of a whole tone.3

It seems likely that the Pythagoreans thought of musical intervals as
involving the process of continued subtraction or antanairesis, which later
formed the basis of Euclid’s algorithm for finding the greatest common divi-
sor of two integers (if you don’t remember how Euclid’s algorithm goes, it is
described in Lemma 9.7.1). A 2:1 octave minus a 3:2 perfect fifth is a 4:3 per-
fect fourth. A perfect fifth minus a perfect fourth is a 9:8 Pythagorean whole
tone. A perfect fourth minus two whole tones is a 256:243 Pythagorean mi-
nor semitone. It was called a diesis (difference), and was later referred to as
a limma (remnant). A tone minus a diesis is a 2187:2048 Pythagorean major
semitone, called an apotomē. An apotomē minus a diesis is a 531441:524288
Pythagorean comma.

5.3. The cycle of fifths

The Pythagorean tuning system can be extended to a twelve tone scale
by tuning perfect fifths and octaves, at ratios of 3:2 and 2:1. This corre-
sponds to tuning a “cycle of fifths” as in the following diagram:

3Musical intervals are measured logarithmically, so dividing a whole tone by nine re-
ally means taking the ninth root of the ratio, see §5.4.
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C

1:1

G

3:2

D
9:8

A 27:16

E
81:64

B

243:128

729:512

F♯
C♯

2187:2048

A♭128:81 ∼
G♯

6561:4096

E♭32:27

B♭
16:9

F

4:3

In this picture, the Pythagorean comma appears as the difference between
the notes A♭ and G♯, or indeed any other enharmonic pair of notes:

6561/4096

128/81
=

312

219
=

531441

524288

In these days of equal temperament (see §5.14), we think of A♭ and G♯
as just two different names for the same note, so that there is really a circle
of fifths. Other notes also have several names, for example the notes C and
B♯, or the notes E♭♭, D and C5.4 In each case, the notes are said to be en-
harmonic, and in the Pythagorean system that means a difference of exactly
one Pythagorean comma. So the Pythagorean system does not so much have
a circle of fifths, more a sort of spiral of fifths.

4The symbol 5 is used in music instead of ♯♯ to denote a double sharp.
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D♭♭
A♭♭

E♭♭

B♭♭

F♭

C♭
G♭

D♭

A♭

E♭

B♭

F
C

G

D

A

E

B
F♯

C♯

G♯

D♯

A♯

E♯
B♯

F5
C5
G5

D5
So for example, going clockwise one complete revolution takes us from

the note C to B♯, one Pythagorean comma higher. Going round the other
way would take us to D♭♭, one Pythagorean comma lower. We shall see in
§6.2 that the Pythagorean spiral never joins up. In other words, no two notes
of this spiral are equal. The twelfth note is reasonably close, the 53rd is
closer, and the 665th is very close indeed.

Exercises

1. What is the name of the note

(a) one Pythagorean comma lower than F,

(b) two Pythagorean commas higher than B,

(c) two Pythagorean commas lower than B?

Further listening: (See Appendix R)

Guillaume de Machaut, Messe de Notre Dame, Hilliard Ensemble, sung in Pytha-

gorean intonation.

5.4. Cents

Adding musical intervals corresponds to multiplying frequency ratios.
So for example if an interval of an octave corresponds to a ratio of 2:1 then
an interval of two octaves corresponds to a ratio of 4:1, three octaves to 8:1,
and so on. In other words, our perception of musical distance between two
notes is logarithmic in frequency, as logarithms turn products into sums. For
this and other elementary properties of logarithms, see Appendix L.
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We now explain the system of cents, first introduced by Alexander Ellis
around 1875, for measuring frequency ratios. This is the system most often
employed in the modern literature. This is a logarithmic scale in which there
are 1200 cents to the octave. Each whole tone on the modern equal tempered
scale (described below) is 200 cents, and each semitone is 100 cents. To con-
vert from a frequency ratio of r:1 to cents, the value in cents is

1200 log2(r) = 1200 ln(r)/ ln(2).

To convert an interval of n cents to a frequency ratio, the formula is

2
n

1200 : 1.

For example, the interval from C to D in the Pythagorean scale represents a
frequency ratio of 9:8, so in cents this comes out as

1200 log2(9/8) = 1200 ln(9/8)/ ln(2)

or approximately 203.910 cents. The Pythagorean scale in the key of C ma-
jor comes out as follows:

note C D E F G A B C

ratio 1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

cents 0.000 203.910 407.820 498.045 701.955 905.865 1109.775 1200.000

We shall usually give our scales in the key of C, and assign the note C a value
of 0 cents. Everything else is measured in cents above the note C.

In France, rather than measuring intervals in cents, they use as their
basic unit the savart, named after its proponent, the French physicist Félix
Savart (1791–1841). In this system, a ratio of 10:1 is assigned a value of 1000
savarts. So a 2:1 octave is

1000 log10(2) ≈ 301.030 savarts.

One savart corresponds to a frequency ratio of 10
1

1000 :1, and is equal to

1200

1000 log10(2)
=

6

5 log10(2)
≈ 3.98631 cents.

Exercises

1. Show that to three decimal places, the Pythagorean comma is equal to 23.460
cents. What is it in savarts?

2. Convert the frequency ratios for the vibrational modes of a drum, given in §3.6,
into cents above the fundamental.

3. Assigning C the value of 0 cents, what is the value of the note E♭♭ in the Pytha-

gorean scale?

Further Reading:

Parry Moon, A scale for specifying frequency levels in octaves and semitones, J.

Acoust. Soc. Amer. 25 (3) (1953), 506–515.
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5.5. Just intonation

Just intonation refers to any tuning system that uses small, whole

numbered ratios between the frequencies in a scale. This is the

natural way for the ear to hear harmony, and it’s the foundation

of classical music theory. The dominant Western tuning system

- equal temperament - is merely a 200 year old compromise that

made it easier to build mechanical keyboards. Equal temperament

is a lot easier to use than JI, but I find it lacks expressiveness.

It sounds dead and lifeless to me. As soon as I began working

microtonally, I felt like I moved from black & white into colour.

I found that certain combinations of intervals moved me in a

deep physical way. Everything became clearer for me, more vis-

ceral and expressive. The trade-off is that I had to be a lot more

careful with my compositions, for while I had many more inter-

esting consonant intervals to choose from, I also had new kinds

of dissonances to avoid. Just intonation also opened me up to

a greater appreciation of non-Western music, which has clearly

had a large impact on my music.

Robert Rich (synthesist)

After the octave and the fifth, the next most interesting ratio is 4:3. If
we follow a perfect fifth (ratio 3:2) by the ratio 4:3, we obtain a ratio of 4:2
or 2:1, which is an octave. So 4:3 is an octave minus a perfect fifth, or a per-
fect fourth. So this gives us nothing new. The next new interval is given by
the ratio 5:4, which is the fifth harmonic brought down two octaves.

If we continue this way, we find that the series of harmonics of a note
can be used to construct scales consisting of notes that are for the most part
related by small integer ratios. Given the fundamental role of the octave, it
is natural to take the harmonics of a note and move them down a number of
octaves to place them all in the same octave. In this case, the ratios we ob-
tain are:

1:1 for the first, second, fourth, eighth, etc. harmonic,

3:2 for the third, sixth, twelfth, etc. harmonic,

5:4 for the fifth, tenth, etc. harmonic,

7:4 for the seventh, fourteenth, etc. harmonic,

and so on.
As we have already indicated, the ratio of 3:2 (or 6:4) is a perfect fifth.

The ratio of 5:4 is a more consonant major third than the Pythagorean one,
since it is a ratio of smaller integers. So we now have a just major triad
(do–mi–so) with frequency ratios 4:5:6. Most scales in the world incorporate
the major triad in some form. In western music it is regarded as the funda-
mental building block on which chords and scales are built. Scales in which
the frequency ratio 5:4 are included were first developed by Didymus in the
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first century b.c.e. and Ptolemy in the second century c.e. The difference
between the Pythagorean major third 81:64 and the Ptolemy–Didymus ma-
jor third 5:4 is a ratio of 81:80. This interval is variously called the syntonic
comma, comma of Didymus, Ptolemaic comma, or ordinary comma. When
we use the word comma without further qualification, we shall always be re-
ferring to the syntonic comma.

Just intonation in its most limited sense usually refers to the scales in
which each of the major triads I, IV and V (i.e., C–E–G, F–A–C and G–B–
D) is taken to have frequency ratios 4:5:6. Thus we obtain the following ta-
ble of ratios for a just major scale:

note do re mi fa so la ti do

ratio 1:1 9:8 5:4 4:3 3:2 5:3 15:8 2:1

cents 0.000 203.910 386.314 498.045 701.955 884.359 1088.269 1200.000

The just major third is therefore the name for the interval (do–mi) with ra-
tio 5:4, and the just major sixth is the name for the interval (do–la) with ra-
tio 5:3. The complementary intervals (mi–do) of 8:5 and (la–do) of 6:5 are
called the just minor sixth and the just minor third.

The differences between various versions of just intonation mostly in-
volve how to fill in the remaining notes of a twelve tone scale. In order to
qualify as just intonation, each of these notes must differ by a whole num-
ber of commas from the Pythagorean value. In this context, the comma may
be thought of as the result of going up four perfect fifths and then down two
octaves and a just major third. In some versions of just intonation, a few of
the notes of the above basic scale have also been altered by a comma.

5.6. Major and minor
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Parallel lines

In the last section, we saw that the basic building block of western mu-
sic is the major triad, which in just intonation is built up out of the fourth,
fifth and sixth notes in the harmonic series.



5.7. THE DOMINANT SEVENTH 161

�IG ���""" 4:5:6

The minor triad is built by reversing the order of the two intervals, to
obtain a chord of the form C–E♭–G. The ratios are 5:6 for the C–E♭ and 4:5
for the E♭–G. It seems futile to try to understand these as the harmonics
of a common fundamental, because we would have to express the ratios as
10:12:15, making the fundamental 1/10 of the frequency of the C. It makes
more sense to look at the harmonics of the notes in the triad, and to notice
that all three notes have a common harmonic. Namely,

6× C = 5× E♭ = 4×G.

So if we play a minor triad, if we listen carefully we can pick out this com-
mon harmonic, which is a G two octaves higher. For some subtle psycho-
acoustic reason, it sometimes sounds as though it’s just one octave higher.
It is probably the high common harmonic which causes us to associate mi-
nor chords with sadness. �IG 2""" 10:12:15

�
Another point of view regarding the minor triad is to view it as a mod-

ification of a major triad by slightly lowering the middle note to change the
flavour. Music theory is full of modified chords, usually meaning that one of
the notes in the chord has been raised or lowered by a semitone.

Further Reading:

P. Hindemith, Craft of musical composition, I. Theory. Schott, 1937, Section III.5,

The Minor Triad.

5.7. The dominant seventh

If we go as far as the seventh harmonic, we obtain a chord with ratios
4:5:6:7. This can be thought of as C–E–G–B♭, with a 7:4 B♭.
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�IG ���""
2"" 4:5:6:7

There is a closely related chord called the dominant seventh chord, in
which the B♭ is the Pythagorean minor seventh, 16:9 higher than the C in-
stead of 7:4. If we start this chord on G (3:2 above C) instead of C, we will
obtain a chord G–B–D–F, and the F will be 4:3 above C. This chord has a
strong tendency to resolve to C major, whereas the 4:5:6:7 version feels a lot
more stable. G

G7

""""
C

""""
We shall have more to say about the seventh harmonic in §6.9.

Further Reading:

Martin Vogel, Die Naturseptime [142].

5.8. Commas and schismas

Recall from §5.2 that the Pythagorean comma is defined to be the dif-
ference between twelve perfect fifths and seven octaves, which gives a fre-
quency ratio of 531441:524288, or a difference of about 23.460 cents. Recall
also from §5.5 that the word comma, used without qualification, refers to the
syntonic comma, which is a frequency ratio of 81:80. This is a difference of
about 21.506 cents.

So the syntonic comma is very close in value to the Pythagorean
comma, and the difference is called the schisma. This represents a frequency
ratio of

531441/524288

81/80
=

32805

32768
,

or about 1.953 cents.
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The diaschisma5 is defined to be one schisma less than the comma, or
a frequency ratio of 2048:2025. This may be viewed as the result of going up
three octaves, and then down four perfect fifths and two just major thirds.

The great diesis6 is one octave minus three just major thirds, or three
syntonic commas minus a Pythagorean comma. This represents a frequency
ratio of 128:125 or a difference of 41.059 cents.

The septimal comma is the amount by which the seventh harmonic 7:4
is flatter than the Pythagorean minor seventh 16:9. So it represents a ratio
of (16/9)(4/7) = 64/63 or a difference of 27.264 cents.

Exercises

1. Show that to three decimal places, the (syntonic) comma is equal to 21.506 cents
and the schisma is equal to 1.953 cents.

2. (G. B. Benedetti)7 Show that if all the major thirds and sixths and the perfect
fourths and fifths are taken to be just in the following harmonic progression, then
the pitch will drift upwards by exactly one comma from the initial G to the final G.

�IG"#" ""︸ ##︸" "
(3
4 × 3

2 × 3
5 × 3

2 = 81
80 )

This example was given by Benedetti in 1585 as an argument against Zarlino’s8

assertion (1558) that unaccompanied singers will tend to sing in just intonation. For
a further discussion of the syntonic comma in the context of classical harmony, see
§5.11.

3. Here is a quote from Karlheinz Stockhausen9 (Lectures and interviews, compiled
by Robert Maconie, Marion Boyars publishers, London, 1989, pages 110–111):

5Historically, the Roman theorist Boethius (ca. 480–524 c.e.) attributes to Philolaus
of Pythagoras’ school a definition of schisma as one half of the Pythagorean comma and
the diaschisma for one half of the diesis, but this does not correspond to the common mod-
ern usage of the terms.

6The word diesis in Greek means ‘leak’ or ‘escape’, and is based on the technique for
playing the aulos, an ancient Greek wind instrument. To raise the pitch of a note on the
aulos by a small amount, the finger on the lowest closed hole is raised slightly to allow a
small amount of air to escape.

7G. B. Benedetti, Diversarum speculationum, Turin, 1585, page 282. The example is
borrowed from Lindley and Turner-Smith [80], page 16.

8G. Zarlino, Istitutione harmoniche, Venice, 1558.
9Karlheinz Stockhausen has been much maligned in the German press in the months

following September 2001. I urge anyone with a brain to go to his home page at
www.stockhausen.org and find out what he really said, and what the context was. The
full text of the original interview is there.
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With the purest tones you can make the most subtle melodic gestures, much,
much more refined than what the textbooks say is the smallest interval we can
hear, namely the Pythagorean comma 80:81. That’s not true at all. If I use sine
waves, and make little glissandi instead of stepwise changes, then I can really
feel that little change, going far beyond what people say about Chinese music,
or in textbooks of physics or perception.

But it all depends on the tone: you cannot just use any tone in an interval
relationship. We have discovered a new law of relationship between the nature
of the sound and the scale on which it may be composed. Harmony and melody
are no longer abstract systems to be filled with any given sounds we may choose
as material. There is a very subtle relationship nowadays between form and ma-
terial.

(a) Find the error in this quote, and explain why it does not really matter.

(b) What is the new law of relationship to which Stockhausen is referring?

5.9. Eitz’s notation

Eitz10 devised a system of notation, used in Barbour [5], which is con-
venient for describing scales based around the octave. His method is to start
with the Pythagorean definitions of the notes and then put a superscript de-
scribing how many commas to adjust by. Each comma multiplies the fre-
quency by a factor of 81/80.

As an example, the Pythagorean E, notated E
0

in this system, is 81:64

of C, while E
−1

is decreased by a factor of 81/80 from this value, to give the
just ratio of 80:64 or 5:4.

In this notation, the basic scale for just intonation is given by

C
0
– D

0
– E

−1
– F

0
– G

0
– A

−1
– B

−1
– C

0

A common variant of this notation is to use subscripts rather than super-

scripts, so that the just major third in the key of C is E−1 instead of E
−1

.
An often used graphical device for denoting just scales, which we use

here in combination with Eitz’s notation, is as follows. The idea is to place
notes in a triangular array in such a way that moving to the right increases
the note by a 3:2 perfect fifth, moving up and a little to the right increases a
note by a 5:4 just major third, and moving down and a little to the right in-
creases a note by a 6:5 just minor third. So a just major 4:5:6 triad is denoted

E
−1

C
0

G
0
.

A just minor triad has these intervals reversed:

C
0

G
0

E♭
+1

10Carl A. Eitz, Das mathematisch-reine Tonsystem, Leipzig, 1891. A similar notation
was used earlier by Hauptmann and modified by Helmholtz [55].
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and the notes of the just major scale form the following array:

A
−1

E
−1

B
−1

F
0

C
0

G
0

D
0

This method of forming an array is usually ascribed to Hugo Riemann,11 al-
though such arrays have been common in German music theory since the
eighteenth century to denote key relationships and functional interpretation
rather than frequency relationships.

It is sometimes useful to extend Eitz’s notation to include other com-
mas. Several different notations appear in the literature, and we choose to
use p to denote the Pythagorean comma and z to denote the septimal comma.

So for example G♯
−p

is the same note as A♭
0
, and the interval from C

0
to

B♭
−z

is a ratio of 16
9 × 63

64 = 7
4 , namely the seventh harmonic.

Exercises

1. Show that in Eitz’s notation, the example of §5.8, Exercise 2 looks like:

G
0

D
0

A
0

E
0

C
+1

G
+1

2. (a) Show that the schisma is equal to the interval between D♭♭
+1

and C
0

, and the

interval between C
0

and B♯
−1

.

(b) Show that the diaschisma is equal to the interval between C
0

and D♭♭
+2

.

(c) Give an example to show that a sequence of six overlapping chords in just into-
nation can result in a drift of one diaschisma.

(d) How many overlapping chords in just intonation are needed in order to achieve

a drift of one schisma?

5.10. Examples of just scales

11Hugo Riemann, Ideen zu einer ‘Lehre von den Tonvorstellungen,’ Jahrbuch der
Musikbibliothek Peters, 1914–1915, page 20; Grosse Kompositionslehre, Berlin, W. Spe-
mann, 1902, volume 1, page 479.
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Using Eitz’s notation, we list the examples of just intonation given in
Barbour [5] for comparison. The dates and references have also been copied
from that work.
Ramis’ Monochord
(Bartolomeus Ramis de Pareja, Musica Practica, Bologna, 1482)

D
−1

A
−1

E
−1

B
−1

F♯
−1

C♯
−1

A♭
0

E♭
0

B♭
0

F
0

C
0

G
0

Erlangen Monochord
(anonymous German manuscript, second half of fifteenth century)

E
−1

B
−1

G♭
0

D♭
0

A♭
0

E♭
0

B♭
0

F
0

C
0

G
0

E♭♭
+1

B♭♭
+1

Erlangen Monochord, Revised

The deviations of E♭♭
+1

from D
0
, and of B♭♭

+1
from A

0
are equal to the schisma, as are the deviations

of G♭
0

from F♯
−1

, of D♭
0

from C♯
−1

, and of A♭
0

from G♯
−1

. So Barbour conjectures that the Erlan-
gen monochord was really intended as

E
−1

B
−1

F♯
−1

C♯
−1

G♯
−1

E♭
0

B♭
0

F
0

C
0

G
0

D
0

A
0

Fogliano’s Monochord No. 1
(Lodovico Fogliano, Musica theorica, Venice, 1529)

F♯
−2

C♯
−2

G♯
−2

D
−1

A
−1

E
−1

B
−1

B♭
0

F
0

C
0

G
0

E♭
+1

Fogliano’s Monochord No. 2

F♯
−2

C♯
−2

G♯
−2

A
−1

E
−1

B
−1

F
0

C
0

G
0

D
0

E♭
+1

B♭
+1

Agricola’s Monochord
(Martin Agricola, De monochordi dimensione, in Rudimenta musices, Wittemberg, 1539)

F♯
−1

C♯
−1

G♯
−1

D♯
−1

B♭
0

F
0

C
0

G
0

D
0

A
0

E
0

B
0

De Caus’s Monochord
(Salomon de Caus, Les raisons des forces mouvantes avec diverses machines, Francfort, 1615, Book 3,
Problem III)

F♯
−2

C♯
−2

G♯
−2

D♯
−2

D
−1

A
−1

E
−1

B
−1

B♭
0

F
0

C
0

G
0
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Johannes Kepler (1571–1630)

Kepler’s Monochord No. 1
(Johannes Kepler, Harmonices mundi, Augsburg, 1619)

E
−1

B
−1

F♯
−1

C♯
−1

G♯
−1

F
0

C
0

G
0

D
0

A
0

E♭
+1

B♭
+1

(Note: the G♯
−1

is incorrectly labelled G♯
+1

in Barbour, but his numerical value in cents is correct)

Kepler’s Monochord No. 2

E
−1

B
−1

F♯
−1

C♯
−1

F
0

C
0

G
0

D
0

A
0

A♭
+1

E♭
+1

B♭
+1
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Mersenne’s Spinet Tuning No. 1
(Marin Mersenne, Harmonie universelle, Paris, 1636–7)12

D
−1

A
−1

E
−1

B
−1

B♭
0

F
0

C
0

G
0

G♭
+1

D♭
+1

A♭
+1

E♭
+1

Mersenne’s Spinet Tuning No. 2

F♯
−2

C♯
−2

G♯
−2

D♯
−2

A
−1

E
−1

B
−1

B♭
0

F
0

C
0

G
0

D
0

Mersenne’s Lute Tuning No. 1

D
−1

A
−1

E
−1

B
−1

F
0

C
0

G
0

G♭
+1

D♭
+1

A♭
+1

E♭
+1

B♭
+1

Mersenne’s Lute Tuning No. 2

A
−1

E
−1

B
−1

F
0

C
0

G
0

D
0

G♭
+1

D♭
+1

A♭
+1

E♭
+1

B♭
+1

Marpurg’s Monochord No. 1
(Friedrich Wilhelm Marpurg, Versuch über die musikalische Temperatur, Breslau, 1776)

C♯
−2

G♯
−2

A
−1

E
−1

B
−1

F♯
−1

F
0

C
0

G
0

D
0

E♭
+1

B♭
+1

[Marpurg’s Monochord No. 2 is the same as Kepler’s monochord]

Marpurg’s Monochord No. 3

C♯
−2

G♯
−2

E
−1

B
−1

F♯
−1

B♭
0

F
0

C
0

G
0

D
0

A
0

E♭
+1

Marpurg’s Monochord No. 4

F♯
−2

C♯
−2

G♯
−2

D
−1

A
−1

E
−1

B
−1

F
0

C
0

G
0

E♭
+1

B♭
+1

12See page 90 for a picture of Mersenne.
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Friedrich Wilhelm Marpurg
(1718–1795)

Malcolm’s Monochord
(Alexander Malcolm, A Treatise of Musick, Edinburgh, 1721)

A
−1

E
−1

B
−1

F♯
−1

B♭
0

F
0

C
0

G
0

D
0

D♭
+1

A♭
+1

E♭
+1

Euler’s Monochord
(Leonhard Euler, Tentamen novæ theoriæ musicæ, St. Petersburg, 1739)

C♯
−2

G♯
−2

D♯
−2

A♯
−2

A
−1

E
−1

B
−1

F♯
−1

F
0

C
0

G
0

D
0

Montvallon’s Monochord
(André Barrigue de Montvallon, Nouveau système de musique sur les intervalles des tons et sur les
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Leonhard Euler
(1707–1783)

proportions des accords, Aix, 1742)

A
−1

E
−1

B
−1

F♯
−1

C♯
−1

G♯
−1

B♭
0

F
0

C
0

G
0

D
0

E♭
+1

Romieu’s Monochord
(Jean Baptiste Romieu, Mémoire théorique & pratique sur les systèmes tempérés de musique, Mémoires
de l’académie royale des sciences, 1758)

C♯
−2

G♯
−2

A
−1

E
−1

B
−1

F♯
−1

B♭
0

F
0

C
0

G
0

D
0

E♭
+1

Kirnberger I
(Johann Phillip Kirnberger, Construction der gleichschwebenden Temperatur, Berlin, 1764)

A
−1

E
−1

B
−1

F♯
−1

D♭
0

A♭
0

E♭
0

B♭
0

F
0

C
0

G
0

D
0
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Rousseau’s Monochord
(Jean Jacques Rousseau, Dictionnaire de musique, Paris, 1768)

F♯
−2

C♯
−2

A
−1

E
−1

B
−1

F
0

C
0

G
0

D
0

A♭
+1

E♭
+1

B♭
+1

We shall return to the discussion of just intonation in §6.1, where we
consider scales built using primes higher than 5. In §6.8, we look at a way
of systematizing the discussion by using lattices, and we interpret the above
scales as periodicity blocks.

Exercises

1. Choose several of the just scales described in this section, and write down the
values of the notes

(i) in cents, and

(ii) as frequencies, giving the answers as multiples of the frequency for C.

2. Show that the Pythagorean scale with perfect fifths

G♭
0

– D♭
0

– A♭
0

– E♭
0

– B♭
0

– F
0

– C
0

– G
0

– D
0

– A
0

– E
0

– B
0

,

gives good approximations to just major triads on D, A and E, in the form D
0

– G♭
0

–

A
0

, A
0

– D♭
0

– E
0

and E
0

– A♭
0

– B
0

. How far from just are the thirds of these chords
(in cents)?

Colin Brown’s voice harmonium
(Science Museum, London)



172 5. SCALES AND TEMPERAMENTS: THE FIVEFOLD WAY

c©Science and Society Picture Library

3. The voice harmonium of Colin Brown (1875) is shown above. A plan of a little
more than one octave of the keyboard is shown below. Diagonal rows of black keys
and white keys alternate, and each black key has a red peg sticking out of its upper
left corner, represented by a small circle in the plan. The purpose of this keyboard
is to be able to play in a number of different keys in just intonation. Locate exam-
ples of the following on this keyboard:

(i) A just major triad.

(ii) A just minor triad.

(iii) A just major scale.

(iv) Two notes differing by a syntonic comma.

(v) Two notes differing by a schisma.

(vi) Two notes differing by a diesis.

(vii) Two notes differing by an apotomē.
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F
−1

g
E

−2

F
0

F♯
−1

g
E♯

−2

F♯
0

G
−1

g
F♯

−2

G
0

G♯
−1

A♭
0

A
−1

g
G♯

−2

A
0

B♭
0

B
−1

g
A♯

−2

B
0

C
−1

g
B

−2

C
0

C♯
−1

g
B♯

−2

D♭
0

D
−1

g
C♯

−2

D
0

D♯
−1

E♭
0

E
−1

g
D♯

−2

E
0

F
−1

g
E

−2

F
0

F♯
−1

g
E♯

−2

F♯
0

G
−1

g
F♯

−2

G
0

G♯
−1

A♭
0

A
−1

g
G♯

−2

A
0

B♭
0

B
−1

g
A♯

−2

B
0

C
−1

g
B

−2

C
0

C♯
−1

g
B♯

−2

Keyboard diagram for Colin Brown’s voice harmonium

5.11. Classical harmony

The main problem with the just major scale introduced in §5.5 is that
certain harmonic progressions which form the basis of classical harmony don’t
quite work. This is because certain notes in the major scale are being given
two different just interpretations, and switching from one to the other is a
part of the progression. In this section, we discuss the progressions which
form the basis for classical harmony,13 and find where the problems lie.

We begin with the names of the triads. An upper case roman numeral
denotes a major chord based on the given scale degree, whereas a lower case
roman numeral denotes a minor chord. So for example the major chords I,

IV and V form the basis for the just major scale in §5.5, namely C
0
– E

−1
–

G
0
, F

0
– A

−1
– C

0
and G

0
– B

−1
– D

0
in the key of C major. The triads A

−1
–

C
0
– E

−1
and E

−1
– G

0
– B

−1
are the minor triads vi and iii. The problem

comes from the triad on the second note of the scale, D
0
– F

0
– A

−1
. If we al-

ter the D
0

to a D
−1

, this is a just minor triad, which we would then call ii.
Classical harmony makes use of ii as a minor triad, so maybe we should

have used D
−1

instead of D
0

in our just major scale. But then the triad V

becomes G
0
– B

−1
– D

−1
, which doesn’t quite work. We shall see that there

13The phrase “classical harmony” here is used in its widest sense, to include not only
classical, romantic and baroque music, but also most of the rock, jazz and folk music of
western culture.
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is no choice of just major scale which makes all the required triads work. To
understand this, we discuss classical harmonic practice.

We begin at the end. Most music in the western world imparts a sense
of finality through the sequence V–I, or variations of it (V7–I, vii0–I).14 It is
not fully understood why V–I imparts such a feeling of finality, but it cannot
be denied that it does. A great deal of music just consists of alternate triads
V and I.

The progression V–I can stand on its own, or it can be approached in
a number of ways. A sequence of fifths forms the basis for the commonest
method, so that we can extend to ii–V–I, then to vi–ii–V–I, and even fur-
ther to iii–vi–ii–V–I, each of these being less common than the previous ones.
Here is a chart of the most common harmonic progressions in the music of
the western world, in the major mode:

[iii]→ [vi]→




IV
↓
ii


ց
ր




vii0

V


ց
ր I

and then either end the piece, or go back from I to any previous triad. Com-
mon exceptions are to jump from iii to IV, from IV to I and from V to vi.

Now take a typical progression from the above chart, such as

I–vi–ii–V–I,

and let us try to interpret this in just intonation. Let us stipulate one simple
rule, namely that if a note on the diatonic scale appears in two adjacent tri-

ads, it should be given the same just interpretation. So if I is C
0
– E

−1
– G

0

then vi must be interpreted as A
−1

– C
0
– E

−1
, since the C and E are in com-

mon between the two triads. This means that the ii should be interpreted as

D
−1

– F
0
– A

−1
, with the A in common with vi. Then V needs to be inter-

preted as G
−1

– B
−2

– D
−1

because it has D in common with ii. Finally, the I

at the end is forced to be interpreted as C
−1

– E
−2

– G
−1

since it has G in com-
mon with V. We are now one syntonic comma lower than where we started.

To put the same problem in terms of ratios, in the second triad the A
is 5

3 of the frequency of the C, then in the third triad, D is 2
3 of the frequency

of A. In the fourth triad, G is 4
3 of the frequency of D, and finally in the last

triad, C is 2
3 of the frequency of G. This means that the final C is

5

3
× 2

3
× 4

3
× 2

3
=

80

81
of the frequency of the initial one.

A similar drift downward through a syntonic comma occurs in the se-
quences

I–IV–ii–V–I

I–iii–vi–ii–V–I

14The superscript zero in the notation vii0 denotes a diminished triad with two minor
thirds as the intervals. It has nothing to do with the Eitz comma notation.
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and so on. Here are some actual musical examples, chosen pretty much at
random.

(i) W. A. Mozart, Sonata (K. 333), third movement, beginning.

�IG2222 RR
B♭:

Allegretto grazioso

I

>
! . ! -! !!

vi

!!
ii

!! !!
V

!! !>
I

! !! ! !��! ! !!! ! !��!
(ii) J. S. Bach, Partita no. 5, Gigue, bars 23–24.

�IG44 RR
G:

!.!! .IIII! ! ! !����FV!
! !IIKK!

I

!.!TTTT! !![[!
vi

! !����F V!?
ii

!.!TTTT! !! .
V

! !����FV!
! !IIKK!

I

! .!TTTT! !![[! ! 4!����F V!?
(iii) I’m Old Fashioned (1942).

Music by Jerome Kern, words by Johnny Mercer.

G2 R
I

I’m

F
Liltingly" .

vi7

Old

Dm7!
ii7

Fash -

Gm7!
V7

ioned,

" C7

I

!
I

love

F" .
vi7

the

Dm7!
ii7

moon -

Gm7!
V7

light,

" C7

I

!
I

love

F" .
. . .

!
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(iv) W. A. Mozart, Fantasie (K. 397), bars 55–59.

	GG4444 2
4

2
4

D: I

""!
�!HH!

IV

""!
�

ii

! !ÆÆ��!
︷
︸

V
︸""︷"
! ! .!FV! !

I

!!!
! .�! !

>!
�! !

And a minor example:

(v) J. S. Bach, Jesu, der du meine Seele.

�I
G22222

22222
S
S

b♭: i

!!
!!
��!HH! !!!

!
��!�
�6!

V

!!6!
!

7

BB!
i

!!!!BB2!HH!
iv

!!!
!��!

iio

!!2!
!
BB!
BB!

V

!6!!
!

7

BB!
i

!!!
!P

The meantone scale, which we shall discuss in the next section, solves
the problem of the syntonic comma by deviating slightly from the just val-
ues of notes in such a way that the comma is spread equally between the four
perfect fifths involved, shaving one quarter of a comma from each of them.

Harry Partch discusses th issue of the syntonic comma at length, to-
wards the end of chapter 11 of [103]. He arrives at a different conclusion from
the one adopted historically, namely that the progressions above sound fine,
played in just intonation in such a way that the second note on the scale is

played (in C major) as D
−1

in ii, and as D
0

in V. This means that these two
versions of the “same” note are played in consecutive triads, but the sense of
the harmonic progression is not lost.

5.12. Meantone scale

A tempered scale is a scale in which adjustments are made to the Py-
thagorean or just scale in order to spread around the problem caused by wish-
ing to regard two notes differing by various commas as the same note, as in
the example of §5.8, Exercise 2, and the discussion in §5.11.
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The meantone scales are the tempered scales formed by making adjust-
ments of a fraction of a (syntonic) comma to the fifths in order to make the
major thirds better.

The commonest variant of the meantone scale, sometimes referred to
as the classical meantone scale, or quarter-comma meantone scale, is the one
in which the major thirds are made in the ratio 5:4 and then the remain-
ing notes are interpolated as equally as possible. So C–D–E are in the ratios
1 :
√

5/2 : 5/4, as are F–G–A and G–A–B. This leaves two semitones to de-

cide, and they are made equal. Five tones of ratio
√

5/2 : 1 and two semi-
tones make an octave 2:1, so the ratio for the semitone is

√
2/
(√

5/2
)5

: 1 = 8 : 5
5
4 .

The table of ratios is therefore as follows:

note do re mi fa so la ti do

ratio 1:1
√

5:2 5:4 2:5
1
4 5

1
4 :1 5

3
4 :2 5

5
4 :4 2:1

cents 0.000 193.157 386.314 503.422 696.579 889.735 1082.892 1200.000

The fifths in this scale are no longer perfect.
Another, more enlightening way to describe the classical meantone scale

is to temper each fifth by making it narrower than the Pythagorean value by
exactly one quarter of a comma, in order for the major thirds to come out
right. So working from C, the G is one quarter comma flat from its Pythagor-
ean value, the D is one half comma flat, the A is three quarters of a comma
flat, and finally, E is one comma flat from a Pythagorean major third, which
makes it exactly equal to the just major third. Continuing in the same direc-
tion, this makes the B five quarters of a comma flatter than its Pythagorean
value. Correspondingly, the F should be made one quarter comma sharper
than the Pythagorean fourth.

Thus in Eitz’s notation, the classical meantone scale can be written as

C
0
– D

− 1
2 – E

−1
– F

+ 1
4 – G

− 1
4 – A

− 3
4 – B

− 5
4 – C

0

Writing these notes in the usual array notation, we obtain

E
−1

B
− 5

4

C
0

G
− 1

4 D
− 1

2 A
− 3

4 E
−1

F
+ 1

4 C
0

The meantone scale can be completed by filling in the remaining notes of a
twelve (or more) tone scale according to the same principles. The only ques-
tion is how far to go in each direction with the quarter comma tempered
fifths. Some examples, again taken from Barbour [5] follow.
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Aaron’s Meantone Temperament
(Pietro Aaron, Toscanello in musica, Venice, 1523)

C
0

C♯
−

7
4

D
−

1
2

E♭
+3

4
E

−1

F
+ 1

4
F♯

−
3
2

G
−

1
4

A♭
+1

A
−

3
4

B♭
+ 1

2
B

−
5
4

C
0

Gibelius’ Monochord for Meantone Temperament
(Otto Gibelius, Propositiones mathematico-musicæ, Münden, 1666)
is the same, but with two extra notes

C
0

C♯
−

7
4

D
−

1
2

D♯
−

9
4

E♭
+3

4
E

−1

F
+1

4
F♯

−
3
2

G
−

1
4

G♯
−2

A♭
+1

A
−

3
4

B♭
+ 1

2
B

−
5
4

C
0

These meantone scales are represented in array notation as follows:

(G♯
−2

) (D♯
−

9
4 )

E
−1

B
−

5
4

F♯
−

3
2

C♯
−

7
4

(G♯
−2

)

C
0

G
−

1
4

D
−

1
2

A
−

3
4

E
−1

A♭
+1

E♭
+3

4 B♭
+ 1

2 F
+ 1

4 C
0

where the right hand edge is thought of as equal to the left hand edge. Thus
the notes can be thought of as lying on a cylinder, with four quarter-comma
adjustments taking us once round the cylinder.

q qqq
E♭

+3
4

qB♭
+ 1

2 q
F

+1
4q

C
0

q
G

−
1
4

qD
−

1
2 q

A
−

3
4q

E
−1

q
B

−
5
4

q qq

So the syntonic comma has been taken care of, and modulations can
be made to a reasonable number of keys. The Pythagorean comma has not
been taken care of, so that modulation around an entire circle of fifths is still

not feasible. Indeed, the difference between the enharmonic notes A♭
+1

and

G♯
−2

is three syntonic commas minus a Pythagorean comma, which is a ra-
tio of 128:125, or a difference of 41.059 cents. This interval, called the great
diesis is nearly half a semitone, and is very noticeable to the ear. The imper-
fect fifth between C♯ and A♭ (or wherever else it may happen to be placed)
in the meantone scale is sometimes referred to as the wolf 15 interval of the
scale. We shall see in §6.5 that one way of dealing with the wolf fifth is to
use thirty-one tones to an octave instead of twelve.

15This has nothing to do with the “wolf” notes on a stringed instrument such as the
cello, which has to do with the sympathetic resonance of the body of the instrument.
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Although what we have described is the commonest form of meantone
scale, there are others formed by taking different divisions of the comma. In
general, the α-comma meantone temperament refers to the following temper-
ament:

E
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B
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C
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F
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C
0

Without any qualification, the phrase “meantone temperament” refers to the
case α = 1

4 . The following names are associated with various values of α:

0 Pythagoras

1
7

Romieu (1755); Mémoire théorique et pratique sur les

systèmes tempérés de musique, Paris, 1758

1
6

Silbermann Sorge, Gespräch zwischen einem Musico theoretico

und einem Studioso musices, Lobenstein, 1748, p. 20

1
5

Abraham Verheijen, Simon Stevin, Van de Spiegeling der Singconst, c. 1600

Lemme Rossi Sistema musico, Perugia, 1666, p. 58

2
9

Lemme Rossi Sistema musico, Perugia, 1666, p. 64

1
4

Aaron/Gibelius/Zarlino/. . . Aaron, 1523. . .

2
7

Gioseffo Zarlino Istitutioni armoniche, Venice, 1558

1
3

Francisco de Salinas De musica libri VII, Salamanca, 1577

So for example, Zarlino’s 2
7 comma meantone temperament is as follows:
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The value α = 0 gives Pythagorean intonation, and a value close to
α = 1

11 gives twelve tone equal temperament (see §5.14), so these can (at a
pinch) be thought of as extreme forms of meantone. There is a diagram in
Appendix J on page 384 which illustrates various meantone scales, and the
extent to which the thirds and fifths deviate from their just values.

A useful way of thinking of meantone temperaments is that in order to
name a meantone temperament, it is sufficient to name the size of the fifth.
We have chosen to name this size as a narrowing of the perfect fifth by α com-
mas. Knowing the size of the fifth, all other intervals are obtained by taking
multiples of this size and reducing by octaves. So we say that the fifth gen-
erates a meantone temperament. In any meantone temperament, every key
sounds just like every other key, until the wolf is reached.

Exercises

1. Show that the 1/3 comma meantone scale of Salinas gives pure minor thirds.
Calculate the size of the wolf fifth.
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2. What fraction of a comma should we use for a meantone system in order to min-
imise the mean square error of the fifth, the major third and the minor third from
their just values?

3. Go to the web site

midiworld.com/mw byrd.htm

and listen to some of John Sankey’s MIDI files of keyboard music by William Byrd,
sequenced in quarter comma meantone.

4. Charles Lucy is fond of a tuning system which he attributes to John Harrison

(1693–1776) in which the fifths are tuned to a ratio of 2
1
2
+ 1

4π : 1 and the major thirds

2
1
π : 1. Show that this can be considered as a meantone scale in which the fifths are

tempered by about 3
10 of a comma. Charles Lucy’s web site can be found at

www.harmonics.com/lucy/

5. In the meantone scale, the octave is taken to be perfect. Investigate the scale ob-

tained by stretching the octave by 1
6 of a comma, and shrinking the fifth by 1

6 of a

comma. How many cents away from just are the major third and minor third in this

scale? Calculate the values in cents for notes of the major scale in this temperament.

Further listening: (See Appendix R)

Jacques Champion de Chambonnières, Pièces pour Clavecin, played by Françoise
Lengellé on a harpsichord tuned in quarter comma meantone temperament.

Heinrich Ignaz Franz von Biber, Violin Sonatas, Romanesca, Harmonia Mundi (1994,
reissued 2002). This recording is on instruments tuned in quarter comma meantone
temperament.

Jane Chapman, Beau Génie: Pièces de Clavecin from the Bauyn Manuscript, Vol.
I. These pieces were recorded on a harpsichord tuned in quarter comma meantone
temperament.

Jean-Henry d’Anglebert, Harpsichord Suites and Transcriptions, played by Byron
Schenkman on a harpsichord tuned in quarter comma meantone temperament.

Johann Jakob Froberger, The Complete Keyboard Works, Richard Egarr, Harpsi-
chord and Organ. The organ works in this collection are in 1

5 comma meantone,
while the harpsichord works other than the suites are in quarter comma meantone.

The Katahn/Foote recording, Six degrees of tonality contains tracks comparing
Mozart’s Fantasie K. 397 in equal temperament, meantone, and an irregular tem-
perament of Prelleur.

Edward Parmentier, Seventeenth Century French Harpsichord Music, recorded in 1
3

comma meantone temperament.

Aldert Winkelman, Works by Mattheson, Couperin and others. This recording in-
cludes pieces by Louis Couperin and Gottlieb Muffat played on a spinet tuned in
quarter comma meantone temperament.

Organs tuned in quarter comma meantone temperament are being built even today.
The C. B. Fisk organ at Wellesley College, Massachusetts, USA is tuned in quarter
comma meantone temperament. See

www.wellesley.edu/Music/facilities.html
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for a more detailed description of this organ. Bernard Lagacé has recorded a CD of
music of various composers on this organ.

John Brombaugh apprenticed with the American organ builders Fritz Noack
and Charles Fisk between 1964 and 1967, and has built a number of organs in quar-
ter comma meantone temperament. These include the Brombaugh organs in the
Duke University Chapel, Oberlin College, Southern College, and the Haga Church
in Gothenburg, Sweden.

Another example of a modern organ tuned in meantone temperament is the

Hellmuth Wollf organ of Knox College Chapel in Toronto University, Canada.

5.13. Irregular temperaments

The phrases irregular temperament, circulating temperament and well
tempered scale all refer to a twelve tone scale in which the notes of the mean-
tone scale have been bent to meet round the back so as to remove the prob-
lem of the wolf fifth, and so that the scale works more or less in all twelve
possible key signatures. This means that the notes at the extremes of the
circle of fifths, near the wolf fifth, have been changed in pitch so as to dis-
tribute the wolf between several fifths. The effect is that each of these fifths
is more or less acceptable.

Historically, irregular temperaments superseded or lived alongside
meantone temperament (§5.12) during the seventeenth century, and were in
use for at least two centuries before equal temperament (§5.14) took hold.

Evidence from the 48 Preludes and Fugues of the Well Tempered
Clavier suggests that rather than being written for meantone temperament,
Bach intended a more irregular temperament in which all keys are more or
less satisfactorily in tune.16

A typical example of such a temperament is Werckmeister’s most fre-
quently used temperament. This is usually referred to as Werckmeister III
(although Barbour [5] refers to it as Werckmeister’s Correct Temperament
No. 1),17 which is as follows.
Werckmeister III (Correct Temperament No. 1)
(Andreas Werckmeister, Musicalische Temperatur Frankfort and Leipzig, 1691; reprinted by Diapason

16It is a common misconception that Bach intended the Well Tempered Clavier to be
played in equal temperament. He certainly knew of equal temperament, but did not use it
by preference, and it is historically much more likely that the 48 preludes and fugues were
intended for an irregular temperament of the kind discussed in this section. (It should be
mentioned that there is also evidence that Bach did intend equal temperament, see Rudolf
A. Rasch, Does ‘Well-tempered’ mean ‘Equal-tempered’?, in Williams (ed.), Bach, Händel,
Scarlatti tercentenary Essays, Cambridge University Press, Cambridge, 1985, pp. 293-310.)

17Werckmeister I usually refers to just intonation, and Werckmeister II to classical
meantone temperament. Werckmeister IV and V are described later in this section. There
is also a temperament known as Werckmeister VI, or “septenarius,” which is based on a
division of a string into 196 equal parts. This scale gives the ratios 1:1, 196:186, 196:176,
196:165, 196:156, 4:3, 196:139, 196:131, 196:124, 196:117, 196:110, 196:104, 2:1.
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Press, Utrecht, 1986, with commentary by Rudolph Rasch)
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In this temperament, the Pythagorean comma (not the syntonic comma) is
distributed equally on the fifths from C–G–D–A and B–F♯. We use a modi-
fied version of Eitz’s notation to denote this, in which “p” is used to denote
the usage of the Pythagorean comma rather than the syntonic comma. A
good way to think of this is to use the approximation discussed in §5.14 which

says “p = 12
11 ,” so that for example E

− 3
4 p

is essentially the same as E
− 9

11 . Note

that A♭
0

is equal to G♯
−1p

, so the circle of fifths does join up properly in this
temperament. In fact, this was the first temperament to be widely adopted
which has this property.

In this and other irregular temperaments, different key signatures have
different characteristic sounds, with some keys sounding direct and others
more remote. This may account for the modern myth that the same holds in
equal temperament.18

An interesting example of the use of irregular temperaments in com-
position is J. S. Bach’s Toccata in F♯ minor (BWV 910), bars 109ff, in which
essentially the same musical phrase is repeated about twenty times in suc-
cession, transposed into different keys. In equal or meantone temperament
this could get monotonous, but with an irregular temperament, each phrase
would impart a subtly different feeling.

The point of distributing the comma unequally between the twelve
fifths is so that in the most commonly used keys, the fifth and major third
are very close to just. The price to be paid is that in the more “remote” keys
the tuning of the major thirds is somewhat sharp. So for example in Wer-
ckmeister III, the thirds on C and F are about four cents sharp, while the
thirds on C♯ and F♯ are about 22 cents sharp. Other examples of irregular

18If this were really true, then the shift of nearly a semitone in pitch between Mozart’s
time and our own would have resulted in a permutation of the resulting moods, which
seems to be nonsense. Actually, this argument really only applies to keyboard instruments.
It is still possible in equal temperament for string and wind instruments to give different
characters to different keys. For example, a note on an open string on a violin sounds dif-
ferent in character from a stopped string. Mozart and others have made use of this differ-
ence with a technique called scordatura, (Italian scordare, to mistune) which involves un-
conventional retuning of stringed instruments. A well known example is his Sinfonia Con-
certante, in which all the strings of the solo viola are tuned a semitone sharp. The orches-
tra plays in E♭ for a softer sound, and the solo viola plays in D for a more brilliant sound.

A more shocking example (communicated to me by Markus Linckelmann) is Schubert’s
Impromptu No. 3 for piano in G♭ major. The same piece played in G major on a modern
piano has a very different feel to it. It is possible that in this case, the mechanics of the
fingering are responsible.
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C major Completely pure. Its character is: innocence, simplicity, naivety, children’s talk.

C minor Declaration of love and at the same time the lament of unhappy love.—All languishing,
longing, sighing of the lovesick soul lies in this key.

D♭ major A leering key, degenerating into grief and rapture. It cannot laugh, but it can smile;
it cannot howl, but it can at least grimace its crying.—Consequently only unusual
characters and feelings can be brought out in this key.

C♯ minor Penitential lamentation, intimate conversation with God, the friend and help-meet of
life; sighs of disappointed friendship and love lie in its radius.

D major The key of triumph, of Halelujahs, of war-cries, of victory-rejoicing. Thus, the inviting
symphonies, the marches, holiday songs and heaven-rejoicing choruses are set in this
key.

D minor Melancholy womanliness, the spleen and humours brood.

E♭ minor Feelings of the anxiety of the soul’s deepest distress, of brooding despair, of blackest
depression, of the most gloomy condition of the soul. Every fear, every hesitation of
the shuddering heart, breathes out of horrible E♭ minor. If ghosts could speak, their
speech would approximate this key.

E♭ major The key of love, of devotion, of intimate conversation with God; through its three flats
[1789: according to Euler] expressing the holy trinity.

E major Noisy shouts of joy, laughing pleasure and not yet complete, full delight lies in E Major.

E minor Naive, womanly, innocent declaration of love, lament without grumbling; sighs
accompanied by few tears; this key speaks of the imminent hope of resolving in the pure
happiness of C major. Since by nature it has only one colour, it can be compared to a
maiden, dressed in white, with a rose-red bow at her breast. From this key one steps
with inexpressible charm back again to the fundamental key of C major, where heart
and ear find the most complete satisfaction.

F major Complaisance and calm.

F minor Deep depression, funereal lament, groans of misery and longing for the grave.

G♭ major Triumph over difficulty, free sigh of relief uttered when hurdles are surmounted; echo of
a soul which has fiercely struggled and finally conquered lies in all uses of this key.

F♯ minor A gloomy key: it tugs at passion as a dog biting a dress. Resentment and discontent are
its language. It really does not seem to like its own position: therefore it languishes ever
for the calm of A major or for the triumphant happiness of D major.

G major Everything rustic, idyllic and lyrical, every calm and satisfied passion, every tender
gratitude for true friendship and faithful love,—in a word, every gentle and peaceful
emotion of the heart is correctly expressed by this key. What a pity that because of its
seeming lightness it is so greatly neglected nowadays. . .

G minor Discontent, uneasiness, worry about a failed scheme; bad-tempered gnashing of teeth;
in a word: resentment and dislike.

A♭ major The key of the grave. Death, grave, putrefaction, judgement, eternity lie in its radius.

G♯ minor Grumbler, heart squeezed until it suffocates; wailing lament which sighs in double
sharps, difficult struggle; in a word, the colour of this key is everything struggling with
difficulty.

A major This key includes declarations of innocent love, satisfaction with one’s state of affairs;
hope of seeing one’s beloved again when parting; youthful cheerfulness and trust in God.

A minor Pious womanliness and tenderness of character.

B♭ major Cheerful love, clear conscience, hope, aspiration for a better world.

B♭ minor A quaint creature, often dressed in the garment of night. It is somewhat surly and very
seldom takes on a pleasant countenance. Mocking God and the world; discontented with
itself and with everything; preparation for suicide sounds in this key.

B major Strongly coloured, announcing wild passions, composed from the most glaring colours.
Anger, rage, jealousy, fury, despair and every emotion of the heart lies in its sphere.

B minor This is as it were the key of patience, of calm awaiting one’s fate and of submission
to divine dispensation. For that reason its lament is so mild, without ever breaking out
into offensive murmuring or whimpering. The use of this key is rather difficult for all
instruments; therefore so few pieces are found which are expressly set in this key.

Key characteristics, from Christian Schubart, Ideen zu einer Aesthetik der Tonkunst,
written 1784, published 1806, translated by Rita Steblin.
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temperaments with similar intentions include the following, taken from As-
selin [2], Barbour [5] and Devie [32].
Mersenne’s Improved Meantone Temperament, No. 1
(Marin Mersenne: Cogitata physico-mathematica, Paris, 1644)
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Bendeler’s Temperament, No. 1
(P. Bendeler, Organopoeia, Frankfurt, 1690; 2nd. ed. Frankfurt & Leipzig, 1739, p. 40)
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Bendeler’s Temperament, No. 2
(P. Bendeler, 1690/1739, p. 42)
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Bendeler’s Temperament, No. 3
(P. Bendeler, 1690/1739, p. 42)
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Werckmeister III (Correct Temperament No. 1) See page 181.

Werckmeister IV (Correct Temperament No. 2)
(Andreas Werckmeister, 1691; the least satisfactory of Werckmeister’s temperaments)
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Werckmeister V (Correct Temperament No. 3)
(Andreas Werckmeister, 1691)
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Neidhardt’s Circulating Temperament, No. 1 “für ein Dorf” (for a village)
(Johann Georg Neidhardt, Sectio canonis harmonici, Königsberg, 1724, 16–18)
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Neidhardt’s Circulating Temperament, No. 2 “für eine kleine Stadt” (for a small town)
(Johann Georg Neidhardt, 1724)19
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Neidhardt’s Circulating Temperament, No. 3 “für eine grosse Stadt” (for a large town)
(Johann Georg Neidhardt, 1724)
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Neidhardt’s Circulating Temperament, No. 4 “für den Hof” (for the court)
is the same as twelve tone equal temperament.

Kirnberger II
(Johann Phillip Kirnberger, Construction der gleichschwebenden Temperatur, Berlin, 1764)
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Kirnberger III
(Johann Phillip Kirnberger, Die Kunst des reinen Satzes in der Musik 2nd part, 3rd division, Berlin,
1779)
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Lambert’s 1
7
-comma temperament

(Johann Heinrich Lambert, Remarques sur le tempérament en musique, Nouveaux mémoires de
l’Académie Royale, 1774)
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Marpurg’s Temperament I
(Friedrich Wilhelm Marpurg, Versuch über die musikalische Temperatur, Breslau, 1776)

E
−

1
3

p

B
−

1
3

p

F♯
−

1
3

p

C♯
−

1
3

p

G♯
−

2
3

p

C
0

G
0

D
0

A
0

E
−

1
3

p

E♭
+ 1

3
p

B♭
+ 1

3
p

F
+ 1

3
p

C
0

19Barbour [5] has E
−

1
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p

, which is incorrect, although he gives the correct value in
cents. This seems to be nothing more than a typographical error.
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Francescantonio Vallotti (1697–1780)

Barca’s 1
6
-comma temperament

(Alessandro Barca, Introduzione a una nuova teoria di musica, memoria prima Accademia di scienze,
lettere ed arti in Padova. Saggi scientifici e lettari (Padova, 1786), 365–418)
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Young’s Temperament, No. 1
(Thomas Young, Outlines of experiments and inquiries respecting sound and light Philosophical Trans-
actions, XC (1800), 106–150)
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Vallotti and Young 1
6
-comma temperament (Young’s Temperament, No. 2)

(Francescantonio Vallotti, Trattato della scienza teoretica e pratica della moderna musica, 1780;
Thomas Young, Outlines of experiments and inquiries respecting sound and light Philosophical Trans-
actions, XC (1800), 106–150. Below is Young’s version of this temperament. In Vallotti’s version, the
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fifths which are narrow by 1
6

Pythagorean commas are F–C–G–D–A–E–B instead of C–G–D–A–E–B–F♯)
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The temperament of Vallotti and Young is probably closest to the in-
tentions of J. S. Bach for his Well-Tempered Clavier. According to the re-
searches of Barnes, it is possible that Bach preferred the F♯ to be one sixth of a
Pythagorean comma sharper than in this temperament, so that the fifth from
B to F♯ is pure. Barnes based his work on a statistical study of prominence
of the different major thirds, and the mathematical procedure of Donald Hall
for evaluating suitability of temperaments. Other authors, such as Kelletat
and Kellner have come to slightly different conclusions, and we will probably
never find out who is right. Here are these reconstructions for comparison.

Kelletat’s Bach reconstruction (1966),
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Kellner’s Bach reconstruction (1975),
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Barnes’ Bach reconstruction (1979)
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More recently, in the late 1990s, Andreas Sparschuh20 and Michael Zapf
came up with the interesting idea that the series of squiggles at the top of
the title page of the Well-Tempered Clavier encode instructions for laying
the temperament.

20An announcement appears in Andreas Sparschuh, Stimm-Arithmetik des wohltem-
perierten Klaviers, Deutsche Mathematiker Vereinigung Jahrestagung 1999, Mainz S.154-
155. There seems to be no full article by either Sparschuh or Zapf.
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Each loop in this squiggle has zero, one or two twists, giving the fol-
lowing sequence:

1–1–1–0–0–0–2–2–2–2–2,

to be interpreted as telling the tuner by how much to make the eleven fifths
narrow from a perfect fifth. The twelfth fifth, completing the circle, does not
have to be specified.

In 2005, Bradley Lehman described a modified version of this idea in
which the top stroke of the C of “Clavier” is interpreted as giving the posi-
tion of C in the circle. He chooses to orient the cycle so that going to the left
ascends through the cycle of fifths, and he interprets the numbers as numbers
of twelfths of a Pythagorean comma. Here is the result of this interpretation.

Lehman’s Bach reconstruction (2005)
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Exercises

1. Take the information on various temperaments given in this section, and work
out a table of values in cents for the notes of the scale.

2. If you have a synthesizer where each note of the scale can be retuned separately,
retune it to some of the temperaments given in this section, using your answers to
Exercise 1. Sequence some harpsichord music and play it through your synthesizer
using these temperaments, and compare the results.

3. In a well tempered scale, take three major thirds adding up to an octave. The to-

tal amount by which these are sharp from the just major third does not depend on

the temperament. Show that this amount is equal to a great diesis (∼ 41.059 cents).

Further reading:

Pierre-Yves Asselin, Musique et tempérament [2].

Murray Barbour, Tuning and temperament, a historical survey [5].

Murray Barbour, Bach and “The art of temperament”, Musical Quarterly 33 (1)
(1947), 64–89.

John Barnes, Bach’s Keyboard Temperament, Early Music 7 (2) (1979), 236–249.
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Dominique Devie, Le tempérament musical [32].

D. E. Hall, The objective measurement of goodness-of-fit for tuning and tempera-
ments, J. Music Theory 17 (2) (1973), 274–290.

D. E. Hall, Quantitative evaluation of musical scale tuning, American J. of Physics
42 (1974), 543–552.

Owen Jorgensen, Tuning [67].

Herbert Kelletat, Zur musikalischen Temperatur insbesondere bei J. S. Bach. Onkel
Verlag, Kassel, 1960 and 1980.

Herbert Anton Kellner, Eine Rekonstruktion der wohltemperierten Stimmung von
Johann Sebastian Bach. Das Musikinstrument 26 (1977), 34–35.

Herbert Anton Kellner, Was Bach a mathematician? English Harpsichord Maga-
zine 2/2 April 1978, 32–36.

Herbert Anton Kellner, Comment Bach accordait-il son clavecin? Flûte à Bec et in-
struments anciens 13–14, SDIA, Paris 1985.

Bradley Lehman, Bach’s extraordinary temperament: our Rosetta Stone, Early Mu-
sic 33 (2005), 3–24; 211–232; 545–548 (correspondence).

Mark Lindley and Ibo Ortgies, Bach-style keyboard tuning, Early Music 34 (2006),
613–623. This is a response to Lehman’s article.

John O’Donnell, Bach’s temperament, Occam’s razor, and the Neidhardt factor,
Early Music 34 (2006), 625–633. Another response to Lehman’s article.

Rita Steblin, A history of key characteristics in the 18th and early 19th centuries,

UMI Research Press, 1983. Second edition, University of Rochester Press, 2002.

Further listening: (See Appendix R)

Johann Sebastian Bach, The Complete Organ Music, Volumes 6 and 8, recorded
by Hans Fagius, using Neidhardt’s Circulating Temperament No. 3 “für eine grosse
Stadt” (for a large town).

Johann Sebastian Bach, Italian Concerto, etc., recorded by Christophe Rousset,
Editions de l’Oiseau-Lyre 433 054-2, Decca 1992. These works were recorded using
Werckmeister III.

Lou Harrison, Complete harpsichord works, New Albion, 2002. These works were
recorded using Werckmeister III and other temperaments.

The Katahn/Foote recording, Six degrees of tonality contains tracks comparing
Mozart’s Fantasie K. 397 in equal temperament, meantone, and an irregular tem-
perament of Prelleur.

Johann Gottfried Walther, Organ Works, Volumes 1, played by Craig Cramer on the
organ of St. Bonifacius, Tröchtelborn, Germany. This organ was restored in Kell-
ner’s reconstruction of Bach’s temperament, shown above.

Aldert Winkelman, Works by Mattheson, Couperin, and others. The pieces by Jo-

hann Mattheson, François Couperin, Johann Jakob Froberger, Joannes de Gruyt-

ters and Jacques Duphly are played on a harpsichord tuned to Werckmeister III.
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5.14. Equal temperament

Music is a science which should have definite rules; these
rules should be drawn from an evident principle; and this
principle cannot really be known to us without the aid of
mathematics. Notwithstanding all the experience I may
have acquired in music from being associated with it for so
long, I must confess that only with the aid of mathematics
did my ideas become clear and did light replace a certain
obscurity of which I was unaware before.

Rameau [113], 1722.21

Each of the scales described in the previous sections has its advantages
and disadvantages, but the one disadvantage of most of them is that they are
designed to make one particular key signature or a few adjacent key signatures
as good as possible, and leave the remaining ones to look after themselves.

Twelve tone equal temperament is a natural endpoint of these compro-
mises. This is the scale that results when all twelve semitones are taken to
have equal ratios. Since an octave is a ratio of 2:1, the ratios for the equal

tempered scale give all semitones a ratio of 2
1
12 :1 and all tones a ratio of 2

1
6 :1.

So the ratios come out as follows:

note do re mi fa so la ti do

ratio 1:1 2
1
6 :1 2

1
3 :1 2

5
12 :1 2

7
12 :1 2

3
4 :1 2

11
12 :1 2:1

cents 0.000 200.000 400.000 500.000 700.000 900.000 1100.000 1200.000

Equal tempered thirds are about 14 cents sharper than perfect thirds,
and sound nervous and agitated. As a consequence, the just and mean-
tone scales are more calm temperaments. To my ear, tonal polyphonic mu-
sic played in meantone temperament has a clarity and sparkle that I do not
hear on equal tempered instruments. The irregular temperaments described
in the previous section have the property that each key retains its own char-
acteristics and colour; keys with few sharps and flats sound similar to mean-
tone, while the ones with more sharps and flats have a more remote feel to
them. Equal temperament makes all keys essentially equivalent.

Twelve elevenths of a syntonic comma, or a factor of
(

81

80

) 12
11

≈ 1.013644082,

or 23.4614068 cents is an extremely good approximation to the Pythagorean
comma of

531441

524288
≈ 1.013643265,

21Page xxxv of the preface, in the Dover edition.
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or 23.4600104 cents. It follows that equal temperament, which can be thought
of as 1

12 -Pythagorean comma meantone, is almost exactly equal to the 1
11 -

syntonic comma meantone scale:

E
−

4
11 B

−
5
11 F♯

−
6
11 C♯

−
7
11 G♯

−
8
11

C
0

G
−

1
11 D

−
2
11 A

−
3
11 E

−
4
11

A♭
+ 4

11
E♭

+ 3
11

B♭
+ 2

11
F

+ 1
11

C
0

where the difference between A♭
+ 4

11 and G♯
− 8

11 is 0.0013964 cents.
This observation was first made by Kirnberger22 who used it as the ba-

sis for a recipe for tuning keyboard instruments in equal temperament. His
recipe was to obtain an interval of an equal tempered fourth by tuning up
three perfect fifths and one major third, and then down four perfect fourths.

This corresponds to equating the equal tempered F with E♯
−1

. The disadvan-
tage of this method is clear: in order to obtain one equal tempered interval,
one must tune eight intervals by eliminating beats. The fifths and fourths
are not so hard, but tuning a major third by eliminating beats is considered
difficult. This method of tuning equal temperament was discovered indepen-
dently by John Farey23 nearly twenty years later.

Alexander Ellis in his Appendix XX (Section G, Article 11) to Helm-
holtz [55] gives an easier practical rule for tuning in equal temperament.
Namely, tune the notes in the octave above middle C by tuning fifths upwards
and fourths downwards. Make the fifths perfect and then flatten them (make
them more narrow) by one beat per second (cf. §1.8). Make the fourths per-
fect and then flatten them (make them wider) by three beats every two sec-
onds. The result will be accurate to within two cents on every note. Having
tuned one octave using this rule, tuning out beats for octaves allows the en-
tire piano to be tuned.

It is desirable to apply spot checks throughout the piano to ensure that
the fifths remain slightly narrow and the fourths slightly wide. Ellis states
at the end of Article 11 that there is no way of distinguishing slightly narrow
fourths or fifths from slightly wide ones using beats. In fact, there is a method,
which was not yet conceived in 1885, as follows (Jorgensen [67], §227).I## !2!��2!!
For the fifth, say C3–G3, compare the intervals C3–E♭3 and E♭3–G3. If the
fifth is narrow, as desired, the first interval will beat more frequently than
the second. If perfect, the beat frequencies will be equal. If wide, the second
interval will beat more frequently than the first.

22Johann Philipp Kirnberger, Die Kunst des reinen Satzes in der Musik, 2nd part 3rd
division (Berlin, 1779), pp. 197f.

23John Farey, On a new mode of equally tempering the musical scale, Philosophical
Magazine, XXVII (1807), 65–66.
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For the fourth, say G3–C4, compare the intervals C4–E♭4 and G3–E♭4, or
compare E♭3–C4 and E♭3–G3. If the fourth is wide, as desired, the first inter-
val will beat more frequently than the second. If perfect, the beat frequencies
will be equal. If narrow, the second interval will beat more frequently than the
first. This method is based on the observation that in equal temperament, the
major third is enough wider than a just major third, that gross errors would
have to be made in order for it to have ended up narrower and spoil the test.

Exercises

1. Show that taking eleventh powers of the approximation of Kirnberger and Farey
described in this section gives the approximation

2161 ≈ 384 512.

The ratio of these two numbers is roughly 1.000008873, and the eleventh root of this
is roughly 1.0000008066.

2. Use the ideas of §4.6 to construct a spectrum which is close to the usual har-
monic spectrum, but in such a way that the twelve tone equal tempered scale has
consonant major thirds and fifths, as well as consonant seventh harmonics.

3. Calculate the accuracy of the method of Alexander Ellis for tuning equal tem-
perament, described in this section.

4. Draw up a table of scale degrees in cents for the twelve notes in the Pythagor-
ean, just, meantone and equal scales.

5. (Serge Cordier’s equal temperament for piano with perfect fifths) Serge Cordier
formalised a technique for piano tuning in the tradition of Pleyel (France). Cordier’s
recipe is as follows.24 Make the interval F–C a perfect fifth, and divide it into seven
equal semitones. Then use perfect fifths to tune from these eight notes to the entire
piano.

Show that this results in octaves which are stretched by one seventh of a Py-

thagorean comma. This is of the same order of magnitude as the natural stretch-

ing of the octaves due to the inharmonicity of physical piano strings. Draw a dia-

gram in Eitz’s notation to demonstrate this temperament. This should consist of a

horizontal strip with the top and bottom edges identified. Calculate the deviation

of major and minor thirds from just in this temperament.

Further reading:

Ian Stewart, Another fine math you’ve got me into. . . , W. H. Freeman & Co., 1992.

Chapter 15 of this book, The well tempered calculator, contains a description of some

24Serge Cordier, L’accordage des instruments à claviers. Bulletin du Groupe Acous-
tique Musicale (G. A. M.) 75 (1974), Paris VII; Piano bien tempéré et justesse orchestrale,
Buchet-Chastel, Paris 1982.
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of the history of practical approximations to equal temperament. Particularly inter-

esting is his description of Strähle’s method of 1743.

5.15. Historical remarks

Ancient Greek music

The word music (µoυσική) in ancient Greece had a wider meaning than
it does for us, embracing the idea of ratios of integers as the key to under-
standing both the visible physical universe and the invisible spiritual universe.

It should not be supposed that the Pythagorean scale discussed in §5.2
was the main one used in ancient Greece in the form described there. Rather,
this scale is the result of applying the Pythagorean ideal of using only the
ratios 2:1 and 3:2 to build the intervals. The Pythagorean scale as we have
presented it first occurs in Plato’s Timaeus, and was used in mediæval Eu-
ropean music from about the eighth to the fourteenth century c.e.

The diatonic syntonon of Ptolemy is the same as the major scale of
just intonation, with the exception that the classical Greek octave was usu-
ally taken to be made up of two Dorian25 tetrachords, E–F–G–A and B–C–
D–E, as described below, so that C was not the tonal centre. It should be
pointed out that Ptolemy recorded a long list of Greek diatonic tunings, and
there is no reason to believe that he preferred the diatonic syntonic scale to
any of the others he recorded.

The point of the Greek tunings was the construction of tetrachords, or
sequences of four consecutive notes encompassing a perfect fourth; the ratio
of 5:4 seems to have been an incidental consequence rather than represent-
ing a recognised consonant major third.

A Greek scale consisted of two tetrachords, either in conjunction, which
means overlapping (for example two Dorian tetrachords B–C–D–E and E–
F–G–A) or in disjunction, which means non-overlapping (for example E–F–
G–A and B–C–D–E) with a whole tone as the gap. The tetrachords came
in three types, called genera (plural of genus), and the two tetrachords in a
scale belong to the same genus. The first genus is the diatonic genus in which
the lowest interval is a semitone and the two upper ones are tones. The sec-
ond is the chromatic genus in which the lowest two intervals are semitones
and the upper one is a tone and a half. The third is the enharmonic genus
in which the lowest two intervals are quarter tones and the upper one is two
tones. The exact values of these intervals varied somewhat according to us-
age.26 The interval between the lowest note and the higher of the two mov-
able notes of a chromatic or enharmonic tetrachord is called the pyknon, and
is always smaller than the remaining interval at the top of the tetrachord.

25Dorian tetrachords should not be confused with the Dorian mode of mediæval church
music, which is D–E–F–G–A–B–C–D. See Appendix M.

26For example, Archytas described tetrachords using the ratios 1:1, 28:27, 32:27, 4:3
(diatonic), 1:1, 28:27, 9:8, 4:3 (chromatic) and 1:1, 28:27, 16:15, 4:3 (enharmonic), in which
the primes 2, 3, 5 and 7 appear. Plato, his contemporary, does not allow primes other than
2 and 3, in better keeping with the Pythagorean tradition.



194 5. SCALES AND TEMPERAMENTS: THE FIVEFOLD WAY

Mediæval to modern music

Little is known about the harmonic content, if any, of European mu-
sic prior to the decline of the Roman Empire. The music of ancient Greece,
for example, survives in a small handful of fragments, and is mostly melodic
in nature. There is little evidence of continuity of musical practice from an-
cient Greece to mediæval European music, although the theoretical writings
had a great deal of impact.

Harmony, in a primitive form, seems to have first appeared in liturgi-
cal plainchant around 800 c.e., in the form of parallel organum, or melody
in parallel fourths and fifths. Major thirds were not regarded as consonant,
and a Pythagorean tuning system with its perfect fourths and fifths works
well for such music.

Polyphonic music started developing around the eleventh century c.e.

Pythagorean intonation continued to be used for several centuries, and so the
consonances in this system were the perfect fourths, fifths and octaves. The
major third was still not regarded as a consonant interval, and it was some-
thing to be used only in passing.

The earliest known advocates of the 5:4 ratio as a consonant interval
are the Englishmen Theinred of Dover (twelfth century) and Walter Oding-
ton (fl. 1298–1316),27 in the context of early English polyphonic music. One
of the earliest recorded uses of the major third in harmony is the four part
vocal canon sumer is icumen in, of English origin, dating from around 1250.
But for keyboard music, the question of tuning delayed its acceptance.

British folk music from the fourteenth and fifteenth centuries involved
harmonizing around a melodic line by adding major thirds under it and per-
fect fourths over it to give parallel 6

3 chords. The consonant major third
traveled from England to the European continent in the early fifteenth cen-
tury. But when the French imitated the sound of the parallel 6

3 chords, they
use the top line rather than the middle line as the melody, giving what is re-
ferred to as Faux Bourdon.

In more formal music, Dunstable was one of the most well known
British composers of the early fifteenth century to use the consonant major
third. The story goes that the Duke of Bedford, who was Dunstable’s em-
ployer, inherited land in the north of France and moved there some time in
the 1420’s or 1430’s. The French heard Dunstable’s consonant major thirds
and latched onto the idea. Guillaume Dufay was the first major French com-
poser to use it extensively. The accompanying transition from modality to
tonality can be traced from Dufay through Ockeghem, Josquin, Palestrina
and Monteverdi during the fifteenth and sixteenth century.

The method for obtaining consonant major thirds in fourteenth and
fifteenth century keyboard music is interesting. Starting with a series of Py-
thagorean fifths

G♭
0
– D♭

0
– A♭

0
– E♭

0
– B♭

0
– F

0
– C

0
– G

0
– D

0
– A

0
– E

0
– B

0
,

27The “fl.” indicates that these are the years in which he is known to have flourished.
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the triad D
0
– G♭

0
– A

0
is used as a major triad. A just major triad would

be D
0
– F♯

−1
– A

0
, and the difference between F♯

−1
and G♭

0
is one schisma,

or 1.953 cents. This is much more consonant than the modern equal tem-
perament, in which the major thirds are impure by 13.686 cents. Other ma-

jor triads available in this system are A
0
– D♭

0
– E

0
and E

0
– A♭

0
– B

0
, but the

system does not include a consonant C – E – G triad.
By the mid to late fifteenth century, especially in Italy, many aspects

of the arts were reaching a new level of technical and mathematical precision.
Leonardo da Vinci was integrating the visual arts with the sciences in revo-
lutionary ways. In music, the meantone temperament was developed around
this time, allowing the use of major and minor triads in a wide range of keys,
and allowing harmonic progressions and modulations which had previously
not been possible.

Many keyboard instruments from the sixteenth century have split keys
for one or both of G♯/A♭ and D♯/E♭ to extend the range of usable key sig-
natures. This was achieved by splitting the key across the middle, with the
back part higher than the front part. The picture below shows the split keys
of the Malamini organ in San Petronio, Bologna, Italy.

Meantone tuning has lasted for a long time. It is still common today
for organs to be tuned in quarter comma meantone. The English concerti-
nas made by Wheatstone & Co. in the nineteenth century, of which many
are still in circulation, are tuned to quarter comma meantone, with separate
keys for D♯/E♭ and for G♯/A♭.

The practice for music of the sixteenth and seventeenth century was to
choose a tonal centre and gradually move further away. The furthest reaches
were sparsely used, before gradually moving back to the tonal centre.

Exact meantone tuning was not achieved in practice before the twenti-
eth century, for lack of accurate prescriptions for tuning intervals. Keyboard
instrument tuners tended to colour the temperament, so that different keys
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Italian clavecin (1619) with split keys,
Musée Instrumental, Brussels, Belgium
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had slightly different sounds to them. The irregular temperaments of §5.13
took this process further, and to some extent formalised it.

An early advocate for equal temperament for keyboard instruments was
Rameau (1730). This helped it gain in popularity, until by the early nine-
teenth century it was fairly widely used, at least in theory. However, much of
Beethoven’s piano music is best played with an irregular temperament (see
§5.13), and Chopin was reluctant to compose in certain keys (notably D mi-
nor) because their characteristics did not suit him. In practice, equal tem-
perament did not really take full hold until the end of the nineteenth cen-
tury. Nineteenth century piano tuning practice often involved slight devia-
tion from equal temperament in order to preserve, at least to some extent,
the individual characteristics of the different keys. In the twentieth century,
the dominance of chromaticism and the advent of twelve tone music have
pretty much forced the abandonment of unequal temperaments, and piano
tuning practice has reflected this.

Twelve tone music

Equal temperament is an essential ingredient in twentieth century
twelve tone music, where combinatorics and chromaticism seem to supersede
harmony. Some interesting evidence that harmonic content is irrelevant in
Schoenberg’s music is that the performance version of one of his most popular
works, Pierrot Lunaire, contained many transcription errors confusing sharps,
naturals and flats, until it was reedited for his collected works in the eighties.

The mathematics involved in twelve tone music of the twentieth cen-
tury is different in nature to most of the mathematics we have described so
far. It is more combinatorial in nature, and involves discussions of subsets
and permutations of the twelve tones of the chromatic scale. We shall have
more to say on this subject in Chapter 9.

The role of the synthesizer

Before the days of digital synthesizers, we had a choice of several differ-
ent versions of the tuning compromise. The just scales have perfect intervals,
but do not allow us to modulate from the original key, and have problems with
the triad on ii, and with syntonic commas interfering in fairly short harmonic
sequences. Meantone scales sacrifice a little perfection in the fifths in order to
remove the problem of the syntonic comma, but still have a problem with keys
far removed from the original key, and with enharmonic modulations. Equal
temperament works in all keys equally well, or rather, one might say equally
badly. In particular, the equal tempered major third is nervous and agitated.

In these days of digitally synthesized and controlled music, there is very
little reason to make do with the equal tempered compromise, because we
can retune any note by any amount as we go along. It may still make sense
to prefer a meantone scale to a just one on the grounds of interference of the
syntonic comma, but it may also make sense to turn the situation around
and use the syntonic comma for effect.
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It seems that for most users of synthesizers the extra freedom has not
had much effect, in the sense that most music involving synthesizers is writ-
ten using the equal tempered twelve tone scale. A notable exception is Wendy
Carlos, who has composed a great deal of music for synthesizers using many
different scales. I particularly recommend Beauty in the Beast, which has
been released on compact disc (SYNCD 200, Audion, 1986, Passport Records,
Inc.). For example the fourth track, called Just Imaginings, uses a version
of just intonation with harmonics all the way up to the nineteenth, and in-
cludes some deft modulations. Other tracks use other scales, including Car-
los’ alpha and beta scales and the Balinese gamelan pelog and slendro.

Wendy Carlos’ earlier recordings, Switched on Bach and The Well Tem-
pered Synthesizer, were recorded on a Moog synthesizer fixed in equal tem-
perament. But when Switched on Bach 2000 came out in 1992, twenty-five
years after the original, it made use of a variety of meantone and unequal
temperaments. It is not hard to hear from this recording the difference in
clarity between these and equal temperament.

Further reading:

1) History of music theory

Thomas Christensen (ed.), Cambridge history of music theory, 2002 [18].

Leo Treitler, Strunk’s source readings in music history, Revised Edition, Norton &
Co., 1998. This 1552 page book, originally by Strunk but revised extensively by
Treitler, contains translations of historical documents from ancient Greece to the
twentieth century. It comes in seven sections, which are available in separate paper-
backs.

2) Ancient Greek music

W. D. Anderson, Music and musicians in ancient Greece, Cornell University Press,
1994; paperback edition 1997.

Andrew Barker, Greek Musical Writings, Vol. 2: Harmonic and acoustic theory,
Cambridge University Press, 1989. This 581 page book contains translations and
commentaries on many of the most important ancient Greek sources, including Aris-
toxenus’ Elementa Harmonica, the Euclidean Sectio Canonis, Nicomachus’ Enchirid-
ion, Ptolemy’s Harmonics, and Aristides Quintilianus’ De Musica.

Giovanni Comotti, Music in Greek and Roman culture, Johns Hopkins University
Press, 1989; paperback edition 1991.

John G. Landels, Music in ancient Greece and Rome, Routledge, 1999; paperback
edition 2001.

Thomas J. Mathiesen, Apollo’s lyre: Greek music and music theory in antiquity and
the middle ages, University of Nebraska Press, 1999.

M. L. West, Ancient Greek music, Oxford University Press, 1992; paperback edition
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CHAPTER 6

More scales and temperaments

6.1. Harry Partch’s 43 tone and other just scales

Harry Partch playing the
bamboo marimba (Boo I)

In §5.5, we talked about just intonation in its narrowest sense. This
involved building up a scale using ratios only involving the primes 2, 3 and
5, to obtain a twelve tone scale. Just intonation can be extended far beyond
this limitation. The phrase super just is sometimes used to denote a scale
formed with exact rational multiples for the intervals, but using primes other
than the 2, 3 and 5. Most of these come from the twentieth century.

Harry Partch developed a just scale of 43 notes which he used in a

number of his compositions. The tonic for his scale is G
0
. The scale is sym-

metric, in the sense that every interval upwards from G
0

is also an interval

downwards from G
0
.

200
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The primes involved in Partch’s scale are 2, 3, 5, 7 and 11. The termi-
nology used by Partch to describe this is that his scale is based on the 11-
limit, while the Pythagorean scale is based on the 3-limit and the just scales
of §5.5 and §5.10 are based on the 5-limit. More generally, if p is a prime,
then a p-limit scale only uses rational numbers whose denominators and nu-
merators factor as products of prime numbers less than or equal to p (repe-
titions are allowed).

Harry Partch’s 43 tone scale

G
0

1:1 0.000 10:7 617.488

G
+1

81:80 21.506 16:11 648.682

33:32 53.273 D
−1

40:27 680.449

21:20 84.467 D
0

3:2 701.955

A♭
+1

16:15 111.713 32:21 729.219

12:11 150.637 14:9 764.916

11:10 165.004 11:7 782.492

A
−1

10:9 182.404 E♭
+1

8:5 813.686

A
0

9:8 203.910 18:11 852.592

8:7 231.174 E
−1

5:3 884.359

7:6 266.871 E
0

27:16 905.865

B♭
0

32:27 294.135 12:7 933.129

B♭
+1

6:5 315.641 7:4 968.826

11:9 347.408 F
0

16:9 996.090

B
−1

5:4 386.314 F
+1

9:5 1017.596

14:11 417.508 20:11 1034.996

9:7 435.084 11:6 1049.363

21:16 470.781 F♯
−1

15:8 1088.269

C
0

4:3 498.045 40:21 1115.533

C
+1

27:20 519.551 64:33 1146.727

11:8 551.318 G
−1

160:81 1178.494

7:5 582.512 G
0

2:1 1200.000

Here are some other just scales. The Chinese Lü scale by Huai-nan-dsi
of the Han dynasty is the twelve tone just scale with ratios

1:1, 18:17, 9:8, 6:5, 54:43, 4:3, 27:19, 3:2, 27:17, 27:16, 9:5, 36:19, (2:1).

The Great Highland Bagpipe of Scotland is often tuned to a seven tone 7-
limit just scale based on a drone pitched at A (slightly sharper than modern
concert pitch), and with ratios

(7:8), 1:1 (A), 9:8, 5:4, 4:3, 3:2, 5:3, 7:4, (2:1).

Wendy Carlos has developed several just scales. The “Wendy Carlos super
just intonation” is the twelve tone scale with ratios

1:1, 17:16, 9:8, 6:5, 5:4, 4:3, 11:8, 3:2, 13:8, 5:3, 7:4, 15:8, (2:1).

The “Wendy Carlos harmonic scale” also has twelve tones, with ratios

1:1, 17:16, 9:8, 19:16, 5:4, 21:16, 11:8, 3:2, 13:8, 27:16, 7:4, 15:8, (2:1).



202 6. MORE SCALES AND TEMPERAMENTS

A better way of writing this might be to multiply all the entries by 16:

16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, (32).

Lou Harrison has a 16 tone just scale with ratios

1:1, 16:15, 10:9, 8:7, 7:6, 6:5, 5:4, 4:3, 17:12,

3:2, 8:5, 5:3, 12:7, 7:4, 9:5, 15:8, (2:1).

Wilfrid Perret1 has a 19-tone 7-limit just scale with ratios

1:1, 21:20, 35:32, 9:8, 7:6, 6:5, 5:4, 21:16, 4:3, 7:5, 35:24,

3:2, 63:40, 8:5, 5:3, 7:4, 9:5, 15:8, 63:32, (2:1).

John Chalmers also has a 19 tone 7-limit just scale, differing from this in just
two places. The ratios are

1:1, 21:20, 16:15, 9:8, 7:6, 6:5, 5:4, 21:16, 4:3, 7:5, 35:24,

3:2, 63:40, 8:5, 5:3, 7:4, 9:5, 28:15, 63:32, (2:1).

Michael Harrison has a 24 tone 7-limit just scale with ratios

1:1, 28:27, 135:128, 16:15, 243:224, 9:8, 8:7, 7:6, 32:27, 6:5, 135:112, 5:4,

81:64, 9:7, 21:16, 4:3, 112:81, 45:32, 64:45, 81:56, 3:2, 32:21, 14:9, 128:81,

8:5, 224:135, 5:3, 27:16, 12:7, 7:4, 16:9, 15:8, 243:128, 27:14, (2:1).

Harrison writes,

Beginning in 1986, I spent two years extensively modifying a
seven-foot Schimmel grand piano to create the Harmonic Piano.
It is the first piano tuned in Just Intonation with the flexibil-
ity to modulate to multiple key centres at the press of a pedal.
With its unique pedal mechanism, the Harmonic Piano can dif-
ferentiate between notes usually shared by the same piano key
(for example, C-sharp and D-flat). As a result, the Harmonic
Piano is capable of playing 24 notes per octave. In contrast to
the three unison strings per note of the standard piano, the Har-
monic Piano uses only single strings, giving it a “harp-like” tim-
bre. Special muting systems are employed to dampen unwanted
resonances and to enhance the instrument’s clarity of sound.2

The Indian Sruti scale,3 commonly used to play ragas, is a 5-limit just scale
with 22 tones, but has some large numerators and denominators:

1W. Perret, Some questions of musical theory, W. Heffer & Sons Ltd., Cambridge, 1926.
2From the liner notes to Harrison’s CD From Ancient Worlds, for Harmonic Piano,

see Appendix R.
3Taken from B. Chaitanya Deva, The music of India [31], Table 9.2. Note that the

fractional value of note 5 given in this table should be 32/27, not 64/45, to match the other
information given in this table. This also matches the value given in Tables 9.4 and 9.8 of
the same work. Beware that the exact values of the intervals in Indian scales is a subject
of much debate and historical controversy.
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1:1, 256:243, 16:15, 10:9, 9:8, 32:27, 6:5, 5:4, 81:64, 4:3, 27:20, 45:32,

729:512, 3:2, 128:81, 8:5, 5:3, 27:16, 16:9, 9:5, 15:8, 243:128, (2:1).

Various notations have been designed for describing just scales. For
example, for 7-limit scales, a three-dimensional lattice of tetrahedra and oc-
tahedra can just about be drawn on paper. Here is an example of a twelve
tone 7-limit just scale drawn three dimensionally in this way.4

4:3 1:1 3:2

7:6 7:4 21:8

5:3 5:4 15:8

35:24 35:16 105:64

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�

�
�

�
A

A
A

A

A
A

A
A

A
A

A

A
A

A

�� �� ��

�� �� ��

HH HH

HH HH

The lines indicate major and minor thirds, perfect fifths, and three different
septimal consonances 7:4, 7:5 and 7:6 (notes have been normalised to lie in-
side the octave 1:1 to 2:1). We return to the discussion of just intonation
in §6.8, where we discuss unison vectors and periodicity blocks. We put the
above diagram into context in §6.9.

Exercises

1. Taking 1:1 to be C
0

, write the Indian Sruti scale described in this section as an

array using Eitz’s comma notation (like the scales in §5.10).

Further reading:

David B. Doty, The just intonation primer (1993), privately published and available
from the Just Intonation Network at www.justintonation.net.

Harry Partch, Genesis of a music [103].

Joseph Yasser, A theory of evolving tonality [147].

Further listening: (See Appendix R)

Bill Alves, Terrain of possibilities.

Wendy Carlos, Beauty in the Beast.

Michael Harrison, From Ancient Worlds.

Harry Partch, Bewitched.

Robert Rich, Rainforest, Gaudi.

4This way of drawing the scale comes from Paul Erlich. According to Paul, the scale
was probably first written down by Erv Wilson in the 1960’s.
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6.2. Continued fractions

e2π/5

„

q

5+
√

5
2

−
√

5+1
2

«

= 1
1+

e−2π

1+
e−4π

1+
e−6π

1+
...

Srinivasa Ramanujan

The modern twelve tone equal tempered scale is based around the fact
that

7/12 = 0.58333 . . .

is a good approximation to

log2(3/2) = 0.5849625007 . . . ,

so that if we divide the octave into twelve equal semitones, then seven semi-
tones is a good approximation to a perfect fifth. This suggests the follow-
ing question. Can log2(3/2) be expressed as a ratio of two integers, m/n? In
other words, is log2(3/2) a rational number? Since log2(3/2) and log2(3) dif-
fer by one, this is the same as asking whether log2(3) is rational.

Lemma 6.2.1. The number log2(3) is irrational.

Proof. Suppose that log2(3) = m/n with m and n positive integers.

Then 3 = 2m/n, or 3n = 2m. Now 3n is always odd while 2m is always even
(since m > 0). So this is not possible. �

So the best we can expect to do is to approximate log2(3/2) by ratio-
nal numbers such as 7/12. There is a systematic theory of such rational ap-
proximations to irrational numbers, which is the theory of continued frac-
tions.5 A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

where a0, a1, . . . are integers, and ai is usually taken to be positive for i ≥ 1.
The expression is allowed to stop at some finite stage, or it may go on for
ever. If it stops, the last an is usually not allowed to equal 1, because if it
does, it can just be absorbed into an−1 to make it finish sooner (for example
1 + 1

2+ 1
1

can be rewritten as 1 + 1
3). For typographic convenience, we write

the continued fraction in the form

a0 +
1

a1+

1

a2+

1

a3+
. . .

For even greater compression of notation, this is sometimes written as

[a0; a1, a2, a3, . . . ].

5The first mathematician known to have made use of continued fractions was Rafael
Bombelli in 1572. The modern notation for them was introduced by P. A. Cataldi in 1613.
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Every real number has a unique continued fraction expansion, and it stops
precisely when the number is rational. The easiest way to see this is as fol-
lows. If x is a real number, then the largest integer less than or equal to x
(the integer part of x) is written ⌊x⌋.6 So ⌊x⌋ is what we take for a0. The
remainder x − ⌊x⌋ satisfies 0 ≤ x − ⌊x⌋ < 1, so if it is non-zero, we now in-
vert it to obtain a number 1/(x − ⌊x⌋) which is strictly larger than one.

Writing x0 = x, a0 = ⌊x0⌋ and x1 = 1/(x0 − ⌊x0⌋), we have

x = a0 +
1

x1
.

Now just carry on going. Let a1 = ⌊x1⌋, and x2 = 1/(x1 − ⌊x1⌋), so that

x = a0 +
1

a1+

1

x2
.

Inductively, we set an = ⌊xn⌋ and xn+1 = 1/(xn − ⌊xn⌋) so that

x = a0 +
1

a1+

1

a2+

1

a3+
. . .

This algorithm continues provided each xn 6= 0, which happens exactly when
x is irrational. Otherwise, if x is rational, the algorithm terminates to give
a finite continued fraction. For irrational numbers the continued fraction ex-
pansion is unique. For rational numbers, we have uniqueness provided we
stipulate that the last an is larger than one.

As an example, let us compute the continued fraction expansion of

π = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164. . .

In this case, we have a0 = 3 and

x1 = 1/(π − 3) = 7.062513086 . . .

So a1 = 7, and
x2 = 1/(x1 − 7) = 15.99665 . . .

Continuing this way, we obtain

π = 3 +
1

7+

1

15+

1

1+

1

292+

1

1+

1

1+

1

1+

1

2+

1

1+

1

3+

1

1+

1

14+
. . .

In the more compressed (and tinier) notation, here are more terms:7

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13,

1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3,

1, 1, 8, 1, 1, 2, 1, 6, 1, 1, 5, 2, 2, 3, 1, 2, 4, 4, 16, 1, 161, 45, 1, 22, 1, 2, 2, 1, 4,

1, 2, 24, 1, 2, 1, 3, 1, 2, 1, 1, 10, 2, 5, 4, 1, 2, 2, 8, 1, 5, 2, 2, 26, 1, 4, 1, 1, 8, 2,

42, 2, 1, 7, 3, 3, 1, 1, 7, 2, 4, 9, 7, 2, 3, 1, 57, 1, 18, 1, 9, 19, 1, 2, 18, 1, 3, 7, 30,

1, 1, 1, 3, 3, 3, 1, 2, 8, 1, 1, 2, 1, 15, 1, 2, 13, 1, 2, 1, 4, 1, 12, 1, 1, 3, 3, 28, 1, 10,

3, 2, 20, 1, 1, 1, 1, 4, 1, 1, 1, 5, 3, 2, 1, 6, 1, 4, 1, 120, 2, 1, 1, 3, 1, 23, 1, 15, 1, 3,

7, 1, 16, 1, 2, 1, 21, 2, 1, 1, 2, 9, 1, 6, 4, 127, 14, 5, 1, 3, 13, 7, 9, 1, 1, 1, 1, 1, 5,

6In some books, [x] is used instead.
7Note that the values given in Hua [59], page 252, are erronious. The correct values

for the first 20,000,000 terms in the continued fraction expansion of π can be downloaded
from www.lacim.uqam.ca/piDATA/
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4, 1, 1, 3, 1, 1, 29, 3, 1, 1, 2, 2, 1, 3, 1, 1, 1, 3, 1, 1, 10, 3, 1, 3, 1, 2, 1, 12, 1, 4, 1,

1, 1, 1, 7, 1, 1, 2, 1, 11, 3, 1, 7, 1, 4, 1, 48, 16, 1, 4, 5, 2, 1, 1, 4, 3, 1, 2, 3, 1, 2, 2,

1, 2, 5, 20, 1, 1, 5, 4, 1, 436, 8, 1, 2, 2, 1, 1, 1, 1, 1, 5, 1, 2, 1, 3, 6, 11, 4, 3, 1, 1, 1,

2, 5, 4, 6, 9, 1, 5, 1, 5, 15, 1, 11, 24, 4, 4, 5, 2, 1, 4, 1, 6, 1, 1, 1, 4, 3, 2, 2, 1, 1, 2,

1, 58, 5, 1, 2, 1, 2, 1, 1, 2, 2, 7, 1, 15, 1, 4, 8, 1, 1, 4, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1,

1, 1, 9, 1, 4, 3, 15, 1, 2, 1, 13, 1, 1, 1, 3, 24, 1, 2, 4, 10, 5, 12, 3, 3, 21, 1, 2, 1, 34,

1, 1, 1, 4, 15, 1, 4, 44, 1, 4, 20776, 1, 1, 1, 1, 1, 1, 1, 23, 1, 7, 2, 1, 94, 55, 1, 1, 2, . . . ]

To get good rational approximations, we stop just before a large value of an.
So for example, stopping just before the 15, we obtain the well known ap-
proximation π ≈ 22/7.8 Stopping just before the 292 gives us the extremely
good approximation

π ≈ 355/113 = 3.1415929 . . .

which was known to the Chinese mathematician Chao Jung-Tze (or Tsu
Ch’ung-Chi, depending on how you transliterate the name) in 500 AD.

The rational approximations obtained by truncating the continued frac-
tion expansion of a number are called the convergents. So the convergents
for π are

3

1
,
22

7
,
333

106
,
355

113
,
103993

33102
,
104348

33215
, . . .

There is an extremely efficient way to calculate the convergents from the con-
tinued fraction.

Theorem 6.2.2. Define numbers pn and qn inductively as follows:

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 (n ≥ 2) (6.2.1)

q0 = 1, q1 = a1, qn = anqn−1 + qn−2 (n ≥ 2). (6.2.2)

Then we have

a0 +
1

a1+

1

a2+
. . .

1

an
=
pn
qn
.

Proof. (see Hardy and Wright [52], Theorem 149, or Hua [59], Theo-
rem 10.1.1).

The proof goes by induction on n. It is easy enough to check the cases
n = 0 and n = 1, so we assume that n ≥ 2 and that the theorem holds for
smaller values of n. Then we have

a0 +
1

a1+

1

a2+
. . .

1

an−1+

1

an
= a0 +

1

a1+

1

a2+
. . .

1

an−1 + 1
an

.

So we can use the formula given by the theorem with n− 1 in place of n to
write this as

(an−1 + 1
an

)pn−2 + pn−3

(an−1 + 1
an

)qn−2 + qn−3
=
an(an−1pn−2 + pn−3) + pn−2

an(an−1qn−2 + qn−3) + qn−2

8According to the bible, π is equal to 3. “Also, he made a molten sea of ten cubits
from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty
cubits did compass it round about.” I Kings 7:23.
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=
anpn−1 + pn−2

anqn−1 + qn−2
=
pn
qn
.

So the theorem is true for n, and the induction is complete. �

So in the above example for π, we have p0 = a0 = 3, q0 = 1, p1 =
a1a0 + 1 = 22, q1 = a1 = 7, we get

p2

q2
=
p0 + 15p1

q0 + 15q1
=

333

106

so that p2 = 333, q2 = 106,

p3

q3
=
p1 + p2

q1 + q2
=

355

113

so that p3 = 355, q3 = 113, and so on.
Examining the value of x2 in the case x = π above, it may look as

though it would be of advantage to allow negative as well as positive values
for an. However, this doesn’t really help, because if xn is very slightly less
than an + 1 then an+1 will be equal to one, and from there on the sequence
is as it would have been. In other words, the rational approximations ob-
tained this way are no better. A related observation is that if an+1 = 2 then
it is worth examining the approximation given by replacing an by an+1 and
stopping there.

The continued fraction expansion for the base of natural logarithms

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 . . .

= 2 +
1

1+

1

2+

1

1+

1

1+

1

4+

1

1+

1

1+

1

6+

1

1+

1

1+

1

8+

1

1+

1

1+
. . .

follows an easily described pattern, as was discovered by Leonhard Euler. The
continued fraction expansion of the golden ratio is even easier to describe:

τ = 1
2 (1 +

√
5) = 1 +

1

1+

1

1+

1

1+

1

1+

1

1+
. . .

Although the continued fraction expansion of π is not regular in this way,
there is a closely related formula (Brouncker)

π

4
=

1

1+

1

3+

4

5+

9

7+

16

9+
. . .

which is a special case of the arctan formula

tan−1 z =
z

1+

z2

3+

4z2

5+

9z2

7+

16z2

9+
. . .

The tan formula

tan z =
z

1+

−z2

3+

−z2

5+

−z2

7+
. . .

can be used to show that π is irrational (Pringsheim).
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How good are the rational approximations obtained from continued
fractions? This is answered by the following theorems. Recall that xn =
pn/qn denotes the nth convergent. In other words,

pn
qn

= a0 +
1

a1+

1

a2+
. . .

1

an−1+

1

an
.

Theorem 6.2.3. The error in the nth convergent of the continued frac-
tion expansion of a real number x is bounded by∣∣∣∣

pn
qn
− x
∣∣∣∣ <

1

q2n
.

Proof. (see Hardy and Wright [52], Theorem 171, or Hua [59], Theo-
rem 10.2.6).

First, we notice that pn−1qn − pnqn−1 = (−1)n. This is easiest to see
by induction. For n = 1, we have p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1, so
p0a1 − p1a0 = −1. For n > 1, using equations (6.2.1) and (6.2.2) we have

pn−1qn − pnqn−1 = pn−1(qn−2 + anqn−1)− (pn−2 + anpn−1)qn−1

= pn−1qn−2 − pn−2qn−1

= −(pn−2qn−1 − pn−1qn−2)

= −(−1)n−1 = (−1)n.

Now we use the fact that x lies between

pn−2 + anpn−1

qn−2 + anqn−1
and

pn−2 + (an + 1)pn−1

qn−2 + (an + 1)qn−1

or in other words between
pn
qn

and
pn + pn−1

qn + qn−1
. The distance between these

two numbers is∣∣∣∣
pn + pn−1

qn + qn−1
− pn
qn

∣∣∣∣ =

∣∣∣∣
(pn + pn−1)qn − pn(qn + qn−1)

(qn + qn+1)qn

∣∣∣∣

=

∣∣∣∣
pn−1qn − pnqn−1

q2n + qnqn−1

∣∣∣∣ =

∣∣∣∣
(−1)n

q2n + qnqn−1

∣∣∣∣ <
1

q2n
. �

Notice that if we choose a denominator q at random, then the intervals
between the rational numbers of the form p/q are of size 1/q. So by choosing
p to minimise the error, we get |p/q − x| ≤ 1/2q. So the point of the above
theorem is that the convergents in the continued fraction expansion are con-
siderably better than random denominators. In fact, more is true.

Theorem 6.2.4. Among the fractions p/q with q ≤ qn, the closest to x
is pn/qn.

Proof. See Hardy and Wright [52], Theorem 181. �

It is not true that if p/q is a rational number satisfying |p/q−x| < 1/q2

then p/q is a convergent in the continued fraction expansion of x. However,
a theorem of Hurwitz (see Hua [59], Theorem 10.4.1) says that of any two
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consecutive convergents to x, at least one of them satisfies |p/q−x| < 1/2q2.
Moreover, if a rational number p/q satisfies this inequality then it is a conver-
gent in the continued fraction expansion of x (see Hua [59], Theorem 10.7.2).

Distribution of the an

If we perform continued fractions on a transcendental number x, given
an integer k, how likely is it that an = k? It seems plausible that an = 1
is the most likely, and that the probabilities decrease rapidly as k increases,
but what is the exact distribution of probabilities?

Gauss answered this question in a letter addressed to Laplace, although
he never published a proof.9 Writing µ{−} for the measure of a set {−},
what he proved is the following. Given any t in the range (0, 1), in the limit
the measure of the set of numbers x in the interval (0, 1) for which xn−⌊xn⌋
is at most t is given by10

lim
n→∞

µ{x ∈ (0, 1) | xn − ⌊xn⌋ ≤ t } = log2(1 + t).

The continued fraction process says that we should then invert xn − ⌊xn⌋.
Writing u for 1/t, we obtain

lim
n→∞

µ{x ∈ (0, 1) | 1

xn − ⌊xn⌋
≥ u } = log2(1 + 1/u).

Now we need to take the integer part of 1/(xn − ⌊xn⌋) to obtain an+1. So if
k is an integer with k ≥ 1 then

lim
n→∞

µ{x ∈ (0, 1) | an = k } = log2(1 +
1

k
)− log2(1 +

1

k + 1
)

= log2

(
(k + 1)2

k(k + 2)

)
= log2

(
1 +

1

k(k + 2)

)
.

9According to A. Ya. Khinchin, Continued Fractions, Dover 1964, page 72, the first
published proof was by Kuz’min in 1928.

10If you don’t know what measure means in this context, think of this as giving the
probability that a randomly chosen number in the given interval satisfies the hypothesis.
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We now tabulate the probabilities given by this formula.

Value Limiting probability

of k that an = k as n→∞
1 0.4150375

2 0.2223924

3 0.0931094

4 0.0588937

5 0.0406420

6 0.0297473

7 0.0227201

8 0.0179219

9 0.0144996

10 0.0119726

For large k, this decreases like 1/k2.

Multiple continued fractions

It is sometimes necessary to make simultaneous rational approxima-
tions for more than one irrational number. For example, in the equal tem-
pered scale, not only do seven semitones approximate a perfect fifth with ra-
tio 3:2, but also four semitones approximates a major third with ratio 5:4.
So we have

log2(3/2) ≈ 7/12; log2(5/4) ≈ 4/12.

A theorem of Dirichlet tells us how closely we should expect to be able to
approximate a set of k real numbers simultaneously.

Theorem 6.2.5. If α1, α2, . . .αk are real numbers, and at least one of
them is irrational, then the there exist an infinite number of ways of choos-
ing a denominator q and numerators p1, p2, . . . , pk in such a way that the
approximations

p1/q ≈ α1; p2/q ≈ α2; . . . pk/q ≈ αk
have the property that the errors are all less than 1/q1+

1
k .

Proof. See Hardy and Wright [52], Theorem 200. �

The case k = 1 of this theorem is just Theorem 6.2.3. There is no
known method when k ≥ 2 analogous to the method of continued fractions
for obtaining the approximations whose existence is guaranteed by this the-
orem. Of course, we can just work through the possibilities for q one at a
time, but this is much more tedious than one would like.

The power of q in the denominator in the above theorem (i.e., 1 + 1
k )

is known to be the best possible. Notice that the error term remains better
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than the error term 1/2q which would result by choosing q randomly. But
the extent to which it is better diminishes to insignificant as k grows large.

Exercises

1. Investigate the convergents for the continued fraction expansion of the golden ra-
tio τ = 1

2 (1+
√

5). What do these convergents have to do with the Fibonacci series?
Coupled oscillators have a tendency to seek frequency ratios which can be ex-

pressed as rational numbers with small numerators and denominators. For exam-
ple, Mercury rotates on its axis exactly three times for every two rotations around
the sun, so that one Mercurial day lasts two Mercurial years. In a similar way, the
orbital times of Jupiter and the minor planet Pallas around the sun are locked in a
ratio of 18 to 7 (Gauss calculated in 1812 that this would be true, and observation
has confirmed it). This is also why the moon rotates once around its axis for each
rotation around the earth, so that it always shows us the same face.

Among small frequency ratios for coupled oscillators, the golden ratio is the
least likely to lock in to a nearby rational number. Why?

2. Find the continued fraction expansion of
√

2. Show that if a number has a pe-
riodic continued fraction expansion then it satisfies a quadratic equation with inte-
ger coefficients. In fact, the converse is also true: if a number satisfies a quadratic
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equation with integer coefficients then it has a periodic continued fraction expan-
sion. See for example Hardy and Wright [52], §10.12.

3. (Hua [59]) The synodic month is the period of time between two new moons, and
is 29.5306 days. When projected onto the star sphere, the path of the moon inter-
sects the ecliptic (the path of the sun) at the ascending and the descending nodes.
A draconic month is the period of time for the moon to return to the same node,
and is 27.2123 days. Show that the solar and lunar eclipses occur in cycles with a
period of 18 years 10 days.

4. In this problem, you will prove that π is not equal to 22
7 . This problem is not re-

ally relevant to the text, but it is interesting anyway.
Use partial fractions (actually, just the long division part of the algorithm) to

prove that ∫ 1

0

x4(1− x)4 dx
1 + x2

= 22
7 − π.

Deduce that π < 22
7 . Show that

∫ 1

0

x4(1− x)4 dx = 1
630 ,

and use this to deduce that
1

1260 <
22
7 − π < 1

630 .

What would this sentence be like if π were 3?

If π were equal to 3, this sentence

w9uld l99k s9mething like this.

(Scott Kim/Harold Cooper, quoted from Douglas Hofstadter’s Metamagical Themas,
Basic Books, 1985).

5. Show that if a and b have no common factor then loga(b) is irrational. Show
that if no pair among a, b and c has a common factor then 1, loga(b) and loga(c)
are rationally independent. In other words, there cannot exist integers n1, n2 and
m, not all zero, such that n1 loga(b) + n2 loga(c) = m. More generally, show that
if a and b1, . . . , br are integers such that no two have a common factor then 1,
loga(b1), . . . , loga(br) are rationally independent. The musical interpretation of this
is that there are no relations among perfect intervals other than the obvious ones.

6. Find the continued fraction expansion for the rational number 531441/524288
which represents the frequency ratio for the Pythagorean comma. Explain in terms
of this example the relationship between the continued fraction expansion of a ratio-
nal number and Euclid’s algorithm for finding highest common factors (if you don’t
remember how Euclid’s algorithm goes, it is described in Lemma 9.7.1).

7. The Gaussian integers are the complex numbers of the form a+ bi where a and
b are in the rational integers Z. Develop a theory of continued fractions for simulta-
neously approximating two real numbers α and β, by considering the complex num-
ber α+ βi. Explain why this method favours denominators which can be expressed
as a sum of two squares, so that it does not always find the best approximations.
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8. A certain number is known to be a ratio of two 3-digit integers. Its decimal ex-

pansion, to nine significant figures, is 0.137637028. What are the integers?

Further reading:

J. Murray Barbour, Music and ternary continued fractions, American Mathemati-
cal Monthly 55 (9) (1948), 545–555.

Viggo Brun, Music and ternary continued fractions, Norske Vid. Selsk. Forh., Trond-
heim 23 (1950), 38–40. This article is a response to the above article of Murray Bar-
bour.

Viggo Brun, Music and Euclidean algorithms, Nordisk Mat. Tidskr. 9 (1961), 29–
36, 95.

J. Douthett and R. Krantz, Continued fractions, best measurements, and musical
scales and intervals, J. Mathematics and Music 1 (1) (2007), 47–70.

Edward Dunne and Mark McConnell, Pianos and continued fractions, Mathematics
Magazine, 72 (2) (1999), 104–115.

G. H. Hardy and E. M. Wright, Number theory [52], chapter X.

Hua, Introduction to number theory [59], chapter 10.

J. B. Rosser, Generalized ternary continued fractions, American Mathematical
Monthly 57 (8) (1950), 528–535. This is another response to Murray Barbour’s ar-
ticle.

Murray Schechter, Tempered scales and continued fractions, American Mathemati-
cal Monthly 87 (1) (1980), 40–42.

Hubert Stanley Wall, Analytic theory of continued fractions. Chelsea, New York,

1948. ISBN 0828402078.

6.3. Fifty-three tone scale

The first continued fraction expansion of interest to us is the one for
log2(3/2). The first few terms are

log2(3/2) =
1

1+

1

1+

1

2+

1

2+

1

3+

1

1+

1

5+

1

2+

1

23+

1

2+

1

2+

1

1+
. . .

The sequence of convergents for the continued fraction expansion of log2(3/2)
is

1,
1

2
,
3

5
,

7

12
,
24

41
,
31

53
,
179

306
,
389

665
,

9126

15601
, . . .

The bottoms of these fractions tell us how many equal notes to divide an
octave into, and the tops tell us how many of these notes make up one ap-
proximate fifth. The fourth of the above approximations give us our western
scale. The next obvious places to stop are at 31/53 and 389/665, just before
large denominators.
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Bosanquet’s harmonium

c© Science and Society Picture Library
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The fifty-three tone equally tempered scale is interesting enough to war-
rant some discussion. In 1876, Robert Bosanquet made a “generalised key-
board harmonium” with fifty-three notes to an octave.11 A photograph of this
instrument can be found on page 214. A discussion of this harmonium can be
found in the translator’s appendix XX.F.8 (pages 479–481) in Helmholtz [55].
One way of thinking of the fifty-three note scale is that it is based around the
approximation which makes the Pythagorean comma equal to one fifty-third
of an octave, or 1200/53 = 22.642 cents, rather than the true value of 23.460
cents. So if we go around a complete circle of fifths, we get from C to a note
which we may call B♯ 22.642 cents higher. This corresponds to the equation

12× 31− 7× 53 = 1,

which can be interpreted as saying that twelve 53-tone equal temperament
fifths minus seven octaves equals one step in the 53-tone scale.

The following table shows the fifty-three tone equivalents of the notes
on the Pythagorean scale:

note C B♯ D♭ C♯ D E♭ D♯ E F G♭

degree 0 1 4 5 9 13 14 18 22 26

note F♯ G A♭ G♯ A B♭ A♯ C♭ B C

degree 27 31 35 36 40 44 45 48 49 53

Thus the fifty-three tone scale is made up of five whole tones each of nine
scale degrees and two semitones each of four scale degrees, 5×9+2×4 = 53.
Flattening or sharpening a note changes it by five scale degrees. The perfect
fifth is extremely closely approximated in this scale by the thirty-first degree,
which is

31

53
× 1200 = 701.887

cents rather than the true value of 701.955.
The just major third is also closely approximated in this scale by the

seventeenth degree, which is

17

53
× 1200 = 384.906

cents rather than the true value of 386.314 cents. In effect, what is happen-
ing is that we are approximating both the Pythagorean comma and the syn-
tonic comma by a single scale degree in the 53 note scale, which is roughly
half way between them. So in Eitz’s notation, we are identifying the note

G♯
0

with A♭
+1

, whose difference is one schisma. Similarly, we are identifying

11Described in Bosanquet, Musical intervals and temperaments, Macmillan and Co.,
London, 1876. Reprinted with commentary by Rudolph Rasch, Diapason Press, Utrecht,
1986.
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22 0 31 9 40 18 49 27 5

5 36 14 45 23 1 32 10 41 19

19 50 28 6 37 15 46 24 2 33

33 11 42 20 51 29 7 38 16 47

47 25 3 34 12 43 21 52 30 8

8 39 17 48 26 4 35 13 44 22

22 0 31 9 40 18 49 27 5

F
0

C
0

G
0

D
0

A
0

E
0

B
0

F♯
0

C♯
0

C♯
0

A♭
+1

E♭
+1

B♭
+1

F
+1

C
+1

G
+1

D
+1

A
+1

E
+1

E
+1

B
+1

F♯
+1

C♯
+1

A♭
+2

E♭
+2

B♭
+2

F
+2

C
+2

G
+2

G
+2

D
+2

A
+2

E
+2

C
−2

G
−2

D
−2

A
−2

E
−2

B
−2

B
−2

F♯
−2

C♯
−2

A♭
−1

E♭
−1

B♭
−1

F
−1

C
−1

G
−1

D
−1

D
−1

A
−1

E
−1

B
−1

F♯
−1

C♯
−1

A♭
0

E♭
0

B♭
0

F
0

F
0

C
0

G
0

D
0

A
0

E
0

B
0

F♯
0

C♯
0

Torus of thirds and fifths in 53 tone equal temperament

the note B
−1

with C♭
0
, B♯

−1
with C

0
, and so on. We are also identifying the

note G
+2

with A♭
−2

, whose difference is a diesis minus four commas, or

256

243

(
80

81

)4

=
22454

321
=

10485760000

10460353203
,

or about 4.200 cents. The effect of this is that the array notation introduced
in §5.9 becomes periodic in both directions, so that we obtain the diagram on
page 216. In this diagram, the top and bottom row are identified with each
other, and the left and right walls are identified with each other. The result-
ing geometric figure is called a torus, and it looks like a bagel, or a tyre.
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It appears that the Pythagoreans were aware of the 53 tone equally
tempered scale. Philolaus, a disciple of Pythagoras, thought of the tone as
being divided into two minor semitones and a Pythagorean comma, and took
each minor semitone to be four commas. This makes nine commas to the
whole tone and four commas to the minor semitone, for a total of 53 commas
to the octave. The Chinese theorist King Fâng of the third century b.c.e.

also seems to have been aware that the 54th note in the Pythagorean system
is almost identical to the first.

After 53, the next good denominator in the continued fraction expan-
sion of log2(3/2) is 665. The extra advantages obtained by going to an equally
tempered 665 tone scale, which is gives a remarkably good approximation
to the perfect fifth, are far outweighed by the fact that adjacent tones are
so close together (1.805 cents) as to be almost indistinguishable. If 53 tone
equal temperament is thought of as the scale of commas, then 665 tone equal
temperament might be thought of as a scale of schismas.

6.4. Other equal tempered scales

Other divisions of the octave into equal intervals which have been used
for experimental tunings have included 19, 24, 31 and 43. The 19 tone scale
has the advantage of excellent approximations to the 6:5 minor third and the
5:3 major sixth as well as reasonable approximations to the 5:4 major third
and the 8:5 minor sixth. The eleventh degree gives an approximation to the
3:2 perfect fifth which is somewhat worse than in twelve tone equal temper-
ament, but still acceptable.

19-tone

name ratio cents degree cents

fundamental 1:1 0.000 0 0.000

minor third 6:5 315.641 5 315.789

major third 5:4 386.314 6 378.947

perfect fifth 3:2 701.955 11 694.737

minor sixth 8:5 813.687 13 821.053

major sixth 5:3 884.359 14 884.211

octave 2:1 1200.000 19 1200.000

Christiaan Huygens, in the late 17th century, seems to have been the
first to use the equally tempered 19 tone scale as a way of approximating just
intonation in a way that allowed for modulation into other keys. Yasser12 was
an important twentieth century proponent. The properties of 19 tone equal
temperament with respect to formation of a diatonic scale are very similar
to those for 12 tones. But accidentals and chromatic scales behave very dif-
ferently.

The main purpose I can see for the equally tempered 24 tone scale,
usually referred to as the quarter-tone scale, is that it increases the number
of tones available without throwing out the familiar twelve tones. It contains

12Joseph Yasser, A theory of evolving tonality, American Library of Musicology, New
York, 1932.
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no better approximations to the ratios 3:2 and 5:4 than the twelve tone scale,
but has a marginally better approximation to 7:4 and a significantly better
approximation to 11:8. The two sets of twelve notes formed by taking ev-
ery other note from the 24 tone scale can be alternated with interesting ef-
fect, but using notes from both sets of twelve at once has a strong tendency
to make discords. Examples of works using the quarter-tone scale include
the German composer Richard Stein’s Zwei Konzertstücke op. 26, 1906 for
cello and piano and Alois Hába’s Suite for String Orchestra, 1917.13 Twen-
tieth century American composers such as Howard Hanson and Charles Ives
have composed music designed for two pianos tuned a quarter tone apart.

Appendix E contains a table of various equal tempered scales, quan-
tifying how well they approximate perfect fifths, just major thirds, and sev-
enth harmonics. An examination of this table reveals that the 31 tone scale
is unusually good at approximating all three at once. We examine this scale
in the next section.

Further reading:

Jim Aikin, Discover 19-tone equal temperament, Keyboard, March 1988, p. 74–80.

Easley Blackwood, Modes and chords progressions in equal tunings, Perspectives in
New Music 29 (2) (1991), 166–200.

M. Yunik and G. W. Swift, Tempered music scales for sound synthesis, Computer

Music Journal 4 (4) (1980), 60–65.

Further listening: (See Appendix R)

Between the Keys, Microtonal masterpieces of the 20th century. This CD contains
recordings of Charles Ives’ Three quartertone pieces, and a piece by Ivan Vyshne-
gradsky in 72 tone equal temperament.

Easley Blackwood Microtonal Compositions. This is a recording of a set of micro-
tonal compositions in each of the equally tempered scales from 13 tone to 24 tone.

Clarence Barlow’s “OTOdeBLU” is in 17 tone equal temperament, played on two
pianos.

Neil Haverstick, Acoustic stick. Played on custum built acoustic guitars tuned in 19
and 34 tone equal temperament.

William Sethares, Xentonality, Music in 10-, 13-, 17- and 19-tone equal tempera-

ment, using spectrally adjusted instruments.

13It is said that Hába practiced to the point where he could accurately sing five divi-
sions to a semitone, or sixty to an octave.
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6.5. Thirty-one tone scale

The 31 tone equal tempered scale was first investigated by Nicola Vi-
centino14 and also later by Christiaan Huygens.15 It gives a better approxi-
mation to the perfect fifth than the 19 tone scale, but it is still worse than
the 12 tone scale. It also contains good approximations to the major third
and minor sixth, as well as the seventh harmonic.

31-tone

name ratio cents degree cents

fundamental 1:1 0.000 0 0.000

minor third 6:5 315.641 8 309.677

major third 5:4 386.314 10 387.097

perfect fifth 3:2 701.955 18 696.774

minor sixth 8:5 813.687 21 812.903

seventh harmonic 7:4 968.826 25 967.742

The main reason for interest in 31-tone equal temperament is that note
18 of this scale is an unexpectedly good approximation to the meantone fifth
(696.579) rather than the perfect fifth. So the entire meantone scale can be
approximated as shown in the table below. Fokker16 was an important twen-
tieth century proponent of the 31 tone scale.

14Nicola Vicentino, L’antica musica ridotta alla moderna pratica, Rome, 1555. Trans-
lated as Ancient music adapted to modern practice, Yale University Press, 1996.

15Christiaan Huygens, Lettre touchant le cycle harmonique, Letter to the editor of the
journal Histoire des Ouvrage de Sçavans, Rotterdam 1691. Reprinted with English and
Dutch translation (ed. Rudolph Rasch), Diapason Press, Utrecht, 1986.

16See for example A. D. Fokker, The qualities of the equal temperament by 31 fifths of
a tone in the octave, Report of the Fifth Congress of the International Society for Musical
Research, Utrecht, 3–7 July 1952, Vereniging voor Nederlandse Muziekgeschiedenis, Am-
sterdam (1953), 191–192; Equal temperament with 31 notes, Organ Institute Quarterly 5
(1955), 41; Equal temperament and the thirty-one-keyed organ, Scientific Monthly 81 (1955),
161–166. Also M. Joel Mandelbaum, 31-Tone Temperament: The Dutch Legacy, Ear Mag-
azine East, New York, 1982/1983; Henk Badings, A. D. Fokker: new music with 31 notes,
Zeitschrift für Musiktheorie 7 (1976), 46–48.
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Trasuntinis’ 31 tone harpsichord (1606),
State Museum, Bologna, Italy

note meantone 31-tone

C 0.000 0 0.000

C♯ 76.049 2 77.419

D 193.157 5 193.548

E♭ 310.265 8 309.677

E 386.314 10 387.097

F 503.422 13 503.226

F♯ 579.471 15 580.645

G 696.579 18 696.774

A♭ 813.686 21 812.903

A 889.735 23 890.323

B♭ 1006.843 26 1006.452

B 1082.892 28 1083.871

C 1200.000 31 1200.000

The picture on page 220 shows a 31 tone equal tempered instrument, made
by Vitus Trasuntinis in 1606. Each octave has seven keys as usual where
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the white keys would normally go, and five sets of four keys where the five
black keys would normally go. Then there are two keys each between the
white keys that would normally not be separated by black keys, for a total
of 7 + 4× 5 + 2× 2 = 31.

Let us examine the relationship between the meantone scale and 31
tone equal temperament in terms of continued fractions. Since the meantone
scale is generated by the meantone fifth, which represents a ratio of 4

√
5 : 1,

we should look at the continued fraction for log2(
4
√

5). We obtain

log2(
4
√

5) = 1
4 log2(5) = 0.580482024 . . .

=
1

1+

1

1+

1

2+

1

1+

1

1+

1

1+

1

1+

1

5+

1

1+
. . .

with convergents

1,
1

2
,

3

5
,

4

7
,

7

12
,

11

19
,

18

31
,

101

174
,

119

205
, . . .

Cutting off just before the denominator 5 gives the approximation 18/31,
which gives rise to the 31 tone equal tempered scale described above.

Exercises

1. Draw a torus of thirds and fifths, analogous to the one on page 216, for the 31
tone equal tempered scale, regarded as an approximation to meantone tuning.

2. In the text, the 31 tone equal tempered scale was compared with the usual (quar-
ter comma) meantone scale, using the observation that taking multiples of the fifth
generates a meantone scale, and then applying the theory of continued fractions to
approximate the fifth. Carry out the same process to make the following compar-
isons.

(i) Compare the 19 tone equal tempered scale with Salinas’ 1
3 comma mean-

tone scale.

(ii) Compare the 43 tone equal tempered scale with the 1
5 comma meantone

scale of Verheijen and Rossi.

(iii) Compare the 50 tone equal tempered scale with Zarlino’s 2
7 comma mean-

tone scale.

(iv) Compare the 55 tone equal tempered scale with Silbermann’s 1
6 comma

meantone scale.

Appendix J has a diagram which is relevant to this question.

6.6. The scales of Wendy Carlos

The idea behind the alpha, beta and gamma scales of Wendy Carlos
is to ignore the requirement that there are a whole number of notes to an
octave, and try to find equal tempered scales which give good approxima-
tions to the just intervals 3:2 and 5:4 (perfect fifth and major third). Since
6/5 = 3/2÷5/4, this automatically gives good approximations to the 6:5 mi-
nor third. This means that we need log2(3/2) and log2(5/4) to be close to
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Wendy Carlos, photo from her web site

integer multiples of the scale degree. So we must find rational approxima-
tions to the ratio of these quantities.

We investigate the continued fraction expansion of the ratio:

log2(3/2)

log2(5/4)
=

ln(3/2)

ln(5/4)
= 1 +

1

1+

1

4+

1

2+

1

6+

1

1+

1

10+

1

135+
. . .

The sequence of convergents obtained by truncating this continued fraction is:

1, 2,
9

5
,

20

11
,

129

71
,

149

82
, . . .

Carlos’ α (alpha) scale arises from the approximation 9/5 for the above
ratio. This means taking a value for the scale degree so that nine of them ap-
proximate a 3:2 perfect fifth, five of them approximate a 5:4 major third, and
four of them approximate a 6:5 minor third. In order to make the approxi-
mation as good as possible we minimise the mean square deviation. So if x
denotes the scale degree (taking the octave as unit) then we must minimise

(9x− log2(3/2))
2 + (5x− log2(5/4))

2 + (4x− log2(6/5))
2.

Setting the derivative with respect to x of this quantity equal to zero, we ob-
tain the equation

x =
9 log2(3/2) + 5 log2(5/4) + 4 log2(6/5)

92 + 52 + 42
≈ 0.06497082462

Multiplying by 1200, we obtain a scale degree of 77.965 cents, and there are
15.3915 of them to the octave.17

17This actually differs very slightly from Carlos’ figure of 15.385 α-scale degrees to the
octave. This is obtained by approximating the scale degree to 78.0 cents.
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Carlos also considers the scale α′ obtained by doubling the number of
notes in the octave. This gives the same approximations as before for the
ratios 3:2, 5:4 and 6:5, but the twenty-fifth degree of the new scale (974.562
cents) is a good approximation to the seventh harmonic in the form of the
ratio 7:4 (968.826 cents).

If instead we use the approximation

1 +
1

1+

1

5
=

11

6

which we get by rounding up at the end instead of down, we obtain Carlos’
β (beta) scale. We choose a value of the scale degree so that eleven of them
approximate a 3:2 perfect fifth, six of them approximate a 5:4 major third,
and five of them approximate a 6:5 minor third. Proceeding as before, we
see that the proportion of an octave occupied by each scale degree is

11 log2(3/2) + 6 log2(5/4) + 5 log2(6/5)

112 + 62 + 52
≈ 0.05319411048.

Multiplying by 1200, we obtain a scale degree of 63.833 cents, and there are
18.7991 of them to the octave.18 One advantage of the beta scale over the
alpha scale is that the fifteenth scale degree (957.494 cents) is a reasonable
approximation to the seventh harmonic in the form of the ratio 7:4 (968.826
cents). Indeed, it may be preferable to include this approximation into the
above least squares calculation to get a scale in which the proportion of an
octave occupied by each scale degree is

15 log2(7/4) + 11 log2(3/2) + 6 log2(5/4) + 5 log2(6/5)

152 + 112 + 62 + 52
≈ 0.05354214235.

This gives a scale degree of 64.251 cents, and there are 18.677 of them to the
octave. The fifteenth scale degree is then 963.759 cents.

Going one stage further, and using the approximation 20/11, we ob-
tain Carlos’ γ (gamma) scale. We choose a value of the scale degree so that
twenty of them approximate a 3:2 perfect fifth, eleven of them approximate
a 5:4 major third, and nine of them approximate a 4:3 minor third. The pro-
portion of an octave occupied by each scale degree is

20 log2(3/2) + 11 log2(5/4) + 9 log2(6/5)

202 + 112 + 92
≈ 0.02924878523.

Multiplying by 1200, we obtain a scale degree of 35.099 cents, and there are
34.1895 of them to the octave.19 This scale contains almost pure perfect fifths
and major thirds, but it does not contain a good approximation to the ratio
7:4.

18Carlos has 18.809 β-scale degrees to the octave, corresponding to a scale degree of
63.8 cents.

19Carlos has 34.188 γ-scale degrees to the octave, corresponding to a scale degree of
35.1 cents.
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name ratio cents α cents β cents γ cents

fundamental 1:1 0.000 0 0.000 0 0.000 0 0.000

minor third 6:5 315.641 4 311.860 5 319.165 9 315.887

major third 5:4 386.314 5 389.825 6 382.998 11 386.084

perfect fifth 3:2 701.955 9 701.685 11 702.162 20 701.971

seventh harmonic 7:4 968.826 12 1
2 974.562 15 957.494 28 982.759

Further reading:

Wendy Carlos, Tuning: at the crossroads, Computer Music Journal 11 (1) (1987),

29–43. Correction, ibid. 11 (4) (1987), 10–11.

6.7. The Bohlen–Pierce scale

Jaja, unlike Stravinsky, has never been guilty of composing har-
mony in all his life. Jaja is pure absolute twelve tone. Never
tempted, like some of the French composers, to write with thir-
teen tones. Oh no. This, says Jaja, is the baker’s dozen, the
“Nadir of Boulanger”.

From Gerard Hoffnung’s Interplanetary Music
Festival, analysis by two “distinguished teutonic
musicologists” of the work of a fictitious twelve
tone composer, Bruno Heinz Jaja.

The Bohlen–Pierce scale is the thirteen tone scale described in the ar-
ticle of Mathews and Pierce, forming Chapter 13 of [87]. Like the scales of
Wendy Carlos, it is not based around the octave as the basic interval. But
whereas Carlos uses 3:2 and 5:4, Bohlen and Pierce replace the octave by an
octave and a perfect fifth (a ratio of 3:1). In the equal tempered version, this
is divided into thirteen equal parts. This gives a good approximation to a
“major” chord with ratios 3:5:7. The idea is that only odd multiples of fre-
quencies are used. Music written using this scale works best if played on an
instrument such as the clarinet, which involves predominantly odd harmonics,
or using specially created synthetic voices with the same property. We shall
prefix all words associated with the Bohlen–Pierce scale with the letters BP
to save confusion with the corresponding notions based around the octave.

The basic interval of an octave and a perfect fifth, which is a ratio of
exactly 3:1 or an interval of 1901.955 cents, is called a BP-tritave. In the
equal tempered 13 tone scale, each scale degree is one thirteenth of this, or
146.304 cents. It may be felt that the scale of cents is inappropriate for cal-
culations with reference to this scale, but we shall stick with it nonetheless
for comparison with intervals in scales based around the octave.
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The Pythagorean approach to the division of the tritave begins with a
ratio of 7:3 as the analogue of the fifth. We shall call this interval the per-
fect BP-tenth, since it will correspond to note ten in the BP-scale. The cor-
responding continued fraction is

log3(7/3) =
1

1+

1

3+

1

2+

1

1+

1

2+

1

4+

1

22+

1

32+
. . . ,

whose convergents are

0

1
,
1

1
,
3

4
,
7

9
,
10

13
,
27

35
,
118

153
, . . .

If we perform the same calculation for the 5:3 ratio, we obtain the con-
tinued fraction

log3(5/3) =
1

2+

1

6+

1

1+

1

1+

1

1+

1

3+

1

7+
. . .

with convergents
0

1
,
1

2
,

6

13
,

7

15
,
13

28
,
20

43
,

73

157
, . . . .

Comparing these continued fractions, it looks like a good idea to divide the
tritave into 13 equal intervals, with note 10 approximating the ratio 7:3, and
note 6 approximating the ratio 5:3.

note degree 7/3-Pythag Just

C 0 1:1 1:1

D 2 19683:16807 25:21

E 3 9:7 9:7

F 4 343:243 7:5

G 6 81:49 5:3

H 7 49:27 9:5

J 9 729:343 15:7

A 10 7:3 7:3

B 12 6561:2401 25:9

C 13 3:1 3:1

Basing a BP-Pythagorean scale around the ratio 7:3, we obtain a scale
of 13 notes in which the circle of BP-tenths has a BP 7/3-comma given by a
ratio of

713

323
=

96889010407

94143178827
or about 49.772 cents.

Using perfect BP-tenths to form a diatonic BP-Pythagorean scale, we
obtain the third column of the table to the left. Following Bohlen, we name
the notes of the scale using the letters A–H and J. Note that our choice of
the second degree of the diatonic scale differs from the choice made by Math-
ews and Pierce, and gives what Bohlen calls the Lambda scale.
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To obtain a major 3:5:7 triad, we introduce a just major BP-sixth with
a ratio of 5:3. This is very close to the BP 7/3-Pythagorean G, which gives
rise to an interval called the BP-minor diesis, expressing the difference be-
tween these two versions of G. This interval, namely the difference between
5:3 and 81:49, is a ratio of 245:243 or about 14.191 cents.

The BP version of Eitz’s notation works in a similar way to the oc-
tave version. We start with the BP 7/3-Pythagorean values for the notes and
then adjust by a number of BP-minor dieses indicated by a superscript. So

G
0

denotes the 81:49 version of G, while G
+1

denotes the 5:3 version. The
just scale given in the table above is then described by the following array:

D
+2

B
+2

J
+1

G
+1

E
0

C
0

A
0

H
−1

F
−1

A reasonable way to fill this in to a thirteen tone just scale is as follows:
BP Monochord

F♯
+2

D
+2

B
+2

J
+1

G
+1

E
0

C
0

A
0

H
−1

F
−1

D♭
−2

B♭
−2

J♭
−2

For comparison, here is a table of the scales discussed above, in cents
to three decimal places, and also in the BP version of Eitz’s notation. The
column marked “discrepancy” gives the difference between the equal and just
versions.

BP 7/3-Pythag BP-just BP-equal discrepancy

C 0.000 0 0.000 0 0.000 0.000

D♭ 161.619 0 133.238 −2 146.304 +13.066

D 273.465 0 301.847 +2 292.608 −9.239

E 435.084 0 435.084 0 438.913 +3.829

F 596.703 0 582.512 −1 585.217 +2.705

F♯ 708.550 0 736.931 +2 731.521 −5.410

G 870.168 0 884.359 +1 877.825 −6.534

H 1031.787 0 1017.596 −1 1024.130 +6.534

J♭ 1193.405 0 1165.024 −2 1170.434 +5.410

J 1305.252 0 1319.443 +1 1316.738 −2.705

A 1466.871 0 1466.871 0 1463.042 −3.829

B♭ 1628.490 0 1600.108 −2 1609.347 +9.239

B 1740.336 0 1768.717 +2 1755.651 −13.066

C 1901.955 0 1901.955 0 1901.955 0.000

A number of the intervals in the BP scale approximate intervals in
the usual octave based scale, and some of these approximations are just far
enough off to be disturbing to trained musicians. It is plausible that proper
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appreciation of music written in the BP scale would involve learning to “for-
get” the accumulated experience of the perpetual bombardment by octave
based music which we receive from the world around us, even if we are not mu-
sicians. For this reason, it seems unlikely that such music will become popu-
lar. On the other hand, according to John Pierce (chapter 1 of [30]), Maureen
Chowning, a coloratura soprano, has learned to sing in the BP scale, Richard
Boulanger has composed a “considerable piece” using it, and two CDs by
Charles Carpenter are available which make extensive use of scale (see below).

Exercises

1. (Paul Erlich) Investigate the refinement of the Bohlen–Pierce scale in which there

are 39 tones to the BP-tritave. What relevant ratios are approximated by scale de-

grees 5, 7, 11, 13, 16, 22, 28 and 34?

Further reading:

Heinz Bohlen, 13 Tonstufen in der Duodezeme. Acustica 39 (1978), 76–86.

M. V. Mathews and J. R. Pierce, The Bohlen–Pierce scale. Chapter 13 of [87].

M. V. Mathews, J. R. Pierce, A. Reeves and L. A. Roberts, Theoretical and ex-
perimental explorations of the Bohlen–Pierce scale. J. Acoust. Soc. Amer. 84 (4)
(1988), 1214–1222.

L. A. Roberts and M. V. Mathews, Intonation sensitivity for traditional and non-

traditional chords. J. Acoust. Soc. Amer. 75 (3) (1984), 952–959.

Further listening: (See Appendix R)

Charles Carpenter, Frog à la Pêche and Splat are composed using the Bohlen–Pierce
scale, and played in a progressive rock/jazz style.

On the CD of examples accompanying Cook [20], track 62 demonstrates the Bohlen–
Pierce scale.

On the CD of examples accompanying Mathews and Pierce [87], tracks 71–74 demon-

strate the Bohlen–Pierce scale.

6.8. Unison vectors and periodicity blocks

In this section, we return to just intonation, and we describe Fokker’s
periodicity blocks and unison vectors. The periodicity block corresponds to
what a mathematician would call a set of coset representatives, or a funda-
mental domain. The starting point is octave equivalence; notes differing by
a whole number of octaves are considered to be equivalent.

The Pythagorean scale is the one dimensional version of the theory. We
place the notes of the Pythagorean scale along a one dimensional lattice, with

the origin at C
0
. We have labelled the vertices in three notations, namely

note names, ratios and cents, for comparison. Because of octave equivalence,
the value in cents is reduced or augmented by a multiple of 1200 as neces-
sary to put it in the interval between zero and 1200.
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• • • • • • • • • • • •g
A♭

0

128/81

792.180

E♭
0

32/27

294.135

B♭
0

16/9

996.090

F
0

4/3

498.045

C
0

1/1

0.000

G
0

3/2

701.955

D
0

9/8

203.910

A
0

27/16

905.865

E
0

81/64

407.820

B
0

243/128

1109.775

F♯
0

729/512

611.731

C♯
0

2187/2048

113.685

We write Z1 for this one dimensional lattice, to emphasise the fact that
the points in the lattice may be indexed using the integers. In fact, given the

choice of C
0

as the origin, there are two sensible ways to index with integers.

One makes G
0

correspond to 1, D
0

to 2, F
0

to −1, etc., and the other makes

F
0

correspond to 1, B♭
0

to 2, G
0

to −1, etc. For the sake of definiteness, we
choose the former.

The twelve tone Pythagorean scale comes from observing that in this

system, C
0

and B♯
0

are close enough together in pitch that we may not want

both of them in our scale. Since B♯
0

is the twelfth note, we say that (12) is a
unison vector. A periodicity block would then consist of a choice of 12 con-
secutive points on this lattice, to constitute a scale. Other choices of unison
vector would include (53) and (665) (cf. §6.3).

Just intonation, at least the 5-limit version as we introduced it in §5.5,
is really a 2-dimensional lattice, which we write as Z2. In Eitz’s notation (see
§5.9), here is a small part of the lattice with the origin circled.

F♯
−2

C♯
−2

G♯
−2

D♯
−2

D
−1

A
−1

E
−1

B
−1

F♯
−1

B♭
0

F
0

C
0�
��

G
0

D
0

A
0

D♭
+1

A♭
+1

E♭
+1

B♭
+1

F
+1

C
+1

F♭
+2

C♭
+2

G♭
+2

D♭
+2

A♭
+2

The same in ratio notation is as follows.

25
18

25
24

25
16

75
64

10
9

5
3

5
4

15
8

45
32

16
9

4
3

1
1
m 3

2
9
8

27
16

16
15

8
5

6
5

9
5

27
20

81
80

32
25

48
25

36
25

27
25

81
50

We can choose a basis for this lattice, and write everything in terms of vec-
tors with respect to this basis. This is the two dimensional version of our
choice from two different ways of indexing the Pythagorean scale by the in-
tegers, but this time there are an infinite number of choices of basis.

For example, if our basis consists of G
0

and E
−1

(i.e., 3
2 and 5

4) then
here is the same part of the lattice in vector notation.
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(−2, 2) (−1, 2) ( 0, 2) ( 1, 2)

(−2, 1) (−1, 1) ( 0, 1) ( 1, 1) ( 2, 1)

(−2, 0) (−1, 0) ( 0, 0) ( 1, 0) ( 2, 0) ( 3, 0)

(−1,−1) ( 0, −1) ( 1,−1) ( 2,−1) ( 3,−1) ( 4,−1)

( 0, −2) ( 1, −2) ( 2, −2) ( 3, −2) ( 4,−2)

The defining property of a basis is that every vector in the lattice has a
unique expression as an integer combination of the basis vectors. The num-
ber of vectors in a basis is the dimension of the lattice.

Now we need to choose our unison vectors. The classical choice here is
(4,−1) and (12, 0), corresponding to the syntonic comma and the Pythagor-
ean comma. The sublattice generated by these unison vectors consists of all
linear combinations

m(4,−1) + n(12, 0) = (4m+ 12n,−4m)

with m,n ∈ Z. This is called the unison sublattice.

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

d

•
•

•
•

•s

•
•p

•
•

•
•

•
•

In this diagram, the syntonic comma and Pythagorean comma are marked
with s and p respectively. Each vector (a, b) in the lattice may then be
thought of as equivalent to the vectors

(a, b) +m(4,−1) + n(12, 0) = (a+ 4m+ 12n, b− 4m)

with m,n ∈ Z, differing from it by vectors in the unison sublattice. So for
example, taking m = −3 and n = 1, we see that the vector (0, 3) is in the
unison sublattice. This corresponds to the fact that three just major thirds
approximately make one octave.
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There are many ways of choosing unison vectors generating a given sub-
lattice. In the above example, (4,−1) and (0, 3) generate the same sublattice.

The set of vectors (or pitches) equivalent to a given vector is called a
coset. The number of cosets is called the index of the unison sublattice in the
lattice. It can be calculated by taking the determinant of the matrix formed
from the unison vectors. So in our example, the index of the unison sublat-
tice is ∣∣∣∣

4 −1
12 0

∣∣∣∣ = 12.

The formula for the determinant of a 2× 2 matrix is∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc.

If the determinant comes out negative, the index is the corresponding pos-
itive quantity. If two rows of a matrix are swapped, then the determinant
changes sign, so the sign of the determinant is irrelevant to the index. It has
to do with orientation, and will not be discussed here.

A periodicity block consists of a choice of one vector from each coset.
In other words, we find a finite set of vectors with the property that each vec-
tor in the whole lattice is equivalent to a unique vector from the periodicity
block. One way to do this is to draw a parallelogram using the unison vectors.
We can then tile the plane using copies of this parallelogram, translated along
unison vectors. In the above example, if we use the unison vectors (4,−1) and
(0, 3) to generate the unison sublattice, then the parallelogram looks like this.

. . . . .d . . . . .

. . . .

•

•
•

XXXXXXXXXX

XXXXXXXXXX

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

This choice of periodicity block leads to the following just scale with twelve
tones.

G♯
−2

D♯
−2

A♯
−2

E♯
−2

E
−1

B
−1

F♯
−1

C♯
−1

C
0

G
0

D
0

A
0

Of course, there are many other choices of periodicity block. For example,
shifting this parallelogram one place to the left gives rise to Euler’s mono-
chord, described on page 169.
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. .

. . . . . .d. . . . . .

. . . . .

.

•
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•

XXXXXXXXXX
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Periodicity blocks do not have to be parallelograms. For example, we
can chop off a corner of the parallelogram, translate it through a unison vec-
tor, and stick it back on somewhere else to get a hexagon. Each of the just
intonation scales in §5.10 may be interpreted as a periodicity block for the
above choice of unison sublattice.

Of course, there are other choices of unison sublattices. If we choose
the unison vectors (4,−1) and (−1, 5) for example, then we get a scale of∣∣∣∣

4 −1
−1 5

∣∣∣∣ = 19

tones. This gives rise to just scales approximating the equal tempered scale
described at the beginning of §6.4. The choice of (4, 2) and (−1, 5) gives the
Indian scale of 22 Srutis described in §6.1, corresponding to the calculation∣∣∣∣

4 2
−1 5

∣∣∣∣ = 22.

Taking the unison vectors (4,−1) and (3, 7) gives rise to 31 tone scales ap-
proximating 31 tone equal temperament, whose relationship with meantone
is described in §6.4. This corresponds to the calculation∣∣∣∣

4 −1
3 7

∣∣∣∣ = 31

The vectors (8, 1) and (−5, 6) correspond in the same way to just scales ap-
proximating the 53 tone equal tempered scale described in §6.3, correspond-
ing to the calculation ∣∣∣∣

8 1
−5 6

∣∣∣∣ = 53.

An example of a periodicity block for this choice of unison vectors can be
found on page 216.

When we come to study groups and normal subgroups in §9.12, we
shall make some more comments on how to interpret unison vectors and pe-
riodicity blocks in group theoretical language.

Further reading:

Some of the material in this and the next section expresses ideas from an online ar-
ticle by Paul Erlich (do a web search), together with the work of Fokker.
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A. D. Fokker, Selections from the harmonic lattice of perfect fifths and major thirds

containing 12, 19, 22, 31, 41 or 53 notes, Proc. Koninkl. Nederl. Akad. Wetenschap-

pen, Series B, 71 (1968), 251–266.

6.9. Septimal harmony

Septimal harmony refers to 7-limit just intonation; in other words, just
intonation involving the primes 2, 3, 5 and 7. Taking octave equivalence into
account, this means that we need three dimensions, or Z3 to represent the
septimal version of just intonation, to take account of the primes 3, 5 and 7.
It is harder to draw a three dimensional lattice, but it can be done. In ratio
notation, it will then look as follows.

32:21

40:21 10:7 15:14

8:7 12:7

4:3 1:1 3:2

7:6 7:4 21:8

5:3 5:4 15:8

35:24 35:16 105:64

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�

�
�

�
�

�
��

�
�
��

�� �� ��
�� �� ��

�� �� ��
�� �� ��

We take as our basis vectors the ratios 3
2 , 5

4 and 7
4 . So the vector (a, b, c) rep-

resents the ratio 3a.5b.7c, multiplied if necessary by a power of 2 so that it
is between 1 and 2 (octave equivalence). The septimal comma introduced in
§5.8 is a ratio of 64 : 63, which corresponds to the vector (−2, 0,−1). So it
would be reasonable to use the three commas (4,−1, 0) (syntonic), (12, 0, 0)
(Pythagorean), and (−2, 0,−1) (septimal) as unison vectors.

The determinant of a 3× 3 matrix


a b c
d e f
g h i




is given by the formula∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
= aei+ bfg + cdh− ceg − bdi− afh.

This can be visualised as three leading diagonals minus three trailing diago-
nals. If you have trouble visualizing these diagonals, it may help to think of
the matrix as wrapped around a cylinder. So you should write the first two
columns of the matrix again to the right of the matrix, and then the leading
and trailing diagonals really look diagonal.

With the three commas as unison vectors, the determinant is∣∣∣∣∣∣

4 −1 0
12 0 0
−2 0 −1

∣∣∣∣∣∣
= 0 + 0 + 0− 0− 12− 0 = −12.
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vector ratio cents

(−7 4 1) 4375
4374 0.40

(−1 −2 4) 2401
2400 0.72

(−8 2 5) 420175
419904 1.12

( 9 3 −4) 2460375
2458624 1.23

( 8 1 0) 32805
32764 1.95

( 1 5 1) 65625
65536 2.35

( 0 3 5) 2100875
2097152 3.07

(−8 −6 2) 102760448
102515625 4.13

( 1 −3 −2) 6144
6125 5.36

( 0 −5 2) 3136
3125 6.08

(−7 −1 3) 10976
10935 6.48

( 2 2 −1) 225
224 7.71

( 8 −4 2) 321489
320000 8.04

(−5 6 0) 15625
15552 8.11

( 1 0 3) 1029
1024 8.43

( 3 7 0) 2109375
2083725 10.06

(−5 −2 −3) 2097152
2083725 11.12

( 3 −1 −3) 1728
1715 13.07

(−4 3 −2) 4000
3969 13.47

( 2 −3 1) 126
125 13.79

(−5 1 2) 245
243 14.19

( 10 −2 1) 413343
409600 15.75

( 3 2 2) 33075
32768 16.14

(−3 0 −4) 65536
64827 18.81

( 3 −6 −1) 110592
109375 19.16

(−4 −2 0) 2048
2025 19.55

( 5 1 −4) 2430
2401 20.79

( 4 −1 0) 81
80 21.51

(−3 3 1) 875
864 21.90

( 12 0 0) 531441
524288 23.46

( 5 4 1) 1063125
1048576 23.86

( 4 2 5) 34034175
33554432 24.58

(−3 −5 −2) 4194302
4134375 24.91

(−10 −1 −1) 2097152
2066715 25.31

( 5 −4 −2) 31104
30625 26.87

vector ratio cents

(−2 0 −1) 64
63 27.26

(−3 −2 3) 686
675 27.99

(−1 5 0) 3125
3072 29.61

(−2 3 4) 303125
294912 30.33

(−1 −3 −3) 131072
128625 32.63

(−8 1 −2) 327680
321989 33.02

(−9 −1 2) 100352
98415 33.74

( 0 2 −2) 50
49 34.98

(−1 0 2) 49
48 35.70

( 1 7 −1) 234375
229376 37.33

( 7 1 2) 535815
524288 37.65

( 0 5 3) 1071875
1048576 38.05

( 1 −1 −4) 12278
12005 40.33

( 0 −3 0) 128
125 41.06

(−7 1 1) 2240
2187 41.45

( 2 4 −1) 5625
5488 42.69

( 1 2 1) 525
512 43.41

( 0 0 5) 16807
16384 44.13

( 1 −6 −2) 786432
765625 46.42

(−6 −2 −1) 131072
127575 46.81

( 2 −1 −1) 36
35 48.77

(−6 1 4) 12005
11664 49.89

( 2 2 4) 540225
524288 51.84

( 2 −6 1) 16128
15625 54.85

(−5 −2 2) 6272
6075 55.25

( 4 1 −2) 405
392 56.48

( 3 −1 2) 1323
1280 57.20

(−4 3 3) 42875
42472 57.60

( 4 −4 0) 648
625 62.57

(−3 0 1) 28
27 62.96

(−1 2 0) 25
24 70.72

( 1 −1 1) 21
20 84.42

( 3 1 0) 135
128 92.23

(−3 3 1) 3584
3575 104.02

(−1 4 −2) 625
588 105.65
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Ignoring signs as usual, this tells us that we should expect the periodicity
block to have 12 elements. One choice of periodicity block gives the 7-limit
just intonation diagram on page 203.

There are many choices of unison vector in 7-limit just intonation. The
table on page 233, adapted from Fokker, gives some of the most useful ones.
Fokker also develops an elaborate system of notation for 7-limit just intona-
tion, in which he ends up with notes such as �f⇂⇂ .

Further reading:

A. D. Fokker, Unison vectors and periodicity blocks in the three-dimensional (3-5-7-)

harmonic lattice of notes, Proc. Koninkl. Nederl. Akad. Wetenschappen, Series B,

72 (1969), 153–168.



CHAPTER 7

Digital music

7.1. Digital signals

The commonest method of digital representation of sound is about as
simple minded as you can get. To digitise an analogue signal, the signal is
sampled a large number of times a second, and a binary number represents
the height of the signal at each sample time. Both of these processes are
sometimes referred to as quantization (don’t worry, there’s no quantum me-
chanics involved here), but it is important to realise that the processes are
separate, and need to be understood separately.

235
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For example, the Compact Disc is based on a sample rate of 44.1 KHz,
or 44,100 sample points per second.1 At each sample point, a sixteen digit bi-
nary number represents the height of the waveform at that point. The com-
puter WAV file format is another example, which we shall describe in detail
in §7.3.

The following diagrams illustrate the process. The first picture shows
the original analogue signal.

Analogue signal

Next we have the sampled signal, but still with continuously variable
amplitudes.

Sampled signal

If we apply a “sample and hold” to the signal, we obtain a staircase
waveform.

1It is annoying that the default sample rate for DAT (Digital Audio Tape) is 48 KHz,
thereby making it difficult to make a digital copy on CD directly from DAT. This seems
to be the result of industry paranoia at the idea that anyone might make a digital copy of
music from a CD (DAT was originally designed as a consumer format, but never took off
except among the music business professionals). The excuse that the higher sample rate
for DAT gives a higher cutoff frequency and therefore better audio fidelity is easily seen
through in light of the fact that the improvement is about three quarters of a tone, which
is essentially insignificant.

Fortunately, the ratio 48, 000/44, 100 can be written as a product of small fractions,
4/3×8/7×5/7, which suggests an easy method of digital conversion. To multiply the sam-
ple rate by 4/3, for example, we use linear interpolation to quadruple the sample rate and
then omit two out of every three sample points. This gives much better fidelity than con-
verting to an analogue signal and then back to digital.
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Sampled and held

We shall see at the end of §7.6 that provided that the original analogue
signal has no frequency components at half the sample rate or above (this
is achieved with a low pass filter), it may be reconstructed exactly from this
sampled signal. This rather extraordinary statement is called the sampling
theorem, and understanding it requires an understanding of what sampling
does to the Fourier spectrum of a signal. We shall do this by systematically
making use of Dirac delta functions, starting in §7.5.

Finally, if we digitise the samples, each sample value gets adjusted to
the nearest allowed value.

Digitised signal

This part of the process of turning an analogue signal into a digital sig-
nal does entail some loss of information, even if the original signal contains
no frequency component above half the sample rate. To see this, think what
happens to a very low level signal. It will simply get reported as zero. There
is a method for overcoming this limitation to a certain extent, called dither-
ing, and it is described in §7.2.

Further reading:

Ken C. Pohlmann, The compact disc handbook, 2nd edition, A-R Editions, Inc.,

Madison, Wisconsin, 1992.

7.2. Dithering

Dithering is a method of decreasing the distortion of a low level signal
due to digitization of signal level. This is based on the audacious proposi-
tion that adding a low level source of random noise to a signal can increase
the signal resolution. This works best when the sample rate is high in com-
parison with the rate at which the signal is changing.

To see how this works, consider a slowly varying signal and its digiti-
zation.
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Signal Digitization Smoothed

Now if we add noise to the original signal at amplitude roughly one half
the step size in the digitization process, here’s what the outcome looks like.

Signal Digitization Smoothed

If the digitised signal is put through a resistor-capacitor circuit to
smooth it out, some reasonable approximation to the original signal can be
recovered. There is no theoretical limit to the accuracy possible with this
method, as long as the sampling rate is high enough.

Further reading:

J. Vanderkooy and S. Lipshitz, Resolution below the least significant bit in digital

audio systems with dither, J. Audio Eng. Soc. 32 (3) (1984), 106–113; Correction,

J. Audio Eng. Soc. 32 (11) (1984), 889.

7.3. WAV and MP3 files

A common format for digital sound files on a computer is the WAV for-
mat. This is an example of Resource Interchange File Format (RIFF) for mul-
timedia files; another example of RIFF is the AVI movie format. Here is what
a WAV file looks like. The file begins with some header information, which
comes in a 12 byte RIFF chunk and a 24 byte FORMAT chunk, and then the
actual wave data, which comes in a DATA chunk occupying the rest of the file.

The binary numbers in a WAV file are always little endian, which means
that the least significant byte comes first, so that the bytes are in the reverse
of what might be thought of as the normal order. We shall represent binary
numbers using hexadecimal, format, or base 16. Each hexadecimal digit en-
codes four binary digits, so that there are two hexadecimal digits in a byte.
The sixteen symbols used are 0–9 and A–F. So for example in little endian
format, 4E 02 00 00 would represent the hexadecimal number 24E, which is
the binary number 0010 0100 1110, or in decimal, 590.
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The first 12 bytes are called the RIFF chunk. Bytes 0–3 are 52 49 46 46,
the ascii characters “RIFF”. Bytes 4–7 give the total number of bytes in the
remaining part of the entire WAV file (byte 8 onward), in little endian for-
mat as described above. Bytes 8–11 are 57 41 56 45, the ascii characters
“WAVE” to indicate the RIFF file type.

The next 24 bytes are called the FORMAT chunk. Bytes 0–3 are 66
6D 74 20, the ascii characters “fmt ”. Bytes 4–7 give the length of the re-
mainder of the FORMAT chunk, which for a WAV file will always be 10 00
00 00 to indicate 16 bytes. Bytes 8–9 are always 01 00, don’t ask me why.
Bytes 10–11 indicate the number of channels, 01 00 for Mono and 02 00 for
Stereo. Bytes 12–15 give the sample rate, which is measured in Hz. So for
example 44,100 Hz comes out as 44 AC 00 00. Bytes 16–19 give the number
of bytes per second. This can be found by multiplying the sample rate with
the number of bytes representing each sample. Bytes 20–21 give the number
of bytes per sample, so 01 00 for 8-bit mono, 02 00 for 8-bit stereo or 16-bit
mono, and 04 00 for 16-bit stereo. Finally, bytes 22–23 give the number of
bits per sample, which is 8 times as big as bytes 20–21.

For 16-bit CD quality stereo audio, the number of bytes per second is
44,100 × 2 ×2 = 176,400, which in little endian hexadecimal is 10 B1 02 00.
So the RIFF and FORMAT chunk would be as follows.

52 49 46 46 xx xx xx xx-57 41 56 45 66 6D 74 20

10 00 00 00 01 00 02 00-44 AC 00 00 10 B1 02 00

04 00 20 00

Here, xx xx xx xx represents the total length of the WAV file after the first eight
bytes.

Finally, for the DATA chunk, bytes 0–3 are 64 61 74 61 for ascii “data”.
Bytes 4–7 give the length of the remainder of the DATA chunk, in bytes.
Bytes 8 onwards are the actual data samples, in little endian binary as al-
ways. The data come in pieces called sample frames, each representing the
data to be played at a particular point in time. So for example for a 16-bit
stereo signal, each sample frame would consist of two bytes for the left chan-
nel followed by two bytes for the right channel. Since both positive and neg-
ative numbers are to be encoded in the binary data, the format used is two’s
complement. So positive numbers from 0 to 32, 767 begin with a binary digit
zero, and negative numbers from −32, 768 to −1 are represented by adding
65, 536, so that they begin with a binary digit one. For example, the number
−1 is represented by the little endian hexadecimal bytes FF FF, −32, 768 is
represented by 00 80, and 32, 767 is represented by FF 7F.

Unfortunately, two’s complement is only used when the samples are
more than 8 bits long; 8-bit samples are represented using the numbers from 0
to 255, with no negative numbers. So 128 is the neutral position for the signal.
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Other digital audio formats similar in nature to the WAV file include
the AIFF format (Audio Interchange File Format), commonly used on Mac-
intosh computers, and the AU format, developed by Sun Microsystems and
commonly used on UNIX computers.

The MP3 format2 is different from the WAV format in that it uses data
compression. The file needs to be uncompressed as it is played.

There are two kinds of compression: lossless and lossy. Lossless com-
pression gives rise to a shorter file from which the original may be recon-
structed exactly. For example, the ZIP file format is a lossless compression
format. This can only work with non-random data. The more random the
data, the less it can be compressed. For example, if the data to be com-
pressed consists of 10,000 consecutive copies of the binary string 01001000,
then that information can be imparted in a lot less than 10,000 bytes. In in-
formation theory, this is captured by the concept of entropy. The entropy of
a signal is defined to be the logarithm to base two of the number of differ-
ent possibilities for the signal. The less random the signal, the fewer possi-
bilities are allowed for the data in the signal, and hence the smaller the en-
tropy. The entropy measures the smallest number of binary bits the signal
could be compressed into.

Lossy compression retains the most essential features of the file, and al-
lows some degeneration of the data. The kind of degeneration allowed must
always depend on the context. For an audio file, for example, we can try
to decide which aspects of the signal make little difference to the perception
of the sound, and allow these aspects to change. This is precisely what the
MP3 format does.

The actual algorithm is very complicated, and makes use of some sub-
tle psychoacoustics. Here are some of the techniques used for encoding MP3
formats.

(i) The threshold of hearing depends on frequency, and the ear is most
sensitive in the middle of the audio frequency range. This is described us-
ing the Fletcher–Munson curves, as explained on page 11. So low amplitude
sounds at the extremes of the frequency range can be ignored unless there is
no other sound present.

(ii) The phenomenon of masking means that some sounds will be
present but will not be perceived because of the existence of some other com-
ponent of the sound. These masked sounds are omitted from the compressed
signal.

(iii) A system of borrowing is used, so that a passage which needs more
bytes to represent the sound in a perceptually accurate way can use them at
the expense of using fewer bytes to represent perceptually simpler passages.

2MP3 stands for “MPEG I/II Layer 3.” MPEG is itself an acronym for “Motion Pic-
ture Experts Group,” which is a family of standards for encoding audio-visual information
such as movies and music.
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(iv) A stereo signal often does not contain much more information than
each channel alone, and joint stereo encoding makes use of this.

(v) The MP3 format also makes use of Huffman coding, in which strings
of information which occur with higher probability are coded using a shorter
string of bits.

Newer formats take the same idea further. For example, Apple’s
iTunes now uses MPEG 4 Audio as its standard, also known as AAC (Ad-
vanced Audio Coding). This produces better audio quality than MP3 with
smaller file sizes. Files produced using this standard have names of the form
<filename>.m4a.

7.4. MIDI

Most synthesizers these days talk to each other and to computers via
MIDI cables. MIDI stands for “Musical Instrument Digital Interface.” It is
an internationally agreed data transmission protocol, introduced in 1982, for
the transmission of musical information between different digital devices. It is
important to realise that in general there is no waveform information present
in MIDI, unless the message is a “sample dump.” Instead, most MIDI mes-
sages give a short list of abstract parameters for an event.

There are three basic types of MIDI message: note messages, controller
messages, and system exclusive messages. Note messages carry information
about the starting time and stopping time of notes, which patch (or voice)
should be used, the volume level, and so on. Controller messages change pa-
rameters like chorus, reverb, panning, master volume, etc. System exclusive
messages are for transmitting information specific to a given instrument or
device. They start with an identifier for the device, and the body can con-
tain any kind of information in a format proprietary to that device. The
commonest kind of system exclusive messages are for transmitting the data
for setting up a patch on a synthesizer.

The MIDI standard also includes some hardware specifications. It spec-
ifies a baud rate of 31.25 KBaud. For modern machines this is very slow, but
for the moment we are stuck with this standard. One of the results of this is
that systems often suffer from MIDI “bottlenecks,” which can cause audibly
bad timing. The problem is especially bad with MIDI data involving contin-
ually changing values of a control variable such as volume or pitch.

Further reading:

S. de Furia and J. Scacciaferro, MIDI programmer’s handbook [41].

Gareth Loy, Musicians make a standard: the MIDI phenomenon, Computer Music
Journal 9 (4) (1985), 8–26.

F. Richard Moore, The dysfunctions of MIDI, Computer Music Journal 12 (1) (1988),
19–28.

Joseph Rothstein, MIDI, A comprehensive introduction [129].
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Eleanor Selfridge-Field (Editor), Donald Byrd (Contributor), David Bainbridge

(Contributor), Beyond MIDI: The Handbook of Musical Codes, M. I. T. Press (1997).

7.5. Delta functions and sampling

One way to represent the process of sampling a signal is as multiplica-
tion by a stream of Dirac delta functions (see §2.17). Let N denote the sam-
ple rate, measured in samples per second, and let ∆t = 1/N denote the in-
terval between sample times. So for example for compact disc recording we
want N = 44, 100 samples per second, and ∆t = 1/44, 100 seconds. We de-
fine the sampling function with spacing ∆t to be

δs(t) =

∞∑

n=−∞
δ(t − n∆t). (7.5.1)

δs(t)

6 6 6 6 6 6 6 6 6 6 6

�-∆t

If f(t) represents an analogue signal, then

f(t)δs(t) =

∞∑

n=−∞
f(t)δ(t− n∆t) =

∞∑

n=−∞
f(n∆t)δ(t− n∆t)

represents the sampled signal. This has been digitised with respect to time,
but not with respect to signal amplitude. The integral of the digitised sig-
nal f(t)δs(t) over any period of time approximates the integral of the ana-
logue signal f(t) over the same time interval, multiplied by the sample rate
N = 1/∆t.

We give two different expressions for the Fourier transform of a sam-
pled signal in Theorem 7.5.1 and Corollary 7.5.4. Both of these expressions
show that the Fourier transform is periodic, with period equal to the sample
rate N = 1/∆t.

Theorem 7.5.1. The Fourier transform of a sampled signal is given by

f̂.δs(ν) =
∞∑

n=−∞
f(n∆t)e−2πiνn∆t.

Proof. Using the definition (2.13.1) of the Fourier transform, we have

f̂.δs(ν) =

∫ ∞

−∞
f(t)δs(t)e

−2πiνt dt

=

∫ ∞

−∞

( ∞∑

n=−∞
f(n∆t)δ(t− n∆t)

)
e−2πiνt dt
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=
∞∑

n=−∞
f(n∆t)

∫ ∞

−∞
δ(t− n∆t)e−2πiνt dt

=
∞∑

n=−∞
f(n∆t)e−2πiνn∆t. �

The key to understanding the other expression for the Fourier transform
of a digitised signal is Poisson’s summation formula from Fourier analysis.

Theorem 7.5.2.
∞∑

n=−∞
f(n∆t) =

1

∆t

∞∑

n=−∞
f̂
( n

∆t

)
. (7.5.2)

Proof. This follows from the Poisson summation formula (2.16.1), us-
ing Exercise 3 of §2.13. �

Corollary 7.5.3. The Fourier transform of the sampling function
δs(t) is another sampling function in the frequency domain,

δ̂s(ν) =
1

∆t

∞∑

n=−∞
δ
(
ν − n

∆t

)
.

Proof. If f(t) is a test function, then the definition of δs(t) gives
∫ ∞

−∞
f(t)δs(t) dt =

∞∑

n=−∞
f(n∆t).

Applying Parseval’s identity (2.15.1) to the left hand side (and noting that

the sampling function is real, so that δs(t) = δs(t)) and applying formula
(7.5.2) to the right hand side, we obtain

∫ ∞

−∞
f̂(ν)δ̂s(ν) dν =

1

∆t

∞∑

n=−∞
f̂
( n

∆t

)
.

The required formula for δ̂s(ν) follows. �

Corollary 7.5.4. The Fourier transform of a digital signal f(t)δs(t) is

f̂.δs(ν) =
1

∆t

∞∑

n=−∞
f̂
(
ν − n

∆t

)

which is periodic in the frequency domain, with period equal to the sampling
frequency 1/∆t.

Proof. By Theorem 2.18.1(ii), we have

f̂.δs(ν) = (f̂ ∗ δ̂s)(ν),
and by Corollary 7.5.3, this is equal to

∫ ∞

−∞
f̂(u)

1

∆t

∞∑

n=−∞
δ
(
ν − n

∆t
− u
)
du =

1

∆t

∞∑

n=−∞
f̂
(
ν − n

∆t

)
. �
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7.6. Nyquist’s theorem

Nyquist’s theorem3 states that the maximum frequency that can be
represented when digitizing an analogue signal is exactly half the sampling
rate. Frequencies above this limit will give rise to unwanted frequencies be-
low the Nyquist frequency of half the sampling rate. What happens to sig-
nals at exactly the Nyquist frequency depends on the phase. If the entire
frequency spectrum of the signal lies below the Nyquist frequency, then the
sampling theorem states that the signal can be reconstructed exactly from
its digitization.

To explain the reason for Nyquist’s theorem, consider a pure sinusoidal
wave with frequency ν, for example

f(t) = A cos(2πνt).

Given a sample rate of N = 1/∆t samples per second, the height of the func-
tion at the Mth sample is given by

f(M/N) = A cos(2πνM/N).

If ν is greater than N/2, say ν = N/2 + α, then

f(M/N) = A cos(2(N/2 + α)Mπ/N)

= A cos(Mπ + 2αMπ/N)

= (−1)MA cos(2αMπ/N).

Changing the sign of α makes no difference to the outcome of this calcula-
tion, so this gives exactly the same answer as the waveform with ν = N/2−α
instead of ν = N/2 + α. To put it another way, the sample points in
this calculation are exactly the points where the graphs of the functions
A cos(2(N/2 + α)πt) and A cos(2(N/2 − α)πt) cross.

The result of this is that a frequency which is greater than half the
sample frequency gets reflected through half the sample frequency, so that
it sounds like a frequency of the corresponding amount less than half. This
phenomenon is called aliasing. In the above diagram, the sample points are

3Harold Nyquist, Certain topics in telegraph transmission theory, Transactions of the
American Institute of Electrical Engineers, April 1928. Nyquist retired from Bell Labs in
1954 with about 150 patents to his name. He was renowned for his ability to take a com-
plex problem and produce a simple minded solution that was far superior to other, more
complicated approaches.
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represented by black dots. The two waves have frequency slightly more and
slightly less than half the sample frequency. It is easy to see from the dia-
gram why the sample values are equal. Namely, the sample points are sim-
ply the points where the two graphs cross.

For waves at exactly half the sampling frequency, something interest-
ing occurs. Cosine waves survive intact, but sine waves disappear altogether.
This means that phase information is lost, and amplitude information is
skewed.

The upshot of Nyquist’s theorem is that before digitizing an analogue
signal, it is essential to pass it through a low pass filter to cut off frequencies
above half the sample frequency. Otherwise, each frequency will come paired
with its reflection.

In the case of digital compact discs, the cutoff frequency is half of 44.1
KHz, or 22.05 KHz. Since the limit of human perception is usually below 20
KHz, this may be considered satisfactory, but only by a small margin.

We can also explain Nyquist’s theorem in terms of Corollary 7.5.4.
Namely, the Fourier transform

f̂ δs(ν) =
1

∆t

∞∑

n=−∞
f̂
(
ν − n

∆t

)

is periodic with period equal to the sampling frequency N = 1/∆t. The
term with n = 0 in this sum is the Fourier transform of f(t). The remaining
terms with n 6= 0 appear as aliased artifacts, consisting of frequency compo-
nents shifted in frequency by multiples of the sampling frequency N = 1/∆t.
If f(t) has a non-zero part of its spectrum at frequency greater than N/2,
then its Fourier transform will be non-zero at plus and minus this quantity.
Then adding or subtracting N will result in an artifact at the corresponding
amount less than N/2, the other side of the origin.

−N −N/2 0 N/2 N

signalsignal alias

� -N

ν

Another remarkable fact comes out of Corollary 7.5.4, namely the
sampling theorem. Provided the original signal f(t) satisfies f̂(ν) = 0 for
ν ≥ N/2, in other words, provided that the entire spectrum lies below the
Nyquist frequency, the original signal can be reconstructed exactly from the
sampled signal, without any loss of information. To reconstruct f̂(ν), we be-

gin by by truncating f̂ δs(ν), and then f(t) is reconstructed using the inverse
Fourier transform. Carrying this out in practice is a different matter, and re-
quires very accurate analogue filters.
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7.7. The z-transform

For digital signals, it is often more convenient to use the z-transform
instead of the Fourier transform. The point is that by Corollary 7.5.4, the
Fourier transform of a digital signal is periodic, with period equal to the sam-
pling frequency N . So it contains a lot of redundant information. The idea
of the z-transform is to wrap the Fourier transform round the unit circle in
the complex plane. This is achieved by setting

z = e2πiν∆t = e2πiν/N (7.7.1)

so that as ν changes in value by N = 1/∆t, z goes exactly once round
the unit circle in the complex plane, joining up at the Nyquist frequency
ν = ±N/2 = ±1/ 2∆t at z = −1.

z

r ν = 0ν = N/2

ν = −N/2

Any periodic function of ν with period N can then be written as a function
of z. By Theorem 7.5.1, the Fourier transform (2.13.1) of the sampled signal
f(t)δs(t) is given by

f̂.δs(ν) =
∞∑

n=−∞
f(n∆t)e−2πiνn∆t =

∞∑

n=−∞
f(n∆t)z−n.

So the z-transform of the digitised signal is defined as

F (z) =

∞∑

n=−∞
f(n∆t)z−n. (7.7.2)

The Fourier transform of the digitised signal may be recovered as

f̂.δs(ν) = F (e2πiν∆t).

Warning. It is necessary to exercise caution when manipulating expressions
like equation (7.7.2), because of Euler’s joke. Here’s the joke. Consider a sig-
nal which is constant over all time,

F (z) = · · ·+ z2 + z + 1 + z−1 + z−2 + . . .

=

∞∑

n=−∞
zn.

Divide this infinite sum up into two parts, and sum them separately.

F (z) = (· · · + z2 + z + 1) + (z−1 + z−2 + . . . )
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=
1

1− z +
z−1

1− z−1

=
1

1− z +
1

z − 1
= 0.

This is clearly nonsense. The problem is that the first parenthesised sum
only converges for |z| > 1, while the second sum only converges for |z| < 1.
So there is no value of z for which both sums make sense simultaneously.4

One possible resolution of this problem is only to allow signals with
some finite starting point. So we assume that f(n∆t) = 0 for all large enough
negative values of n. This means that only a finite number of positive pow-
ers of z appear. If, furthermore, the signal is bounded in amplitude, then the
power series for f(z) converges for |z| < 1, in other words, inside the unit
circle.

In terms of the z-transform, delaying the signal by one sample corre-
sponds to multiplication by z−1. So in the literature, you will see the block
diagram for such a digital delay drawn as follows. We shall use the same con-
vention.

z−1- -

7.8. Digital filters

The subject of digital filters has a vast literature. We shall only touch
the surface, in order to illustrate how the z-transform enters the picture. Let
us begin with an example. Consider the following diagram.

z−1- -
���
HHH−µ

6
����
+- -Input Output

4More formally, in the language of abstract algebra, the problem is that the power
series in z and z−1 do not form a ring, because we can’t multiply them; they form
a module over the Laurent polynomials, but with zero divisors, so that for example
(1 − z)(· · · + z2 + z + 1 + z−1 + z−2 + · · · ) = 0.
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If f(n∆t) is the input and g(n∆t) is the output, then the relation rep-
resented by the above diagram is

g(n∆t) = f(n∆t)− µf((n− 1)∆t). (7.8.1)

So the relation between the z-transforms is

G(z) = F (z)− µz−1F (z) = (1− µz−1)F (z).

This tells us about the frequency response of the filter. A given frequency
ν corresponds to the points z = e±2πiν∆t on the unit circle in the complex
plane, with half the sampling frequency corresponding to eπi = −1.

At a particular point on the unit circle, the value of 1−µz−1 gives the
frequency response. Namely, the amplification is |1 − µz−1|, and the phase
shift is given by the argument of 1− µz−1.

More generally, if the relationship between the z-transforms of the in-
put and output signal, F (z) and G(z), is given by

G(z) = H(z)F (z)

then the function H(z) is called the transfer function of the filter. The in-
terpretation of the transfer function, for example 1− µz−1 in the above fil-
ter, is that it is the z-transform of the impulse response of the filter.

1

−µ

Impulse response

The impulse response is defined to be the output resulting from an input
which is zero except at the one sample point t = 0, where its value is one,
namely

f(n∆t) =

{
1 n = 0

0 n 6= 0.

The sampled function fδs is then a Dirac delta function.
For digital signals, the convolution of f1 and f2 is defined to be

(f1 ∗ f2)(n∆t) =
∞∑

m=−∞
f1((n −m)∆t)f2(m∆t).

Multiplication of z-transforms corresponds to convolution of the original sig-
nals. This is easy to see in terms of how power series in z−1 multiply. So in
the above example, the impulse response is: 1 at n = 0, −µ at n = 1, and
zero for n 6= 0, 1. Convolution of the input signal f(n∆t) with the impulse
response gives the output signal g(n∆t) according to equation (7.8.1).

As a second example, consider a filter with feedback.
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z−1 ��
HHH
���−µ

6
����
+- -Input Output

The relation between the input f(n∆t) and the output g(n∆t) is now given by

g(n∆t) = f(n∆t)− µg((n − 1)∆t).

This time, the relation between the z-transforms is

G(z) = F (z) − µz−1G(z),

or

G(z) =
1

1 + µz−1
F (z).

Notice that this is unstable when |µ| > 1, in the sense that the signal grows
without bound. Even when |µ| = 1, the signal never dies away, so we say
that this filter is stable provided |µ| < 1. This is easiest to see in terms of
the impulse response of this filter, which is

1

1 + µz−1
= 1− µz−1 + µ2z−2 − µ3z−3 + . . .

1

−µ

Impulse response

Filters are usually designed in such a way that the output g(n∆t) de-
pends linearly on f((n − m)∆t) for a finite set of values of m ≥ 0 and on
g((n − m)∆t) for a finite set of values of m > 0. For such a filter, the z-
transform of the impulse response is a rational function of z, which means
that it is a ratio of two polynomials

p(z)

q(z)
= a0 + a1z

−1 + a2z
−2 + . . .

The coefficients a0, a1, a2, . . . are the values of the impulse response at t = 0,
t = ∆t, t = 2∆t, . . .

The coefficients an tend to zero as n tends to infinity, if and only if the
poles µ of p(z)/q(z) satisfy |µ| < 1. This can be seen in terms of the com-
plex partial fraction expansion of the function p(z)/q(z).
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The location of the poles inside the unit circle has a great deal of ef-
fect on the frequency response of the filter. If there is a pole near the bound-
ary, it will cause a local maximum in the frequency response, which is called
a resonance. The frequency is given in terms of the argument of the position
of the pole by

ν = (sample rate)× (argument)/2π.

Decay time. The decay time of a filter for a particular frequency is de-
fined to be the time it takes for the amplitude of that frequency component
to reach 1/e of its initial value. To understand the effect of the location of a
pole on the decay time, we examine the transfer function

H(z) =
1

z − a =
z−1

1− az−1
= z−1 + az−2 + a2z−3 + . . . .

So in a period of n sample times, the amplitude is multiplied by a factor of
an. So we want |a|n = 1/e, or n = −1/ ln |a|. So the formula for decay time is

Decay time =
−∆t

ln |a| =
−1

N ln |a| (7.8.2)

where N = 1/∆t is the sample rate. So the decay time is inversely propor-
tional to the logarithm of the absolute value of the location of the pole. The
further the pole is inside the unit circle, the smaller the decay time, and the
faster the decay. A pole near the unit circle gives rise to a slow decay.

Exercises

1. (a) Design a digital filter whose transfer function is z2/(z2 + z + 1
2 ), using the

symbol z−1 in a box to denote a delay of one sample time, as above.

(b) Compute the frequency response of this filter. Let N denote the number of sam-

ple points per second, so that the answer should be a function of ν for −N/2 < ν <

N/2.

(c) Is this filter stable?

Further reading:

R. W. Hamming, Digital filters [51].

Bernard Mulgrew, Peter Grant and John Thompson, Digital signal processing [97].

Julius O. Smith III, Fundamentals of digital filter theory, Computer Music Journal

9 (3) (1985), 13–23.

7.9. The discrete Fourier transform

How do we describe the frequency components of a sampled signal of
finite length, such as a small window from a digital recording? We have al-
ready seen in §7.7 that for a potentially infinite sampled signal, the frequency
spectrum forms a circle in the z-plane, where z = e2πiν∆t. The effect of re-
stricting the length of the sampled signal is to restrict the frequency spec-
trum to a discrete set of points on the circle.
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Suppose that the length of the signal is M , and let’s index so that
f(n∆t) = 0 except when 0 ≤ n < M . Then the Fourier transform given in
Theorem 7.5.1 becomes

f̂.δs(ν) =
M−1∑

n=0

f(n∆t)e−2πiνn∆t.

This is a periodic function of ν with period N = 1/∆t, as we observed before.
Since there are only M pieces of information in the signal, we might

expect to be able to reconstruct it from the value of the Fourier transform
at M different values of ν. Let’s try spacing them equally around the circle
in the z plane, or in other words, just look at the values when ν = k/(M∆t)
for 0 ≤ k < M . So we set

F (k) = f̂.δs

(
k

M∆t

)
=

M−1∑

n=0

f(n∆t)e−2πink/M .

See Exercise 4 in §9.7 for an interpretation of this formula in terms of char-
acters of cyclic groups.

We shall see that f(n∆t) (0 ≤ n < M) can indeed be reconstructed
from F (k) (0 ≤ k < M). We can see this using the following orthogonality
relation, without knowing any of the Fourier theory we have developed.

Proposition 7.9.1. Let M be a positive integer and let k be an inte-
ger in the range 0 ≤ k < M . Then

M−1∑

n=0

e2πink/M =

{
M if k is divisible by M

0 otherwise.

Proof. We have

e2πik/M .

M−1∑

n=0

e2πink/M =

M−1∑

n=0

e2πi(n+1)k/M =

M∑

n=1

e2πink/M .

But the term with n = M is equal to the term with n = 0 because e2πik =
1 = e0 (see Appendix C). So the sum remains unchanged when multiplied

by e2πik/M . It follows that

(e2πik/M − 1).

M−1∑

n=0

e2πink/M = 0.

If k is not divisible byM then e2πik/M 6= 1, and so we can divide by e2πik/M−1
to see that the sum is zero. On the other hand, if k is divisible by M then
all the terms in the sum are equal to one. So the sum is equal to the num-
ber M of terms. �

Theorem 7.9.2 (Discrete Fourier Transform). If f(n∆t) = 0 except
when 0 ≤ n < M , then the digital signal f(n∆t) can be recovered from the
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values of

F (k) =
M−1∑

n=0

f(n∆t)e−2πink/M (7.9.1)

for 0 ≤ k < M by the formula

f(n∆t) =
1

M

M−1∑

k=0

F (k)e2πink/M . (7.9.2)

Proof. Substituting in the definition of F (k), we get

1

M

M−1∑

k=0

F (k)e2πink/M =
1

M

M−1∑

k=0

(
M−1∑

m=0

f(m∆t)e−2πimk/M

)
e2πink/M

=

M−1∑

m=0

f(m∆t)

(
1

M

M−1∑

k=0

e2πi(n−m)k/M

)
.

We can now apply Proposition 7.9.1 to the inside sum, to see that it is equal
to one when m = n and to zero when m 6= n (notice that both m and n lie
between zero and M −1, so their difference is less than M in magnitude). So
the outside sum has only one non-zero term, namely the one where m = n,
and this gives f(n∆t) as desired. �

Example 7.9.3. Consider the case M = 4. In this case, the numbers
e2πik/M are equally spaced around the unit circle in the complex plane, so
that they are:

e0 = 1 (k = 0)

e2πi/4 = i (k = 1)

e4πi/4 = −1 (k = 2)

e6πi/4 = −i (k = 3)

The formulae in the theorem reduce to

F (0) = f(0) + f(∆t) + f(2∆t) + f(3∆t)

F (1) = f(0)− if(∆t)− f(2∆t) + if(3∆t)

F (2) = f(0)− f(∆t) + f(2∆t)− f(3∆t)

F (3) = f(0) + if(∆t)− f(2∆t)− if(3∆t)

and

f(0) = 1
4(F (0) + F (1) + F (2) + F (3))

f(∆t) = 1
4(F (0) + iF (1)− F (2) − iF (3))

f(2∆t) = 1
4(F (0) − F (1) + F (2)− F (3))

f(3∆t) = 1
4(F (0) − iF (1)− F (2) + iF (3)).
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For a long signal, the usual process is to choose for M a number that
is used as a window size for a moving window in the signal. So the discrete
Fourier transform is really a digitised version of the windowed Fourier trans-
form.

Further reading:

David A. Jaffe, Spectrum analysis tutorial 1: the discrete fourier transform, Com-
puter Music Journal 11 (2) (1987), 9–24.

David A. Jaffe, Spectrum analysis tutorial 2: properties and applications of the dis-

crete fourier transform, Computer Music Journal 11 (3) (1987), 17–35.

7.10. The fast Fourier transform

The fast Fourier transform (often abbreviated to FFT) or Cooley–
Tukey algorithm is a way to organise the work of computing the discrete
Fourier transform in such a way that fewer arithmetic operations are neces-
sary than just using equation (7.9.1) in the obvious straightforward way.

To explain how it works, let’s suppose that M is even. Then we can
split up the sum (7.9.1) into the even numbered and the odd numbered terms:

F (k) =

M
2
−1∑

n=0

f(2n∆t)e−2πi(2n)k/M +

M
2
−1∑

n=0

f((2n+ 1)∆t)e−2πi(2n+1)k/M .

The crucial observation is that the value of F (k + M
2 ) is very similar to the

value of F (k). Observing that e−πi(2n) = 1 and e−πi(2n+1) = −1, we get

F (k + M
2 ) =

M
2
−1∑

n=0

f(2n∆t)e−2πi(2n)k/M −
M
2
−1∑

n=0

f((2n+ 1)∆t)e−2πi(2n+1)k/M .

So we can compute the values of F (k) and F (k + M
2 ) at the same time for

half the work it would otherwise have taken, plus a slight overhead for the
additions and subtractions of the answers. The two sums we’re calculating
are themselves discrete Fourier transforms (with the right hand one multi-

plied by e−2πik/M ) for M/2 points instead of M points, so if M/2 is even, we
can repeat the division of labour.

In the example of the previous section with M = 4, this rearranges the
computation as follows:

F (0) = (f(0) + f(2∆t)) + (f(∆t) + f(3∆t))

F (2) = (f(0) + f(2∆t))− (f(∆t) + f(3∆t))

F (1) = (f(0)− f(2∆t))− i(f(∆t)− f(3∆t))

F (3) = (f(0)− f(2∆t)) + i(f(∆t)− f(3∆t)).

If M is a power of 2, then this method can be used to compute the dis-
crete Fourier transform using 2M log2M operations rather than M2. With
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slight adjustment, the method can be made to work for any highly compos-
ite value of M , but it is most efficient for a power of 2.

Notice also that the formula (7.9.2) for reconstructing the digital sig-
nal from the discrete Fourier transform is just a lightly disguised version of
the same process, and so the same method can be used.

Further reading:

G. D. Bergland, A guided tour of the fast Fourier transform, IEEE Spectrum 6
(1969), 41–52.

James W. Cooley and John W. Tukey, An algorithm for the machine calculation of
complex Fourier series, Math. of Computation 19 (1965), 297–301. This is usually
regarded as the original article announcing the fast Fourier transform as a practi-
cal algorithm, although the method appears in the work of Gauss in the nineteenth
century (see the next reference).

M. T. Heideman, D. H. Johnson and C. S. Burrus, Gauss and the history of the fast
Fourier transform, Archive for History of Exact Sciences 34 (3) (1985), 265–277.

David K. Maslen and Daniel N. Rockmore, The Cooley–Tukey FFT and group the-
ory, Notices of the AMS 48 (10) (2001), 1151–1160. Reprinted in “Modern Signal
Processing,” MSRI Publications, Vol. 46, CUP (2004), 281–300.

Bernard Mulgrew, Peter Grant, and John Thompson, Digital signal processing [97].

Chapters 9 and 10 of this book explains in detail how to set up a fast Fourier trans-

form, and gives an analysis of the effect of various window shapes.



CHAPTER 8

Synthesis

8.1. Introduction

WABOT-2 (Waseda University and
Sumitomo Corp., Japan 1985)

In this chapter, we investigate synthesis of musical sounds. We pay
special attention to Frequency Modulation (or FM) synthesis, not because it
is a particularly important method of synthesis, but rather because it is easy
to use FM synthesis as a vehicle for conveying general principles.

Interesting musical sounds do not in general have a static frequency
spectrum. The development with time of the spectrum of a note can be un-
derstood to some extent by trying to mimic the sound of a conventional mu-
sical instrument synthetically. This exercise focuses our attention on what
are usually referred to as the attack, decay, sustain and release parts of a
note (ADSR). Not only does the amplitude change during these intervals,
but also the frequency spectrum. Synthesizing sounds which do not sound
mechanical and boring turns out to be harder than one might guess. The ear

255
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is very good at picking out the regular features produced by simple minded
algorithms and identifying them as synthetic. This way, we are led to an ap-
preciation of the complexity of even the simplest of sounds produced by con-
ventional instruments.

Of course, the real strength of synthesis is the ability to produce sounds
not previously attainable, and to manipulate sounds in ways not previously
possible. Most music, even in today’s era of the availability of cheap and
powerful digital synthesizers, seems to occupy only a very small corner of the
available sonic pallette. The majority of musicians who use synthesizers just
punch the presets until they find the ones they like, and then use them with-
out modification. Exceptions to this rule stand out from the crowd; listening
to a recording by the Japanese synthesist Tomita, for example, one is struck
immediately by the skill expressed in the shaping of the sound.

Further listening: (See Appendix R)

Isao Tomita, Pictures at an Exhibition (Mussorgsky).

8.2. Envelopes and LFOs

Whatever method is used to synthesize sounds, attention has to be
paid to envelopes, so we discuss these first. Very few sounds just consist of a
spectrum, static in time. If we hear a note on almost any instrument, there
is a clearly defined attack at the beginning of the sound, followed by a de-
cay, then a sustained part in the middle, and finally a release. In any par-
ticular instrument, some of these may be missing, but the basic structure is
there. Synthesis follows the same pattern. The commonly used abbreviation
is ADSR envelope, for attack/decay/sustain/release envelope.
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It was not really understood properly until the middle of the twentieth cen-
tury, when electronic synthesis was taking its first tentative steps, that the
attack portion of a note is the most vital to the human ear in identifying the
instrument. The transients at the beginning are much more different from
one instrument to another than the steady part of the note.

On a typical synthesizer, there are a number of envelope generators.
Each one determines how the amplitude of the output of some component of
the system varies with time. It is important to understand that amplitude of
the final signal is not the only attribute which is assigned an envelope. For
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example, when a bell sounds, initially the frequency spectrum is very rich,
but many of the partials die away very quickly leaving a purer sound. Mim-
icking this sort of behaviour using FM synthesis turns out to be relatively
easy, by assigning an envelope to a modulating signal, which controls tim-
bre. We shall discuss this further when we discuss FM synthesis, but for the
moment we note that aspects of timbre are often controlled with an envelope
generator. When the synthesizer is controlled by a keyboard, as is often the
case, it is usual to arrange that depressing a key initiates the attack, and re-
leasing the key initiates the release portion of the envelope.

An envelope generator produces an envelope whose shape is determined
by a number of programmable parameters. These parameters are usually
given in terms of levels and rates. Here is an example of how an envelope
might work in a typical keyboard synthesizer or other MIDI controlled en-
vironment. Level 0 is the level of the envelope at the “key on” event. Rate
1 then determines how fast the level changes, until it reaches level 1. Then
it switches to rate 2 until level 2 is reached, and then rate 3 until level 3 is
reached. Level 3 is then in effect until the “key off” event, when rate 4 takes
effect until level 4 is reached. Finally, level 4 is the same as level 0, so that
we are ready for the next “key on” event. In this example, there are two
separate components to the decay phase of the envelope. Some synthesizers
make do with only one, and some have even more.

Similar in concept to the envelope is the low frequency oscillator or
LFO. This produces an output which is usually in the range 0.1–20 Hz, and
whose waveform is usually something like triangle, sawtooth (up or down),
sine, square or random. The LFO is used to produce repeating changes in
some controllable parameter. Examples include pitch control for vibrato, and
amplitude or timbre control for tremolo. The LFO can also be used to con-
trol less obvious parameters such as the cutoff and resonance of a filter, or
the pulse width of a square wave (pulse width modulation, or PWM), see Ex-
ercise 6 in §2.4.

The parameters associated with an LFO are rate (or frequency), depth
(or amplitude), waveform, and attack time. Attack time is used when the ef-
fect is to be introduced gradually at the beginning of the note.

Here is a block diagram for a typical analogue synthesizer.

Osc - Filter - Amp - Tone - Echo - fx

Env 1

6

Env 2

6

Env 3

6

lfo 1 lfo 2
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The oscillator (Osc) generates the basic waveform, which can be chosen from
sine wave, square wave, triangular wave, sawtooth, noise, etc. The envelope
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(Env 1) specifies how the pitch changes with time. The filter specifies the
“brightness” of the sound. It can be chosen from high pass, low pass and
band pass. The envelope (Env 2) specifies how the brightness varies with
time. Also, a resonance is specified, which determines the emphasis applied
to the region at the cutoff frequency. The amplifier (Amp) specifies the vol-
ume, and the envelope (Env 3) specifies how the volume changes with time.
The tone control (Tone) adjusts the overall tone, the delay unit (Echo)
adds an echo effect, and the effects unit (fx) can be used to add reverber-
ation, chorus, and so on. Low frequency oscillators (lfo 1 and lfo 2) are
provided, which can be used to modulate the oscillator, filter or amplifier.

8.3. Additive Synthesis

The easiest form of synthesis to understand is additive synthesis, which
is in effect the opposite of Fourier analysis of a signal. To synthesize a peri-
odic wave, we generate its Fourier components at the correct amplitudes and
mix them. This is a comparatively inefficient method of synthesis, because
in order to produce a note with a large number of harmonics, a large number
of sine waves will need to be mixed together. Each will be assigned a sepa-
rate envelope in order to create the development of the note with time. This
way, it is possible to control the development of timbre with time, as well as
the amplitude. So for example, if it is desired to create a waveform whose at-
tack phase is rich in harmonics and which then decays to a purer tone, then
the components of higher frequency will have a more rapidly decaying enve-
lope than the lower frequency components.

Phase is unimportant to the perception of steady sounds, but more im-
portant in the perception of transients. So for steady sounds, the graph rep-
resenting the waveform is not very informative. For example, here are the
graphs of the functions sin 220πt + 1

2 sin 440πt and sin 220πt+ 1
2 cos 440πt.

t

sin 220πt+ 1
2 sin 440πt

t

sin 220πt+ 1
2 cos 440πt

The only difference between these functions is that the second partial has had
its phase changed by an angle of π/2, so as steady sounds, these will sound
identical. With more partials, it becomes extremely hard to tell whether two
waveforms represent the same steady sound. It is for this reason that the
waveform is not a very useful way to represent the sound, whereas the spec-
trum, and its development with time, are much more useful.
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Hammond B3 organ

In some ways, additive synthesis is a very old idea. A typical cathe-
dral or church organ has a number of register stops, determining which sets
of pipes are used for the production of the note. The effect of this is that de-
pressing a single key can be made to activate a number of harmonically re-
lated pipes, typically a mixture of octaves and fifths. Early electronic instru-
ments such as the Hammond organ operated on exactly the same principle.

More generally, additive synthesis may be used to construct sounds
whose partials are not multiples of a given fundamental. This will give non-
periodic waveforms which nevertheless sound like steady tones.

Exercises

1. Explain how to use additive synthesis to construct a square wave out of pure sine
waves.
[Hint: Look at §2.2]

2. Explain in terms of the human ear (§1.2) why the phases of the harmonic com-

ponents of a steady waveform should not have a great effect on the way the sound

is perceived.

Further reading:

F. de Bernardinis, R. Roncella, R. Saletti, P. Terreni and G. Bertini, A new VLSI

implementation of additive synthesis, Computer Music Journal 22 (3) (1998), 49–61.
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8.4. Physical modeling

The idea of physical modeling is to take a physical system such as a
musical instrument, and to mimic it digitally. We give one simple example to
illustrate the point. We examined the wave equation for the vibrating string
in §3.2, and found d’Alembert’s general solution

y = f(x+ ct) + g(x− ct).
Given that time is quantised with sample points at spacing ∆t, it makes sense
to quantise the position along the string at intervals of ∆x = c∆t. Then at
time n∆t and position m∆x, the value of y is

y = f(m∆x+ nc∆t) + g(m∆x− nc∆t)
= f((m+ n)c∆t) + g((m− n)c∆t).

To simplify the notation, we write

y−(n) = f(nc∆t), y+(n) = g(nc∆t)

so that y− and y+ represent the parts of the wave travelling left, respectively
right along the string. Then at time n∆t and position m∆x we have

y = y−(m+ n) + y+(m− n).

This can be represented by two delay lines moving left and right:

- - - -

� � � �

6 6 6 6

? ? ? ?

���� ���� ���� ����
+ + + +- - - -

z−1 z−1 z−1

z−1 z−1 z−1

-
position along string

y+

y

y−

It is a good idea to make the string an integer number of sample points
long, let us say l = L∆x. Then the boundary conditions at x = 0 and x = l
(see equations (3.2.3) and (3.2.4)) say that

y−(n) = −y+(−n)

and that
y+(n+ 2L) = y+(n).

This means that at the ends of the string, the signal gets negated and passed
round to the other set of delays. Then the initial pluck or strike is represented
by setting the values of y−(n) and y+(n) suitably at t = 0, for 0 ≤ n < 2L.
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Thinking in terms of digital filters, the z-transform of the y+ signal

Y +(z) = y+(0) + y+(1)z−1 + y+(2)z−2 + . . .

satisfies

Y +(z) = z−2LY +(z) + (y+(0) + y+(1)z−1 + · · ·+ y+(2L− 1))

or

Y +(z) =
y+(0)z2L + y+(1)z2L−1 + · · ·+ y+(2L− 1)z

z2L − 1
.

The poles are equally spaced on the unit circle, so the resonant frequencies
are multiples of N/2L, where N is the sample frequency. Since the poles are
actually on the unit circle, the resonant frequencies never decay.

To make the string more realistic, we can put in energy loss at one end,
represented by multiplication by a fixed constant factor −µ with 0 < µ ≤ 1,
instead of just negating.
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The effect of this on the filter analysis is to move the poles slightly inside the
unit circle:

Y +(z) =
y+(0)z2L + y+(1)z2L−1 + · · ·+ y+(2L− 1)z

z2L − µ .

The absolute values of the location of the poles are all equal to |µ| 1
2L . The

decay time is given by equation (7.8.2) as

Decay time =
−2L

N ln |µ| .

The above model is still not very sophisticated, because decay time is
independent of frequency. But it is easy to modify by replacing the multipli-
cation by µ by a more complicated digital filter. We shall see a particular ex-
ample of this idea in the next section. Another easy modification is to have
two or more strings cross-coupled, by adding a small multiple of the signal
at the end of each into the end of the others. Adding a model of a sounding
board is not so easy, but it can be done.
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Further reading:

Eric Ducasse, A physical model of a single-reed instrument, including actions of the
player, Computer Music Journal 27 (1) (2003), 59–70.

G. Essl, S. Serafin, P. R. Cook and J. O. Smith, Theory of banded waveguides, Com-
puter Music Journal 28 (1) (2004), 37–50.

G. Essl, S. Serafin, P. R. Cook and J. O. Smith, Musical applications of banded
waveguides, Computer Music Journal 28 (1) (2004), 51–62.

M. Laurson, C. Erkut, V. Välimäki and M. Kuuskankare, Methods for modeling re-
alistic playing in acoustic guitar synthesis, Computer Music Journal 25 (3) (2001),
38–49.

Julius O. Smith III, Physical modeling using digital waveguides, Computer Music
Journal 16 (4) (1992), 74–87.

Julius O. Smith III, Acoustic modeling using digital waveguides, appears as article 7
in Roads et al [121], pages 221–263.

Vesa Välimämi, Mikael Laurson and Cumhur Erkut, Commuted waveguide synthe-

sis of the clavichord, Computer Music Journal 27 (1) (2003), 71–82.

8.5. The Karplus–Strong algorithm

The Karplus–Strong algorithm gives very good plucked strings and per-
cussion instruments. The basic technique is a modification of the technique
described in the last section, and consists of a digital delay followed by an
averaging process. Denote by g(n∆t) the value of the nth sample point in
the digital output signal for the algorithm. A positive integer p is chosen to
represent the delay, and the recurrence relation

g(n∆t) = 1
2(g((n − p)∆t) + g((n − p− 1)∆t))

is used to define the signal after the first p+ 1 sample points. The first p+ 1
values to feed into the recurrence relation are usually chosen by some random
algorithm, and then the feedback loop is switched in. This is represented by
an input signal f(n∆t) which is zero outside the range 0 ≤ n ≤ p.

6
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- z−p -

- z−1

?

����
+ -

���
HHH1
2

- Output

G(z)



8.5. THE KARPLUS–STRONG ALGORITHM 263

Computationally, this algorithm is very efficient. Each sample point re-
quires one addition operation. Halving does not need a multiplication, only
a shift of the binary digits.

Let us analyse the algorithm by regarding it as a digital filter, and us-
ing the z-transform, as described in §7.8. Let G(z) be the z-transform of the
signal g(n∆t), and F (z) be the z-transform of the signal given for the first
p+ 1 sample points, f(n∆t). We have

G(z) = 1
2(1 + z−1)z−p(F (z) +G(z)).

This gives

G(z) =
z + 1

2zp+1 − z − 1
F (z),

and so the z-transform of the impulse response is (z + 1)/(2zp+1 − z − 1).
The poles are the solutions of the equation

2zp+1 − z − 1 = 0.

These are roughly equally spaced around the unit circle, at amplitude just
less than one. The solution with smallest argument corresponds to the fun-
damental of the vibration, with argument roughly 2π/(p + 1

2 ). A more pre-
cise analysis is given in §8.6.

The effect of this is a plucked string sound with pitch determined by
the formula

pitch = (sample rate)/(p+ 1
2 ).

Since p is constrained to be an integer, this restricts the possible frequencies
of the resulting sound in terms of the sample rate. Changing the value of p
without introducing a new inital values results in a slur, or tie between notes.

A simple modification of the algorithm gives drumlike sounds. Namely,
a number b is chosen with 0 ≤ b ≤ 1, and

g(n∆t) =

{
+1

2(g((n − p)∆t) + g((n − p− 1)∆t) with probability b

−1
2(g((n − p)∆t) + g((n − p− 1)∆t)) with probability 1− b.

The parameter b is called the blend factor. Taking b = 1 gives the original
plucked string sound. The value b = 1

2 gives a drumlike sound. With b = 0,
the period is doubled and only odd harmonics result. This gives some inter-
esting sounds, and at high pitches this gives what Karplus and Strong de-
scribe as a plucked bottle sound.

Another variation described by Karplus and Strong is what they call
decay stretching. In this version, the recurrence relation

g(n∆t) =

{
g((n − p)∆t) with probability 1− α
1
2(g((n − p)∆t) + g((n − p− 1)∆t)) with probability α.

The stretch factor for this version is 1/α, and the pitch is given by

pitch = (sample rate)/(p+ α
2 ).
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Setting α = 0 gives a non-decaying periodic signal, while setting α = 1 gives
the original algorithm described above.

There are obviously a lot of variations on these algorithms, and many
of them give interesting sounds.

8.6. Filter analysis for the Karplus–Strong algorithm

We saw in the last section that in order to understand the Karplus–
Strong algorithm in its simplest form, we need to locate the zeros of the poly-
nomial 2zp+1 − z − 1, where p is a positive integer. In order to do this, we
begin by rewriting the equation as

2zp+
1
2 = z

1
2 + z−

1
2 .

Since we expect z to have absolute value close to one, the imaginary part of
z

1
2 + z−

1
2 will be very small. If we ignore this imaginary part, then the nth

zero of the polynomial around the unit circle will have argument equal to
2nπ/(p+ 1

2 ). So we write

z = (1− ε)e2nπi/(p+ 1
2 )

and calculate ε, ignoring terms in ε2 and higher powers. Already from the
form of this approximation, we see that the resonant frequency correspond-
ing to the nth pole is equal to nN/(p+ 1

2), where N is the sample frequency.
This means that the different resonant frequencies are at multiples of a fun-
damental frequency of N/(p + 1

2 ).
We have

2zp+
1
2 = 2(1− ε)p+ 1

2 ≈ 2− 2(p+ 1
2)ε,

and

z
1
2 + z−

1
2 = (1− ε) 1

2 enπi/(p+
1
2 ) + (1− ε)− 1

2 e−nπi/(p+
1
2 )

≈ (1− 1
2ε)(1 + 1

2 i(
2nπ
p+ 1

2
)− 1

8( 2nπ
p+ 1

2
)2)

+ (1 + 1
2ε)(1 − 1

2 i(
2nπ
p+ 1

2
)− 1

8( 2nπ
p+ 1

2
)2)

≈ 2−
(
nπ
p+ 1

2

)2
+ 1

2 iε(
2nπ
p+ 1

2
).

So equating the real parts, we find that the approximate value of ε is

ε ≈ n2π2

2(p + 1
2)3

.

Using the approximation ln(1− ε) ≈ −ε, equation (7.8.2) gives

Decay time ≈ 2(p + 1
2)3

Nn2π2

where N is the sample rate. This means that the lower harmonics are de-
caying more slowly than the higher harmonics, in accordance with the be-
haviour of a plucked string.
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Further reading:

D. A. Jaffe and J. O. Smith III, Extensions of the Karplus–Strong plucked string al-
gorithm, Computer Music Journal 7 (2) (1983), 56–69. Reprinted in Roads [118],
481–494.

M. Karjalainen, V. Välimäki and T. Tolonen, Plucked-string models: From the
Karplus–Strong algorithm to digital waveguides and beyond, Computer Music Jour-
nal 22 (3) (1998), 17–32.

K. Karplus and A. Strong, Digital synthesis of plucked string and drum timbres,
Computer Music Journal 7 (2) (1983), 43–55. Reprinted in Roads [118], 467–479.

F. Richard Moore, Elements of computer music [94], page 279.

Curtis Roads, The computer music tutorial [119], page 293.

Charles R. Sullivan, Extending the Karplus–Strong plucked-string algorithm to syn-

thesize electric guitar timbres with distortion and feedback, Computer Music Jour-

nal 14 (3) (1990), 26–37.

8.7. Amplitude and frequency modulation

The familiar context for amplitude and frequency modulation is as a
way of carrying audio signals on a radio frequency carrier (AM and FM ra-
dio). In the case of AM radio, the carrier frequency is usually in the range
500–2000 KHz, which is much greater than the frequency of the carried sig-
nal. The latter is encoded in the amplitude of the carrier. So for example
a 700 KHz carrier signal modulated by a 440 Hz sine wave would be repre-
sented by the function

x = (A+B sin(880πt)) sin(1400000πt),

where A is an offset to allow both positive and negative values of the wave-
form to be decoded.

t

x

Decoding the received signal is easy. A diode is used to allow only the
positive part of the wave through, and then a capacitor is used to smooth it
out and remove the high frequency carrier wave. The resulting audio signal
may then be amplified and put through a loudspeaker.

In the case of frequency modulation, the carrier frequency is normally
around 90–120 MHz, which is even greater in comparison to the frequency
of the carried signal. The latter is encoded in variations in the frequency of
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the carrier. So for example a 100 MHz carrier signal modulated by a 440 Hz
sine wave would be represented by the function

x = A sin(108.2πt+B sin(880πt)).

The amplitude A is associated with the carrier wave, while the amplitude B
is associated with the audio wave. More generally, an audio wave represented
by x = f(t), carried on a carrier of frequency ν and amplitude A, is repre-
sented by

x = A sin(2πνt+Bf(t)).

t

x

Decoding frequency modulated signals is harder than amplitude mod-
ulated signals, and will not be discussed here. But the big advantage is that
it is less susceptible to noise, and so it gives cleaner radio reception.

An example of the use of amplitude modulation in the theory of syn-
thesis is ring modulation. A ring modulator takes two inputs, and the out-
put contains only the sum and difference frequencies of the partials of the in-
puts. This is generally used to construct waveforms with inharmonic partials,
so as to impart a metallic or bell-like timbre. The method for constructing
the sum and difference frequencies is to multiply the incoming amplitudes.
Equations (1.8.4), (1.8.7) and (1.8.8) explain how this has the desired result.
The origin of the term “ring modulation” is that in order to deal with both
positive and negative amplitudes on the inputs and get the right sign for the
outputs, four diodes were connected head to tail in a ring.

Another example of amplitude modulation is the application of en-
velopes, as discussed in §8.2. The waveform is multiplied by the function
used to describe the envelope.

t

x
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A great breakthrough in synthesis was achieved in the late nineteen
sixties when John Chowning developed the idea of using frequency modula-
tion instead of additive synthesis.

John Chowning

The idea behind FM synthesis or frequency modulation synthesis is sim-
ilar to FM radio, but the carrier and the signal are both in the audio range,
and usually related by a small rational frequency ratio. So for example, a
440 Hz carrier and 440 Hz modulator would be represented by the function

x = A sin(880πt +B sin(880πt)).

The resulting wave is still periodic with frequency 440 Hz, but has a richer
harmonic spectrum than a pure sine wave. For small values of B, the wave
is nearly a sine wave

t

x

whereas for larger values of B the harmonic content grows richer

t

x

and richer.
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t

x

This gives a way of making an audio signal with a rich harmonic content rel-
atively simply. If we wanted to synthesize the above wave using additive syn-
thesis, it would be much harder.

Here are examples of frequency modulated waves in which the modu-
lating frequency is twice the carrier frequency

t

x

and three times the carrier frequency.

t

x

In the next section, we discuss the Fourier series for a frequency mod-
ulated signal. The Fourier coefficients are called Bessel functions, for which
the groundwork was laid in §2.8. We shall see that the Bessel functions may
be interpreted as giving the amplitudes of side bands in a frequency modu-
lated signal.

8.8. The Yamaha DX7 and FM synthesis

Yamaha DX7
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The Yamaha DX7, which came out in the autumn of 1983,1was the first
affordable commercially available digital synthesizer. This instrument was
the result of a long collaboration between John Chowning and Yamaha Cor-
poration through the nineteen seventies. It works by FM synthesis, with six
configurable “operators.” An operator produces as output a frequency mod-
ulated sine wave, whose frequency is determined by the level of a modulat-
ing input, and whose envelope is determined by another input. The power of
the method comes from hooking up the output of one such operator to the
modulating input of another. In this section, we shall investigate FM syn-
thesis in detail, using the Yamaha DX7 for the details of the examples. Most
of the discussion translates easily to any other FM synthesizer. In Appendix
B, there are tables which apply to various models of FM synthesizers. Later
on, in §§8.11–8.12, we shall also investigate FM synthesis using the CSound
computer music language.

The DX7 calculates the sine function in the simplest possible way. It
has a digital lookup table of values of the function. This is much faster than
any conceivable formula for calculating the function, but this is at the ex-
pense of having to commit a block of memory to this task.

Let us begin by examining a frequency modulated signal of the form

sin(ωct+ I sinωmt). (8.8.1)

Here, ωc = 2πfc where fc denotes the carrier frequency, ωm = 2πfm where
fm denotes the modulating frequency, and I is the index of modulation.

We first discuss the relationship between the index of modulation I,
the maximal frequency deviation d of the signal, and the frequency fm of the
modulating wave. For this purpose, we make a linear approximation to the
modulating signal at any particular time, and use this to determine the in-
stantaneous frequency, to the extent that this makes sense. When sinωmt is
at a peak or a trough, namely when its derivative with respect to t vanishes,
the linear approximation is a constant function, which then acts as a phase
shift in the modulated signal. So at these points, the frequency is fc. The
maximal frequency deviation occurs when sinωmt is varying most rapidly.
This function increases most rapidly when ωmt = 2nπ for some integer n.
Since the derivative of sinωmt with respect to t is ωm cosωmt, which takes
the value ωm at these values of t, the linear approximation around these val-
ues of t is sinωmt ≃ ωmt− 2nπ. So the function (8.8.1) approximates to

sin(ωct+ Iωm(t− 2π)) = sin((ωc + Iωm)t− 2πIωm).

So the instantaneous frequency is fc+Ifm. Similarly, sinωmt decreases most
rapidly when ωmt = (2n + 1)π for some integer n, and a similar calculation
shows that the instantaneous frequency is fc− Ifm. It follows that the max-
imal deviation in the frequency is given by

d = Ifm. (8.8.2)

1Original price US $2000; no longer manufactured but easy to obtain second hand for
around US $250–$450.
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The Fourier series for functions of the form (8.8.1) were analysed in
§2.8 in terms of the Bessel functions.

Putting φ = ωct, z = I and θ = ωmt in equation (2.8.9), we obtain the
fundamental equation for frequency modulation:

sin(ωct+ I sinωmt) =

∞∑

n=−∞
Jn(I) sin(ωc + nωm)t. (8.8.3)

The interpretation of this equation is that for a frequency modulated
signal with carrier frequency fc and modulating frequency fm, the frequencies
present in the modulated signal are fc + nfm. Notice that positive and neg-
ative values of n are allowed here. The component with frequency fc + nfm
is called the nth side band of the signal. Thus the Bessel function Jn(I) is
giving the amplitude of the nth side band in terms of the index of modula-
tion. The block diagram on the DX7 for frequency modulating a sine wave
in this fashion is as shown below.

1 ←envelope 1

2 ←envelope 2

The box marked “1” represents the operator producing the carrier signal and
the box marked “2” represents the operator producing the modulating signal.
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Each operator has its own envelope, which determines how its ampli-
tude develops with time. So envelope 1 determines how the amplitude of the
final signal varies with time, but it is less obvious what envelope 2 is determin-
ing. Since the output of operator 2 is frequency modulating operator 1, the
amplitude of the output can be interpreted as the index of modulation I. For
small values of I, J0(I) is much larger than any other Jn(I) (see the graphs
in §2.8), and so operator 1 is producing an output which is nearly a pure sine
wave, but with other frequencies present with small amplitudes. However,
for larger values of I, the spectrum of the output of operator 1 grows richer
in harmonics. For any particular value of I, as n gets larger, the amplitudes
Jn(I) eventually tend to zero. But the point is that for small values of I, this
happens more quickly than for larger values of I, so the harmonic spectrum
gives a purer note for small values of I and a richer sound for larger values
of I. So envelope 2 is controlling the timbre of the output of operator 1.

Example. Suppose that we have a carrier frequency of 3ν and a modulating fre-
quency of 2ν. Then the zeroth side band has frequency 3ν, the first 5ν, the second
7ν, and so on. But there are also side bands corresponding to negative values of
n. The minus first side band has frequency ν. But there’s no reason to stop there,
just because the next side band has negative frequency −ν. The point is that a sine
wave with frequency −ν is just the same as a sine wave with frequency ν but with
the amplitude negated. So really the way to think of it is that the side bands with
negative frequency undergo reflection to make the corresponding positive frequency.

Notice also in this example that 3 + 2n is always an odd number, so only odd
multiples of ν appear in the resulting frequency spectrum. In general, the frequency
spectrum will depend in an interesting way on the ratio of fm to fc. If the ratio is a
ratio of small integers, the resulting frequency spectrum will consist of multiples of
a fundamental frequency. Otherwise, the spectrum is said to be inharmonic.

Let us calculate the spectrum in this example for various values of I. First
we use a small value such as I = 0.2. Consulting Appendix B, we see that J0(I) ≈
0.9900, J1(I) ≈ 0.0995, J2(I) ≈ 0.0050 and Jn(I) is negligibly small for n ≥ 3.
Using equation (2.8.4) (J−n(I) = (−1)nJn(I)), we see that J−1(I) ≈ −0.0995,
J−2(I) ≈ 0.0050 and J−n(I) is negligibly small for n ≥ 3. So the frequency modu-
lated signal is approximately

0.0050 sin(2π(−ν)t)− 0.0995 sin(2πνt) + 0.9900 sin(2π(3ν)t)

+ 0.0995 sin(2π(5ν)t) + 0.0050 sin(2π(7ν)t).

Since sin(−x) = − sin(x), this is

−0.1045 sin(2πνt) + 0.9900 sin(6πνt) + 0.0995 sin(10πνt) + 0.0050 sin(14πνt).

This will be perceived as a note with fundamental frequency ν, but with very strong
third harmonic.

Now let us carry out the same calculation with a larger value of I, say
I = 3. Again consulting Appendix B, we see that J0(I) ≈ −0.2601, J1(I) ≈ 0.3391,
J2(I) ≈ 0.4861, J3(I) ≈ 0.3091, J4(I) ≈ 0.1320, J5(I) ≈ 0.0430, J6(I) ≈ 0.0114,
J7(I) ≈ 0.0025, J8(I) ≈ 0.0005, and only around n ≥ 8 is Jn(I) negligibly small. So
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the harmonic spectrum of the resulting frequency modulated signal is much richer,
and the first few terms are given by

− 0.0430 sin(2π(−7ν)t) + 0.1320 sin(2π(−5ν)t)− 0.3091 sin(2π(−3ν)t)

+ 0.4861 sin(2π(−ν)t)− 0.3991 sin(2πνt)− 0.2601 sin(2π(3ν)t)

+ 0.3391 sin(2π(5ν)t) + 0.4861 sin(2π(7ν)t)

which makes

−0.8852 sin(2πνt) + 0.0490 sin(6πνt) + 0.2071 sin(10πνt) + 0.5291 sin(14πνt),

but it is clear that even higher harmonics than this are present with fairly large mag-
nitude, up to about the seventeenth harmonic (3 + 2 × 7 = 17), and then it starts
tailing off. So the resulting note is very rich in harmonics. Notice also how we have
conspired to choose I so that the amplitude of the third harmonic is now very small.

Suppose, for example, that operator 2 is assigned an envelope which starts at

zero, peaks near the beginning, and then tails off to zero. Then the resulting fre-

quency modulated signal will start off as a pure sine wave, fairly quickly attain a

rich harmonic spectrum, and then tail off again into a fairly pure sine wave. It is

easy to see that the possibilities opened up with even two operators are fairly wide.

In terms of block diagrams, additive synthesis for a waveform with five
sinusoidal components is represented as follows.

1 2 3 4 5

So in the above example, to synthesize the corresponding sound additively
would require a large number of oscillators. The exact number would depend
on where the cutoff for audibility occurs.

The DX7 allows a large number of different configurations or “algo-
rithms” which mix additive and FM components. So for example if two si-
nusoidal waveforms of different frequencies are added together and the result
used to modulate another sine wave, then the block diagram is as shown be-
low.

1

32

Oscillators labelled 2 and 3 are added together and used to modulate oscil-
lator 1. The corresponding waveform is given by

sin(ω1t+ I2 sinω2t+ I3 sinω3t)

=

∞∑

n2=−∞

∞∑

n3=−∞
Jn2(I2)Jn3(I3) sin(ω1 + n2ω2 + n3ω3)t.

So the side bands have frequencies given by adding positive and nega-
tive multiples of the two modulating frequencies to the carrier frequency in
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all possible ways. The amplitudes of these side bands are given by multiply-
ing the corresponding values of the Bessel functions.

6

66
6 6

6 6

Another possible configuration is a cascade in which the modulating
signal is also modulated. This should be thought of as equivalent to a larger
number of added sine waves modulating a single sine wave, in an extension
of the previous discussion. The block diagram for this configuration is shown
below.

1

2

3

The corresponding formula is obtained by feeding formula (8.8.3) into itself,
giving

sin(ω1t+ I2 sin(ω2t+ I3 sinω3t))

=

∞∑

n2=−∞
Jn2(I2) sin(ω1t+ n2ω2t+ n2I3 sinω3t)

=
∞∑

n2=−∞

∞∑

n3=−∞
Jn2(I2)Jn3(n2I3) sin(ω1 + n2ω2 + n3ω3)t.

Here, the subscripts 2 and 3 correspond to the numbering on the oscil-
lators in the diagram. Again, the frequencies of the side bands are given by
adding positive and negative multiples of the two modulating frequencies to
the carrier frequency in all possible ways. But this time, the amplitudes of
the side bands are given by the more complicated formula Jn2(I2)Jn3(n2I3).
The effect of this is that the number of the side band on the second oper-
ator is used to scale the size of the index of modulation of the third opera-
tor. In particular, the original frequency has no side bands corresponding to
the third operator, while the more remote side bands of the second are more
heavily modulated.

6

6 6

6 6
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Exercises

1. Find the amplitudes of the first few frequency components of the frequency mod-
ulated wave

y = sin(440(2πt) + 1
10 sin 660(2πt)).

Stop when the frequency components are attenuated by at least 100dB from the
strongest one.

You will need to use the tables of Bessel functions in Appendix B. Also re-

member that power is proportional to square of amplitude, so that dividing the am-

plitude by 10 attenuates the signal by 20dB.

8.9. Feedback, or self-modulation

One final twist in FM synthesis is feedback, or self-modulation. This
involves the output of an oscillator being wrapped back round and used to
modulate the input of the same oscillator. This corresponds to the block di-
agram below,

1

and the corresponding equation is given by

f(t) = sin(ωct+ If(t)). (8.9.1)

We saw in §2.11 that this equation only has a unique solution provided |I| ≤ 1,
and that then it defines a periodic function of t. The Fourier series is given
in equation (2.11.4) as

f(t) =

∞∑

n=1

2Jn(nI)

nI
sin(nωct).

For values of I satisfying |I| > 1, equation (8.9.1) no longer has a sin-
gle valued continuous solution (see §2.11), but it still makes sense in the form
of a recursion defining the next value of f(t) in terms of the previous one,

f(tn) = sin(ωctn + If(tn−1)). (8.9.2)

Here, tn is the nth sample time, and the sample times are usually taken to
be equally spaced. The effect of this equation is not quite intuitively obvi-
ous. As might be expected, the graph of this function stays close to the so-
lution to equation (8.9.1) when this is unique. When it is no longer unique,
it continues going along the same branch of the function as long as it can,
and then jumps suddenly to the one remaining branch when it no longer can.
But the feature which it is easy to overlook is that there is a slightly delayed
instability for small values of f(t). Here is a graph of the solutions to equa-
tions (8.9.1) and (8.9.2) superimposed.



8.9. FEEDBACK, OR SELF-MODULATION 275

t

φ

The effect of the instability is to introduce a wave packet whose frequency is
roughly half the sampling frequency. Usually the sampling frequency is high
enough that the effect is inaudible, but this does make it desirable to pass
the resulting signal through a low-pass filter at slightly below the Nyquist
frequency.

Feedback for a stack of two or more oscillators is also used. It seems
hard to analyse this mathematically, and often the result is perceived as
“noise.” According to Slater (reference given on page 278), as the index of
modulation increases, the behaviour of a stack of two FM oscillators with dif-
ferent frequencies, each modulating the other, exhibits the kind of bifurca-
tion that is characteristic of chaotic dynamical systems. This subject needs
to be investigated further.

In the DX7, there are a total of six oscillators. The process of design-
ing a patch2 begins with a choice of one of 32 given configurations, or “algo-
rithms” for these oscillators. Each oscillator is given an envelope whose pa-
rameters are determined by the patch, so that the amplitude of the output
of each oscillator varies with time in a chosen manner. Here is a table of the
32 available algorithms.

2Yamaha uses the nonstandard terminology “voice” instead of the more usual “patch.”
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1

1
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1

2

3

4

5
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1

2

3

4

5

6
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1

2

3

4

5
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5

1

2

3

4
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6

6

1

2

3

4 5

6

7

1

2

3

4 5

6

8

1

2

3

4 5

6

9

1

2

3

4

5 6

10

1

2

3

4

5 6

11

1

2

3

4 5 6

12

1

2

3

4 5 6

13

1

2

5

3

4

6

14

1

2

5

3

4

6

15

1

2 3

4

5

6

16

1

2 3

4

5

6

17

1

2 3 4

5

6

18

1

2

3

4 5

6

19

1 2

3

4

5 6

20

1 2

3

4 5

6

21

1 3

2

4 5

6

22

1 2

3

4 5

6

23

1 2 3 4 5

6

24

1 2 3 4 5

6

25

1 2

3

4

5 6

26

1 2

3

4

5 6

27

1

2

3

4

5

6

28

1 2 3

4

5

6

29

1 2 3

4

5

6

30

1 2 3 4 5

6

31

1 2 3 4 5 6

32

Not all the operators have to be used in a given patch. The operators
which are not used can just be switched off. Output level is an integer in the
range 0–99; index of modulation is not a linear function of output level, but
rather there is a complicated recipe for causing an approximately exponen-
tial relationship. A table showing this relationship for various different FM
synthesizers can be found in Appendix B.

We now start discussing how to use FM synthesis to produce various
recognisable kinds of sounds. In order to sound like a brass instrument such
as a trumpet, it is necessary for the very beginning of the note to be an al-
most pure sine wave. Then the harmonic spectrum grows rapidly richer, over-
shooting the steady spectrum by some way, and then returning to a reason-
ably rich spectrum. When the note stops, the spectrum decays rapidly to a
pure note and then disappears altogether. This effect may be achieved with
FM synthesis by using two operators, one modulating the other. The mod-
ulating operator is given an envelope looking like the one on page 256. The
carrier operator uses a very similar envelope to control the amplitude.

Next, we discuss woodwind instruments such as the flute, as well as or-
gan pipes. At the beginning of the note, in the attack phase, higher harmon-
ics dominate. They then decrease in amplitude until in the steady state, the
fundamental dominates and the higher harmonics are not very strong. This
can be achieved either by making the modulating operator have an envelope
looking like the one on page 256 only upside down, or by making the carrier
frequency a small integer multiple of the modulating frequency so that for
small values of the index of modulation, this higher frequency dominates. In
any case, the decay phase for the modulating operator should be omitted for
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a more realistic sound. For some woodwind instruments such as the clarinet,
it is necessary to make sure that predominantly odd harmonics are present.
This can be achieved, as in the example on page 271, by setting fc = 3f and
fm = 2f , or some variation on this idea.

Percussive sounds have a very sharp attack and a roughly exponential
decay. So an envelope looking like the graph of x = e−t is appropriate for the
amplitude. Usually a percussion instrument will have an inharmonic spec-
trum, so that it is appropriate to make sure that fc and fm are not in a ra-
tio which can be expressed as a ratio of small integers. We saw in Exercise
1 of §6.2 that the golden ratio is in some sense the number furthest from be-
ing able to be approximated well by ratios of small integers, so this is a good
choice for producing spectra which will be perceived as inharmonic. Alterna-
tively, the analysis carried out in §3.6 can be used to try to emulate the fre-
quency spectrum of an actual drum.

Section 8.10 and the ones following it consist of an introduction to the
public domain computer music language CSound. One of our goals will be
to describe explicit implementations of two operator FM synthesis realizing
the above descriptions.

Further reading on FM synthesis:

John A. Bate, The effect of modulator phase on timbres in FM synthesis, Computer
Music Journal 14 (3) (1990), 38–45.

John Chowning, The synthesis of complex audio spectra by means of frequency mod-
ulation, J. Audio Engineering Society 21 (7) (1973), 526–534. Reprinted as chapter
1 of Roads and Strawn [122], pages 6–29.

John Chowning, Frequency modulation synthesis of the singing voice, appeared in
Mathews and Pierce [87], chapter 6, pages 57–63.

John Chowning and David Bristow, FM theory and applications [17].

L. Demany and K. I. McAnally, The perception of frequency peaks and troughs in
wide frequency modulations, J. Acoust. Soc. Amer. 96 (2) (1994), 706–715.

L. Demany and S. Clément, The perception of frequency peaks and troughs in wide
frequency modulations, II. Effects of frequency register, stimulus uncertainty, and
intensity, J. Acoust. Soc. Amer. 97 (4) (1995), 2454–2459; III. Complex carriers, J.
Acoust. Soc. Amer. 98 (5) (1995), 2515–2523; IV. Effect of modulation waveform,
J. Acoust. Soc. Amer. 102 (5) (1997), 2935–2944.

Andrew Horner, Double-modulator FM matching of instrument tones, Computer
Music Journal 20 (2) (1996), 57–71.

Andrew Horner, A comparison of wavetable and FM parameter spaces, Computer
Music Journal 21 (4) (1997), 55–85.

Andrew Horner, James Beauchamp and Lippold Haken, FM matching synthesis with
genetic algorithms, Computer Music Journal 17 (4) (1993), 17–29.

M. LeBrun, A derivation of the spectrum of FM with a complex modulating wave,
Computer Music Journal 1 (4) (1977), 51–52. Reprinted as chapter 5 of Roads and
Strawn [122], pages 65–67.
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F. Richard Moore, Elements of computer music [94], pages 316–332.

D. Morrill, Trumpet algorithms for computer composition, Computer Music Journal
1 (1) (1977), 46–52. Reprinted as chapter 2 of Roads and Strawn [122], pages 30–44.

C. Roads, The computer music tutorial [119], pages 224–250.

S. Saunders, Improved FM audio synthesis methods for real-time digital music gen-
eration, Computer Music Journal 1 (1) (1977), 53–55. Reprinted as chapter 3 of
Roads and Strawn [122], pages 45–53.

W. G. Schottstaedt, The simulation of natural instrument tones using frequency
modulation with a complex modulating wave, Computer Music Journal 1 (4) (1977),
46–50. Reprinted as chapter 4 of Roads and Strawn [122], pages 54–64.

Dan Slater, Chaotic sound synthesis, Computer Music Journal 22 (2) (1998), 12–19.

B. Truax, Organizational techniques for c :m ratios in frequency modulation, Com-

puter Music Journal 1 (4) (1977), 39–45. Reprinted as chapter 6 of Roads and

Strawn [122], pages 68–82.

8.10. CSound

CSound is a public domain synthesis programme written by Barry Ver-
coe at the Media Lab in MIT in the C programming language. It has been
compiled for various platform, and both source code and executables are
freely available.

The programme takes as input two files, called the orchestra file and
the score file. The orchestra file contains the instrument definitions, or how
to synthesize the desired sounds. It makes use of almost every known method
of synthesis, including FM synthesis, the Karplus–Strong algorithm, phase
vocoder, pitch envelopes, granular synthesis and so on, to define the instru-
ments. The score file uses a language similar in conception to MIDI but dif-
ferent in execution, in order to describe the information for playing the in-
struments, such as amplitude, frequency, note durations and start times. The
utility MIDI2CS provides a flexible way of turning MIDI files into CSound
score files. The final output of the CSound programme is a file in some cho-
sen sound format, for example a WAV file or an AIFF file, which can be
played through a computer sound card, downloaded into a synthesizer with
sampling features, or written onto a CD.

We limit ourselves to a brief description of some of the main features
of CSound, with the objective of getting as far as describing how to realise
FM synthesis. The examples are adapted from the CSound manual.

Getting it. The source code and executables for CSound5.013 for a number
of platforms, including Linux, Mac, MS-DOS and Windows can be obtained
from

sourceforge.net/projects/csound/

3This is the latest version as of May 2006, but by the time you read this book there
may be a later version.
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(files are at sourceforge.net/project/showfiles.php?group id=81968)

as can the manual and some example files. The files you need are as follows:

For all systems, the manual

CSound5.01 manual pdf.zip (US letter size)
CSound5.01 manual pdf A4.zip (A4 for the rest of the world)

Executables (you don’t need the source code unless you’re compiling the pro-
gramme yourself):

CSound5.01 src.tar.gz (Source code in C)
CSound5.01 src.zip (Source code in C)
CSound5.01 OS9 src.smi.bin (Source for Mac OS 9)
CSound5.01 i686.rpm (Compiled for Linux)
CSound5.01 x86 64.rpm (Compiled for Linux)
CSound5.01 OSX10.4.tar.gz (Compiled for Mac OS 10.4)
CSound5.01 OSX10.3.tar.gz (Compiled for Mac OS 10.3)
CSound5.01 OSX10.2.tar.gz (Compiled for Mac OS 10.2)
CSound5.01 OS9.smi.bin (Compiled for Mac OS 9)
CSound5.01 win32.i686.zip (Compiled for Windows)
CSound5.01 win32.exe (Compiled for Windows with installer)

For Mac OS X, another way to obtain and install CSound is to down-
load MacCsound from csounds.com/matt/MacCsound. This is a packaged com-
plete installation, including a primitive GUI.

The orchestra file. This file has two main parts, namely the header sec-
tion, which defines the sample rate, control rate, and number of output chan-
nels, and the instrument section which gives the instrument definitions. Each
instrument is given its own number, which behaves like a patch number on
a synthesizer.

The header section has the following format (everything after a semi-
colon is a comment):

sr = 44100 ; sample rate in samples per second

kr = 4410 ; control rate in control signals per second

ksmps = 10 ; ksmps = sr/kr must be an integer,

; samples per control period

nchnls = 1 ; number of channels (8.10.1)

An instrument definition consists of a collection of statements which
generate or modify a digital signal. For example the statements

instr 1

asig oscil 10000, 440, 1

out asig

endin (8.10.2)

generate a 440 Hz wave with amplitude 10000, and send it to an output. The
two lines of code representing the waveform generator are encased in a pair
of statements which define this to be an instrument. For WAV file output,
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the possible range of amplitudes before clipping takes effect is from −32768
to +32767, for a total of 215 possible values (see §7.3). The final argument
1 is a waveform number. This determines which waveform is taken from an
f statement in the score file (see below). In our first example below, it will
be a sine wave. The label asig is allowed to be any string beginning with
a (for “audio signal”). So for example a1 would have worked just as well.
The oscil statement is one of CSound’s many signal generators, and its ef-
fect is to output periodic signals made by repeating the values passed to it,
appropriately scaled in amplitude and frequency. There is also another ver-
sion called oscili, with the same syntax, which performs linear interpolation
rather than truncation to find values at points between the sample points.
This is slower by approximately a factor of two, but in some situations it can
lead to better sounding output. In general, it seems to be better to use oscil

for sound waves and oscili for envelopes (see page 283).
As it stands, the instrument (8.10.2) isn’t very useful, because it can

only play one pitch. To pass a pitch, or other attributes, as parameters from
the score file to the orchestra file, an instrument uses variables named p1, p2,
p3, and so on. The first three have fixed meanings, and then p4, p5, . . . can
be given other meanings. If we replace 440 by p5,

asig oscil 10000, p5, 1

then the parameter p5 will determine pitch.

The score file. Each line begins with a letter called an opcode, which de-
termines how the line is to be interpreted. The rest of the line consists of nu-
merical parameter fields p1, p2, p3, and so on. The possible opcodes are:

f (function table generator),

i (instrument statement; i.e., play a note),

t (tempo),

a (advance score time; i.e., skip parts),

b (offset score time),

v (local textual time variation),

s (section statement),

r (repeat sections),

m and n (repeat named sections),

e (end of score),

c (comment; semicolon is preferred).

If a line of the score file does not begin with an opcode, it is treated as a con-
tinuation line.

Each parameter field consists of a floating point number with optional
sign and optional decimal point. Expressions are not permitted.

An f statement calls a subroutine to generate a set of numerical val-
ues describing a function. The set of values is intended for passing to the or-
chestra file for use by an instrument definition. The available subroutines are
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called GEN01, GEN02, .... Each takes some number of numerical arguments.
The parameter fields of an f statement are as follows.

p1 Waveform number

p2 When to begin the table, in beats

p3 Size of table; a power of 2, or one more, maximum 224

p4 Number of GEN subroutine

p5, p6, ... Parameters for GEN subroutine

Beats are measured in seconds, unless there is an explicit t (tempo) state-
ment; in our examples, t statements are omitted for simplicity.

So for example, the statement

f1 0 8192 10 1

uses GEN10 to produce a sine wave, starting “now,” of size 8192, and assigns
it to waveform 1. The subroutine GEN10 produces waveforms made up of
weighted sums of sine waves, whose frequencies are integer multiples of the
fundamental. So for example

f2 0 8192 10 1 0 0.5 0 0.333

produces the sum of the first five terms in the Fourier series for a square
wave, and assigns it to waveform 2.

An i statement activates an instrument. This is the kind of statement
used to “play a note.” Its parameter fields are as follows.

p1 Instrument number

p2 Starting time in beats

p3 Duration in beats

p4, p5, ... Parameters used by the instrument

An e statement denotes the end of a score. It consists of an e on a line
on its own. Every score file must end in this way.

For example, if instrument 1 is given by (8.10.2) then the score file

f1 0 8192 10 1 ; use GEN10 to create a sine wave

i1 0 4 ; play instr 1 from time 0 for 4 secs

e (8.10.3)

will play a 440Hz tone for 4 seconds.

Running CSound. The programme CSound was designed as a command
line programme, and although various front ends have been designed for it,
the command line remains the most convenient method. Having installed
CSound according to the instructions that accompany the programme, the
procedure is to create an orchestra file called <filename>.orc and a score
file called <filename>.sco using your favourite (ascii) text processor.4 The

4Word processors such as Word Perfect or Word by default save files with special for-
matting characters embedded in them. CSound will choke on these characters. In MS-
DOS, the command
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basic syntax for running CSound is

csound <flags> <filename>.orc <filename>.sco

For example, if your files are called ditty.orc and ditty.sco, and you want
a WAV file output, then use the -W flag (this is case sensitive).

csound -W ditty.orc ditty.sco

This will produce as output a file called test.wav. If you want some other
name, it must be specified with the -o flag.

csound -W -o ditty.wav ditty.orc ditty.sco (8.10.4)

If you want to suppress the graphical displays of the waveforms, which csound
gives by default, this is achieved with the -d flag.

We are now ready to run our first example. Make two text files, one
called ditty.orc containing the statements (8.10.1) followed by (8.10.2), and
one called ditty.sco containing the statements (8.10.3). If the programme
is properly installed, then typing the command (8.10.4) at the command line
should produce a file ditty.wav. Playing this file through a sound card or other
audio device should then sound a pure sine wave at 440Hz for 4 seconds.

Warning. Both the orchestra and the score file are case sensitive. If you
are having problems running CSound on the above orchestra and score files,
check that you have typed everything in lower case.

There is also an annoying feature, which is that if the last line of text
in the input file does not have a carriage return, then a wave file will be gen-
erated, but it will be unreadable. So it is best to leave a blank line at the
end of each file.

Our “ditty” wasn’t really very interesting, so let’s modify it a bit. In
order to be able to vary the amplitude and pitch, let us modify the instru-
ment (8.10.2) to read

instr 1

asig oscil p4, p5, 1 ; p4 = amplitude, p5 = frequency

out asig

endin (8.10.5)

Now we can play the first ten notes of the harmonic series (see page 136) us-
ing the following score file.

edit <filename>

will invoke a simple ascii text processor whose output will not choke CSound in this way.
If you are running in an MS-DOS box inside Windows, the command

notepad <filename>

will start up the ascii text processor called notepad in a separate window, which is more
convenient for switching between the editor and running CSound.
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f1 0 8192 10 1 ; sine wave

i1 0.0 0.4 32000 261.6 ; fundamental (C, to nearest tenth of a Hz)

i1 0.5 0.4 24000 523.2 ; second harmonic, octave

i1 1.0 0.4 16000 784.8 ; third harmonic, perfect fifth

i1 1.5 0.4 12000 1046.4 ; fourth harmonic, octave

i1 2.0 0.4 8000 1308.0 ; fifth harmonic, just major third

i1 2.5 0.4 6000 1569.6 ; sixth harmonic, perfect fifth

i1 3.0 0.4 4000 1831.2 ; seventh harmonic, listen carefully to this

i1 3.5 0.4 3000 2092.8 ; eighth harmonic, octave

i1 4.0 0.4 2000 2354.4 ; ninth harmonic, just major second

i1 4.5 0.4 1500 2616.0 ; tenth harmonic, just major third

e (8.10.6)

This file plays a series of notes at half second intervals, each lasting 0.4 sec-
onds, at successive integer multiples of 220Hz, and at steadily decreasing am-
plitudes. Make an orchestra file from (8.10.1) and (8.10.5), and a score file
from (8.10.6), run CSound as before, and listen to the results.

Data rates. Recall from (8.10.1) that the header of the orchestra file de-
fines two rates, namely the sample rate and the control rate. There are three
different kinds of variables in CSound, which are distinguished by how often
they get updated. a-rate variables, or audio rate variables, are updated at
the sample rate, while the k-rate variables, or control rate variables, are up-
dated at the control rate. Audio signals should be taken to be a-rate, while
an envelope, for example, is usually assigned to a k-rate variable. It is pos-
sible to make use of audio rate signals for control, but this will increase the
computational load. A third kind of variable, the i-rate variable, is updated
just once when a note is played. These variables are used primarily for set-
ting values to be used by the instrument. The first letter of the variable name
(a, k or i) determines which kind of variable it is.

The variables discussed so far are all local variables. This means that
they only have meaning within the given instrument. The same variable can
be reused with a different meaning in a different instrument. There are also
global versions of variables of each of these rates. These have names begin-
ning with ga, gk and gi. Assignment of a global variable is done in the header
section of the orchestra file.

Envelopes. One way to apply an envelope is to make an oscillator whose
frequency is 1/p3, the reciprocal of the duration, so that exactly one copy of
the waveform is used each time the note is played. It is better to use oscili

rather than oscil for envelopes, because many sample points of the envelope
will be used in the course of the one period. So for example

kenv oscili p4, 1/p3, 2

uses waveform 2 to make an envelope. The first letter k of the variable name
kenv means that this is a control rate variable. It would work just as well to
make it an audio rate variable by using a name like aenv, but it would de-
mand greater computation time, and result in no audible improvement.
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The subroutine GEN07, which performs linear interpolation, is ideal for
an envelope made from straight lines. The arguments p4, p5, ... of this
subroutine alternate between numbers of points and values. So for example,
the statement

f2 0 513 7 0 80 1 50 0.7 213 0.7 170 0 ; ADSR envelope

in the score file produces an envelope resembling the one on page 256 with
ADSR sections of length 80, 50, 213, 170 samples, with heights varying lin-
early

0→ 1→ 0.7→ 0.7→ 0,

and assigns it to waveform 2. The numbers of sample points in the sections
should always add up to the total length p3.

Recall that the total number of sample points must be either a power
of two, or one more than a power of two. It is usual to use a power of two
for repeating waveforms. For waveforms that will be used only once, such as
an envelope, we use one more than a power of two so that the number of in-
tervals between sample points is a power of two.

To apply the envelope to the instrument (8.10.5), we replace p4 with
kenv to make

instr 1

kenv oscili p4, 1/p3, 2 ; envelope from waveform 2

; p4 = amplitude

asig oscil kenv, p5, 1 ; p5 = frequency

out asig

endin

It would also be possible to replace the waveform number 2 in the def-
inition of kenv with another variable, say p6, to give a more general purpose
shaped sine wave.

Exercises

1. Make orchestra and score files to generate two sine waves, one at just greater
than twice the frequency of the other, and listen to the output. [See also Exercise 6

in Section 1.8]

2. Make orchestra and score files to play a major scale using a sine wave with

an ADSR envelope. Check that your files work by running CSound on them and lis-

tening to the result.

8.11. FM synthesis using CSound

Here is the most basic two operator FM instrument:

instr 1

amod oscil p6 * p7, p6, 1 ; modulating wave

; p6 = modulating frequency

; p7 = index of modulation

kenv oscili p4, 1/p3, 2 ; envelope, p4 = amplitude

asig oscil kenv, p5 + amod, 1 ; p5 = carrier frequency

out asig
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endin (8.11.1)

The parameter p7 here represents the index of modulation; the reason
why it is multiplied by p6 in the definition of the modulating wave amod is
that the modulation is taking place directly on the frequency rather than on
the phase. According to equation (8.8.2), this means that the index of mod-
ulation must be multiplied by the frequency of the modulating wave before
being applied. The argument p5 + amod in the definition of asig is the car-
rier frequency p5 plus the modulating wave amod. The wave has been given
an envelope kenv.

For a score file to illustrate this simple instrument, we introduce some
useful abbreviations available for repetitive scores. First, note that the i

statements in a score do not have to be in order of time of execution. The
score is sorted with respect to time before it is played. The carry feature
works as follows. Within a group of consecutive i statements in the score file
(not necessarily consecutive in time) whose p1 parameters are equal, empty
parameter fields take their value from the previous statement. An empty pa-
rameter field is denoted by a dot, with spaces between consecutive fields. In-
tervening comments or blank lines do not affect the carry feature, but other
non-i statements turn it off.

For the second parameter field p2 only, the symbol + gives the value of
p2 + p3 from the previous i statement. This begins a note at the time the
last one ended. The symbol + may also be carried using the carry feature de-
scribed above. Liberal use of the carry and + features greatly simplify typ-
ing in and subsequent alteration of a score. Here, then, is a score illustrating
simple FM synthesis with fm = fc, with gradually increasing index of mod-
ulation.

f1 0 8192 10 1 ; sine wave

f2 0 513 7 0 80 1 50 0.7 213 0.7 170 0 ; ADSR

i1 1 1 10000 200 200 0 ; index = 0 (pure sine wave)

i1 + . . . . 1 ; index = 1

i1 + . . . . 2 ; index = 2

i1 + . . . . 3 ; index = 3

i1 + . . . . 4 ; index = 4

i1 + . . . . 5 ; index = 5

e

Sections. An s statement consisting of a single s on a line by itself ends a
section and starts a new one. Sorting of i and f statements (as well as a,
which we haven’t discussed) is done by section, and the timing starts again
at the beginning for each section. Inactive instruments and data spaces are
purged at the end of a section, and this frees up computer memory.

The following score, using the same instrument (8.11.1), has three sec-
tions with different ratios fm : fc and with gradually increasing index of mod-
ulation.

f1 0 8192 10 1 ; sine wave

i1 1 1 10000 200 200 0 ; index = 0, fm:fc = 1:1
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i1 + . . . . 1 ; index = 1

i1 + . . . . 2 ; index = 2

i1 + . . . . 3 ; index = 3

i1 + . . . . 4 ; index = 4

i1 + . . . . 5 ; index = 5

s

i1 1 1 10000 200 400 0 ; index = 0, fm:fc = 1:2

i1 + . . . . 1 ; index = 1

i1 + . . . . 2 ; index = 2

i1 + . . . . 3 ; index = 3

i1 + . . . . 4 ; index = 4

i1 + . . . . 5 ; index = 5

s

i1 1 1 10000 400 200 0 ; index = 0, fm:fc = 2:1

i1 + . . . . 1 ; index = 1

i1 + . . . . 2 ; index = 2

i1 + . . . . 3 ; index = 3

i1 + . . . . 4 ; index = 4

i1 + . . . . 5 ; index = 5

e

Pitch classes. CSound has a function cpspch for converting octave and pitch
class notation in twelve tone equal temperament into frequencies in Hertz.
This function may be used in an instrument definition, so that the instru-
ment can be fed notes from the score file in this notation.

The octave and pitch class notation consists of a whole number, rep-
resenting octave, followed by a decimal point and then two digits represent-
ing pitch class. The pitch classes are taken to begin with .00 for C and end
with .11 for B, although higher values will just overlap into the next octave.
The octave numbering is such that 8.00 represents middle C, 9.00 represents
the octave above middle C, and so on. So for example the A above middle
C can be represented as 8.09, or as 7.21, so that

cpspch(8.09) = cpspch(7.21) = 440.

Notes between two pitches on the twelve tone equal tempered scale can be
represented by using further digits. So if four digits are used after the deci-
mal point then the value is interpreted in cents. For example, if 8.00 repre-
sents middle C, then a just major third above this would be 8.0386, taken to
the nearest cent.

8.12. Simple FM instruments

The bell. In this section, we use CSound and FM synthesis to imitate some
instruments. We begin with the sound of a bell.5 For a typical bell sound, we
need an inharmonic spectrum. We can obtain this by using simple two oper-
ator FM synthesis where fc and fm have a ratio which cannot be expressed

5The examples in this section are adapted from an article of Chowning, reprinted as
chapter 1 of [122].
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as a simple ratio of two integers. The golden ratio is particularly good in this
regard, for reasons explained in Exercise 1 of §6.2, so we take fm to be 1.618
times fc.

The bell sound is most easily made using envelopes representing expo-
nential decay for both amplitude and timbre. The subroutine GEN05 is de-
signed for this. It performs exponential interpolation, which is based on the
fact that between any two points (x1, y1) and (x2, y2) in the plane, with y1

and y2 positive, there is a unique exponential curve. It is given by

y = y
x −x2
x1−x2
1 y

x− x1
x2−x1
2 .

If y1 and y2 are both negative, replace them by the corresponding positive
number in the above formula and then negate the final answer.

The fields for the GEN05 subroutine are the same as for GEN07 (see
page 284), except that the values p5, p7, ... must all have the same sign.
Referring back to the discussion of envelopes on page 283, we see that if we put

f2 0 513 5 1 513 .0001

in the score file and

kenv oscili p4, 1/p3, 2

in the instrument definition, we will create an envelope with name kenv which
decays exponentially from 1 to 0.0001. For a bell sound, we use an enve-
lope like this for amplitude6 and an envelope decaying exponentially from 1
to 0.001 scaled up by a factor of 10 for index of modulation. We also use a
very long decay time, to permit the sound to linger.

1

0.001
15 sec

This explains the following instrument definition. Pitches have been con-
verted from octave and pitch class notation as explained above. In spite of
the fact that lower frequency components are present, the perceived pitch of
the note produced is equal to the carrier frequency.

instr 1 ; FM bell

ifc = cpspch(p5) ; carrier frequency

ifm = cpspch(p5) * 1.618 ; modulating frequency

kenv oscili p4, 1/p3, 2 ; envelope, p3 = duration, exp decay f2

; p4 = amplitude

ktmb oscili ifm * 10, 1/p3, 3 ; timbre envelope, max = 10,

; exp decay f3

amod oscil ktmb, ifm, 1 ; modulator

asig oscil kenv, ifc + amod, 1 ; carrier

6Don’t forget that amplitude is perceived logarithmically, so this sounds like a linear
decrease, and indeed is a linear decrease when measured in decibels.
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out asig

endin

Here is the score file to play notes E, C, D, G for a chime, using this instru-
ment.

f1 0 8192 10 1

f2 0 513 5 1 513 .0001

f3 0 513 5 1 513 .001

i1 1 15 8000 8.04 ; 15 seconds at amplitude 8000 at middle C

i1 2.5 . . 8.00

i1 4 . . 8.02

i1 5.5 . . 7.07

e

A general purpose instrument. It is not hard to modify the instrument
described above to make a general purpose two operator FM synthesis in-
strument.

instr 1 ; Two operator FM instrument

ifc = cpspch(p5) * p6 ; p6 = carrier frequency multiplier

ifm = cpspch(p5) * p7 ; p7 = modulator frequency multiplier

kenv oscili p4, 1/p3, p8 ; p3 = duration

; p4 = amplitude

; p8 = carrier envelope

ktmb oscili ifm * p10, 1/p3, p9 ; p9 = modulator envelope

; p10 = maximum index of modulation

amod oscil ktmb, ifm, 1 ; modulator

asig oscil kenv, ifc + amod, 1 ; carrier

out asig

endin

The rest of the examples in this section are described in terms of this setup.

The wood drum. To make a reasonably convincing wood drum, the am-
plitude envelope is made up of two exponential curves using GEN05,

1

0.2 sec

while the envelope for the index of modulation is made up of two straight
line segments, decreasing to zero and then staying there, using GEN07.
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1

0.2 sec

It turns out to be better to use a modulating frequency lower than the car-
rier frequency. So we use the reciprocal of the golden ratio, which is 0.618.
We also use a large index of modulation, with a peak of 25, and a note du-
ration of 0.2 seconds. This instrument works best in the octave going down
from middle C. So the function table generators take the form

f1 0 8192 10 1 ; sine wave

f2 0 513 5 .8 128 1 385 .0001 ; amplitude envelope

f3 0 513 7 1 64 0 449 0 ; modulating index envelope

and the instrument statements take the form

i1 <time> 0.2 <amplitude> <pitch> 1.0 0.618 2 3 25

Brass. For a brass instrument, we use a harmonic spectrum containing all
multiples of the fundamental. This is easily achieved by taking fc = fm. The
relative amplitude of higher harmonics is greater when the overall amplitude
is greater, so the timbre and amplitude are given the same envelope. This is
chosen to look like the ADSR curve on page 256, to represent an overshoot
in intensity during the attack. The index of modulation does not want to be
as great as in the above examples. A maximum index of 5 gives a reasonable
sound. The envelope given below is suitable for a note of duration around
0.6 seconds. It would need to be modified slightly for other durations.

f1 0 8192 10 1 ; sine wave

f2 0 513 7 0 85 1 86 0.75 256 0.7 86 0 ; envelope for brass

A typical note would then be represented by a statement of the form

i1 <time> 0.6 <amplitude> <pitch> 1.0 1.0 2 2 5

To improve the sound slightly on the brass tone presented here, we may wish
to add a small deviation to the modulating frequency, so that there is a slight
tremolo effect in the sound. If we replace the definition of the modulating
frequency by the statement

ifm = cpspch(p5) * p7 + 0.5

then this will have the required effect.

Woodwind. For woodwind instruments, higher harmonics are present dur-
ing the attack, and then the low frequencies enter. So we want the carrier
frequency to be a multiple of the modulating frequency, and use an envelope

of the form
�
� C

C
for the carrier and

�
� for the modulator. So

the function table generators take the form

f1 0 8192 10 1 ; sine wave

f2 0 513 7 0 50 1 443 1 20 0 ; amplitude envelope

f3 0 513 7 0 50 1 463 1 ; modulating index envelope
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For a clarinet, where odd harmonics dominate, we take fc = 3fm and a max-
imum index of 2. A bassoon sound is produced by giving the odd harmonics
a more irregular distribution. This can be achieved by taking fc = 5fm and
a maximum index of 1.5.

8.13. Further techniques in CSound

The CSound language is vast. In this section, we cover just a few of
the features which we have not touched on in the previous sections. For more
information, see the CSound manual.

Tempo. The default tempo is 60 beats per minute, or one beat per second.
To change this, a tempo statement is put in the score file. An example of the
simplest form of tempo statement is

t 0 80

which sets the tempo to 80 beats per minute. The first argument (p1) of the
tempo statement must always be zero. A tempo statement with more argu-
ments causes accelerandos and ritardandos. The arguments are alternately
times in beats (p1 = 0, p3, p5 . . . ) and tempi in beats per minute (p2, p4,
p6, . . . ). The tempi between the specified times are calculate by making the
durations of beats vary linearly. So for example the tempo statement

t 0 100 20 120 40 120

causes the initial tempo to be 100 beats per minute. By the twentieth beat,
the tempo is 120 beats per minute. But the number of beats per minute is
not linear between these values. Rather, the durations decrease linearly from
0.6 seconds to 0.5 seconds over the first twenty beats. The tempo is then
constant from beat 20 until beat 40. By default, the tempo remains constant
after the last beat where it is specified, so in this example the last two pa-
rameters are superfluous.

The tempo statement is only valid within the score section (cf.
page 285) in which it is placed, and only one tempo statement may be used
in each section. Its location within the section is irrelevant.

Stereo and Panning. For stereo output, we want to set nchnls = 2 in the
header of the orchestra file (8.10.1). In the instrument definition, instead of
using out, we use outs with two arguments. So for example to do a simple
pan from left to right, we might want the following lines in the instrument
definition.

kpanleft lineseg 0, p3, 1

kpanright = 1 - kpanleft

outs asig * kpanleft, asig * kpanright

The problem with this method of panning is that the total sound energy is
proportional to the square of amplitude, summed over the two channels. So
in the middle of the pan, the total energy is only 1/

√
2 times the total enery

on the left or right. So it sounds like there’s a hole in the middle. The easiest
way to correct this is to take the square root of the straight line produced by
the signal generator lineseg. So for example we could have the following lines.
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kpan lineseg 0, p3, 1

kpanleft = sqrt(kpan)

kpanright = sqrt(1-kpan)

Since sin2 θ + cos2 θ = 1, another way to keep uniform total sound energy is
as follows.

kpan lineseg 0, p3, 1

ipibytwo = 1.5708

kpanleft = sin(kpan * ipibytwo)

kpanright = cos(kpan * ipibytwo)

A good trick for obtaining what sounds like a wider sweep for the pan, es-
pecially when using headphones to listen to the output, is to make the angle
go from −π/4 to 3π/4 instead of 0 to π/2. This can be achieved by replac-
ing the definition of kpan above with the following line.

kpan lineseg -0.5, p3, 1.5

Display and spectral display. There is a facility for displaying either a
waveform in an instrument file or its spectrum. So for example the instrument

instr 1

asig oscil 10000 440 1

out asig

display asig p3

endin

is the same as (8.10.2), except that the extra line causes the graph of asig

(of length p3) to be displayed. If the flag -d (see page 282) is set, this line
makes no difference at all. Replacing the display line with

dispfft asig p3, 1024

causes a fast Fourier transform of asig to be displayed, using an input win-
dow size of 1024 points. The number of points must be a power of two be-
tween 16 and 4096.

Arithmetic. In the orchestra file, variables represent signed floating point
real numbers. The standard arithmetic operations +, -, * (times) and / (di-
vide) can be used, as well as parentheses to any depth. Powers are denoted
a^b, but b is not allowed to be audio rate. The expression a % b returns a re-
duced modulo b. Among the available functions are

int (integer part)
frac (fractional part)
abs (absolute value)
exp (exponential function, raises e to the given power)
log and log10 (natural and base ten logarithm; argument must be positive)
sqrt (square root)
sin, cos and tan (sine, cosine and tangent, argument in radians)
sininv, cosinv, taninv (arcsine, arccos and arctan, answer in radians)
sinh, cosh and tanh (hyperbolic sine, cosine and tangent)
rnd (random number between zero and the argument)
birnd (random number bewteen plus and minus the argument)

Conditional values can also be used. For example,
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(ka > kb ? 3 : 4)

has value 3 if ka is greater than kb, and 4 otherwise. Comparisons may be
made using

> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
== (equal to)
!= (not equal to).

Expressions, as well as variables, may be compared in this way, but audio
rate variables and expressions are not permitted.

Automatic score generation. There are a number of methods of avoid-
ing the tedious process of writing a score file for CSound. One method
is to use the score translator programme scot. This takes a text file
<filename>.sc written in a compressed score notation and writes out a score
file <filename>.sco. Another is to use Cscore, which is a programme for mak-
ing and manipulating score files. The user writes a control programme in the
C language, which makes use of a set of function definitions contained in a
header file cscore.h. Finally, there is MIDI2CS, a programme which takes
a MIDI file as input, and outputs a score file. There is also a considerable
amount of support for MIDI within the CSound language.

CSoundAV is a realtime version of CSound for the PC, and can be ob-
tained from Gabriel Maldonado’s home page at

web.tiscali.it/G-Maldonado/

I have not tried it out, so I cannot comment on how well it works, but it
looks promising.

Further reading on CSound:

Richard Boulanger, The CSound book [13].

Electronic Musician, Feb 1998 issue.

Keyboard, Jan 1997 issue.

8.14. Other methods of synthesis

Sampling is not really a form of synthesis at all, but is often used in
digital synthesizers. It is usual to sample sounds at only a small collection of
pitches, and then to pitch shift by stretching or compressing the waveform,
in order to fill in the gaps. Pitch shifting a digital signal introduces high fre-
quency noise, related to the fact that the sample rate is not being shifted at
the same time. This is removed using a low pass filter.

Wavetable synthesis is a method related to sampling, in which digitally
recorded wave files are used as raw material to produce sounds which are a
sort of hybrid between synthesis and sampling. It is usual to use one wave
file for the attack portion of the sound, and another for the sustain portion.
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In the case of the sustain portion, a whole number of periods of the sound
are used to form a loop which is repeated. An envelope is then applied to
shape the sound, and then finally the result is pitch shifted and put through
a low pass filter. An exception to this general procedure is “one shot” sounds
such as short percussive sounds. These are usually just recorded as a single
wavefile without looping.

Granular synthesis is a method where the sound comes in small pack-
ets called grains, whose duration is usually of the order of ten milliseconds.
Thousands of these grains are used in each second, to create a sound texture.
Usually, some algorithm is used for describing large quantities of grains at a
time, so that each grain does not have to be described separately.

Further reading on granular synthesis:

S. Cavaliere and A. Piccialli, Granular synthesis of musical signals, appears as arti-
cle 5 in Roads et al [121], pages 155–186.

John Duesenberry, Square one: a world in a grain of sound, Electronic Musician,
November 1999.

Curtis Roads, Automated granular synthesis of sound, Computer Music Journal 2
(2) (1978), 61–62. A revised and updated version of this article appears as chapter
10 of Roads and Strawn [122], pages 145–159.

Curtis Roads, Granular synthesis, Keyboard, June 1997.

Curtis Roads, Microsound [120].

8.15. The phase vocoder

The phase vocoder is a method of sound analysis and manipulation. It
is based on the technique of applying a discrete Fourier transform to small
windows of the original sound. The transform may then be manipulated, and
finally the sound may reconstructed from the manipulated transform. For
example, it is not hard to stretch a sound without altering the pitch using
this technique.

Further reading:

Mark Dolson, The phase vocoder: a tutorial, Computer Music Journal 10 (4) (1986),
14–27.

Marie-Hélène Serra, Introducing the phase vocoder, appears as article 2 in Roads et

al [121], pages 31–90.

8.16. Chebyshev polynomials

Composition of functions in general is a good way of obtaining syn-
thetic tones. For example, if we take a basic cosine wave cos νt and compose
it with the function f(x) = 2x2 − 1 then we obtain

2 cos2 νt− 1 = cos 2νt.
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So composing with this function has the effect of doubling frequency. The
corresponding functions for arbitrary integer multiples of frequency are called
the Chebyshev7 polynomials of the first kind, which we now investigate.

Let Tn(x) be the polynomial defined inductively by T0(x) = 1, T1(x) =
x, and for n > 1,

Tn(x) = 2xTn−1(x)− Tn−2(x).

Thus for example we have

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

T7(x) = 64x7 − 112x5 + 56x3 − 7x.

Lemma 8.16.1. For n ≥ 0 we have Tn(cos νt) = cosnνt.

Proof. The proof is by induction on n. We begin by observing that

cos νt cos(n− 1)νt− sin νt sin(n− 1)νt = cosnνt

cos νt cos(n− 1)νt+ sin νt sin(n− 1)νt = cos(n− 2)νt

(see §1.8), so that adding and rearranging, we have

cosnνt = 2cos νt cos(n− 1)νt− cos(n− 2)νt.

Now for n = 0 and n = 1, the statement of the lemma is obvious from
the definition. For n ≥ 2, assuming the statement to be true for smaller val-
ues of n, we have

Tn(cos νt) = 2 cos νt Tn−1(cos νt)− Tn−2(cos νt)

= 2 cos νt cos(n− 1)νt− cos(n− 2)νt

= cosnνt.

So by induction, the lemma is true for all n ≥ 0. �

Using a weighted sum of Chebyshev polynomials and composing, we
can obtain a waveform with the corresponding weights for the harmonics.
Changing the weighting with time will change the timbre of the resulting
tone. So for example, if we apply the operation

T1 + 1
3T3 + 1

5T5 + 1
7T7 + 1

9T9 + 1
11T11

7Other spellings for this name include Tchebycheff and Chebichev. These are all just
transliterations of the Russian Qebyxev.
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to a cosine wave, we obtain an approximation to a square wave (see equa-
tion (2.2.10)). This operation will turn any mixture of cosine waves into the
same mixture of square waves.

Exercises

1. Show that y = Tn(x) satisfies Chebyshev’s differential equation

(1− x2)
d2y

dx2
− xdy

dx
+ n2y = 0.

2. Show that

Tn(x) = xn −
(
n

2

)
xn−2(1− x2) +

(
n

4

)
xn−4(1 − x2)2 − . . .

Hint: Use de Moivre’s theorem (see Appendix C) and the binomial theorem.

3. Draw a graph of y = Tn(x) for −1 ≤ x ≤ 1 and 0 ≤ n ≤ 5.



CHAPTER 9

Symmetry in music

First, let me explain that I’m cursed;
I’m a poet whose time gets reversed.

Reversed gets time

Whose poet a I’m;

Cursed I’m that explain me let, first.

9.1. Symmetries

Music contains many examples of symmetry. In this chapter, we inves-
tigate the symmetries that appear in music, and the mathematical language
of group theory for describing symmetry.

We begin with some examples. Translational symmetry looks like this:

. . . . . .

In group theoretic language, which we explain in the next few sections,
the symmetries form an infinite cyclic group. In music, this would just be
represented by repetition of some rhythm, melody, or other pattern. Here is
beginning of the right hand of Beethoven’s Moonlight Sonata, Op. 27 No. 2.

296
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Of course, any actual piece of music only has finite length, so it cannot
really have true translational symmetry. Indeed, in music, approximate sym-
metry is much more common than perfect symmetry. The musical notion of
a sequence is a good example of this. A sequence consists of a pattern that
is repeated with a shift; but the shift is usually not exact. The intervals are
not the same, but rather they are modified to fit the harmony. For example,
the sequenceG S > ? � )! ! x! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !x! ! ! ! JI ! ! ! ! ! ! x! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !z! ! ! !
comes from J. S. Bach’s Toccata and Fugue in D, BWV 565, for organ. Al-
though the general motion is downwards, the numbers of semitones between
the notes in the triplets is constantly varying in order to give the appropri-
ate harmonic structure.

Reflectional symmetry appears in music in the form of inversion of a fig-
ure or phrase. For example, the following bar from Béla Bartók’s Fifth string
quartet displays a reflectional symmetry whose horizontal axis is the note B♭.G?2!!OO!��2! 2!! 2!6!JJ2!

! 2 (!-!
The lower line is obtained by inverting the upper line. The symmetry group
here is cyclic of order two.

Such symmetry can also be more global in character. For example, in
Richard Strauss’ Elektra (1906–1908), although symmetry plays little or no
role in the choice of individual notes, its influence is apparent in the choice
of keys. The introduction starts with Agamemnon’s motive in in D minor.
Then Elektra’s motive consists of B minor and F minor triads, symmetrically
placed around D. Then in Elektra’s monologue, Agamemnon is associated
with B♭ and Klytemnestra with F♯, again symmetrical around D. The opera
continues this way, working either side of the initial D. The ending is in C
major, with a prominent major third E in the last four bars. These observa-
tions are taken from pages 15–16 of Antokoletz, The music of Béla Bartók.



298 9. SYMMETRY IN MUSIC

(Note: the attribution to Mozart is dubious)
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It is more common for horizontal reflection to be combined with a dis-
placement in time. For example, the left hand of Chopin’s Waltz, Op. 34
No. 2, begins as follows.I"." !��!

︸ " .︸

" !HH!
︸ ".︸

" !��!
︸ ".︸

" !HH!
Each bar of the upper line of the left hand is inverted to form the next bar.
Because of the displacement in time, this is really a glide reflection; namely
a translation followed by a reflection about a mirror parallel to the direction
of translation. In group theoretic terms, this is another manifestation of the
infinite cyclic group.

. . . . . .

The reason for the importance of symmetry in music is that regular-
ity of pattern builds up expectations as to what is to come next. But it is
important to break the expectations from time to time, to prevent boredom.
Good music contains just the right balance of predictability and surprise.

In the above example, the mirror line for the reflectional symmetry was
horizontal. It is also possible to have temporal reflectional symmetry with a
vertical mirror line, so that the notes form a palindrome. For example, an as-
cending scale followed by a descending scale has this kind of reflectional sym-
metry, as in the following elementary vocal exercise. The symmetry group
here is cyclic of order two.G! ! !����! ! ! !����! ! ! !PPPP! ! ! !PPPP! )! � ?
This is the musical equivalent of the palindrome. One example of a musical
form involving this kind of symmetry is the retrograde canon or crab canon
(Cancrizans). This term denotes a work in the form of a canon and exhibit-
ing temporal reflectional symmetry by means of playing the melody forwards
and backwards at the same time. For example, the first canon of J. S. Bach’s
Musical Offering (BWV 1079) is a retrograde canon formed by playing Fred-
erick the Great’s royal theme, consisting of the following 18 bars
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Doppelgänger

Entering the lonely house with my wife
I saw him for the first time

Peering furtively from behind a bush—
Blackness that moved,

A shape amid the shadows,
A momentary glimpse of gleaming eyes

Revealed in the ragged moon.
A closer look (he seemed to turn) might have
Put him to flight forever—

I dared not
(For reasons that I failed to understand),

Though I knew I should act at once.

I puzzled over it, hiding alone,
Watching the woman as she neared the gate.

He came, and I saw him crouching
Night after night.
Night after night

He came, and I saw him crouching,
Watching the woman as she neared the gate.

I puzzled over it, hiding alone—
Though I knew I should act at once,

For reasons that I failed to understand
I dared not

Put him to flight forever.

A closer look (he seemed to turn) might have
Revealed in the ragged moon

A momentary glimpse of gleaming eyes,
A shape amid the shadows,

Blackness that moved.

Peering furtively from behind a bush,
I saw him, for the first time,

Entering the lonely house with my wife.

—by J. A. Lyndon,
from Palindromes and Anagrams,

H. W. Bergerson, Dover 1973.
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simultaneously forwards and backwards in this way. The first voice starts at
the beginning of the first bar and works forward to the end, while the sec-
ond voice starts at the end of the last bar and works backwards to the be-
ginning. Other examples can be found at the end of this section, under “fur-
ther listening.” The other parts of Bach’s Musical Offering exhibit various
other tricky ways of playing with symmetry and form.

coneflower

Examples of rotational symmetry can also be found in music. For ex-
ample, the following four note phrase has perfect rotational symmetry, whose
centre is at the end of the second beat, at the pitch D♯.G ! ! ! 4!
In Ravel’s Rhapsodie Espagnole (1908), this four note phrase is repeated a
large number of times. This really means that we have translations and ro-
tations, as in the following diagram. In group theoretic language, the sym-
metries form an infinite dihedral group.
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. . . . . .

In the following example, from the middle of Mozart’s Capriccio, K. 395 for
piano, the symmetry is approximate. It is easy to observe that each beamed
set of notes for the right hand has a gradual rise followed by a steeper de-
scent, while those for the left hand have a steep descent followed by a more
gradual rise. Each pair of beams is slightly different from the previous, so
we do not get bored. Our expectations are finally thwarted in the last beam,
where the descent continues all the way down to a low E♮.�IG !!!! x! !!!! x!!!! x!!!!!!!! !!!! x!!!! x!!!!! x!!! !! x!!!!!�IG !x!!!!!! !! x!!!!! ! x!!!!! x! !! x!! x!!! x! x!!!!!! !! x!! x!!!�IG x! x!! |!!!!! |!! x!! x!!!! x! x!! |!!!!! |!! x!! x!!!! x! x!! |! x! x!VVVV! | (!

Horizontally repeated patterns are sometimes known as frieze patterns,
and they are classified into seven types. The numbering scheme shown be-
low is the international one usually used by mathematicians and crystallogra-
phers, for reasons which are not likely to become clear any time soon (see for
example pages 39 and 44 of Grünbaum and Shephard). The abstract groups
are explained later on in this chapter.
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Example name abstract group
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pmm2 D∞ × Z/2

The seven frieze types

For example, the upper line of the left hand of the Chopin Waltz example on
page 299 belongs to frieze type p1a1, while the Ravel example on page 301
belongs to frieze type p112.

Exercises

1. What symmetry is present in the following extract from Béla Bartók’s
Music for strings, percussion and celesta? Is it exact or approximate?G!! 4��2!CC! 4!!��!HH! 2!2! 6!4! 66!! 42"" ##
2. Find the symmetries in the following two bars from John Tavener’s The
lamb (words by William Blake). Are the symmetries exact or approximate?
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3. The symmetry in the first two bars of Schoenberg’s Klavierstück Op. 33a
is somewhat harder to see.�IG 4

4

4
4 >> 2 !!!! �444 !!!! H 6266 !!!! >4 !!!! J 2 !!!! J 4464 """"

You may find it helpful to draw the chords on a circle; the first chord will
come out as follows.

&%
'$•

C

•
B

•B♭

•
F

4. Which frieze pattern appears in the first few bars of Debussy’s Rêverie,
which are as follows?G2 S pp# ! ! !��!︸ ︸! !f v!PP!b #r! ! !��!︸ ︸! !f v!PP!
5. (Perle [104], page 20) Find the symmetries in the following three bars
from the beginning of Berg’s Lyric Suite (bars 2–4).G!BBBB! !BBBB! !BBBB! 2!. �2! �! �! �2! �2!DD�2! 6"
You may find it helpful to draw the notes on a circle, as in question 3, and
break them up into two sets of six.
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Further reading:

Elliott Antokoletz, The music of Béla Bartók, University of California Press, 1984.

M. Apagyi, Symmetries in music teaching, Comp. & Maths. with Appls. 17 (1989),
671–695.

Bruce Archibald, Some thoughts on symmetry in early Webern, Perspectives in New
Music 10 (1972), 159–163.

K. Bailey, Symmetry as nemesis: Webern and the first movement of the Concerto,
Opus 24, J. Music Theory 40 (2) (1996), 245–310.

J. W. Bernard, Space and symmetry in Bartók, J. Music Theory 30 (2) (1986), 185–
201.

F. J. Budden, The fascination of groups, CUP, 1972. ISBN 0521080169. Chapter 23
is titled Groups and music.

Roberto Donnini, The visualization of music: symmetry and asymmetry, Comp. &
Maths. with Appls. 12B (1986), 435–463.

Branko Grünbaum and G. C. Shephard, Tilings and patterns, an introduction.
W. H. Freeman and Company, New York, 1989.

E. Lendvai, Symmetries of music [77].

P. Liebermann and R. Liebermann, Symmetry in question and answer sequences in
music, Comp. & Maths. with Appls. 19 (1990), 59–66.

G. Mazzola, H.-G. Wieser, V. Brunner and D. Muzzulini, A symmetry-oriented
mathematical model of classical counterpoint and related neurophysiological investi-
gations by depth EEG, Comp. & Maths. with Appls. 17 (1989), 539–594.

R. P. Morgan, Symmetrical form and common-practice tonality, Music Theory Spec-
trum 20 (1) (1998), 1–47.

D. Muzzulini, Musical modulation by symmetries, J. Music Theory 39 (2) (1995),
311–327.

Edward Pearsall, Symmetry and goal-directed motion in music by Béla Bartók and
George Crumb, Tempo 58 (228) (2004), 32–40.
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George Perle, Symmetric formations in the string quartets of Béla Bartók, Music
Review 16 (1955), 300–312.

L. J. Solomon, New symmetric transformations, Perspectives in New Music 11 (2)
(1973), 257–264.

E. Werner, Grundsätzliche Betrachtungen über Symmetrie in der Musik des West-
ens, Studia Musicologica Academiae Scientarum Hungaricae 11 (1969), 487–515.

Dana Wilson, Symmetry and its “love-hate” role in music, Comp. & Maths. with

Appls. 12B (1986), 101–112.

Further listening: (see Appendix R)

William Byrd, Diliges Dominum exhibits temporal reflectional symmetry, making it
a perfect palindrome.

In Joseph Haydn’s Sonata 41 in A, the movement Menuetto al rovescio is also a per-
fect palindrome.

The first and last of the 25 pieces making up Paul Hindemith’s Ludus Tonalis, are
the Praeludium and the Postludium; the latter is obtained from the former by a per-
fect rotation, but with the addition of one final bar.

Guillaume de Machaut, Ma fin est mon commencement (My end is my beginning)
is a retrograde canon in three voices, with a palindromic tenor line. The other two
lines are exact temporal reflections of each other.

Olivier Messiaen, Vingt regards sur l’enfant Jésus. There are several good record-

ings of this remarkable work. The 18th movement, entitled Regard de l’Onction ter-

rible, is in palendromic form. The first and last 19 bars are exactly palendromic, but

in the middle the palendromy is more approximate. Furthermore, within the first

19 bars there is a rotational symmetry, and the note lengths form a very interesting

pattern. In the right hand the note lengths in quavers increase steadily from 1 to 16

in bars 3 to 19, while in the right hand the note lengths decrease steadily from 16

to 1 in bars 1 to 17.
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From Prof. Peter Schickele, The definite biography of P.D.Q. Bach (1807–1742)?,
Random House, New York, 1976.

9.2. The harp of the Nzakara

In this section, we take a look at an example taken from the article of
Chemillier in [1]. The Nzakara and Zande people of the Central African Re-
public, Congo and Sudan have a musical tradition of the court which is now
in a state of neglect. The music consists of poetry sung to the accompani-
ment of a five string harp. The harpist plays a formulaic repeating pattern
of pairs of notes.
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The five strings of the harp are tuned to notes which can be transcribed
roughly as C, D, E, G, B♭. These five strings are regarded as having a cyclic
order rather than a linear order, so that the lowest string is regarded as ad-
jacent to the highest string.

0

1

23

4

The strings are plucked in pairs, and the two strings of a pair are never
adjacent in the cycle. So there are only five possible pairs. The strings in the
pair have a unique common neighbour, and we can label the pair using this
common neighbour. So the five pairs are as follows.

label strings
0 1 4
1 0 2
2 1 3
3 2 4
4 0 3

The repeating harp patterns are divided into categories with names
such as ngbàkià, limanza and gitangi. An example of a limanza line is given
by repeating the following sequence of pairs.

0

1

2

3

4

qq qq q
q

qq q
q

qq q
q q

q qq q
q qq q

q qq qq qq qq q
q

qq q
q

qq q
q q

q qq q
q qq q

q qq qq qq qq

Transcribing this using our labels, we obtain the sequence

1201414034242312020140303422313.

At first sight, it is hard to see any pattern. But we divide it into groups of
six as follows.

12 014140 342423 120201 403034 2313.
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Since the pattern is supposed to repeat, the initial pair can be thought of as
being at the end of the last group of four to make a group of six,

014140 342423 120201 403034 231312.

Now we can see that each group of six is obtained from the previous group
by moving two places down the cycle of five strings. This forms a sort of
twisted translational symmetry.

There is also a kind of rotational symmetry (this explains why we chose
to move two time slots from the beginning to the end). We can reverse time,
giving

213132 430304 102021 324243 041410

and then reverse the cyclic ordering of the five strings, by replacing string x
by string 2− x (mod 5). This gives the sequence

014140 342423 120201 403034 231312,

which is the same as the original sequence.

Exercises

1. Here is a repeating ngbàkià harp line taken from the same article of
Chemillier.

0

1

2

3

4

qq q
q q

q qq q
q qq qq qq qq q

q

Find the symmetries in this pattern.

Further reading:

Marc Chemillier, Mathématiques et musiques de tradition orale, pages 133–143 of
[43].

Marc Chemillier, Ethnomusicology, ethnomathematics. The logic underlying orally

transmitted artistic practices, pages 161–183 of [1].

Further listening: (see Appendix R)

Marc Chemillier, Central African Republic. Music of the former Bandia courts.
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9.3. Sets and groups

Image produced by xaos on Mac OS X

The mathematical structure which captures the notion of symmetry is
the notion of a group. In this section, we give the basic axioms of group the-
ory, and we describe how these axioms capture the notion of symmetry.

A set is just a collection of objects. The objects in the set are called
the elements of the set. We write x ∈ X to mean that an object x is an ele-
ment of a set X, and we write x 6∈ X to mean that x is not an element of X.

Strictly speaking, a set shouldn’t be too big. For example, the collec-
tion of all sets is too big to be a set, and if we allow it to be a set then we
run into Russell’s paradox, which goes as follows. If the collection of all sets
is regarded as a set, then it is possible for a set to be an element of itself:
X ∈ X. Now form the set S consisting of all sets X such that X 6∈ X. If
S 6∈ S then S is one of the sets X satisfying the condition for being in S,
and so S ∈ S. On the other hand, if S ∈ S then S is not one of these sets
X, and so S 6∈ S. This contradictary conclusion is Russel’s paradox. Fortu-
nately, finite and countably infinite collections are small enough to be sets,
and we are mostly interested in such sets.1 If a set X is finite, we write |X|
for the number of elements in X.

1For a reasonably modern and sophisticated introduction to set theory, I recommend
W. Just and M. Weese, Discovering modern set theory, two volumes, published by the
American Mathematical Society, 1995. None of the sophistication of modern set theory is
necessary for music theory.
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A group is a set G together with an operation which takes any two ele-
ments g and h of G and multiplies them to give again an element of G, writ-
ten gh. For G to be a group, this multiplication must be defined for all pairs
of elements g and h in G, and it must satisfy three axioms:

(i) (Associative law) Given any elements g, h and k in G (not neces-
sarily different from each other), if we multiply gh by k we get the same an-
swer as if we multiply g by hk:

(gh)k = g(hk).

(ii) (Identity) There is an element e ∈ G called the identity element,
which has the following property. For every element g in G, we have eg = g
and ge = g.

(iii) (Inverses) For each element g ∈ G, there is an inverse element
written g−1, with the property that gg−1 = e and g−1g = e.

It is worth noticing that a group does not necessarily satisfy the com-
mutative law. An abelian group is a group satisfying the following axiom in
addition to axioms (i)–(iii):

(iv) (Commutative law)2 Given any elements g and h in G, we have
gh = hg.

We can give a group by writing down a multiplication table. For exam-
ple, here is the multiplication table for a group with three elements.

e a b
e e a b
a a b e
b b e a

To multiply elements g and h of a group using a multiplication table, we look
in row g and column h, and the entry is gh. So for example, looking in the
above table, we see that ab = e. The above example is an abelian group, be-
cause the table is symmetric about its diagonal. The following multiplica-
tion table describes a nonabelian group G with six elements.

e v w x y z
e e v w x y z
v v w e y z x
w w e v z x y
x x y z e v w
y y z x w e v
z z x y v w e

In this group, we have xy = v but yx = w, which shows that the group is
not abelian. We write |G| = 6 to indicate that the group G has six elements.

2In real life, as in group theory, operations seldom satisfy the commutative law. For
example, if we put on our socks and then put on our shoes, we get a very different effect
from doing it the other way round. The associative law is much more commonly satisfied.
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Groups don’t have to be finite of course. For example, the set Z of in-
tegers with operation of addition forms an abelian group. Usually, a group
operation is only written additively if the group is abelian. The identity el-
ement for the operation of addition is 0, and the additive inverse of an inte-
ger n is −n.

It should by now be apparent that multiplication tables aren’t a very
good way of describing a group. Suppose we want to check that the above
multiplication table satisfies the axioms (i)–(iii). We would have to make
6× 6× 6 = 216 checks just for the associative law. Now try to imagine mak-
ing the checks for a group with thousands of elements, or even millions.

Fortunately, there is a better way, based on permutation groups. A
permutation of a set X is a function f from X to X such that each ele-
ment y of X can be written as f(x) for a unique x ∈ X. See also page 317,
where this is described as a bijective function from X to itself. This ensures
that f has an inverse function, f−1 which takes y back to x. So we have
f−1(f(x)) = f−1(y) = x, and f(f−1(y)) = f(x) = y.

For example, if X = {1, 2, 3, 4, 5}, the function f defined by

f(1) = 3, f(2) = 5, f(3) = 4, f(4) = 1, f(5) = 2

is a permutation of X, whose inverse is given by

f−1(1) = 4, f−1(2) = 5, f−1(3) = 1, f−1(4) = 3, f−1(5) = 2.

There are two common notations for writing permutations on finite sets, both
of which are useful. The first notation lists the elements of X and where they
go. In this notation, the permutation f described above would be written as
follows. (

1 2 3 4 5
3 5 4 1 2

)

The other notation is called cycle notation. For the above example, we no-
tice that 1 goes to 3 goes to 4 goes back to 1 again, and 2 goes to 5 goes back
to 2. So we write the permutation as

f = (1, 3, 4)(2, 5).

This notation is based on the fact that if we apply a permutation repeatedly
to an element of a finite set, it will eventually cycle back round to where it
started. The entire set can be split up into disjoint cycles in this way, so that
each element appears in one and only one cycle. If a permutation is written
in cycle notation, to see its effect on an element, we locate the cycle contain-
ing the element. If the element is not at the end of the cycle, the permuta-
tion takes it to the next one in the cycle. If it is at the end, it takes it back to
the beginning. The length of a cycle is the number of elements appearing in
it. If a cycle has length one, then the element appearing in it is a fixed point
of the permutation. Fixed points are often omitted when writing a permuta-
tion in cycle notation.
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To multiply permutations, we compose functions. In the above exam-
ple, suppose we have another permutation g of the same set X, given by

g =

(
1 2 3 4 5
2 5 1 4 3

)

or in cycle notation,
g = (1, 2, 5, 3)(4).

If we omit the fixed point 4 from the notation, this element is written
g = (1, 2, 5, 3). Then f(g(1)) = f(2) = 5. Continuing this way, fg is the fol-
lowing permutation,

fg =

(
1 2 3 4 5
5 2 3 1 4

)
= (1, 5, 4)

whereas gf is given by

gf =

(
1 2 3 4 5
1 3 4 2 5

)
= (2, 3, 4).

The identity permutation takes each element of X to itself. In the above ex-
ample, the identity permutation is

e =

(
1 2 3 4 5
1 2 3 4 5

)
= (1)(2)(3)(4)(5).

Omitting fixed points from the identity permutation leaves us with a rather
embarrassing empty space, which we fill with the sign e denoting the identity
element. The order of a permutation is the number of times it has to be ap-
plied, to get back to the identity permutation. In the above example, f has
order six, g has order four, and both fg and gf have order three. The order
of an element g of any group is defined in the same way, as the least positive
value of n such that gn = 1. If there is no such n, then g is said to have infinite
order. For example, the translation which began the chapter is a transforma-
tion of infinite order, whereas a reflection is a transformation of order two.

Notice how the commutative law is not at all built into the world of
permutations, but the associative law certainly is. The inverse of a permuta-
tion is a permutation, and the composite of two permutations is also a per-
mutation. So it is easy to check whether a collection of permutations forms a
group. We just have to check that the identity is in the collection, and that
the inverses and composites of permutations in the collection are still in the
collection.

The set of all permutations of a set X forms a group which is called the
symmetric group on the set X, with the multiplication given by composing
permutations as above. We write the symmetric group on X as Symm(X).
If X = {1, 2, . . . , n} is the set of integers from 1 to n, then we write Sn for
Symm(X). Notice that the sets X and Symm(X) are quite different in size.
If X = {1, 2, . . . , n} then X has n elements, but Symm(X) has n! elements.
To see this, if f ∈ Symm(X) then there are n possibilities for f(1). Having
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chosen the value of f(1), there are n−1 possibilities left for f(2). Continuing
this way, the total number of possibilities for f is n(n− 1)(n − 2) . . . 1 = n!.

The definition of a permutation group is that it is a subgroup of
Symm(X) for some set X. In general, a subgroup H of a group G is a subset
of G which is a group in its own right, with multiplication inherited from G.
This is the same as saying that the identity element belongs to H, inverses
of elements of H are also in H, and products of elements of H are in H. So
to check that a set H of permutations of X is a group, we check these three
properties so that H is a subgroup of Symm(X). Notice that the associative
law is automatic for permutations, and does not need to be checked.

Exercises

1. If g and h are elements of a group, explain why gh and hg always have
the same order.

2. Show that composition of functions always satisfies the associative law.

Further reading:

Hans J. Zassenhaus, The theory of groups. Dover reprint, 1999. 276 pages, in print.

ISBN 0486409228. This is a solid introduction to group theory, originally published

in 1949 by Chelsea.

9.4. Change ringing

The art of change ringing is peculiar to the English, and, like most English pe-
culiarities, unintelligible to the rest of the world. To the musical Belgian, for
example, it appears that the proper thing to do with a carefully tuned ring of
bells is to play a tune upon it. By the English campanologist, the playing of
tunes is considered to be a childish game, only fit for foreigners; the proper use
of the bells is to work out mathematical permutations and combinations. When
he speaks of the music of his bells, he does not mean musicians’ music—still less
what the ordinary man calls music. To the ordinary man, in fact, the pealing
of bells is a monotonous jangle and a nuisance, tolerable only when mitigated
by remote distance and sentimental association. The change-ringer does, indeed,
distinguish musical differences between one method of producing his permuta-
tions and another; he avers, for instance, that where the hinder bells run 7, 5, 6,
or 5, 6, 7, or 5, 7, 6, the music is always prettier, and can detect and approve,
where they occur, the consecutive fifths of Tittums and the cascading thirds of
the Queen’s change. But what he really means is, that by the English method
of ringing with rope and wheel, each several bell gives forth her fullest and her
noblest note. His passion—and it is a passion—finds its satisfaction in mathe-
matical completeness and mechanical perfection, and as his bell weaves her way
rhythmically up from lead to hinder place and down again, he is filled with the
solemn intoxication that comes of intricate ritual faultlessly performed.

Dorothy L. Sayers, The Nine Tailors, 1934

The symmetric group, described at the end of the last section, is es-
sential to the understanding of change ringing, or campanology. This art be-
gan in England in the tenth century, and continues in thousands of English
churches to this day. A set of swinging bells in the church tower is oper-
ated by pulling ropes. There are generally somewhere between six and twelve
bells. The problem is that the bells are heavy, and so the timing of the peals
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of the bells is not easy to change. So for example, if there were eight bells,
played in sequence as

1, 2, 3, 4, 5, 6, 7, 8,

then in the next round we might be able to change the timings of some ad-
jacent bells in the sequence to produce

1, 3, 2, 4, 5, 7, 6, 8,

but we would not be able to move the timing of a bell in the sequence by
more than one position. So the general rules for change ringing state that a
change ringing composition consists of a sequence of rows. Each row is an
order for the set of bells, and the position of a bell in the row can differ by
at most one from its previous position. It is also stipulated that a row is not
repeated in a composition, except that the last row returns to the beginning.
So for example Plain Bob on four bells goes as follows.

1 2 3 4
2 1 4 3
2 4 1 3
4 2 3 1
4 3 2 1
3 4 1 2
3 1 4 2
1 3 2 4
1 3 4 2
3 1 2 4
3 2 1 4
2 3 4 1
2 4 3 1
4 2 1 3
4 1 2 3
1 4 3 2
1 4 2 3
4 1 3 2
4 3 1 2
3 4 2 1
3 2 4 1
2 3 1 4
2 1 3 4
1 2 4 3
1 2 3 4

Plain Bob

This sequence of rows is really a walk around the symmetric group S4.
So the image of the first row under each of the 4! = 24 elements of S4 ap-
pears exactly once in the list, except that the first is repeated as the last.

In order to fix the notation, we think of a row as a function from the
bells to the time slots. To go from one row to the next, we compose with a
permutation of the set of time slots. The permutation is only allowed to fix a
time slot, or to swap it with an adjacent time slot. So in the above example,
the first few steps involve alternately applying the permutations (1, 2)(3, 4)
and (1)(2, 3)(4). Then when we reach the row 1 3 2 4, this prescription
would take us back to the beginning. In order to avoid this, the permutation
(1)(2)(3, 4) is applied instead of (1)(2, 3)(4), and then we may continue as be-
fore. At the line 1 4 3 2 we again have the problem that we would be taken
to a previously used row, and we avert this by the same method. When we
have exhausted all the permutations in S4, we return to the beginning.
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Exercises

1. The Plain Hunt consists of alternately applying the permutations

a = (1, 2)(3, 4)(5, 6) . . .

b = (1)(2, 3)(4, 5) . . .

If the number of bells is n, how many rows are there before the return to the
initial order?
[Hint: treat separately the cases n even and n odd.]

Further reading:

F. J. Budden, The fascination of groups, CUP, 1972. ISBN 0521080169. Chapter 24
is titled Ringing the changes: groups and campanology.

D. J. Dickinson, On Fletcher’s paper “Campanological groups”, Amer. Math.
Monthly 64 (5) (1957), 331–332.

T. J. Fletcher, Campanological groups, Amer. Math. Monthly 63 (9) (1956), 619–626.

B. Jaulin, Sur l’art de sonner les cloches, Mathématiques et Sciences Humaines 60
(1977), 5–20.

Clare Morris and Jim Gowers, Bell ringing and Fibonacci, Math. Gaz. 71 (456)
(1987), 125–126.

B. D. Price, Mathematical groups in campanology, Math. Gaz. 53 (384) (1969), 129–
133.

R. A. Rankin, A campanological problem in group theory, Math. Proc. Camb. Phil.
Soc. 44 (1948), 17–25.

R. A. Rankin, A campanological problem in group theory, II, Math. Proc. Camb.
Phil. Soc. 62 (1966), 11–18.

A. L. Leigh Silver, Some musico-mathematical curiosities, Math. Gaz. 48 (363)
(1964), 1–17. (Second half only of this article)

J. F. R. Stainer, Change-ringing, Proc. Musical Assoc., 46th Sess. (1919–20), 59–71.

Ian Stewart, Another fine math you’ve got me into. . . , W. H. Freeman & Co., 1992.
Chapter 13 of this book, The group-theorist of Notre Dame, is about change ringing.

Richard G. Swan, A simple proof of Rankin’s campanological theorem, Amer. Math.
Monthly 106 (2) (1999), 159–161.

Arthur T. White, Ringing the changes, Math. Proc. Camb. Phil. Soc. 94 (1983),
203–215.

Arthur T. White, Ringing the changes II, Ars Combinatorica 20–A (1985), 65–75.

Arthur T. White, Ringing the cosets, Amer. Math. Monthly 94 (8) (1987), 721–746.

Arthur T. White, Ringing the cosets II, Math. Proc. Camb. Phil. Soc. 105 (1989),
53–65.

Arthur T. White, Fabian Stedman: the first group theorist? Amer. Math. Monthly
103 (9) (1996), 771–778.
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Arthur T. White and Robin Wilson, The hunting group, Math. Gaz. 79 (484) (1995),
5–16.

Wilfred G. Wilson, Change Ringing, October House Inc., New York, 1965.

9.5. Cayley’s theorem

Cayley’s theorem explains why the axioms of group theory exactly cap-
ture the physical notion of symmetry. It says that any abstract group, in
other words, any set with a multiplication satisfying the axioms described in
§9.3, can be realised as a group of permutations of some set.

There is something mildly puzzling about this theorem. Where are we
going to produce a set from? We’re just given a group, and nothing else. So
we do the obvious thing, and use the set of elements of the group itself as
the set on which it will act as permutations. So before reading this, make
very sure you have separated in your mind the set of elements of a permuta-
tion group and the set on which it acts by permutations. Because otherwise
what follows will be very confusing.

Let G be a group. Then to each element g ∈ G, we assign the permu-
tation in Symm(G) which sends an element h ∈ G to gh ∈ G. We want to
say that this displays a copy of the group G as a permutation group inside
Symm(G). The best way to say this is to introduce the notion of a homo-
morphism of groups.

Recall that a function f from one set X to another set Y , written
f : X → Y , simply assigns an element f(x) of Y to each element x of X in
a well defined manner. Many elements of X are allowed to go to the same
place in Y , and not every element of Y needs to be assigned. The image of f
is the subset of Y consisting of the elements of the form f(x). The function
f is injective if no two elements of X go to the same place in Y . The func-
tion f is surjective if every element of Y is in the image of f . A function f
which is both injective and surjective is said to be bijective. A bijective func-
tion is also called a one-one correspondence. A bijective function is the same
thing as a function which has an inverse, namely a function f ′ : Y → X with
the property that f(f ′(y)) = y for all y ∈ Y , and f ′(f(x)) = x for all x ∈ X.
Namely, f ′ takes y to the unique x such that y = f(x). In this language, a
permutation of a set X is just a bijective function from X to itself.

If G and H are groups, then a homomorphism f : G→ H is a function
from the set G to the set H which “preserves the multiplication” in the sense
that it sends the identity element of G to the identity element of H, and for
elements g1 and g2 in G we have

f(g1g2) = f(g1)f(g2).

The image of a homomorphism f has the property that it is a subgroup of
H. An injective homomorphism is called a monomorphism. A surjective ho-
momorphism is called an epimorphism. A bijective homomorphism is called
an isomorphism. If there is an isomorphism from G to H, we say that G and
H are isomorphic. This means that they are “really” the same group, except
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that the elements happen to have different names. If f is a monomorphism,
it can be regarded as identifying G with a subgroup of H. In other words, it
induces an isomorphism between G and its image, which is a subgroup of H.

Example 9.5.1. Consider the group G of rotational symmetries of a
cube. In other words, an element of G consists of a way of rotating a cube so
that the faces are aligned in the same direction as they started. There are 24
elements of G, because we can put any one of six faces downwards, and four
different ways round. Once we have decided which face to put downwards,
and which way round to put it, the rotational symmetry is completely de-
scribed. To multiply elements g and h of G to get gh is to do the rotational
symmetry h followed by the rotational symmetry g, so that

gh (x) = g(h(x)).

The confusing order in which things happen is because we write our functions
on the left of their arguments, so that g(h(x)) means first do h, then do g.

There is an isomorphism between this group G of symmetries of the
cube and the group Symm{a, b, c, d} of permutations on a set of four objects.
This may be visualised by labelling the four main diagonals of the cube with
the symbols a, b, c, d and seeing the effect of a rotation on this labelling.

In the language of homomorphisms, we can describe Cayley’s theorem
as follows.

Theorem 9.5.2 (Cayley). If G is a group, let f be the function from G
to Symm(G) which is defined by f(g)(h) = gh. Then f is a monomorphism,
and so G is isomorphic with a subgroup of Symm(G).

Proof. First, we check that f does indeed take an element g ∈ G to a
permutation. In other words, we must check that f(g) is a bijection. This is
easy to check, because f(g−1) is its inverse. Namely, for h ∈ G we have

f(g−1)(f(g)(h)) = f(g−1)(gh) = g−1(gh) = (g−1g)h = h

and similarly f(g)(f(g−1)(h)) = h.
Clearly f takes the identity element of G to the identity permutation.

The fact that f is a homomorphism is really a statement of the associative
law in G. Namely,

f(g1g2)(h) = (g1g2)h = g1(g2h) = f(g1)(g2h)

= f(g1)(f(g2)(h)) = (f(g1)f(g2))(h).

Finally, to prove that f is injective, if f(g1) = f(g2) then for all h ∈ G,
f(g1)(h) = f(g2)(h). Taking for h the identity element of G, we see that
g1 = g2. �
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9.6. Clock arithmetic and octave equivalence

Clock arithmetic is where we count up to twelve, and then start back
again at one. So for example, to add 6 + 8 in clock arithmetic, we count six
up from 8 to get 9, 10, 11, 12, 1, 2, and so in this system we have 6 + 8 = 2.
It’s probably better to write 0 instead of 12, so that we go from 11 back to
0 instead of 12 to 1. So here is the addition table for this clock arithmetic.

+ 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 6 7 8 9 10 11 0
2 2 3 4 5 6 7 8 9 10 11 0 1
3 3 4 5 6 7 8 9 10 11 0 1 2
4 4 5 6 7 8 9 10 11 0 1 2 3
5 5 6 7 8 9 10 11 0 1 2 3 4
6 6 7 8 9 10 11 0 1 2 3 4 5
7 7 8 9 10 11 0 1 2 3 4 5 6
8 8 9 10 11 0 1 2 3 4 5 6 7
9 9 10 11 0 1 2 3 4 5 6 7 8

10 10 11 0 1 2 3 4 5 6 7 8 9
11 11 0 1 2 3 4 5 6 7 8 9 10

To emphasise that an addition is being done in clock arithmetic rather than
ordinary arithmetic, it is often written using the congruence symbol “≡”
rather than the equals sign, as in

6 + 8 ≡ 2 (mod 12).

More generally, a ≡ b (mod n) means that a− b is a multiple of n.
In terms of group theory, the above addition table makes the set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} into a group. The operation is written as ad-
dition; of course, clock arithmetic is abelian. The identity element is 0, and
the inverse of i is either −i or 12 − i, depending which is in the range from
0 to 11. This group is written as Z/12.

There is an obvious homomorphism from the group Z to Z/12. It takes
an integer to the unique integer in the range from 0 to 11 which differs from
it by a multiple of 12.

In musical terms, we could think of the numbers from 0 to 11 as repre-
senting musical intervals in multiples of semitones, in the twelve tone equal
tempered octave. So for example 1 is represented by the permutation which
increases each note by one semitone, namely the permutation(

C C♯ D E♭ E F F♯ G G♯ A B♭ B
C♯ D E♭ E F F♯ G G♯ A B♭ B C

)

The circulating nature of clock arithmetic then becomes octave equivalence
in the musical scale, where two notes belong to the same pitch class if they
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differ by a whole number of octaves. Each element of Z/12 is then repre-
sented by a different permutation of the twelve pitch classes, with the num-
ber i representing an increase of i semitones. So for example the number 7
represents the permuation which makes each note higher by a fifth. Then ad-
dition has an obvious interpretation as addition of musical intervals.

This permutation representation looks like Cayley’s theorem. But mak-
ing this precise involves choosing a starting point somewhere in the octave.
We choose to start by representing C as 0, so that the correspondence becomes

C C♯ D E♭ E F F♯ G G♯ A B♭ B
0 1 2 3 4 5 6 7 8 9 10 11

Under this correspondence, each element of Z/12 is being represented by the
permutation of the twelve notes of the octave given by Cayley’s theorem.

Of course, there is nothing special about the number 12 in clock arith-
metic. If n is any positive integer, we may form the group Z/n whose ele-
ments are the integers in the range from 0 to n− 1. Addition is described by
adding as integers, and then subtracting n if necessary to put the answer back
in the right range. So for example, if we are interested in 31 tone equal tem-
perament, which gives such a good approximation to quarter comma mean-
tone (see §6.5), then we would use the group Z/31.

Further reading:

Gerald J. Balzano, The group-theoretic description of 12-fold and microtonal pitch
systems, Computer Music Journal 4 (4) (1980), 66–84.

Paul Isihara and M. Knapp, Basic Z12 analysis of musical chords. With loose erra-
tum, UMAP J. 14 (1993), 319–348.

D. Lewin, A label-free development for 12-pitch-class systems, J. Music Theory 21
(1) (1977), 29–48.

Paul F. Zweifel, Generalized diatonic and pentatonic scales: a group-theoretic ap-

proach. Perspectives of New Music 34 (1) (1996), 140–161.

9.7. Generators

If G is a group, a subset S of the set of elements of G is said to gen-
erate G if every element of G can be written as a product of elements of S
and their inverses.3 We say that G is cyclic if it can be generated by a sin-
gle element g. In this case, the elements of the group can all be written in
the form gn with n ∈ Z. The case n = 0 corresponds to the identity element,
while negative values of n are interpreted to give powers of the inverse of g.

There are two kinds of cyclic groups. If there is no non-zero value of n
for which gn is the identity element, then the elements gn multiply the same
way that the integers n add. In this case, the group is isomorphic to the ad-
ditive group Z of integers. If there is a non-zero value of n for which gn is the

3To clarify, an empty product is considered to be the identity element. So if S is empty
and G is the group with one element, then S does generate G.
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identity element, then by inverting if necessary, we can assume that n is pos-
itive. Then letting n be the smallest positive number with this property, it is
easy to see that G is isomorphic to the group Z/n described in the last section.

How many generators does Z/n have? We can find out whether an in-
teger i generates Z/n with the help of some elementary number theory.

Lemma 9.7.1. Let d be the greatest common divisor of n and i. Then
there are integers r and s such that d = rn+ si.

Proof. This follows from Euclid’s algorithm for finding the greatest
common divisor of two integers.

Let’s just recall how Euclid’s algorithm goes, and then we’ll see how it
enables you to write the greatest common divisor in this form. If we’re given
two integers, let’s assume that they’re positive (otherwise, just negate them)
and that the second is bigger than the first (otherwise, swap them round).
If the first is an exact divisor of the second, then it is the greatest common
divisor. If it isn’t, subtract as many of the first as you can from the second
without going negative, and then swap them round. Now repeat.

For example, suppose we’re given the integers 24 and 34. Since 24 is
smaller than 34, we subtract 24 from 34 and swap them round, so our new
numbers are 10 and 24. We can now subtract two 10’s from 24 and swap
them round to get 4 and 10. We subtract two 4’s from 10 and swap to get 2
and 4. Now 2 is an exact divisor of 4, so 2 is the greatest common divisor.

If we keep track of the operations, it enables us to write 2 as r × 24 +
s× 34:

10 = −24 + 34

4 = 24− 2× 10 = 24− 2× (34− 24) = 3× 24− 2× 34

2 = 10− 2× 4 = (−24 + 34)− 2(3 × 24− 2× 34) = −7× 24 + 5× 34.

So we have r = −7 and s = 5. �

If i has no common factor with n, then d = 1, and the above equation
says that s times i, considered as the sth power of i in the additive group
Z/n, is equal to 1. Since the element 1 is a generator of Z/n, it follows that
i is also a generator.

On the other hand, if n and i have a common factor d > 1, then all pow-
ers of i in Z/n (i.e., all multiples of i when thinking additively) give numbers
divisible by d, so the number 1 is not a power of i. So we have the following.

Theorem 9.7.2. The generators for Z/n are precisely the numbers i in
the range 0 < i < n with the property that n and i have no common factor. �

The number of possibilities for i in the above theorem is written φ(n),
and called the Euler phi function of n.

For example, if n = 12, then the possibilities for i are 1, 5, 7 and 11,
and so φ(12) = 4. In terms of musical intervals, the fact that 7 is a gener-
ator for Z/12 corresponds to the fact that all notes can be obtained from a
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given notes by repeatedly going up by a fifth. This is the circle of fifths. So
it can be seen that apart from the circle of semitones upwards and down-
wards, the only other ways of generating all the musical intervals is via the
circle of fifths, again upwards or downwards. This, together with the conso-
nant nature of the fifth, goes some way toward explaining the importance of
the circle of fifths in music.

It is interesting to see that if n = p happens to be a prime number, for
example p = 31, then every element of Z/p apart from zero is a generator.
So φ(p) = p− 1.

In fact, there is a recipe for finding φ(n) in general, which goes as fol-
lows. If n = pa is a power of a prime then φ(n) = pa−1(p − 1). If m and
n are relatively prime (i.e., have no common factors greater than one), then
φ(mn) = φ(m)φ(n). Any positive integer can be written as a product of
prime powers for different primes, so this gives a recipe for calculating φ(n).
For example,

φ(72) = φ(23.32) = φ(23)φ(32) = 22(2− 1)3(3 − 1) = 24.

Here are the values of φ(n) for small values of n.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

φ(n) 0 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8

Exercises

1. Write down the generators for Z/24. What is φ(24)?

2. Show that each generator x of Z/n satisfies x2 ≡ 1 (mod n) if and only if
n is a divisor of 24.

3. Find (a) φ(49), (b) φ(60), (c) φ(142), (d) φ(10000).

4. Let C× be the group of non-zero complex numbers under multiplication.
Show that there are exactly n different homomorphisms from Z/n to C×

(these are called the characters of Z/n, and they play an important role in
number theory and many other parts of mathematics). How many of these
homomorphisms are injective? What do these homomorphisms have to do
with the discrete Fourier transform of §7.9?

9.8. Tone rows

In twelve tone music, one begins with a twelve tone row, which consists
of a sequence of twelve pitch classes in order, so that each of the twelve pos-
sible pitch classes appears just once.

If we want to be able to look at music which is not formally described
as twelve tone as well, we should consider sequences of pitch classes of any
length, and with possible repetitions.
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A transposition4 of a sequence x of pitch classes by n semitones is the
sequence Tn(x) in which each of the pitch classes in x has been increased by
n semitones. So for example if

x = 3 0 8

then
T4(x) = 7 4 0.

As another example, the first two bars of Chopin’s Étude, Op. 25 No. 10
consist of the pitches

6–5–6 7–8–9 8–7–8 9–10–11 | 10–9–10 11–0–1 0–11–0 1–2–3

played as triplets, octave doubled, in both hands simultanously. The second
half of the first bar is obtained by applying the transformation T2 to the first
half. The transformation T2 is applied again to obtain the first half of the
second bar, and again for the second half. So if x is the sequence 6 5 6 7 8 9
then these two bars can be written

x T2(x) | T4(x) T6(x).

Bars 3 and 4 of this piece go as follows.

2–3–4 3–4–5 4–5–6 5–6–7 | 6–7–8 7–8–9 7–8–9 8–9–10

Writing y for the sequence 2 3 4, we see that the last group in bar 2 is T−1(y),
while bars 3 and 4 can be written

y T(y) T2(y) T3(y) | T4(y) T5(y) T5(y) T6(y).

Turning to the next operation, inversion I(x) of a sequence x just re-
places each pitch class by its negative (in clock arithmetic). So in the first
example above with x = 3 0 8, we have

I(x) = 9 0 4.

The sequences TnI(x) are also regarded as inversions of x. So for example

T6I(x) = 3 6 10

is an inversion of the above sequence x.
The retrograde R(x) of x is just the same sequence in reverse order.

So in the above example,
R(x) = 8 0 3.

We have the following relations among the operations T, I and R:

T12 = e, TnR = RTn, TnI = IT−n, RI = IR,

4Unfortunately, in group theory the word transposition is used to refer to a permuta-
tion which leaves all but two points fixed, and swaps those two points. These two usages
from music and mathematics are not related, and this can be a source of confusion.

Music theorists generally write Tn instead of T
n; we shall stick with T

n, as it con-
forms better to group theoretic notation.
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where e represents the identity operation, which does nothing (another name
for this operation is T0). All relations between the operations T, I and R

follow from these.
There are four forms of a tone row x. The prime form is the original

form x of the row, or any of its transpositions Tn(x). The inversion form
is any one of the rows TnI(x). The retrograde form is any one of the rows
TnR(x). Finally, the retrograde inversion form of the row is any one of the
rows TnRI(x).

In group theoretic terms, the operations Tn (0 ≤ n ≤ 11) form a cyclic
group Z/12. The operation R together with the identity operation form a
cyclic group Z/2. The operations T and R commute. The group theoretic
way of describing a group with two types of operations which commute with
each other is a Cartesian product, which we describe in §9.9. The relation-
ship between T and I is more complicated, and is discussed in §9.10.

Exercises

1. Spot the retrograde tone row near the end of Spike Jones’ Liebestraum.

Further reading:

Allen Forte, The structure of atonal music [40].

George Perle, Twelve-tone tonality [104].

John Rahn, Basic atonal theory, Schirmer books, 1980.

9.9. Cartesian products

If G and H are groups, then the Cartesian product, or direct product
G ×H is the group whose elements are the ordered pairs (g, h) with g ∈ G
and h ∈ H. The multiplication is defined by

(g1, h1)(g2, h2) = (g1g2, h1h2).

The identity element is formed from the identity elements of G and H. The
inverse of (g, h) is (g−1, h−1). The axioms of a group are easily verified, so
that G×H with this multiplication does form a group.

Suppose that G and H are subgroups of a bigger group K, with the
properties that each element of G commutes with each element of H, the
only element which G and H have in common is the identity element (writ-
ten G∩H = {1}), and every element of K can be written as a product of an
element of G and an element of H (written K = GH). Then there is an iso-
morphism from G×H to K given by sending (g, h) to gh. In this case, K is
said to be an internal direct product of G and H.

For example, the group whose elements are the operations Tn and TnR

of §9.8 is an internal direct product of the subgroup consisting of the oper-
ations Tn and the subgroup consisting of the identity and R. So this group
is isomorphic to Z/12 × Z/2.



9.10. DIHEDRAL GROUPS 325

As another example, the lattice Z2 which we used in order to describe
just intonation in §6.8 is really a direct product Z× Z, where Z is the group
of integers under addition, as usual. This can be viewed as an internal direct
product, where the two copies of Z consist of the elements (n, 0) and the ele-
ments (0, n) for n ∈ Z. Similarly, the lattice Z3 of §6.9 is Z×Z×Z. This can
be viewed as an internal direct product of three copies of Z consisting of the
elements (n, 0, 0), the elements (0, n, 0) and the elements (0, 0, n) with n ∈ Z.

Exercises

1. Find an isomorphism between Z/3 × Z/4 and Z/12. Interpret this in
terms of transpositions by major and minor thirds.

2. Show that there is no isomorphism between Z/12× Z/2 and Z/24.

[Hint: how many elements of order two are there?]

3. The group Z/2×Z/2 is called the Klein four group. Go back to Exercise 1

in §9.1 and explain what the Klein four group has to do with this example.

9.10. Dihedral groups

The operations T and I of §9.8 do not commute, but rather satisfy the
relations TnI = IT−n. So we do not obtain a direct product in this case, but
rather a more complicated construction, which in this case describes a dihe-
dral group.

A dihedral group has two elements g and h such that h2 = 1 and
gh = hg−1. Every element is either of the form gi or of the form gih. The
powers of g form a cyclic subgroup which is either Z/n or Z. In the former
case, the group has 2n elements and is written5 D2n. In the latter case, the
group has infinitely many elements, and is written D∞ and called the infi-
nite dihedral group. This is one of the groups which appeared in §9.1.

5Some authors write Dn for the dihedral group of order 2n, just to confuse matters.
Presumably these authors think that I’m confusing matters.
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So the operations Tn and TnI form a group isomorphic to the dihedral
group D24. Finally, putting all this together, the group whose operations are

Tn, TnR, TnI, TnRI

form a group which is isomorphic to D24 × Z/2.
The dihedral group D2n has an obvious interpretation as the group of

rigid symmetries of a regular polygon with n sides.

�
��

T
TT

�
��

T
TT h

gh

x g

The element g corresponds to counterclockwise rotation through 1/n of a cir-
cle, while h corresponds to reflection about a horizontal axis. Then gih cor-
responds to a reflection about an axis of symmetry which is rotated from the
horizontal by i/n of a semicircle. The above diagram is for the case n = 6.

Exercises

1. Find an isomorphism between the dihedral group D6 and the symmetric
group S3.

2. Find an isomorphism between D12 and S3 × Z/2.

3. Show that D24 is not isomorphic to S3 × Z/4.

4. Consider the group D24 generated by T and I. Which elements fix the fol-
lowing diminished seventh chord setwise? What sort of a group do they form?G 42 !!!!
5. Repeat Exercise 4 with the following “augmented triad.”G !!4!
6. Discuss the Nzakara harp example of §9.2 in terms of the Cartesian prod-
uct of dihedral groups D10 ×D∞.
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9.11. Orbits and cosets

If a group G acts as permutations on a set X, then we say that two el-
ements x and x′ of X are in the same orbit if there is an element g ∈ G such
that g(x) = x′. This partitions X into disjoint subsets, each consisting of el-
ements related this way. These subsets are the orbits of G on X.

So for example, if G is a cyclic group generated by an element g, then
the cycles of g as described in §9.3 are the orbits of G on X.

As another example, the group Z/12 acts on the set of tone rows of a
given length, via the operations Tn. Two tone rows are in the same orbit ex-
actly when one is a transposition of the other.

If there is only one orbit for the action of G on X, we say that G acts
transitively on X. So for example Z/12 acts transitively on the set of twelve
pitch classes, but not on the set of tone rows of a given length bigger than one.

We discussed the related concept of cosets briefly in §6.8. Here we
make the discussion more precise, and show how this concept is connected
with permutations. If H is a subgroup of a group G, we can partition the el-
ements of G into left cosets of H as follows. Two elements g and g′ are in
the same left coset of H in G if there exists some element h ∈ H such that
gh = g′. This partitions the group G into disjoint subsets, each consisting of
elements related this way. These subsets are the left cosets of H in G. The
notation for the left coset containing g is gH. So gH and g′H are equal pre-
cisely when there exists an element h ∈ H such that gh = g′; in other words,
when g−1g′ is an element of H. The coset gH consists of all the elements gh
as h runs through the elements of H. The way of writing this is

gH = {gh | h ∈ H}.
The left cosets of H in G all have the same size as H does. So the

number of left cosets, written |G : H|, is equal to |G|/|H|.
The example in §6.8 goes as follows. The group G is Z2 = Z× Z. The

subgroup H is the unison sublattice. Each coset consists of a set of vectors
related by translation by the unison sublattice. The group theoretic notion
corresponding to a periodicity block is a set of coset representatives. A set
of left coset representatives for a subgroup H in a group G just consists of a
choice of one element from each left coset.

If G acts as permutations on a set X, then there is a close connec-
tion between orbits and cosets of subgroups, which can be described in terms
of stabilisers. If x is an element of X, then the stabiliser in G of x, writ-
ten StabG(x), is the subgroup of G consisting of the elements h satisfying
h(x) = x.

Theorem 9.11.1. Let H = StabG(x). Then the map sending the coset
gH to the element g(x) ∈ X is well defined, and establishes a bijective cor-
respondence between the left cosets of H in G and the elements of X in the
orbit containing x.
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Proof. To say that the map is well defined is to say that if we are given
another element g′ such that gH = g′H, then g(x) = g′(x). The reason why
this is true is that there is an element h ∈ H such that gh = g′, and then
g′(x) = gh(x) = g(h(x)) = g(x).

To see that the map is injective, if g(x) = g′(x) then x = g−1g′(x) and
so g−1g′ ∈ H, and gH = g′H. It is obviously surjective, by the definition of
an orbit. �

A consequence of this theorem is that the size of an orbit is equal to
the index of the stabiliser of one of its elements,

|Orbit(x)| = |G : StabG(x)|. (9.11.1)

9.12. Normal subgroups and quotients

In the last section, we discussed left cosets of a subgroup. Of course,
right cosets make just as much sense; the reason why left rather than right
cosets made their appearance in understanding orbits was that we write func-
tions on the left of their arguments. We write Hg for the right coset contain-
ing g, so that

Hg = {hg | h ∈ H}.
It does not always happen that the left and right cosets of H are the same.
For example, if G is the symmetric group S3, and H is the subgroup consist-
ing of the identity and the permutation (12), then the left cosets are

{e, (12)}, {(123), (13)}, {(132), (23)}
while the right cosets are

{e, (12)}, {(123), (23)}, {(132), (13)}.
This is because (123)(12) = (13) while (12)(123) = (23).

A subgroup N of G is said to be normal if the left cosets and the right
cosets agree. For example, if G is abelian, then every subgroup is normal.

Theorem 9.12.1. A subgroup N of G is normal if and only if, for each
g ∈ G we have gNg−1 = N .

Proof. To say that the subgroup N is normal means that for each g ∈ G
we have gN = Ng. Multiplying on the right by g−1, and noticing that this
can be undone by multiplication on the right by g, we see that this is equiv-
alent to the condition that for each g ∈ G we have gNg−1 = N . �

If N is normal in G, then the cosets of N in G can be made into a
group called the quotient group of G by N , and denoted G/N , as follows.
If g1N and g2N are cosets then we multiply them to form the coset g1g2N .
To check that this is well defined, we must check that if g1N = g′1N then
g1g2N = g′1g2N , and that if g2N = g′2N then g1g2N = g1g

′
2N . The second

of these checks is easy enough, and just uses the associativity of multiplica-
tion. But for the first, we must use normality. The easiest way to do this
is to switch to right cosets, where we are checking that if Ng1 = Ng′1 then
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Ng1g2 = Ng′1g2. This is like the second check for left cosets, and just uses
the associativity of multiplication. Without normality, the multiplication of
left cosets is not well defined.

To check that the axioms for a group are satisfied by this multiplication
of cosets, we need an identity element, which is provided by the coset eN = N
containing the identity element e of G. The inverse of the coset gN is the
coset g−1N . It is an easy exercise to check the axioms with these definitions.

Clock arithmetic is a good example of a quotient group. Inside the
additive group Z of integers, we have a (normal) subgroup nZ consisting of
the integers divisible by n. The quotient group Z/nZ is the clock arithmetic
group, which we have been writing in the more usual notation Z/n.

Another example is given by the unison vectors and periodicity blocks
of §6.8. The quotient of Z2 (or more generally Zn) by the unison sublattice
is a finite abelian group whose order is equal to the absolute value of the de-
terminant of the matrix formed from the unison vectors.

There is a standard theorem of abstract algebra which says that every
finite abelian group can be written in the form

Z/n1 × Z/n2 × · · · × Z/nr.

The positive integers n1, . . . , nr are not uniquely determined; for example
Z/12 is isomorphic to Z/3 × Z/4. However, they can be chosen in such a
way that each one is a divisor of the next one. If they are chosen in this way,
then they are uniquely determined, and then they are called the elementary
divisors of the finite abelian group. There is a standard algorithm for find-
ing the elementary divisors, which can be found in many books on abstract
algebra. From the point of view of scales, it seems relevant to try to choose
the unison sublattice so that the quotient group is cyclic, which corresponds
to the case where there is just one elementary divisor.

There is an intimate relationship between normal subgroups and ho-
momorphisms. If f is a homomorphism from G to H, then the kernel of f is
defined to be the set of elements g ∈ G for which f(g) is equal to the iden-
tity element of H. Writing N for the kernel of f , it is not hard to check that
N is a normal subgroup of G.

Theorem 9.12.2 (First Isomorphism Theorem). Let f be a homomor-
phism from G to H, with kernel N . Then there is an isomorphism between
the quotient group G/N and the subgroup of H consisting of the image of the
homomorphism f . This isomorphism takes a coset gN to f(g).

Proof. There are a number of things to check here. We need to check
that the function from G/N to the image of f which takes gN to f(g) is well
defined, that it is a group homomorphism, that it is injective, and that its
image is the same as the image of f . These checks are all straightforward,
and are left for the reader to fill in. �

There are actually three isomorphism theorems in elementary group
theory, but we shall not mention the second or third.
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An example of the first isomorphism theorem is again provided by clock
arithmetic. The homomorphism from Z to Z/12 is surjective and has kernel
12Z, and so Z/12 is isomorphic to the quotient of Z by 12Z, as we already
knew.

9.13. Burnside’s lemma

This section and the next are concerned with problems of counting. A
typical example of the kind of problem we are interested in is as follows. Re-
call that a tone row consists of the twelve possible pitch classes in some or-
der. The total number of tone rows is

12× 11× 10× 9× · · · × 3× 2× 1 = 12!

or 479001600.
We might wish to count the number of possible twelve tone rows, where

two tone rows are considered to be the same if one can be obtained from the
other by applying an operation of the form Tn. In this case, each tone row
has twelve distinct images under these operations. So the total number of
tone rows up to this notion of equivalence is 1/12 of the number of tone rows,
or 11! = 39916800.

If we want to complicate the situation further, we might consider two
tone rows to be equivalent if one can be obtained from the other using the op-
erations Tn, I and R. Now the problem is that some of the tone rows are fixed
by some of the elements of the group. So the counting problem degenerates
into a lot of special cases, unless we find a more clever way of counting. This
is the kind of problem that can be solved using Burnside’s counting lemma.

The abstract formulation of the problem is that we have a finite group
acting as permutations on a finite set, and we want to know the number of
orbits.

Burnside’s lemma allows us to count the number of orbits of a finite
group G on a finite set X, provided we know the number of fixed points of
each element g ∈ G. It says that the number of orbits is the average number
of fixed points.

Lemma 9.13.1 (Burnside). Let G be a finite group acting by permuta-
tions on a finite set X. For an element g ∈ G, write n(g) for the number of
fixed points of g on X. Then the number of orbits of G on X is equal to

1

|G|
∑

g∈G
n(g).

Proof. We count in two different ways the number of pairs (g, x) con-
sisting of an element g ∈ G and a point x ∈ X such that g(x) = x. If we
count the elements of the group first, then for each element of the group we
have to count the number of fixed points, and we get

∑
g∈G n(g). On the

other hand, if we count the elements of X first, then for each x, equation
(9.11.1) shows that the number of elements g ∈ G stabilizing it is equal to |G|
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divided by the length of the orbit in which x lies. So each orbit contributes
|G| to the count. �

So let us return to the problem of counting tone rows. Suppose that we
wish to count the number of tone rows, and we wish to regard one tone row
as equivalent to another if the first can be manipulated to the second using
the operations T, I and R. In other words, we wish to count the number of
orbits of the group G = D24 × Z/2 generated by T, I and R on the set X of
tone rows.

In order to apply Burnside’s lemma, we should find the number of tone
rows fixed by each operation in the group. The identity operation fixes all
tone rows, so that one is easy. The operations Tn with 1 ≤ n ≤ 11 don’t fix
any tone rows, so that’s also easy. The operation R fixes the tone rows whose
last six entries are the reverse of the first six; but then there are repetitions
so these aren’t allowed as tone rows. For the operation T6R, the fixed tone
rows are the ones where the last six entries are the reverse of the first six,
but transposed by a tritone (half an octave). So the first six have to be cho-
sen in a way that uses just one of each pair related by a tritone. The num-
ber of ways of doing this is

12× 10× 8× 6× 4× 2 = 46080.

For values of n other than zero or six, TnR does not fix any tone rows, be-
cause doing this operation twice gives T2n, which doesn’t fix any tone rows.

Next, we need to consider inversions. The operation I fixes only those
tone rows comprised of the entries 0 and 6; but then there must be repeti-
tions, so these aren’t tone rows. The same goes for any operation of the form
TnI; the entries come from a subset of size at most two, so we can’t form a
tone row this way.

Finally, for an operation TnIR, the entries in a fixed tone row are again
determined by the first six entries. So the tone row has the form

a1, a2, a3, a4, a5, a6, n− a6, n− a5, n− a4, n− a3, n− a2, n− a1.

If n is even, there is some tone fixed by TnI, which forces us to repeat a tone,
so there are no fixed tone rows. If n is odd, however, there are fixed tone
rows, and there are

12× 10× 8× 6× 4× 2 = 46080

of them.
We summarise this information in the following table.
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operation how many in G fixed points
identity 1 479001600

Tn (1 ≤ n ≤ 11) 11 0
T6R 1 46080

TnR (n 6= 6) 11 0
TnI 12 0

TnIR (n even) 6 0
TnIR (n odd) 6 46080

So the sum over g ∈ G of the number of fixed points of g on X is

479001600 + 7× 46080 = 479324160.

Dividing by |G| = 48, the total number of orbits of G on tone rows is equal
to 9985920. This proves the following theorem.

Theorem 9.13.2 (David Reiner). If two twelve tone rows are consid-
ered the same when one may be obtained from the other using the operations
T, I and R, then the total number of tone rows is 9985920. �

Further reading:

James A. Fill and Alan J. Izenman, Invariance properties of Schoenberg’s tone row
system, J. Austral. Math. Soc. Ser. B 21 (1979/80), 268–282.

James A. Fill and Alan J. Izenman, The structure of RI-invariant twelve-tone rows,
J. Austral. Math. Soc. Ser. B 21 (1979/80), 402–417.

Colin D. Fox, Alban Berg the mathematician, Math. Sci. 4 (1979), 105–107.

David J. Hunter and Paul T. von Hippel, How rare is symmetry in musical 12-tone
rows? Amer. Math. Monthly 110 (2) (2003), 124–132.

David Reiner, Enumeration in music theory, Amer. Math. Monthly 92 (1) (1985),

51–54.

9.14. Pitch class sets

A pitch class set is defined to be a subset of the set of twelve pitch
classes. For convenience, we number the pitch classes {0, 1, . . . , 11} as in §9.6.

Atonal theorists and composers such as Milton Babbitt, Allen Forte
and Elliott Carter put an equivalence relation on pitch class sets. They say
that two pitch class sets are equivalent if one can be obtained from the other
using only transpositions Tn and inversion I. In other words, the equivalence
classes are the orbits of the dihedral group D24 generated by T and I on the
collection of subsets of {0, 1, . . . , 11}.

We can use Burnside’s Lemma 9.13.1 to count how many equivalence
classes there are of each size. For this purpose, we need to count the fixed
points of the elements of D24 on the collection of sets of a given size. It is
easy to verify the following table.
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Group size of subset
element 0 1 2 3 4 5 6 7 8 9 10 11 12
Identity 1 12 66 220 495 792 924 792 495 220 66 12 1

T, T5,T7,T11 1 0 0 0 0 0 0 0 0 0 0 0 1
T2, T10 1 0 0 0 0 0 2 0 0 0 0 0 1
T3, T9 1 0 0 0 3 0 0 0 3 0 0 0 1
T4, T8 1 0 0 4 0 0 6 0 0 4 0 0 1

T6 1 0 6 0 15 0 20 0 15 0 6 0 1
T2mI 1 2 6 10 15 20 20 20 15 10 6 2 1

T2m+1I 1 0 6 0 15 0 20 0 15 0 6 0 1

For example, the first row just consists of the binomial coefficients
(12
j

)
,

where j is the size of the subset. The remaining rows of the table for powers
of T are also just binomial coefficients, but interspersed with zeros. The in-
versions TnI come in two varieties. If n = 2m+ 1 is odd, then there are no
fixed pitch classes. So the fixed subsets have even size and the numbers are
again binomial coefficients

(
6
j

)
, where 2j is the size of the subset. If n = 2m

is even, then there are two fixed pitch classes, so there are 2
(5
j

)
fixed subsets

of odd size 2j + 1.
We can now apply Burnside’s Lemma 9.13.1 to find how many orbits

of D24 there are on the subsets of various sizes. The answers are as follows.

size of subset 0 1 2 3 4 5 6 7 8 9 10 11 12
number of orbits 1 1 6 12 29 38 50 38 29 12 6 1 1

For example, to compute how many subsets there are of size 5, we compute
1
24 (792 + 6× 20) = 912

24 = 38.

For reference, we can also compute the number of orbits under the
group Z/12 consisting of powers of T using the same data. The answers are
as follows.

size of subset 0 1 2 3 4 5 6 7 8 9 10 11 12
number of orbits 1 1 6 19 43 66 80 66 43 19 6 1 1

Incidentally, the reason for the symmetry in the above tables is that
complementation gives a one to one correspondence between subsets of size
j and subsets of size 12− j, and this correspondence is preserved by the ac-
tion of the group D24.

Allen Forte describes the following method for choosing a preferred rep-
resentative from each orbit, called the prime form.6 When the elements of
the subset are listed in increasing order, the first should be zero, and the last
should be as small as possible. If there is more than one representative with
the same last term, then the second should be as small as possible, then the
third, and so on up to the next to last. In other words, the prime form is the

6This should not be confused with the prime form of a tone row, described in §9.8.
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earliest in the lexicographic order with respect to (first, last, second, third,
. . . , next to last).

For example, take the set {1, 7, 9}. We can use T11 to take it to a set
containing zero, namely {0, 6, 8}. Or we could use T5 to take it to {0, 2, 6},
or T3 to take it to {0, 4, 10}. We also need to use I to get {3, 5, 11}, and then
use powers of T to get {0, 2, 8}, {0, 4, 6} and {0, 6, 10}. Of the six possibili-
ties, the ones with the smallest last term are {0, 2, 6} and {0, 4, 6}. To break
the tie, we compare second terms, and we see that {0, 2, 6} is the prime form.

There is an easy way to attach an invariant to each orbit, called the in-
terval vector. This is computed as follows. To an unordered pair of distinct
pitch classes, we can assign a difference, in the range from 1 to 6, by going
around the circle of pitch classes in the shorter of the two possible directions.
Take all unordered pairs in the set, and to each pair find the difference in this
way. Then record how many times one, two, up to six occur in a row vec-
tor of length six. For example, for the set {1, 7, 9} the three differences are
2, 4 and 6. So the interval vector for this pitch class set is (0,1,0,1,0,1). It
is clear that equivalent pitch class sets yield the same interval vectors. The
converse is false; for example the sets {0, 1, 4, 6} and {0, 1, 3, 7} both have in-
terval vector (1,1,1,1,1,1).

Here is a list of the prime forms of pitch class sets of size three, to-
gether with Allen Forte’s name and Elliott Carter’s numbering for them, and
the interval vector.

Set Forte Carter Vector
{0,1,2} 3-1(12) 4 (2,1,0,0,0,0)
{0,1,3} 3-2 12 (1,1,1,0,0,0)
{0,1,4} 3-3 11 (1,0,1,1,0,0)
{0,1,5} 3-4 9 (1,0,0,1,1,0)
{0,1,6} 3-5 7 (1,0,0,0,1,1)
{0,2,4} 3-6(12) 3 (0,2,0,1,0,0)
{0,2,5} 3-7 10 (0,1,1,0,1,0)
{0,2,6} 3-8 8 (0,1,0,1,0,1)
{0,2,7} 3-9(12) 5 (0,1,0,0,2,0)
{0,3,6} 3-10(12) 2 (0,0,2,0,0,1)
{0,3,7} 3-11 6 (0,0,1,1,1,0)
{0,4,8} 3-12(4) 1 (0,0,0,3,0,0)

Forte’s number consists of the set size followed by a number indicating the
placement with respect to lexicographical ordering on the interval vector, in
backward order. The numbers in parentheses give the orbit size under the
action of D24, in case this is not 24. For reference, we give the corresponding
information for sets of size four, five and six below. Sets of size greater than
six are not named by Carter, and Forte uses the names of the complementary
set, but with the initial number changed. So for example 9-3 is obtained by
complementing 3-3 to obtain {2, 3, 5, 6, 7, 8, 9, 10, 11}, which is then put into
prime form as {0, 1, 2, 3, 4, 5, 6, 8, 9}.

There is an easy way to obtain the interval vector for the comple-
ment of a set. For size three, add the vector (6,6,6,6,6,3); for size four add
(4,4,4,4,4,2); and for size five add (2,2,2,2,2,1). The interval vector for the
above three element set is (1,0,1,1,0,0), so for its nine element complement
we get (7,6,7,7,6,3).
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Set Forte Carter Vector
{0,1,2,3} 4-1(12) 1 (3,2,1,0,0,0)
{0,1,2,4} 4-2 17 (2,2,1,1,0,0)
{0,1,3,4} 4-3(12) 9 (2,1,2,1,0,0)
{0,1,2,5} 4-4 20 (2,1,1,1,1,0)
{0,1,2,6} 4-5 22 (2,1,0,1,1,1)
{0,1,2,7} 4-6(12) 6 (2,1,0,0,2,1)
{0,1,4,5} 4-7(12) 8 (2,0,1,2,1,0)
{0,1,5,6} 4-8(12) 10 (2,0,0,1,2,1)
{0,1,6,7} 4-9(6) 2 (2,0,0,0,2,2)
{0,2,3,5} 4-10(12) 3 (1,2,2,0,1,0)
{0,1,3,5} 4-11 26 (1,2,1,1,1,0)
{0,2,3,6} 4-12 28 (1,1,2,1,0,1)
{0,1,3,6} 4-13 7 (1,1,2,0,1,1)
{0,2,3,7} 4-14 25 (1,1,1,1,2,0)
{0,1,4,6} 4-Z15 18 (1,1,1,1,1,1)

Set Forte Carter Vector
{0,1,5,7} 4-16 19 (1,1,0,1,2,1)
{0,3,4,7} 4-17(12) 13 (1,0,2,2,1,0)
{0,1,4,7} 4-18 21 (1,0,2,1,1,1)
{0,1,4,8} 4-19 24 (1,0,1,3,1,0)
{0,1,5,8} 4-20(12) 15 (1,0,1,2,2,0)
{0,2,4,6} 4-21(12) 11 (0,3,0,2,0,1)
{0,2,4,7} 4-22 27 (0,2,1,1,2,0)
{0,2,5,7} 4-23(12) 4 (0,2,1,0,3,0)
{0,2,4,8} 4-24(12) 16 (0,2,0,3,0,1)
{0,2,6,8} 4-25(6) 12 (0,2,0,2,0,2)
{0,3,5,8} 4-26(12) 14 (0,1,2,1,2,0)
{0,2,5,8} 4-27 29 (0,1,2,1,1,1)
{0,3,6,9} 4-28(3) 5 (0,0,4,0,0,2)
{0,1,3,7} 4-Z29 23 (1,1,1,1,1,1)

The only extra thing to describe here is the meaning of the symbol Z in the
Forte naming system. This indicates that there are two orbits with the same
interval vector; the second one is listed at the end for some reason which he
never explains. The same happens for sets of size five and six, but more often.

Set Forte Carter Vector
{0,1,2,3,4} 5-1(12) 1 (4,3,2,1,0,0)
{0,1,2,3,5} 5-2 11 (3,3,2,1,1,0)
{0,1,2,4,5} 5-3 14 (3,2,2,2,1,0)
{0,1,2,3,6} 5-4 12 (3,2,2,1,1,1)
{0,1,2,3,7} 5-5 13 (3,2,1,1,2,1)
{0,1,2,5,6} 5-6 27 (3,1,1,2,2,1)
{0,1,2,6,7} 5-7 30 (3,1,0,1,3,2)
{0,2,3,4,6} 5-8(12) 2 (2,3,2,2,0,1)
{0,1,2,4,6} 5-9 15 (2,3,1,2,1,1)
{0,1,3,4,6} 5-10 19 (2,2,3,1,1,1)
{0,2,3,4,7} 5-11 18 (2,2,2,2,2,0)
{0,1,3,5,6} 5-Z12(12) 5 (2,2,2,1,2,1)
{0,1,2,4,8} 5-13 17 (2,2,1,3,1,1)
{0,1,2,5,7} 5-14 28 (2,2,1,1,3,1)
{0,1,2,6,8} 5-15(12) 4 (2,2,0,2,2,2)
{0,1,3,4,7} 5-16 20 (2,1,3,2,1,1)
{0,1,3,4,8} 5-Z17(12) 10 (2,1,2,3,2,0)
{0,1,4,5,7} 5-Z18 35 (2,1,2,2,2,1)
{0,1,3,6,7} 5-19 31 (2,1,2,1,2,2)

Set Forte Carter Vector
{0,1,3,7,8} 5-20 34 (2,1,1,2,3,1)
{0,1,4,5,8} 5-21 21 (2,0,2,4,2,0)
{0,1,4,7,8} 5-22(12) 8 (2,0,2,3,2,1)
{0,2,3,5,7} 5-23 25 (1,3,2,1,3,0)
{0,1,3,5,7} 5-24 22 (1,3,1,2,2,1)
{0,2,3,5,8} 5-25 24 (1,2,3,1,2,1)
{0,2,4,5,8} 5-26 26 (1,2,2,3,1,1)
{0,1,3,5,8} 5-27 23 (1,2,2,2,3,0)
{0,2,3,6,8} 5-28 36 (1,2,2,2,1,2)
{0,1,3,6,8} 5-29 32 (1,2,2,1,3,1)
{0,1,4,6,8} 5-30 37 (1,2,1,3,2,1)
{0,1,3,6,9} 5-31 33 (1,1,4,1,1,2)
{0,1,4,6,9} 5-32 38 (1,1,3,2,2,1)
{0,2,4,6,8} 5-33(12) 6 (0,4,0,4,0,2)
{0,2,4,6,9} 5-34(12) 9 (0,3,2,2,2,1)
{0,2,4,7,9} 5-35(12) 7 (0,3,2,1,4,0)
{0,1,2,4,7} 5-Z36 16 (2,2,2,1,2,1)
{0,3,4,5,8} 5-Z37(12) 3 (2,1,2,3,2,0)
{0,1,2,5,8} 5-Z38 29 (2,1,2,2,2,1)

Finally, the six note pitch class sets, or hexachords.

Set Forte Carter Vector
{0,1,2,3,4,5} 6-1(12) 4 (5,4,3,2,1,0)
{0,1,2,3,4,6} 6-2 19 (4,4,3,2,1,1)
{0,1,2,3,5,6} 6-Z3 49 (4,3,3,2,2,1)
{0,1,2,4,5,6} 6-Z4(12) 24 (4,3,2,3,2,1)
{0,1,2,3,6,7} 6-5 16 (4,2,2,2,3,2)
{0,1,2,5,6,7} 6-Z6(12) 33 (4,2,1,2,4,2)
{0,1,2,6,7,8} 6-7(6) 7 (4,2,0,2,4,3)
{0,2,3,4,5,7} 6-8(12) 5 (3,4,3,2,3,0)
{0,1,2,3,5,7} 6-9 20 (3,4,2,2,3,1)
{0,1,3,4,5,7} 6-Z10 42 (3,3,3,3,2,1)
{0,1,2,4,5,7} 6-Z11 47 (3,3,3,2,3,1)
{0,1,2,4,6,7} 6-Z12 46 (3,3,2,2,3,2)
{0,1,3,4,6,7} 6-Z13(12) 29 (3,2,4,2,2,2)
{0,1,3,4,5,8} 6-14 3 (3,2,3,4,3,0)
{0,1,2,4,5,8} 6-15 13 (3,2,3,4,2,1)
{0,1,4,5,6,8} 6-16 11 (3,2,2,4,3,1)
{0,1,2,4,7,8} 6-Z17 35 (3,2,2,3,3,2)
{0,1,2,5,7,8} 6-18 17 (3,2,2,2,4,2)
{0,1,3,4,7,8} 6-Z19 37 (3,1,3,4,3,1)
{0,1,4,5,8,9} 6-20(4) 2 (3,0,3,6,3,0)
{0,2,3,4,6,8} 6-21 12 (2,4,2,4,1,2)
{0,1,2,4,6,8} 6-22 10 (2,4,1,4,2,2)
{0,2,3,5,6,8} 6-Z23(12) 27 (2,3,4,2,2,2)
{0,1,3,4,6,8} 6-Z24 39 (2,3,3,3,3,1)
{0,1,3,5,6,8} 6-Z25 43 (2,3,3,2,4,1)

Set Forte Carter Vector
{0,1,3,5,7,8} 6-Z26(12) 26 (2,3,2,3,4,1)
{0,1,3,4,6,9} 6-27 14 (2,2,5,2,2,2)
{0,1,3,5,6,9} 6-Z28(12) 21 (2,2,4,3,2,2)
{0,1,3,6,8,9} 6-Z29(12) 32 (2,2,4,2,3,2)
{0,1,3,6,7,9} 6-30(12) 15 (2,2,4,2,2,3)
{0,1,3,5,8,9} 6-31 8 (2,2,3,4,3,1)
{0,2,4,5,7,9} 6-32(12) 6 (1,4,3,2,5,0)
{0,2,3,5,7,9} 6-33 18 (1,4,3,2,4,1)
{0,1,3,5,7,9} 6-34 9 (1,4,2,4,2,2)
{0,2,4,6,8,10} 6-35(2) 1 (0,6,0,6,0,3)
{0,1,2,3,4,7} 6-Z36 50 (4,3,3,2,2,1)
{0,1,2,3,4,8} 6-Z37(12) 23 (4,3,2,3,2,1)
{0,1,2,3,7,8} 6-Z38(12) 34 (4,2,l,2,4,2)
{0,2,3,4,5,8} 6-Z39 41 (3,3,3,3,2,1)
{0,1,2,3,5,8} 6-Z40 48 (3,3,3,2,3,1)
{0,1,2,3,6,8} 6-Z41 45 (3,3,2,2,3,2)
{0,1,2,3,6,9} 6-Z42(12) 30 (3,2,4,2,2,2)
{0,1,2,5,6,8} 6-Z43 36 (3,2,2,3,3,2)
{0,1,2,5,6,9} 6-Z44 38 (3,1,3,4,3,1)
{0,2,3,4,6,9} 6-Z45(12) 28 (2,3,4,2,2,2)
{0,1,2,4,6,9} 6-Z46 40 (2,3,3,3,3,1)
{0,1,2,4,7,9} 6-Z47 44 (2,3,3,2,4,1)
{0,1,2,5,7,9} 6-Z48(12) 25 (2,3,2,3,4,1)
{0,1,3,4,7,9} 6-Z49(12) 22 (2,2,4,3,2,2)
{0,1,4,6,7,9} 6-Z50(12) 31 (2,2,4,2,3,2)



336 9. SYMMETRY IN MUSIC

Complementation takes some hexachords to equivalent ones and some to in-
equivalent ones. Inequivalent pairs always share an interval vector, and these
turn out to be the only coincidences of interval vectors for hexachords. The
inequivalent pairs of complements are as follows:

6-Z3 6-Z36
6-Z4(12) 6-Z37(12)
6-Z6(12) 6-Z38(12)
6-Z10 6-Z39
6-Z11 6-Z40

6-Z12 6-Z41
6-Z13(12) 6-Z42
6-Z17 6-Z43
6-Z19 6-Z44
6-Z23(12) 6-Z45(12)

6-Z24 6-Z46
6-Z25 6-Z47
6-Z26(12) 6-Z48(12)
6-Z28(12) 6-Z49(12)
6-Z29(12) 6-Z50(12)

Further reading:

Allen Forte, The structural function of atonal music [40].

David Schiff, The music of Elliott Carter. Ernst Eulenberg Ltd, 1983. Reprinted by

Faber and Faber, 1998.

9.15. Pólya’s enumeration theorem

In this section, we show how to vamp up Burnside’s Lemma 9.13.1 to
address some more complicated counting problems. By way of illustration,
we shall revisit the problem considered in §9.14. Suppose we want to know
how many pitch class sets there are, consisting of three of the twelve possi-
ble pitch classes. Suppose further that we wish to consider two such sets to
be equivalent if one can be obtained from the other by means of an opera-
tion Tn for some n. This is a typical kind of problem which can be solved
using Pólya’s enumeration theorem.

A lot of physical counting problems involving symmetry are of a similar
nature. A typical example would involve counting how many different neck-
laces can be made from three red beads, two sepia beads and five turquoise
beads. The symmetry group in this situation is a dihedral group whose or-
der is twice the number of beads.

In the general form of the problem, the configurations being counted
are regarded as functions from a set X to a set Y , and the symmetry group
G acts on the set X. In the bead problem, the set X would consist of the
places in the necklace where we wish to put the beads, and the set Y would
consist of the possible colours. A function from X to Y then specifies for
each place in the necklace what colour bead to use. The group G acts on
configurations by rotating and turning over the necklace.

In the pitch class set counting problem, the set X is the set of twelve
pitches, and Y is taken to be the set {0, 1}. A pitch class set corresponds
to a function taking the notes in the set to 1 and the remaining notes to 0.
This gives a one-to-one correspondence between pitch class sets and func-
tions from X to Y .

In the general setup, we write Y X for the set of configurations, or func-
tions from the set X to the set Y . The reason for this notation is that the
number of elements of Y X is equal to the number of elements of Y raised to
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the power of the number of elements of X (|Y X | = |Y ||X|). The action of G
on the set Y X of configurations is given by the formula

g(f)(x) = f(g−1(x)).

The reason for the inverse sign is so that composition works right. For a
group action, we need g1(g2(f)) = (g1g2)(f). To see that this holds, we have

(g1(g2(f)))(x) = (g2(f))(g−1
1 (x)) = f(g−1

2 (g−1
1 (x))) = f((g−1

2 g−1
1 )(x))

= f((g1g2)
−1(x)) = ((g1g2)(f))(x),

whereas without the inverse sign the order of g1 and g2 would be reversed.
The general problem is to find the number of orbits of G on configurations.

We begin by defining the cycle index of G on X as follows. We intro-
duce variables t1, t2, . . . , and then the cycle index of an element g on X is

Pg(t1, t2, . . . ) = t
j1(g)
1 t

j2(g)
2 . . .

where jk(g) denotes the number of cycles of length k in the action of G on
X. We define the cycle index of the group to be the average cycle index of
an element, namely

PG(t1, t2, . . . ) =
1

|G|
∑

g∈G
Pg(t1, t2, . . . ) =

1

|G|
∑

g∈G
t
j1(g)
1 t

j2(g)
2 . . . (9.15.1)

For example, if G is a dihedral group of order eight acting on the set X con-
sisting of the four corners of a square, then the cycle indices of the eight ele-
ments of G are as follows. The identity element has cycle index t41, the two
ninety degree rotations have cycle index t4, the one hundred and eighty de-
gree rotation and the reflections about the horizontal and vertical axes all
have cycle index t22, and the two diagonal reflections have cycle index t21t2. So

PG = 1
8(t41 + 2t4 + 3t22 + 2t21t2).

Several standard examples of cycle index are worth writing out explic-
itly. If G = Z/n, cycling a set X of n objects, we get

PZ/n =
1

n

∑

j|n
φ(j)t

n/j
j . (9.15.2)

Here, φ is the Euler phi function, described on page 321, and j|n means j
is a divisor of n. The formula is obvious, because there are φ(j) elements of
Z/n having order j, and each one has n/j cycles of length j.

The next example generalises the above dihedral calculation. For the
dihedral group D2n acting on the n vertices of a regular n-sided polygon,
we have to divide into two cases according to whether n is even or odd. If
n = 2m+ 1 is odd, we get

PD4m+2 = 1
2PZ/(2m+1) + 1

2t1t
m
2 , (9.15.3)

because each reflection has exactly one fixed point. If n = 2m is even, we get

PD4m = 1
2PZ/2m + 1

4(tm2 + t21t
m−1
2 ), (9.15.4)
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because half the reflections have no fixed points and half of them have two.
For the full symmetric group Sn on a set X of n elements, the formula is rather messy. But

adding up the cycle indices of all the symmetric groups gives a much cleaner answer.

∞
X

n=0

PSn = exp

0

@

∞
X

j=1

tj

j

1

A =
∞
Y

j=1

∞
X

i=0

1

i!

„

tj

j

«i

= (1 + t1 + 1
2!

t21 + 1
3!

t31 + 1
4!

t41 + . . . )(1 + 1
2
t2 + 1

22.2!
t22 + 1

23.3!
t32 + . . . )

(1 + 1
3
t3 + 1

32.2!
t23 + 1

33.3!
t33 + . . . )(1 + 1

4
t4 + 1

42.2!
t24 + 1

43.3!
t34 + . . . ) . . .

The cycle index for an individual Sn can be extracted by taking the terms with total size n, where each
tj is regarded as having size j. So for example

PS4
= 1

24
t41 + 1

4
t21t2 + 1

8
t22 + 1

3
t1t3 + 1

4
t4.

The corresponding formula for the alternating group An (this is the group of even permutations; exactly
half the elements of Sn are even) is

2 + 2t1 +

∞
X

n=2

PAn = exp

0

@

∞
X

j=1

tj

j

1

A + exp

0

@

∞
X

j=1

(−1)
j+1 tj

j

1

A .

Next, we assign a weight w(y) to each of the elements y of Y . The
weights can be any sorts of quantities which can be added and multiplied
(the formal requirement is that the weights should belong to a commutative
ring). For example, the weights can be independent formal variables, or one
of them can be chosen to be 1 to simplify the algebra. The weight of a con-
figuration is then defined to be the product over x ∈ X of the weight of f(x),

w(f) =
∏

x∈X
w(f(x)).

The weights of two configurations in the same orbit of the action of G are
clearly equal.

So for example if Y = {red, sepia, turquoise} then we could assign vari-
ables r = w(red), s = w(sepia) and t = w(turquoise) for the weights.

We form a power series called the configuration counting series C using
these weights. Namely, C is the sum, over all orbits of G on the set Y X con-
figurations, of the weight of a representative of the orbit. In the necklace ex-
ample, the coefficient of rasbtc in C = C(r, s, t) gives the number of necklaces
in which a beads are red, b are sepia and c are turquoise. So the coefficient
of r3s2t5 would give the number of necklaces in the original problem. Since
a+ b+ c is fixed, if we wanted to simplify the algebra, it would make sense to
put w(turquoise) = 1 instead of t. Then the coefficient of r3s2 would be the
desired number of necklaces. In other words, once we know the number of red
and sepia beads, the number of turquoise beads is also known by subtraction.

In the pitch class set example, where Y = {0, 1}, it would make sense
to introduce just one variable z and set w(0) = 1 and w(1) = z. Then the
coefficient of za would tell us about pitch class sets with a notes.
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Theorem 9.15.1 (Pólya). The configuration counting series C is given
in terms of the cycle index of G on X by

C = PG


∑

y∈Y
w(y),

∑

y∈Y
w(y)2,

∑

y∈Y
w(y)3, . . .




We shall prove this theorem after seeing how to apply it.

Example. In the pitch class set example, we consider the cases G = Z/12
and G = D24, with X is the set of twelve pitch classes, Y = {0, 1}, w(0) = 1
and w(1) = y. Equations (9.15.2) and (9.15.4) give the cycle indices as

PZ/12 = 1
12 (t121 + t62 + 2t43 + 2t34 + 2t26 + 4t12)

PD24 = 1
2PZ/12 + 1

4(t62 + t21t
5
2)

= 1
24 (t121 + 6t21t

5
2 + 7t62 + 2t43 + 2t34 + 2t26 + 4t12).

Then Theorem 9.15.1 says that we should substitute 1+ zn for tn to give the
configuration counting series C. This gives the following values.

(i) If G = Z/12 then

C = 1+z+6z2+19z3+43z4+66z5+80z6+66z7+43z8+19z9+6z10+z11+z12.

So for example there are 19 three note sets up to transposition.

(ii) If G = D24 then

C = 1+z+6z2+12z3+29z4+38z5+50z6+38z7+29z8+12z9+6z10+y11+y12.

So for example there are 12 three note sets and 50 hexachords, up to trans-
position and inversion. The reason why the coefficients in these polynomials
are symmetric was described in §9.14. Namely, a set can be replaced by its
complement, to give a natural correspondence between j note sets and 12− j
note sets.

The advantage of using Pólya’s enumeration theorem rather than just
resorting to Burnside’s Lemma 9.13.1 is that we do not have to do an explicit
computation of numbers of fixed configurations, as we had to in §9.14. The
disadvantage is that the machinery is harder to understand and remember.

The proof of Pólya’s enumeration theorem depends on a weighted ver-
sion of Burnside’s Lemma 9.13.1.

Lemma 9.15.2. Let G be a finite group acting by permutations on a fi-
nite set X. Let w be a function on X which takes constant values on orbits,
so that we can regard w as a function on the set of orbits of G on X. Then
the sum of the weights of the orbits is equal to

1

|G|
∑

g∈G

∑

x=g(x)

w(x).
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Proof. Consider the set of pairs (g, x) where g(x) = x, and calculate in
two different ways the sum over the elements of this set of the weights w(x).
If we sum over the elements of the group first, we obtain

∑
g∈G

∑
x=g(x)w(x).

On the other hand, if we sum over the elements of X first, then by equa-
tion (9.11.1), for each x, the number of elements of G is |G| divided by the
length of the orbit in which x lies. So the sum over the elements of the orbit
in which x lies gives |G|w(x). So the sum over all x gives |G| times the sum
of the weights of the orbits. �

Proof of Pólya’s enumeration theorem. We are going to apply
the above version of Burnside’s lemma to the action of G on the set Y X of
configurations. It tells us that C is equal to

1

|G|
∑

g∈G

∑

f=g(f)

w(f). (9.15.5)

So we will be finished if we can prove that for each g ∈ G we have

Pg


∑

y∈Y
w(y),

∑

y∈Y
w(y)2,

∑

y∈Y
w(y)3, . . .


 =

∑

f=g(f)

w(f),

because then, comparing (9.15.1) with (9.15.5), we see that averaging over
the elements of G gives the formula in the theorem. Recalling that jk(g) de-
notes the number of cycles of length k in the action of g on X, by definition
the left side of this equation is


∑

y∈Y
w(y)



j1(g)

∑

y∈Y
w(y)2



j2(g)

. . . (9.15.6)

The right hand side is ∑

f=g(f)

∏

x∈X
w(f(x)). (9.15.7)

Now a configuration f satisfies f = g(f) precisely when it is constant on orbits
of g on X. So to pick such a configuration, we must assign an element of Y to
each orbit of g on X. So when we multiply the weights of the f(x), an orbit
of length j with image y ∈ Y corresponds to a factor of w(y)j in the product.

We regard (9.15.6) as being obtained by multiplying together a factor
of
∑

y∈Y w(y)i for each orbit of g on X, where i is the length of the orbit.
When these sums are all multiplied out, there will be one term for each way
of assigning an element of Y to each orbit of g on X, and that term will ex-
actly be the corresponding term in (9.15.7). �

Further reading:

Harald Fripertinger, Enumeration in music theory, Séminaire Lotharingien de Com-
binatoire, 26 (1991), 29–42; also appeared in Beiträge zur Elektronischen Musik 1,
1992.
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Harald Fripertinger, Enumeration and construction in music theory, Diderot Forum
on Mathematics and Music Computational and Mathematical Methods in Music,
Vienna, Austria, December 2-4, 1999. H. G. Feichtinger and M. Dörfler, editors.
Österreichische Computergesellschaft (1999), 179–204.

Harald Fripertinger, Enumeration of mosaics, Discrete Math. 199 (1999), 49–60.

Harald Fripertinger, Enumeration of non-isomorphic canons, Tatra Mountains
Math. Publ. 23 (2001).

Harald Fripertinger, Classification of motives: a mathematical approach, to appear
in Musikometrika.

Michael Keith, From polychords to Pólya; adventures in musical combinatorics [68].

G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chem-
ische Verbindungen, Acta Math. 68 (1937), 145–254.

R. C. Read, Combinatorial problems in the theory of music, Discrete Mathematics
167/168 (1997), 543–551.

S. Régnier, Problèmes de combinatoire musicale, Mathématiques et Sciences Hu-
maines 40 (1972), 29–34.

D. Reiner, Enumeration in music theory, Amer. Math. Monthly 92 (1) (1985), 51–

54. Note that there is a typographical error in the formula for the cycle index of the

dihedral group in this paper.

9.16. The Mathieu group M12

The combinatorics of twelve tone music has given rise to a curious co-
incidence, which I find worth mentioning. Messiaen, in his Ile de feu 2 for pi-
ano, nearly rediscovered the Mathieu group M12. On pages 409–414 of Berry
(reference at the end of the section), you can read about how Messiaen uses
the permutations(

1 2 3 4 5 6 7 8 9 10 11 12
7 6 8 5 9 4 10 3 11 2 12 1

)

and (
1 2 3 4 5 6 7 8 9 10 11 12
6 7 5 8 4 9 3 10 2 11 1 12

)

to generate sequences of tones and sequences of durations. These permuta-
tions generate a group M12 of order 95, 040 discovered by Mathieu in the
nineteenth century.7

A group is said to be simple if it has just two normal subgroups, namely
the whole group and the subgroup consisting of just the identity element.8

One of the outstanding achievements of twentieth century mathematics was

7E. Mathieu, Mémoire sur l’étude des fonctions de plusieurs quantités, J. Math. Pures
Appl. 6 (1861), 241–243; Sur la fonction cinq fois transitive de 24 quantités, J. Math.
Pures Appl. 18 (1873), 25–46.

8So for example the group with only one element is not simple, because it has only
one, not two, normal subgroups. Compare this with the definition of a prime number; 1 is
not prime.
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the classification of the finite simple groups. Roughly speaking, the classi-
fication theorem says that the finite simple groups fall into certain infinite
families which can be explicitly described, with the exception of 26 sporadic
groups. Five of these 26 groups were discovered by Mathieu in the nineteenth
century, and the remaining ones were discovered in the nineteen sixties and
seventies.

Diaconis, Graham and Kantor discovered that M12 was generated by
the above two permutations, which they call Mongean shuffles. Start with a
pack of twelve cards in your left hand, and transfer them to your right hand
by placing them alternately under and over the stack you have so far. When
you have finished, hand the pack back to your left hand. Since I did not tell
you whether to start under or over, this describes two different permutations
of the twelve cards. These are the permutations shown above. In cycle no-
tation, these permutations are

(1, 7, 10, 2, 6, 4, 5, 9, 11, 12)(3, 8)

of order ten, and
(1, 6, 9, 2, 7, 3, 5, 4, 8, 10, 11)(12)

of order eleven. These permutations can be visualised as follows.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Exercises

1. (Carl E. Linderholm [79]) If this book is read backwards (beginning at
the last word of the last page), the last thing read is the introduction (re-
versed, of course). Thus the introduction acts as a sort of extraduction, and
is suggested as a simple form of therapy, used in this way, if the reader gets
stuck. Read this exercise backwards, and write an extraduction from it.

Further reading:

Wallace Berry, Structural function in music, Prentice-Hall, 1976. Reprinted by
Dover, 1987. 447 pages, in print. ISBN 0486253848. This book contains a descrip-
tion of the Messiaen example referred to in this section.

J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren
der mathematischen Wissenschaften 290, Springer-Verlag, Berlin/New York, 1988.
This book contains a huge amount of information about the sporadic groups in gen-
eral, and §11.17 contains more information on Mongean shuffles and the Mathieu
group M12.
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P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles,

Adv. Appl. Math. 4 (1983), 175–196.

Unlike Mozart’s Requiem and Bartók’s Third Piano Concerto,
the piece that P. D. Q. Bach was working on when he

died has never been finished by anyone else.9

9Professor Peter Schickele, The definitive biography of P. D. Q. Bach (1807–1742)?,
Random House, New York, 1976.



APPENDIX A

Answers to almost all exercises

§1.3 #1. The power has been quadrupled, so this represents a change of 10 log10(4)
decibels, or approximately 6.02 dB.

§1.3 #2. (c) 73 dB. The power is doubled, so the number of decibels is increased by
10 log10(2).

§1.5 #1. We have

dy

dt
= −A

√
k/m sin(

√
k/mt) +B

√
k/m cos(

√
k/mt)

d2y

dt2
= −A(k/m) cos(

√
k/mt)−B(k/m) sin(

√
k/mt) = −(k/m)y.

§1.5 #2. Take c =
√
A2 +B2 and B tanφ = A. Beware that it is not correct to

write φ = tan−1A/B. This is only true when B is positive. When B is negative we
have φ = π + tan−1A/B. When B = 0, φ is either π/2 or −π/2, depending on the
sign of A.

§1.7 #1. sinu+ cos v = 2 sin(π
4 + u+v

2 ) sin(π
4 + u−v

2 ).

§1.8 #1. The frequency of vibration of the other string is either 435 Hz or 445 Hz.

§1.8 #2.
∫ π/2

0 sin(3x) sin(4x) dx =
∫ π/2

0
1
2 (cos(x)− cos(7x)) dx

= [12 sin(x) − 1
14 sin(7x)]

π/2
0 = 1

2 + 1
14 = 4

7 .

§1.8 #3. (a) Here is a graph of y = cos2 x = 1
2 (1 + cos(2x)):

(b) Here is a graph of y = sin2 x = 1
2 (1 − cos(2x)):

§1.8 #4.
∫ 2π

ω

0
[c sin(ωt+ φ)]2 dt =

∫ 2π
ω

0
c2

2 (1− cos 2(ωt+ φ)) dt

=
[

c2

2 (t− 1
2ω sin 2(ωt+ φ))

] 2π
ω

0
= c2

2
2π
ω . Multiply both sides by ω

2π and then take

the square root.

344
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§1.8 #5. Put A = kt and B = 1
2 t in (1.8.8) to obtain the formula for sin kt sin 1

2 t.

Then the sum on the left of equation (1.8.14), multiplied by sin 1
2 t, can be rear-

ranged to make a collapsing sum as follows:

sin 1
2 t

n∑

k=1

sinkt =

n∑

k=1

sin kt sin 1
2 t

=

n∑

k=1

1
2 (cos(k − 1

2 )t− cos(k + 1
2 )t)

= (1
2 cos 1

2 t− 1
2 cos 3

2 t) + (1
2 cos 3

2 t− 1
2 cos 5

2 t)

+ · · ·+ (1
2 cos(n− 1

2 )t− 1
2 cos(n+ 1

2 )t)

= 1
2 cos 1

2 t− 1
2 cos(n+ 1

2 )t.

Now divide both sides by sin 1
2 t to obtain the first equality of equation (1.8.14). Fi-

nally, use equation (1.8.11) with u = 1
2 t and v = (n+ 1

2 )t to obtain the second equal-
ity in equation (1.8.14).

Equation (1.8.15) works the same way. We use equation (1.8.4) and the fact
that sin(1

2 − k)t = − sin(k − 1
2 )t to obtain

cos kt sin 1
2 t = 1

2 (sin(k + 1
2 )t− sin(k − 1

2 )t),

and then use a collapsing sum as before. The second equality of (1.8.15) uses equa-
tion (1.8.9).

§1.8 #6. Theoretically, no beats are heard in this situation. This is because if b is
small then sin(a) + sin(2a + b) = 2 sin 1

2 (3a + b) cos 1
2 (a + b) does not give us a low

frequency envelope. In the case of sin(a) + sin(a+ b) = 2 sin 1
2 (2a+ b) cos b

2 , the low

frequency envelope function is cos b
2 .

This seems to be borne out in practice. If you create a sound using two pure
sine waves, one at slightly more than twice the frequency of the other, no beats can
be heard, in spite of the visible “beats” in the graph of the function. For a fuller ex-
planation of why, read Chapter 4.

§1.9 #1. (i) sin(2πt+ π
2 ),

(ii)
√

2 sin(2πt+ π/4),

(iii) Since the vectors (2 cosπ/6, 2 sinπ/6) = (
√

3, 1) and (− cosπ/2,− sinπ/2) =

(0,−1) add up to (
√

3, 0) = (
√

3 cos 0,
√

3 sin 0), the answer is
√

3 sin(4πt).

§1.9 #2. Circular motion of the form x = c cos(ωt + φ), y = c sin(ωt + φ) can be
written in terms of z = x+ iy as

z = c(sin(ωt+ φ) + i cos(ωt+ φ)) = cei(ωt+φ).

Here, c is interpreted as the radius of the circular motion, ω is the angular velocity,
and φ determines the starting phase.

§1.10 #1. Since ∆ > 0, the functions (1.10.3) are real and linearly independent.
Since equation (1.10.1) is linear, we can check independently that the functions

e(−µ+
√

∆)t/2m and e(−µ−
√

∆)t/2m are solutions. We’ll check the first of these func-
tions, as the second is essentially the same calculation. We have ẏ = (−µ+

√
∆)y/2m

and ÿ = (−µ+
√

∆)2y/4m2. So

mÿ + µẏ + ky = {(−µ+
√

∆)2/4m+ µ(−µ+
√

∆)/2m+ k}y
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= {µ2/4m− µ
√

∆/2m+ ∆/4m− µ2/2m+ µ
√

∆/2m+ k}y.
Using the fact that ∆ = µ2−4mk, all the terms cancel out to give zero, as required.

§2.2 #2. (i) Yes, period 8π. Four and five times the fundamental are present.

(ii) No. If τ is a period of f(θ) = sin θ + sin
√

2 θ then τ is also a period of

f ′′(θ) = − sin θ − 2 sin
√

2 θ. So τ is also a period of −f(θ) − f ′′(θ) = sin
√

2 θ and

of 2f(θ) + f ′′(θ) = sin θ. So τ is a multiple of
√

2π and also a multiple of 2π. This

cannot happen, because 2π/
√

2 π =
√

2 is irrational.

(iii) Yes, period π. The identity sin2 θ = 1
2 (1 − cos 2θ) shows that only the funda-

mental frequency is present, plus a constant offset.

(iv) No, because the intervals on the θ axis between the zeros of the function de-
crease as |θ| increases.

(v) Yes, period 2π. The identity sin θ + sin(θ + π
3 ) =

√
3 sin(θ + π

6 ) shows that only
the fundamental frequency is present; see equation (1.8.9).

§2.2 #3. Graphs of these functions and an explanation of why they sound the same
can be found in §8.3.

§2.2 #4. Since sinnθ is the imaginary part of einθ, the given sum is the imaginary
part of

∑∞
n=0 α

neinθ =
∑∞

n=0(αe
iθ)n = 1/(1−αeiθ). To extract the imaginary part,

we rationalise the denominator to make (1−αe−iθ)/(1− 2α cos θ+α2). The answer
is the imaginary part of this quantity, which is α sin θ/(1− 2α cos θ + α2).

§2.3 #1. We have sin(sin(θ + π)) = sin(− sin θ) = − sin(sin θ) and sin 2(θ + π) =
sin(2θ + 2π) = sin 2θ. So the function sin(sin θ) sin 2θ is half-period antisymmetric.
It follows that the integral is zero.

§2.3 #2. We have tan(−θ) = − tan θ, so the tangent function is odd, and so am = 0.
We have tan(θ + π) = tan θ, so the tangent function is half-period symmetric, and
so b2m+1 = 0. The only coefficients which can be non-zero are the coefficients b2m.
The first non-zero coefficient is

b2 =
1

π

∫ 2π

0

sin(2θ) tan θ dθ =
1

π

∫ 2π

0

2 sin2 θ = 2.

§2.4 #1. For x 6= 0,

dy

dx
= 2x sin(1/x2)− (2/x) cos(1/x2),

which is unbounded for small values of x. For x = 0, we have

dy

dx
= lim

h→0
(h2 sin(1/h2))/h = lim

h→0
(h sin(1/h2)) = 0

since −h ≤ h sin(1/h2) ≤ h.
§2.4 #2. The Fourier series is

| sin θ| = 2

π
− 4

π

(
cos 2θ

1 · 3 +
cos 4θ

3 · 5 + · · ·
)

=
2

π
− 4

π

∞∑

n=1

cos 2nθ

(2n− 1)(2n+ 1)
.

§2.4 #3. The Fourier series for the sawtooth function defined by φ(θ) = (π − θ)/2
for 0 < θ < 2π and φ(0) = φ(2π) = 0 is

φ(θ) =
sin θ

1
+

sin 2θ

2
+

sin 3θ

3
+ · · · =

∞∑

n=1

sinnθ

n
.
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§2.4 #4. The Fourier series for the triangular function is

f(θ) =
4

π

∞∑

n=1

cos(2n+ 1)θ

(2n+ 1)2
.

§2.4 #5. (a) If |f(θ)| ≤M then

|am| =
1

π

∣∣∣∣
∫ 2π

0

f(θ) sinmθ dθ

∣∣∣∣ ≤
1

π

∫ 2π

0

|f(θ)|| sinmθ| dθ ≤ 1

π

∫ 2π

0

M dθ = 2M.

Similarly |bm| ≤ 2M .

(b) am(f ′) = −mbm(f), bm(f ′) = mam(f).

(c) If |f (k)(θ)| ≤ M then by (a), |am(f (k))| ≤ 2M and |bm(f (k))| ≤ 2M . So by (b),
|am(f)| ≤ 2M/mk and |bm(f)| ≤ 2M/mk.

§2.4 #6. a0 = 2π2/3, and for m > 0, am = 4(−1)m/m2, bm = 0. Since f(0) = 0,
this gives 1

2 (2π2/3) + 4
∑∞

m=1(−1)m/m2 = 0, or
∑∞

m=1(−1)m/m2 = −π2/12. Since

f(π) = π2, we obtain 1
2 (2π2/3) + 4

∑∞
m=1 1/m2 = π2, or

∑∞
m=1 1/m2 = π2/6.

§2.5 #1. We have sin θ
θ = 1− 1

3!θ
2+ 1

5!θ
4−· · · =∑∞

n=0
(−1)nθ2n

(2n+1)! . Since the series is ab-

solutely convergent, we may integrate term by term to get the given power series for-
mula for the integral. Putting in x = π gives

∫ π

0
sin θ

θ dθ = π− 1
3.3!π

3 + 1
5.5!π

5−· · · ≈
1.8519370.

§2.6 #1. The square wave takes value one between θ = 0 and θ = π, and mi-

nus one between θ = π and θ = 2π. So αm = 1
2π

(∫ π

0
e−imθ dθ −

∫ 2π

π
e−imθ dθ

)
=

1
2π

([−1
ime

−imθ
]π
0
−
[−1

im e
−imθ

]2π

π

)
= 1

2π
−1
im (((−1)m− 1)− (1− (−1)m)). If m is even,

the terms in the parenthesis cancel to zero, whereas if m is odd, they add up to −4.

§2.7 #1. We can’t use θ for the variable in both (2.6.2) and (2.7.1), so we use

x instead in (2.6.2). This gives sm(θ) =
∑m

n=−m

(
1
2π

∫ 2π

0 e−inxf(x) dx
)
einθ =

1
2π

∫ 2π

0 f(x)
(∑m

n=−m ein(θ−x)
)
dx = 1

2π

∫ 2π

0 f(x)Dm(θ − x) dx.
§2.8 #1. sin(z cos θ) = 2

∑∞
n=0(−1)nJ2n+1(z) cos(2n+ 1)θ,

cos(z cos θ) = J0(z) + 2
∑∞

n=1(−1)nJ2n(z) cos 2nθ.

§2.8 #2. Differentiate equation (2.8.9) with respect to φ, keeping z and θ constant.

§2.9 #1. Using equation (2.9.6), we have
∫ ∞

0

J1(z) dz = [−J0(z)]
∞
0 = − lim

z→∞
J0(z) + J0(0) = 1.

§2.10 #1. If y = Jn(αx) then using equation (2.10.1) we have

dy

dx
= αJ ′

n(αx)

d2y

dx2
= α2J ′′

n (αx) = −α2

(
1

αx
J ′

n(αx) +

(
1− n2

α2x2

)
Jn(αx)

)

= − 1

x

dy

dx
−
(
α2 − n2

x2

)
y.

Since Yn(z) also satisfies equation (2.10.1), the same argument shows that Yn(αx)
is a solution of the given differential equation. Since the equation is linear, y =
AJn(αx) + BYn(αx) is again a solution. The general theory of second order linear



348 A. ANSWERS TO ALMOST ALL EXERCISES

differential equations implies that the space of solutions is two dimensional, so we
have found them all. Alternatively, we could argue that if f(x) is any solution then
f(z/α) has to be a solution of (2.10.1).

§2.10 #2. If y = x
1
2Jn(x) then

dy

dx
= 1

2x
− 1

2 Jn(x) + x
1
2J ′

n(x)

d2y

dx2
= − 1

4x
− 3

2Jn(x) + x−
1
2 J ′

n(x) + x
1
2J ′′

n (x)

= − 1
4x

− 3
2Jn(x) + x−

1
2 J ′

n(x)− x 1
2

(
1

x
J ′

n(x) +

(
1− n2

x2

)
Jn(x)

)

= −
(

1 +
1
4 − n2

x2

)
x

1
2 Jn(x) = −

(
1 +

1
4 − n2

x2

)
y

and so y satisfies the given differential equation. The general solution is

y =
√
x (AJn(x) +BYn(x)) .

§2.10 #3. If y = Jn(ex) then

dy

dx
= exJ ′

n(ex)

d2y

dx2
= e2xJ ′′

n(ex) + exJ ′
n(ex)

= −e2x

(
1

ex
J ′

n(ex) +

(
1− n2

e2x

)
Jn(ex)

)
+ exJ ′

n(ex)

= −(e2x − n2)Jn(ex) = −(e2x − n2)y

and so y satisfies the given differential equation. The general solution is

y = AJn(ex) +BYn(ex).

§2.10 #4. (a) − sin2 θ sin(φ + z sin θ) =

∞∑

n=−∞
J ′′

n(z) sin(φ+ nθ).

(b) −z sin θ cos(φ+ z sin θ)− z2 cos2 θ sin(φ+ z sin θ) = −
∞∑

n=−∞
n2Jn(z) sin(φ+nθ).

§2.11 #1. We have

∂φ

∂z
=

(
φ+ z

∂φ

∂z

)
cos(ωt+ zφ)

∂φ

∂t
=

(
ω + z

∂φ

∂t

)
cos(ωt+ zφ),

and so (
φ+ z

∂φ

∂z

)
∂φ

∂t
=

(
ω + z

∂φ

∂t

)
∂φ

∂z
.

This gives the partial differential equation for φ. If ψ(z, t) = αφ(αz, t) then

∂ψ

∂z
= α2 ∂φ

∂z
(αz, t) = α2φ(αz, t)

ω

∂φ

∂t
(αz, t) =

ψ

ω

∂ψ

∂t
,
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so ψ is another solution. The equations for ψ are ψ = α sin(ωt+ zψ) and

ψ(z, t) =

∞∑

n=1

2Jn(nαz)

nz
sin(nωt).

§2.13 #2. Set I =
∫∞
−∞ e−x2

dx. Then squaring and converting to polar coordinates
gives

I2 =

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2

dy

)
=

∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dx dy

=

∫ 2π

0

∫ ∞

0

e−r2

r dr dθ = 2π

∫ ∞

0

re−r2

dr = 2π
[
− 1

2e
−r2
]∞
0

= π.

Since the integrand is positive, taking square roots gives I =
√
π.

§2.13 #4. Substitute τ = t− a to get∫ ∞

−∞
f(t− a)e−2πiνt dt =

∫ ∞

−∞
f(τ)e−2πiν(τ+a) dτ

= e−2πiνa

∫ ∞

−∞
f(τ)e−2πiντ dτ = e−2πiνaf̂(ν).

§2.13 #5. Using equation (C.3), we have
∫ ρ/2

−ρ/2

e−2πiνt dt =

[
− 1

2πiν
e−2πiνt

]ρ/2

−ρ/2

=
eπi/nuρ − e−πiνρ

2πiν
=

sinπνρ

πν
.

§2.17 #1. Using equation (C.3), we have f(t) = sin(2πν0t) = 1
2i(e

2πiν0t − e−2πiν0t),
and so

f̂(ν) =
1

2i
(δ(ν − ν0)− δ(ν + ν0)).

§2.17 #2. Given any test function f(t), substituting u = Ct gives
∫ ∞

−∞
f(t)δ(Ct) dt =

1

|C|

∫ ∞

−∞
f(u/C)δ(u) du =

1

|C|f(0).

It follows that the values of the distributions δ(Ct) and 1
|C|δ(t) agree on all test func-

tions, and so they are equal as distributions. Note that if C is negative, the above
substitution involves reversing the limits on the integral and negating.

§2.17 #3. Given any test function f(t), integrating by parts gives
∫ ∞

−∞

dH(t)

dt
f(t) dt = −

∫ ∞

−∞
H(t)f ′(t) dt = −

∫ ∞

0

f ′(t) dt = [−f(t)]
∞
0 = f(0).

It follows that the values of the distributions d
dtH(t) and δ(t) agree on all test func-

tions, and so they are equal as distributions.

§2.17 #4. For any test function f(t),
∫∞
−∞ tδ(t)f(t) dt is the value of tf(t) when

t = 0, which always gives zero.

§3.2 #1. If the cross-sectional area is A then the tension is T ≈ 1.1 × 109A New-
tons and the linear density is ρ ≈ 5900A kg/m. So the speed is c =

√
T/ρ ≈ 432

m/s, and is independent of A. For a frequency of 262 Hz, the length would be given
by 262 = c/2ℓ, or ℓ = c/524 ≈ 0.824 meters.

§3.2 #2. The square root of the tension should be increased by a factor of 3/2, so
the tension should be increased by a factor of 9/4.
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§3.2 #3. According to Mersenne’s laws, the frequency is inversely proportional to
the length of the string. Since the frequencies of the notes on a scale increase expo-
nentially, the lengths of the strings decrease exponentially. Each octave halves the
string length.

§3.6 #1. If we make the square from the interval [0, a] on both the x and y axes,
then the solutions to the wave equation are combinations of the functions

y = sin
mπ

a
x sin

nπ

a
y sin(ωt+ φ)

where
ω =

πc

a

√
m2 + n2

and m and n are positive integers.

§3.9. The answer to the challenge in the footnote on page 120 is that the series con-

tinues as follows. Set z = (−1)ne−(n+ 1
2
)π. Then

λn ≈ (n+ 1
2 )π − z − 4z2 − 34

3 z
3 − 112

3 z4 − 2006
15 z5 − 1516

3 z6 − 124834
63 z7 − 502976

63 z8

− 2069150
63 z9 − 389388268

2835 z10 − 518637298
891 z11 − 1728425360

693 z12 − 2623624535150
243243 z13

− 879673454236
18711 z14 − 5004230870978

24255 z15 − 357875952715520
392931 z16 − 26997237726639718

6679827 z17

− 12486057159188
693 z18 − 5419093013311552886

67191201 z19 − 121736307685254959504
335956005 z20 − · · ·

The corresponding series for the mbira in §3.10 is the same, but with n+ 1
2 replaced

by n− 1
2 in both the definition of z and in the first term of the formula for λn.

§5.3 #1. (a) G♭♭, (b) D♭♭♭, (c) G♯♯♯♯ or G55.
§5.4 #1. The Pythagorean comma, in cents, is 1200 ln(312/219)/ ln(2), which works
out to the figure of roughly 23.460 cents given in the text. In Savarts, we get
1000 log10(3

12/219) or roughly 5.8851.

§5.4 #2. To the nearest cent, the vibrational modes of the drum are as given in the
following table, with respect to the lowest mode.

0 806 1313 1689 1989
1438 1854 2169 2425 2642
2217 2497 2727 2923 3095

§5.4 #3. E♭♭ ≈ 180.450 cents.

§5.8 #1. 1200 ln(81/80)/ ln2 ≈ 21.506 cents;
1200 ln(32805/32768)/ ln2 ≈ 1.953 cents.

§5.10 #1. Here are some of the notes appearing in these scales, and their values in
cents:

C
0

, 0.000. C♯
−2

, 70.672. D♭
0

, 90.225. C♯
−1

, 92.179. D♭
+1

, 111.731. D
−1

, 182.404.

D
0

, 203.910. D♯
−2

, 274.582. E♭
0

, 294.135. D♯
−1

, 296.089. E♭
+1

, 315.641. E
−1

,

386.314. F
0

, 498.045. F♯
−2

, 568.717. F♯
−1

, 590.224. G
0

, 701.955. G♯
−2

, 772.627.

G♯
−1

, 794.134. A♭
0

, 792.180. A♭
+1

, 813.687. A
−1

, 884.359. B♭
0

, 996.091. B♭
+1

,

1017.596. B
−1

, 1088.269. (C
0

, 1200.)

§5.10 #2. In these triads, the fifths are perfect, and the major thirds are flat by one
schisma, or 1.955 cents. This is much closer to just than, for example, the twelve
tone equal tempered major triad.
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§5.10 #3. (i) C
0

– E
−1

– G
0

, or many others.

(ii) C
−1

– E♭
0

– G
−1

, or many others.

(iii) Horizontal cross-sections are designed to contain just major scales, for example

C
0

– D
0

– E
−1

– F
0

– G
0

– A
−1

– B
−1

– C
0

.

(iv) Each black key is a syntonic comma lower than the white key above it, for ex-

ample C
−1

to C
0

.

(v) C
−1

to B♯
−2

, E♭
0

to D♯
−1

, and F
−1

to E♯
−2

are examples of pairs of notes on the
diagram, differing by a schisma.

(vi) From a white note near the top of the keyboard, go to the right one column and
down past the black note to the next white note to obtain a note one diesis higher.

For example C
0

to D♭
0

or E
0

to F
0

.

(vii) Each key is one apotomē higher than the corresponding key in the same posi-

tion two notes lower down on the keyboard. For example C
−1

to C♯
−1

is an apotomē.

§5.12 #2. If we use α commas, then the fifth will be out by α commas, the major
third by 4α− 1 commas, and the minor third by 3α− 1 commas. The total square
deviation is then

α2 + (4α− 1)2 + (3α− 1)2 = 26α2 − 14α+ 2 = 26(α− 7
26 )2 + 3

26 .

This expression is minimised by setting α = 7
26 . The root mean square deviation for

a 7
26 comma meantone scale is 1/

√
26 of a comma, or 4.218 cents. This compares

with 1/
√

24 of a comma, or 4.390 cents for the quarter comma meantone scale. This
represents an improvement of about four percent.

If we make the fifth and major third three times as important as the minor
third, then the quarter comma meantone scale exactly minimises the mean square
deviation. If we make the minor third twice as important as the fifth and major
third, Zarlino’s 2

7 -comma meantone scale minimises the mean square deviation.

§5.12 #4. The tempering in this scale is by

log2(3/2)− (1
2 + 1

4π )

of an octave, which works out at about 6.462 cents, or about 0.30047 commas.

§5.12 #5. The major thirds are just, and the minor thirds are narrow by one sixth
of a comma. Thus the important intervals of octave, fifth, major and minor third,
are all within one sixth of a comma, or 3.584 cents of the just values. The major
scale for this temperament is given in cents as follows:

C
0

, 0.000; D
−

1
2 , 193.157; E

−1

, 386.314; F
+ 1

3 , 505.214; G
−

1
6 , 698.371; A

−
2
3 , 891.527;

B
−

7
6 , 1084.684; C

+ 1
6 , 1203.584.

§5.13 #1. Here is a table of some of the scales discussed in this section, in cents to
three decimal places, and also in Eitz’s comma notation. The symbol p denotes the
Pythagorean comma, which is almost exactly equal to 12/11 of a syntonic comma.



352 A. ANSWERS TO ALMOST ALL EXERCISES

Werckmeister III Werckmeister IV Werckmeister V Vallotti–Young

do C 0.000 0 0.000 0 0.000 0 0.000 0

C♯ 90.225 −1p 82.405 − 4
3

p 96.090 − 3
4
p 90.225 −1p

re D 192.180 − 1
2
p 196.090 − 1

3
p 203.910 0 196.090 − 1

3
p

E♭ 294.135 0 294.135 0 300.000 + 1
4
p 294.135 0

mi E 390.225 − 3
4
p 392.180 − 2

3
p 396.090 − 1

2
p 392.180 − 2

3
p

fa F 498.045 0 498.045 0 503.910 + 1
4
p 498.045 0

F♯ 588.270 −1p 588.270 −1p 600.000 − 1
2
p 588.270 −1p

so G 696.090 − 1
4
p 694.135 − 1

3
p 701.955 0 698.045 − 1

6
p

G♯ 792.180 −1p 784.360 − 4
3

p 792.180 −1p 792.180 −1p

la A 888.270 − 3
4
p 890.225 − 2

3
p 900.000 − 1

4
p 894.135 − 1

2
p

B♭ 996.090 0 1003.910 + 1
3

p 1001.955 + 1
4
p 996.090 0

ti B 1092.180 − 3
4
p 1086.315 −1p 1098.045 − 1

2
p 1090.225 − 5

6
p

do C 1200.000 0 1200.000 0 1200.000 0 1200.000 0

Bach/Kelletat Bach/Kellner Bach/Barnes Bach/Lehman

do C 0.000 0 0.000 0 0.000 0 0.000 0

C♯ 90.225 −1p 90.225 −1p 90.225 −1p 98.045 − 2
3
p

re D 196.090 − 1
3
p 199.218 − 1

5
p 196.090 − 1

3
p 196.090 − 1

3
p

E♭ 294.135 0 294.135 0 294.135 0 298.045 + 1
6
p

mi E 388.270 − 5
6
p 389.052 − 4

5
p 392.180 − 2

3
p 392.180 − 2

3
p

fa F 498.045 0 498.045 0 498.045 0 501.955 + 1
6
p

F♯ 588.270 −1p 588.270 −1p 592.180 − 5
6
p 596.090 − 2

3
p

so G 700.000 − 1
12

p 697.263 − 1
5
p 698.045 − 1

6
p 698.045 − 1

6
p

G♯ 792.180 −1p 792.180 −1p 792.180 −1p 798.045 − 3
4
p

la A 892.180 − 7
12

p 891.789 − 3
5
p 894.135 − 1

2
p 894.135 − 1

2
p

B♭ 996.090 0 996.090 0p 996.090 0 998.045 + 1
12

p

ti B 1086.315 −1p 1091.007 − 4
5
p 1090.225 − 5

6
p 1094.135 − 2

3
p

do C 1200.000 0 1200.000 0 1200.000 0 1200.000 0

§5.13 #2. Back in the days when there were still ISA slots in desktop computers, I
used to use a Roland Sound Canvas SCC-1 card with my computer. Here are some
system exclusives for the SCC-1 for various temperaments. These should also work
with other versions of the Sound Canvas.

Just intonation in C:
F0 41 10 42 12 40 11 40 40 23 44 50 32 3E 36 42 25 30 52 34 35 F7

Just intonation in D:
F0 41 10 42 12 40 11 40 52 34 40 23 44 50 32 3E 36 42 25 30 35 F7

Meantone (with G♯):
F0 41 10 42 12 40 11 40 40 28 39 4A 32 43 2B 3D 25 36 47 2F 56 F7

Meantone (with A♭):
F0 41 10 42 12 40 11 40 40 28 39 4A 32 43 2B 3D 4E 36 47 2F 2D F7

Werckmeister III:
F0 41 10 42 12 40 11 40 40 36 38 3A 36 3E 34 3C 38 34 3C 38 43 F7

§5.14 #1. The approximation of Kirnberger and Farey is
(

81
80

) 12
11 ≈ 531411

524288
, or

(
34

24.5

) 12
11 ≈ 312

219 . Taking eleventh powers gives
(

34

24.5

)12 ≈
(

312

219

)11
, which can be

written as 348

248.512 ≈ 3132

2209 . Cross multiplying and cancelling gives 2161 ≈ 384.512.
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§5.14 #2. A good spectrum to use for twelve tone equal temperament consists of
the following multiples of the fundamental frequency:

1:1, 2:1, 2
19
12 :1, 4:1, 2

7
3 :1, 2

31
12 :1, 2

17
6 :1, 8:1.

These approximate the first eight harmonics in such a way as to make the equal
tempered major thirds (C–E) and the equal tempered approximation to the seventh
harmonic (C–B♭) consonant.

§5.14 #4. Here is a table of the Pythagorean, just, meantone and equal scales, in
cents to three decimal places, and also in Eitz’s comma notation. The symbol p de-
notes the Pythagorean comma, which is almost exactly equal to 12/11 of a syntonic
comma.

Pythagorean Just Meantone Equal

do C 0.000 0 0.000 0 0.000 0 0.000 0

C♯ 113.685 0 70.672 −2 76.049 − 7
4

100.000 − 7
12

p

re D 203.910 0 203.910 0 193.157 − 1
2

200.000 − 1
6
p

E♭ 294.135 0 315.641 +1 310.265 + 3
4

300.000 + 1
4
p

mi E 407.820 0 386.314 −1 386.314 −1 400.000 − 1
3
p

fa F 498.045 0 498.045 0 503.422 + 1
4

500.000 + 1
12

p

F♯ 611.730 0 590.224 −1 579.471 − 3
2

600.000 − 1
2
p

so G 701.955 0 701.955 0 696.579 − 1
4

700.000 − 1
12

p

G♯ 815.640 0 772.627 −2 772.627 −2 800.000 − 2
3
p

A♭ 792.180 0 — — – 813.686 +1 800.000 + 1
3
p

la A 905.865 0 884.359 −1 889.735 − 3
4

900.000 − 1
4
p

B♭ 996.090 0 1017.596 +1 1006.843 + 1
2

1000.000 + 1
6
p

ti B 1109.775 0 1088.269 −1 1082.892 − 5
4

1100.000 − 5
12

p

do C 1200.000 0 1200.000 0 1200.000 0 1200.000 0

§5.14 #5. In Cordier’s equal temperament, every semitone is exactly one seventh

of a perfect fifth, or a frequency ratio of
(

3
2

) 1
7 . So twelve such semitones give a

stretched octave with frequency ratio of
(

3
2

) 12
7 . Seven such stretched octaves give

a frequency ratio of
(

3
2

)12
, which differs from seven pure octaves by a ratio of(

3
2

)12
/27 = 312/219, or one Pythagorean comma. So one octave is stretched by 1

7 of
a Pythagorean comma.

In Eitz’s notation, this comes out as follows:

C
−

1
7

p

G
−

1
7

p

D
−

1
7

p

A
−

1
7

p

E
−

1
7

p

A
−

3
7

p

E
−

3
7

p

B
−

3
7

p

F♯
−

3
7

p

D♭
+4

7
p

D♭
+2

7
p

A♭
+2

7
p

E♭
+2

7
p

B♭
+ 2

7
p

F
+2

7
p

B♭
0

F
0

C
0

G
0

D
0

D
−

2
7

p

A
−

2
7

p

E
−

2
7

p

B
−

2
7

p

F♯
−

2
7

p

B
−

4
7

p

F♯
−

4
7

p

D♭
+ 3

7
p

A♭
+ 3

7
p

E♭
+3

7
p

E♭
+1

7
p

B♭
+ 1

7
p

F
+ 1

7
p

C
+ 1

7
p

G
+ 1

7
p

C
−

1
7

p

G
−

1
7

p

D
−

1
7

p

A
−

1
7

p

E
−

1
7

p

The top and bottom rows are identified to form a horizontal cylinder. Three major
thirds, going diagonally upwards and to the right three spaces, correspond to the oc-
tave stretched by 1

7 of a Pythagorean comma. Four minor thirds, going diagonally
downwards and to the right four places, have the same effect.
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The major thirds in this temperament are sharp by one syntonic comma mi-
nus 2

7 of a Pythagorean comma, or 14.803 cents. This is very slightly worse than the
already badly sharp major thirds of the usual equal temperament. The minor thirds
are flat by the same amount, which is slightly better than in equal temperament.

§6.1 #1. The Indian Sruti scale comes out as

D
−1

A
−1

E
−1

B
−1

F♯
−1

D♭
0

A♭
0

E♭
0

B♭
0

F
0

C
0

G
0

D
0

A
0

E
0

B
0

F♯
0

D♭
+1

A♭
+1

E♭
+1

B♭
+1

F
+1

§6.2 #1. The continued fraction for τ is τ = 1 + 1
1+

1
1+

1
1+ . . . . The convergents are

1
1 , 2

1 , 3
2 , 5

3 , 8
5 , etc. Writing Fn for the nth Fibonacci number, the nth convergent is

Fn+1

Fn
. Since the continued fraction has all its denominators as small as possible, τ

is as difficult as possible to approximate well by rational numbers.

§6.2 #2. Since
√

2 = 1 + 1
1+

√
2
, the continued fraction for

√
2 is 1 + 1

2+
1

2+
1

2+ · · · .
If x = a0 + 1

a1+
. . . 1

an+
1

a1+ . . . 1
an+

1
a1+

. . . then x = a0 + 1
a1+ . . . 1

an+x−a0
. Using

Theorem 6.2.2, this gives

x =
(an + x− a0)pn−1 + pn−2

(an + x− a0)qn−1 + qn−2
.

Clearing denominators gives a non-zero quadratic equation for x.

§6.2 #5. The general argument goes as follows. If n1 loga(b1)+ · · ·+nr loga(br) = m
with the ni and m integers not all equal to zero, then we obtain an equation of the
form bn1

1 . . . bnr
r = am. Note that the exponents here can be positive or negative, so

take the ones with negative exponent over to the other side to make them all posi-
tive. Then by the uniqueness of prime factorisation in the integers, this cannot hap-
pen if no two of a, b1, . . . , br have a prime factor in common.

§6.2 #6. The continued fraction expansion for the frequency ratio which represents
the Pythagorean comma is

531441

524288
= 1 +

1

73+

1

3+

1

2+

1

1+

1

1+

1

1+

1

23+

1

2+

1

5
.

This corresponds to the following application of Euclid’s algorithm to obtain 1 as
the highest common factor of the numerator and denominator:

531441− 1× 524288 = 7153

524288− 73× 7153 = 2119

7153− 3× 2119 = 796

2119− 2× 796 = 527

796− 1× 527 = 269

527− 1× 269 = 258

269− 1× 258 = 11

258− 23× 11 = 5

11− 2× 5 = 1

[ 5− 5× 1 = 0 ]

The numbers a0, a1, a2, . . . appear as the multiples to subtract in the application of
Euclid’s algorithm. This happens whether or not the fraction is in reduced form.
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§6.2 #8. The fraction is 113/821.

§6.5 #1. The 31 tone scale amounts to identifying F♭♭
+ 15

4 with D♯♯
−4

in the ex-
tended meantone scale. The difference is 6.069 cents, so divided by 31, this makes
each step out by 0.196 cents from the meantone equivalent. Here is the torus of
thirds and fifths:

F♭♭
+15

4
C♭♭

+7
2

G♭♭
+13

4
D♭♭

+3

D♭♭
+3

A♭♭
+11

4 E♭♭
+5

2 B♭♭
+9

4 F♭
+2

F♭
+2

C♭
+7

4
G♭

+3
2

D♭
+5

4
A♭

+1

A♭
+1

E♭
+3

4 B♭
+1

2 F
+1

4 C
0

C
0

G
−

1
4

D
−

1
2

A
−

3
4

E
−1

E
−1

B
−

5
4

F♯
−

3
2

C♯
−

7
4

G♯
−2

G♯
−2

D♯
−

9
4 A♯

−
5
2 E♯

−
11
4 B♯

−3

B♯
−3

F♯♯
−

13
4

C♯♯
−

7
2

G♯♯
−

15
4

F♭♭
+15

4

F♭♭
+15

4 C♭♭
+7

2 G♭♭
+13

4 D♭♭
+3

§6.5 #2.

note 1
3
-comma 19 tone 1

5
-comma 43 tone

C 0.000 0 0.000 0.000 0 0.000

D 189.572 3 189.474 195.307 7 195.349

E 379.145 6 378.947 390.615 14 390.698

F 505.214 8 505.263 502.346 18 502.326

G 694.786 11 694.737 697.654 25 697.674

A 884.359 14 884.211 892.961 32 893.023

B 1073.931 17 1073.684 1088.269 39 1088.372

C 1200.000 19 1200.000 1200.000 43 1200.000

note 2
7
-comma 50 tone 1

6
-comma 55 tone

C 0.000 0 0.000 0.000 0 0.000

D 191.621 8 192.000 196.741 9 196.364

E 383.241 16 384.000 393.482 18 392.727

F 504.190 21 504.000 501.629 23 501.818

G 695.810 29 696.000 698.371 32 698.182

A 887.431 37 888.000 895.112 41 894.545

B 1079.052 45 1080.000 1091.853 50 1090.909

C 1200.000 50 1200.000 1200.000 55 1200.000

Comparing the 1
3 -comma meantone with 19 tone equal temperament, the fifths dif-

fer by 0.0493955 cents, or about 1/24294 of an octave. This is about 67.296 times as
good as what is guaranteed by Theorem 6.2.3. This explains the second line of the
following table. For comparison, quarter comma meantone is compared with 31 tone
equal temperament, and 1

11 -comma meantone with 12 tone equal temperament.

commas tones cents octaves factor

1
11

12 0.000116436 1/10306055 71570

1
3

19 0.0493955 1/24294 67.296

1
4

31 0.1957651 1/6130 6.379

1
5

43 0.0206757 1/58039 31.389

2
7

50 0.1896534 1/6327 2.531

1
6

55 0.1880102 1/6356 2.101
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It can be seen from this table that 12 tone equal temperament is a fantistically good
approximation to 1

11 -comma meantone, while 19 tone equal temperament is a pretty

good approximation to 1
3 -comma meantone. The 50 and 55 tone approximations

come out worst in this comparison.

§6.7 #1. Scale degree 5 (243.8 cents) approximates the ratio 15/13 (247.7 cents), 7
(341.4 cents) approximates 11/9 (347.4 cents), 11 (536.5 cents) approximates 15/11
(536.9 cents), 13 (634.0 cents) approximates 13/9 (636.6 cents), 16 (780.3 cents) ap-
proximates 11/7 (782.5 cents), 22 (1072.9 cents) approximates 13/7 (1071.7 cents),
28 (1365.5 cents) approximates 11/5 (1365.0 cents), and 34 (1658.2 cents) approxi-
mates 13/5 (1654.2 cents).

§7.8 #1. (a) We have

z2

z2 + z + 1
2

=
1

1 + z−1 + 1
2z

−2
,

and so this transfer function can be written in the form

G(z) = F (z)− z−1G(z)− 1
2z

−2G(z).

(b) (9
4 + 3 cos 2πν/N + cos 4πν/N)−

1
2

(c) The poles of the transfer function are at z = (−1 ± i)/2, which are inside the
unit circle, so the filter is stable.

§8.8 #1. Working to five decimal places,

sin(440(2πt) + 1
10 sin 660(2πt)) = 0.04994 sin220(2πt) + 0.99750 sin440(2πt)

− 0.00125 sin880(2πt) + 0.04994 sin1100(2πt)

+ 0.00002 sin1540(2πt) + 0.00125 sin1760(2πt)

+ 0.00002 sin2420(2πt) + . . .

§8.16 #1. Differentiate the equation Tn(cos t)−cosnt = 0 using the chain rule to get

−(sin t)T ′
n(cos t) + n sinnt = 0

and again to get

(sin2 t)T ′′
n (cos t)− (cos t)T ′

n(cos t) + n2 cosnt = 0.

Now substitute x = cos t, y = Tn(x) = cosnt, and 1− x2 = sin2 t.

§8.16 #2. De Moivre’s theorem says that

cosnt+ i sinnt = (cos t+ i sin t)n.

Expanding out the right hand side using the binomial theorem, we obtain

cosnt+ i sinnt = cosn t+ in cosn−1 t sin t+ i2
(
n

2

)
cosn−2 t sin2 t

+ i3
(
n

3

)
cosn−3 t sin3 t+ i4

(
n

4

)
cosn−4 t sin4 t+ · · ·

Taking real parts picks out every other term on the right,

cosnt = cosn t−
(
n

2

)
cosn−2 t sin2 t+

(
n

4

)
cosn−4 t sin4 t− · · ·

Now substitute x = cos t, Tn(x) = cosnt and 1− x2 = sin2 t.
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§9.1 #1. There is a horizontal axis of exact reflectional symmetry at the note A.

§9.1 #2. There is a vertical axis of reflectional symmetry in the barline. There is a
horizontal axis of reflectional symmetry so that in the Alto line the pitches are a re-
flection of the pitches of the Soprano line. The line of symmetry is on the G of the
treble clef. The composite of these two symmetries is a rotational symmetry around
the middle of the piece. The symmetry in the pitches is exact, but the durations
and the words do not display the temporal symmetry.

§9.1 #3. Here are the chords in the circle notation.

&%
'$•••

• &%
'$•

•

•

• &%
'$

•

••• &%
'$
•

•
•

• &%
'$
•

•
•

• &%
'$

•
•

• •

The second set of three chords has been obtained from the first by temporal reflec-
tion followed by a reflection of the chords about a mirror line which passes between
C and C♯ and between F♯ and G.

&%
'$

�
�
�
�
�
�

§9.1 #4. The frieze pattern here is pm11.

§9.1 #5. The notes fall into two sets of six (with one note repeated three times),
which can be represented on the circle as follows.

&%
'$

• •
J

JJ]
•

�
�	•
JĴ•�

�
��
•

&%
'$
•�

�
��
•
JĴ•
�

�	•J
J

J]
• •

The second set has been rotated half a circle from the first (i.e., a transposition of a
tritone), and the order of the notes is reversed. The durations of the notes are not
part of this symmetry.

§9.2 #1. The sequence transcribes to 1403423120. This can be divided into five pairs
14 03 42 31 20. Each pair is obtained from the previous one by moving one place
down the cycle of five strings. Reversing time and the cyclic ordering of the strings,
we get 42 31 20 14 03 which is the same sequence, but with a different starting point.

§9.3 #1. Write e for the identity element of G. If (gh)n = e then (gh)n−1g = h−1,
so h(gh)n−1g = e, i.e., (hg)n = e. Using this both ways round, we see that gh and
hg must have the same order.
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§9.3 #2. Define the composite f1 ◦ f2 by (f1 ◦ f2)(x) = f1(f2(x)). Then given func-
tions f1, f2 and f3, for all x we have

(f1 ◦ (f2 ◦ f3))(x) = f1((f2 ◦ f3)(x)) = f1(f2(f3(x)))

((f1 ◦ f2) ◦ f3)(x) = (f1 ◦ f2)(f3(x)) = f1(f2(f3(x))).

It follows that f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3.
§9.4 #1. If n is even, we have

ba = (1, 3, 5, . . . , n− 3, n− 1, n, n− 2, n− 4, . . . , 6, 4, 2),

of order n, so the total number of rows before returning to the beginning is 2n.
If n is odd, we have

ba = (1, 3, 5, . . . , n− 2, n, n− 1, n− 3, n− 5, . . . , 6, 4, 2),

again of order n, so the number of rows is either n or 2n. But a(ba)(n−1)/2 is not the
identity (for example, it doesn’t fix 1), so the number of rows again has to be 2n.

§9.7 #1. The numbers 1, 5, 7, 11, 13, 17, 19 and 23 are generators for Z/24, so
φ(24) = 8.

§9.7 #3. (a) 42, (b) 16, (c) 70, (d) 4000.
§9.7 #4. Any homomorphism must take 1 to an nth root of unity in C. So the ho-
momorphisms are of the form χk : j 7→ e2πijk/n, with 0 ≤ k < n. Of these, the in-
jective ones are those χk where n and k have no common factor, so the number of
these is φ(n). The discrete Fourier transform weights the values of a digital signal
by the values of χ−k : Z/M → C× to give F (k):

F (k) =

M−1∑

n=0

f(n∆t)χ−k(n).

§9.9 #1. An example of an isomorphism between Z/3 × Z/4 and Z/12 is the map
taking (a, b) to 4a+3b. We can interpret this as follows. We can find a copy of Z/3 as
the subgroup of Z/12 by using the multiples of four. Similarly, a copy of Z/4 is given
by the multiples of three. If we look at Z/12 as the group of transpositions in the
twelve tone scale, then Z/3 is the subgroup consisting of transpositions by a whole
number of major thirds, while Z/4 is the subgroup consisting of transpositions by a
whole number of minor thirds. So every transposition by a whole number of semi-
tones can be written as a combination of a number of major thirds and a number of
minor thirds. These numbers are uniquely determined, up to octave equivalence.

§9.9 #2. The group Z/12×Z/2 has three elements of order two, while Z/24 has only
one element of order two. So there cannot be any isomorphism between these groups.

§9.9 #3. The group Z/2 × Z/2 can be regarded as the group of symmetries of the
Taverner example. One way to do this is to make (1, 0) correspond to the tempo-
ral symmetry about the bar line, and (0, 1) correspond to the pitch symmetry about
the G in the treble clef. Then (1, 1) corresponds to the rotational symmetry around
the midpoint of the piece.

§9.10 #1. The dihedral group of order six is the group of rigid symmetries of an
equilateral triangle. The action on the three vertices of the triangle gives all per-
mutations of this three element set. This action therefore induces an epimorphism
from D6 to S3, and comparing orders, it must be an isomoporphism.
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§9.10 #2. The dihedral group of order twelve is the group of rigid symmetries of
a regular hexagon. The action on the three pairs of opposite vertices gives a ho-
momorphism from D12 to S3. There are two equilateral triangles formed by taking
three equally spaces vertices, and the action on this set of two triangles gives a ho-
momorphism from D12 to Z/2. We can use these two homomorphisms to give the
coordinates of a homomorphism from D12 to S3 × Z/2. It is not hard to check that
this is an isomorphism.

§9.10 #3. The group D24 has an element of order eight, whereas S3 × Z/4 doesn’t.

§9.10 #4. The subgroup fixing the chord setwise consists of the elements Tn and
ITn with n divisible by three. It is isomorphic to D8.

§9.10 #5. The subgroup fixing the chord setwise consists of the elements Tn and
ITn with n divisible by four. It is isomorphic to S3.

§9.10 #6. Write σ for the permutation (0, 1, 2, 3, 4) and τ for the permutation

(1, 4)(2, 3) on the five strings of the harp, t for temporal translation and r for tem-

poral reversal based at the beginning of a repetition. These generate a group of op-

erations 〈σ, τ〉 × 〈t, r〉 ∼= D10×D∞ acting on patterns. The symmetries of the given

pattern form an infinite dihedral subgroup acting in a sort of spiral fashion. It is

generated, for example, by a translation σ−2t6 and a reflection τt10r.



APPENDIX B

Bessel functions

z J0(z) J1(z) J2(z) J3(z) J4(z)

0 1 0 0 0 0

0.0001 0.99999 99975 00000 0.00005 00000 1.250 × 10−09 2.083 × 10−14 2.604 × 10−19

0.0002 0.99999 99900 00000 0.00010 00000 5.000 × 10−09 1.667 × 10−13 4.167 × 10−18

0.0005 0.99999 99375 00001 0.00025 00000 3.125 × 10−08 2.604 × 10−12 1.628 × 10−16

0.001 0.99999 97500 00016 0.00049 99999 0.00000 01250 2.083 × 10−11 2.604 × 10−15

0.002 0.99999 90000 00250 0.00099 99995 0.00000 05000 1.667 × 10−10 4.167 × 10−14

0.005 0.99999 37500 09766 0.00249 99922 0.00000 31250 2.604 × 10−09 1.628 × 10−12

0.01 0.99997 50001 56250 0.00499 99375 0.00001 24999 2.083 × 10−08 2.604 × 10−11

0.02 0.99990 00024 99972 0.00999 95000 0.00004 99983 0.00000 01667 4.167 × 10−10

0.03 0.99977 50126 55934 0.01499 83126 0.00011 24916 0.00000 05625 2.109 × 10−09

0.04 0.99960 00399 98222 0.01999 60003 0.00019 99733 0.00000 13332 6.666 × 10−09

0.05 0.99937 50976 49468 0.02499 21883 0.00031 24349 0.00000 26038 1.628 × 10−08

0.06 0.99910 02024 79751 0.02998 65020 0.00044 98650 0.00000 44990 3.374 × 10−08

0.07 0.99877 53751 05191 0.03497 85669 0.00061 22499 0.00000 71436 6.251 × 10−08

0.08 0.99840 06398 86234 0.03996 80085 0.00079 95734 0.00001 06624 0.00000 01066

0.09 0.99797 60249 25619 0.04495 44529 0.00101 18167 0.00001 51798 0.00000 01708

0.10 0.99750 15620 66040 0.04993 75260 0.00124 89587 0.00002 08203 0.00000 02603

0.15 0.99438 29052 14140 0.07478 92602 0.00280 72303 0.00007 02137 0.00000 13169

0.20 0.99002 49722 39576 0.09950 08326 0.00498 33542 0.00016 62504 0.00000 41583

0.25 0.98443 59292 95853 0.12402 59773 0.00777 18893 0.00032 42513 0.00001 01408

0.30 0.97762 62465 38296 0.14831 88163 0.01116 58619 0.00055 93430 0.00002 09990

0.35 0.96960 86763 23187 0.17233 39552 0.01515 67821 0.00088 64113 0.00003 88400

0.4 0.96039 82266 59563 0.19602 65780 0.01973 46631 0.00132 00532 0.00006 61351

0.5 0.93846 98072 40813 0.24226 84577 0.03060 40235 0.00256 37300 0.00016 07365

0.6 0.91200 48634 97211 0.28670 09881 0.04366 50967 0.00439 96567 0.00033 14704

0.7 0.88120 08886 07405 0.32899 57415 0.05878 69444 0.00692 96548 0.00061 00970

0.8 0.84628 73527 50480 0.36884 20461 0.07581 77625 0.01024 67663 0.00103 29850

0.9 0.80752 37981 22545 0.40594 95461 0.09458 63043 0.01443 40285 0.00164 05522

1.0 0.76519 76865 57967 0.44005 05857 0.11490 34849 0.01956 33540 0.00247 66390

1.1 0.71962 20185 27511 0.47090 23949 0.13656 41540 0.02569 45286 0.00358 78203

1.2 0.67113 27442 64363 0.49828 90576 0.15934 90183 0.03287 43369 0.00502 26663

1.3 0.62008 59895 61509 0.52202 32474 0.18302 66988 0.04113 58257 0.00683 09584

1.4 0.56695 51203 74289 0.54194 77139 0.20735 58995 0.05049 77133 0.00906 28717

1.5 0.51182 76717 35918 0.55793 65079 0.23208 76721 0.06096 39511 0.01176 81324

1.6 0.45540 21676 39381 0.56989 59353 0.25696 77514 0.07252 34433 0.01499 51611

1.7 0.39798 48594 46109 0.57776 52315 0.28173 89424 0.08514 99269 0.01879 02116

1.8 0.33998 64110 42558 0.58151 69517 0.30614 35353 0.09880 20157 0.02319 65169

1.9 0.28181 85593 74385 0.58115 70727 0.32992 57277 0.11342 34066 0.02825 34512

2.0 0.22389 07791 41236 0.57672 48078 0.35283 40286 0.12894 32495 0.03399 57198

2.1 0.16660 69803 31990 0.56829 21358 0.37462 36252 0.14527 66741 0.04045 25864

2.2 0.11036 22669 22174 0.55596 30498 0.39505 86875 0.16232 54728 0.04764 71475

2.3 0.05553 97844 45602 0.53987 25326 0.41391 45917 0.17997 89313 0.05559 56638

2.4 0.00250 76832 97244 0.52018 52682 0.43098 00402 0.19811 47988 0.06430 69568

2.5 -0.04838 37764 68198 0.49709 41025 0.44605 90584 0.21660 03910 0.07378 18801

2.6 -0.09680 49543 97038 0.47081 82665 0.45897 28517 0.23529 38130 0.08401 28707

2.7 -0.14244 93700 46012 0.44160 13791 0.46956 15027 0.25404 52916 0.09498 35897

2.8 -0.18503 60333 64387 0.40970 92469 0.47768 54954 0.27269 86037 0.10666 86554

2.9 -0.24431 15457 91968 0.37542 74818 0.48322 70505 0.29109 25878 0.11903 34761

360



B. BESSEL FUNCTIONS 361

z J0(z) J1(z) J2(z) J3(z) J4(z)

3.0 -0.26005 19549 01933 0.33905 89585 0.48609 12606 0.30906 27223 0.13203 41839

3.1 -0.29206 43476 50698 0.30092 11331 0.48620 70142 0.32644 27561 0.14561 76751

3.2 -0.32018 81696 57123 0.26134 32488 0.48352 77001 0.34306 63764 0.15972 17556

3.3 -0.34429 62603 98885 0.22066 34530 0.47803 16865 0.35876 88942 0.17427 53940

3.4 -0.36429 55967 62000 0.17922 58517 0.46972 25683 0.37338 89346 0.18919 90810

3.5 -0.38012 77399 87263 0.13737 75274 0.45862 91842 0.38677 01117 0.20440 52930

3.6 -0.39176 89837 00798 0.09546 55472 0.44480 53988 0.39876 26737 0.21979 90574

3.7 -0.39923 02033 71191 0.05383 39877 0.42832 96562 0.40922 51000 0.23527 86141

3.8 -0.40255 64101 78564 0.01282 10029 0.40930 43065 0.41802 56354 0.25073 61706

3.9 -0.40182 60148 87640 -0.02724 40396 0.38785 47125 0.42504 37448 0.26605 87410

4.0 -0.39714 98098 63847 -0.06604 33280 0.36412 81459 0.43017 14739 0.28112 90650

4.1 -0.38866 96798 35854 -0.10327 32577 0.33829 24809 0.43331 47026 0.29582 65960

4.2 -0.37655 70543 67568 -0.13864 69421 0.31053 47010 0.43439 42764 0.31002 85510

4.3 -0.36101 11172 36535 -0.17189 65602 0.28105 92288 0.43334 70056 0.32361 10116

4.4 -0.34225 67900 03886 -0.20277 55219 0.25008 50982 0.43012 65203 0.33645 00658

4.5 -0.32054 25089 85121 -0.23106 04319 0.21784 89837 0.42470 39730 0.34842 29803

4.6 -0.29613 78165 74141 -0.25655 28361 0.18459 31051 0.41706 85798 0.35940 93901

4.7 -0.26933 07894 19753 -0.27908 07358 0.15057 30295 0.40722 79950 0.36929 24960

4.8 -0.24042 53272 91183 -0.29849 98581 0.11605 03864 0.39520 85134 0.37796 02554

4.9 -0.20973 83275 85326 -0.31469 46710 0.08129 15231 0.38105 50980 0.38530 65561

5.0 -0.17759 67713 14338 -0.32757 91376 0.04656 51163 0.36483 12306 0.39123 23605

5.1 -0.14433 47470 60501 -0.33709 72020 0.01213 97659 0.34661 85870 0.39564 68071

5.2 -0.11029 04397 90987 -0.34322 30059 -0.02171 84086 0.32651 65377 0.39846 82598

5.3 -0.07580 31115 85584 -0.34596 08338 -0.05474 81465 0.30464 14780 0.39962 52913

5.4 -0.04121 01012 44991 -0.34534 47908 -0.08669 53768 0.28112 59931 0.39905 75914

5.5 -0.00684 38694 17819 -0.34143 82154 -0.11731 54816 0.25611 78651 0.39671 67891

5.6 0.02697 08846 85114 -0.33433 28363 -0.14637 54691 0.22977 89298 0.39256 71796

5.7 0.05992 00097 24037 -0.32414 76802 -0.17365 60379 0.20228 37940 0.38658 63473

5.8 0.09170 25675 74816 -0.31102 77443 -0.19895 35139 0.17381 84244 0.37876 56770

5.9 0.12203 33545 92823 -0.29514 24447 -0.22208 16409 0.14457 86204 0.36911 07464

6.0 0.15064 52572 50997 -0.27668 38581 -0.24287 32100 0.11476 83848 0.35764 15948

6.1 0.17729 14222 42744 -0.25586 47726 -0.26118 15116 0.08459 82076 0.34439 28633

6.2 0.20174 72229 48904 -0.23291 65671 -0.27688 15994 0.05428 32771 0.32941 38031

6.3 0.22381 20061 32191 -0.20808 69402 -0.28987 13522 0.02404 16372 0.31276 81496

6.4 0.24331 06048 23407 -0.18163 75090 -0.30007 23264 -0.00590 76950 0.29453 38623

6.5 0.26009 46055 81606 -0.15384 13014 -0.30743 03906 -0.03534 66313 0.27480 27310

6.6 0.27404 33606 24146 -0.12498 01652 -0.31191 61379 -0.06405 99184 0.25367 98485

6.7 0.28506 47377 10576 -0.09534 21180 -0.31352 50715 -0.09183 70291 0.23128 29558

6.8 0.29309 56031 04273 -0.06521 86634 -0.31227 75629 -0.11847 40207 0.20774 16623

6.9 0.29810 20354 04820 -0.03490 20961 -0.30821 85850 -0.14377 53445 0.18319 65463

7.0 0.30007 92705 19556 -0.00468 28235 -0.30141 72201 -0.16755 55880 0.15779 81447

7.1 0.29905 13805 01550 0.02515 32743 -0.29196 59511 -0.18964 11340 0.13170 58379

7.2 0.29507 06914 00958 0.05432 74202 -0.27997 97413 -0.20987 17210 0.10508 66405

7.3 0.28821 69476 35014 0.08257 04305 -0.26559 49119 -0.22810 18891 0.07811 39072

7.4 0.27859 62326 57478 0.10962 50949 -0.24896 78286 -0.24420 22995 0.05096 59642

7.5 0.26633 96578 80378 0.13524 84276 -0.23027 34105 -0.25806 09132 0.02382 46800

7.6 0.25160 18338 49976 0.15921 37684 -0.20970 34737 -0.26958 40177 -0.00312 60139

7.7 0.23455 91395 86464 0.18131 27153 -0.18746 49278 -0.27869 70934 -0.02970 16385

7.8 0.21540 78077 46263 0.20135 68728 -0.16377 78404 -0.28534 55088 -0.05571 87049

7.9 0.19436 18448 41278 0.21917 93999 -0.13887 33892 -0.28949 50400 -0.08099 62615

8.0 0.17165 08071 37554 0.23463 63469 -0.11299 17204 -0.29113 22071 -0.10535 74349

8.1 0.14751 74540 44378 0.24760 77670 -0.08637 97338 -0.29026 44256 -0.12863 09519

8.2 0.12221 53017 84138 0.25799 85976 -0.05928 88146 -0.28691 99706 -0.15065 26274

8.3 0.09600 61008 95010 0.26573 93020 -0.03197 25341 -0.28114 77522 -0.17126 68048

8.4 0.06915 72616 56985 0.27078 62683 -0.00468 43406 -0.27301 69067 -0.19032 77356

8.5 0.04193 92518 42935 0.27312 19637 0.02232 47396 -0.26261 62039 -0.20770 08835

8.6 0.01462 29912 78741 0.27275 48445 0.48808 36792 -0.25005 32781 -0.22326 41433

8.7 -0.01252 27324 49665 0.26971 90241 0.07452 71058 -0.23545 36881 -0.23690 89597

8.8 -0.03923 38031 76542 0.26407 37032 0.09925 05539 -0.21895 98151 -0.24854 13369



362 B. BESSEL FUNCTIONS

z J0(z) J1(z) J2(z) J3(z) J4(z)

8.9 -0.06525 32468 51244 0.25590 23714 0.12275 93977 -0.20072 96084 -0.25808 27293

9.0 -0.09033 36111 82876 0.24531 17866 0.14484 73415 -0.18093 51903 -0.26547 08018

9.1 -0.11423 92326 83199 0.23243 07450 0.16532 29129 -0.15976 13327 -0.27066 00554

9.2 -0.13674 83707 64864 0.21740 86550 0.18401 11218 -0.13740 38194 -0.27362 23084

9.3 -0.15765 51899 43403 0.20041 39278 0.20075 49594 -0.11406 77088 -0.27434 70295

9.4 -0.17677 15727 51508 0.18163 22040 0.21541 67225 -0.08996 55136 -0.27284 15184

9.5 -0.19392 87476 87422 0.16126 44308 0.22787 91542 -0.06531 53132 -0.26913 09309

9.6 -0.20897 87183 68872 0.13952 48117 0.23804 63875 -0.04033 88170 -0.26325 81481

9.7 -0.22179 54820 31723 0.11663 86479 0.24584 46878 -0.01529 39520 -0.25528 34889

9.8 -0.23227 60275 79367 0.09284 00911 0.25122 29849 0.00969 99027 -0.24528 42690

9.9 -0.24034 11055 34760 0.06836 98323 0.25415 31929 0.03431 83264 -0.23335 42071

10.0 -0.24593 57644 51348 0.04347 27462 0.25463 03137 0.05837 93793 -0.21960 26861

10.5 -0.23664 81944 62347 -0.07885 00142 0.22162 91441 0.16328 01644 -0.12832 61931

11.0 -0.17119 03004 07196 -0.17678 52990 0.13904 75188 0.22734 80331 -0.01503 95007

11.5 -0.06765 39481 11665 -0.22837 86207 0.02793 59271 0.23809 54649 0.09628 77937

12.0 0.04768 93107 96834 -0.22344 71045 -0.08493 04949 0.19513 69395 0.18249 89646

12.5 0.14688 40547 00421 -0.16548 38046 -0.17336 14634 0.11000 81363 0.22616 53689

13.0 0.20692 61023 77068 -0.07031 80521 -0.21774 42642 0.00331 98170 0.21927 64875

13.5 0.21498 91658 80401 0.03804 92921 -0.20935 22337 -0.10007 95836 0.16487 24188

14.0 0.17107 34761 10459 0.13337 51547 -0.15201 98826 -0.17680 94069 0.07624 44225

14.5 0.08754 48680 10376 0.19342 94636 -0.06086 49420 -0.21021 97924 -0.02612 25583

15.0 -0.01422 44728 26781 0.20510 40386 0.04157 16780 -0.19401 82578 -0.11917 89811

15.5 -0.10923 06509 00050 0.16721 31804 0.13080 65451 -0.13345 66526 -0.18246 71848

16.0 -0.17489 90739 83629 0.09039 71757 0.18619 87209 -0.04384 74954 -0.20264 15317

16.5 -0.19638 06929 36861 -0.00576 42137 0.19568 20004 0.05320 22744 -0.17633 57188

17.0 -0.16985 42521 51184 -0.09766 84928 0.15836 38412 0.13493 05730 -0.11074 12860

17.5 -0.10311 03982 28686 -0.16341 99694 0.08443 38303 0.18271 91306 -0.02178 72712

18.0 -0.01335 58057 21984 -0.18799 48855 -0.00753 25149 0.18632 09933 0.06963 95127

18.5 0.07716 48214 22555 -0.16663 36400 -0.09517 92690 0.14605 43386 0.14254 82437

19.0 0.14662 94396 59651 -0.10570 14311 -0.15775 59061 0.07248 96614 0.18064 73781

19.5 0.17885 38270 40173 -0.02087 70701 -0.18099 50650 -0.01625 01227 0.17599 50273

20.0 0.16702 46643 40583 0.06683 31242 -0.16034 13519 -0.09890 13946 0.13067 09336

z J5(z) J6(z) J7(z) J8(z) J9(z)

0 0 0 0 0 0

0.1 2.603 × 10−09 2.169 × 10−11 1.550 × 10−13 9.685 × 10−16 5.380 × 10−18

0.2 8.319 × 10−08 1.387 × 10−09 1.982 × 10−11 2.477 × 10−13 2.753 × 10−15

0.3 0.00000 06304 1.577 × 10−08 3.381 × 10−10 6.341 × 10−12 1.057 × 10−13

0.4 0.00000 26489 8.838 × 10−08 2.527 × 10−09 6.321 × 10−11 1.405 × 10−12

0.5 0.00000 80536 0.00000 03361 1.202 × 10−08 3.758 × 10−10 1.045 × 10−11

0.6 0.00001 99482 0.00000 09996 4.291 × 10−08 1.611 × 10−09 5.375 × 10−11

0.7 0.00004 28824 0.00000 25088 0.00000 01257 5.509 × 10−09 2.145 × 10−10

0.8 0.00008 30836 0.00000 55601 0.00000 03186 1.597 × 10−08 7.109 × 10−10

0.9 0.00014 86580 0.00001 12036 0.00000 07229 4.077 × 10−08 2.043 × 10−09

1.0 0.00024 97577 0.00002 09383 0.00000 15023 9.422 × 10−08 5.249 × 10−09

1.1 0.00039 87099 0.00003 68150 0.00000 29084 0.00000 02008 1.231 × 10−08

1.2 0.00061 01049 0.00006 15414 0.00000 53093 0.00000 04002 2.679 × 10−08

1.3 0.00090 08414 0.00009 85905 0.00000 92248 0.00000 07540 5.471 × 10−08

1.4 0.00129 01251 0.00015 23073 0.00001 53661 0.00000 13538 0.00000 01059

1.5 0.00179 94218 0.00022 80127 0.00002 46798 0.00000 23321 0.00000 01956

1.6 0.00245 23620 0.00033 21012 0.00003 83972 0.00000 38744 0.00000 03469

1.7 0.00327 45981 0.00047 21304 0.00005 80872 0.00000 62348 0.00000 05936

1.8 0.00429 36149 0.00065 68991 0.00008 57125 0.00000 97534 0.00000 09843

1.9 0.00553 84930 0.00089 65121 0.00012 36884 0.00001 48764 0.00000 15863

2.0 0.00703 96298 0.00120 24290 0.00017 49441 0.00002 21796 0.00000 24923

2.1 0.00882 84171 0.00158 74951 0.00024 29833 0.00003 23938 0.00000 38266

2.2 0.01093 68819 0.00206 59518 0.00033 19463 0.00004 64337 0.00000 57535

2.3 0.01339 72905 0.00265 34256 0.00044 66689 0.00006 54286 0.00000 84866

2.4 0.01624 17239 0.00336 68927 0.00059 27398 0.00009 07560 0.00001 23002
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z J5(z) J6(z) J7(z) J8(z) J9(z)

2.5 0.01950 16251 0.00422 46205 0.00077 65532 0.00012 40774 0.00001 75420

2.6 0.02320 73276 0.00524 60815 0.00100 53563 0.00016 73755 0.00002 46466

2.7 0.02738 75668 0.00645 18427 0.00128 72898 0.00022 29934 0.00003 41524

2.8 0.03206 89832 0.00786 34275 0.00163 14204 0.00029 36744 0.00004 67189

2.9 0.03727 56220 0.00950 31514 0.00204 77633 0.00038 26023 0.00006 31459

3.0 0.04302 84349 0.01139 39323 0.00254 72945 0.00049 34418 0.00008 43950

3.1 0.04934 47926 0.01355 90753 0.00314 19503 0.00063 03778 0.00011 16123

3.2 0.05623 80126 0.01602 20338 0.00384 46142 0.00079 81533 0.00014 61522

3.3 0.06371 69093 0.01880 61494 0.00466 90886 0.00100 21053 0.00018 96036

3.4 0.07178 53735 0.02193 43706 0.00563 00521 0.00124 81970 0.00024 38159

3.5 0.08044 19866 0.02542 89545 0.00674 30003 0.00154 30467 0.00031 09276

3.6 0.08967 96760 0.02931 11538 0.00802 41700 0.00189 39518 0.00039 33937

3.7 0.09948 54170 0.03360 08913 0.00949 00447 0.00230 89068 0.00049 40152

3.8 0.10983 99868 0.03831 64263 0.01115 92541 0.00279 66150 0.00061 59670

3.9 0.12071 77752 0.04347 40159 0.01304 84275 0.00336 64932 0.00076 28267

4.0 0.13208 66560 0.04908 75752 0.01517 60694 0.00402 86678 0.00093 86019

4.1 0.14390 79237 0.05516 83400 0.01756 03884 0.00479 39619 0.00114 77557

4.2 0.15613 62970 0.06172 45370 0.02021 95230 0.00567 38731 0.00139 52316

4.3 0.16871 99927 0.06876 10645 0.02317 13501 0.00668 05404 0.00168 64746

4.4 0.18160 08721 0.07627 91890 0.02643 32796 0.00782 67008 0.00202 74505

4.5 0.19471 46586 0.08427 62611 0.03002 20377 0.00912 56340 0.00242 46609

5.0 0.26114 05461 0.13104 87318 0.05337 64102 0.01840 52167 0.00552 02831

5.5 0.32092 47371 0.18678 27330 0.08660 12258 0.03365 67508 0.01130 93220

6.0 0.36208 70749 0.24583 68634 0.12958 66518 0.05653 19909 0.02116 53240

6.5 0.37356 53771 0.29991 32338 0.18012 05930 0.08803 88126 0.03659 03304

7.0 0.34789 63248 0.33919 66050 0.23358 35695 0.12797 05340 0.05892 05083

7.5 0.28347 39052 0.35414 05269 0.28315 09379 0.17440 78905 0.08891 92285

8.0 0.18577 47722 0.33757 59001 0.32058 90780 0.22345 49864 0.12632 08947

8.5 0.06713 30194 0.28668 09063 0.33759 29660 0.26935 45671 0.16942 73956

9.0 -0.05503 88557 0.20431 65177 0.32746 08792 0.30506 70723 0.21488 05825

9.5 -0.16132 12602 0.09931 90781 0.28677 69378 0.32329 95671 0.25772 75962

10.0 -0.23406 15282 -0.01445 88421 0.21671 09177 0.31785 41268 0.29185 56853

10.5 -0.26105 25019 -0.12029 52374 0.12357 22307 0.28505 82116 0.31080 21870

11.0 -0.23828 58518 -0.20158 40009 0.01837 60326 0.22497 16788 0.30885 55001

11.5 -0.17111 26519 -0.24508 14040 -0.08462 44654 0.14206 03158 0.28227 36003

12.0 -0.07347 09631 -0.24372 47672 -0.17025 38041 0.04509 53291 0.23038 09096

12.5 0.03473 76998 -0.19837 52091 -0.22517 79005 -0.05382 40395 0.15628 31300

13.0 0.13161 95599 -0.11803 06721 -0.24057 09496 -0.14104 57351 0.06697 61987

13.5 0.19778 17577 -0.01836 74131 -0.21410 83471 -0.21410 83471 -0.20367 08728

14.0 0.22037 76483 0.08116 81834 -0.15080 49196 -0.23197 31031 -0.11430 71981

14.5 0.19580 73465 0.16116 21076 -0.06243 18091 -0.22144 10957 -0.18191 69861

15.0 0.13045 61346 0.20614 97375 0.03446 36554 -0.17398 36591 -0.22004 62251

15.5 0.03928 00410 0.20780 91468 0.12160 44597 -0.09797 28606 -0.22273 77352

16.0 -0.05747 32704 0.16672 07377 0.18251 38237 -0.00702 11420 -0.18953 49657

16.5 -0.13869 83805 0.09227 60942 0.20580 82672 0.08234 91022 -0.12595 45923

17.0 -0.18704 41194 0.00071 53334 0.18754 90607 0.15373 68342 -0.04285 55697

17.5 -0.19267 90261 -0.08831 50294 0.13212 01488 0.19401 11484 0.04526 14726

18.0 -0.15537 00988 -0.15595 62342 0.05139 92760 0.19593 34488 0.12276 37897

18.5 -0.08441 18549 -0.18817 62733 -0.03764 84305 0.15968 55691 0.17575 48687

19.0 0.00357 23925 -0.17876 71715 -0.11647 79745 0.09294 12956 0.19474 43287

19.5 0.08845 32108 -0.13063 44063 -0.16884 36147 0.00941 33496 0.17656 73888

20.0 0.15116 97680 -0.05508 60496 -0.18422 13977 -0.07386 89288 0.12512 62546

z J10(z) J11(z) J12(z) J13(z) J14(z)

0 0 0 0 0 0

0.1 2.691 × 10−20 1.223 × 10−22 5.096 × 10−25 1.960 × 10−27 7.000 × 10−30

0.2 2.753 × 10−17 2.503 × 10−19 2.086 × 10−21 1.605 × 10−23 1.146 × 10−25

0.3 1.586 × 10−15 2.163 × 10−17 2.704 × 10−19 3.120 × 10−21 3.344 × 10−23

0.4 2.812 × 10−14 5.114 × 10−16 8.525 × 10−18 1.312 × 10−19 1.874 × 10−21
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z J10(z) J11(z) J12(z) J13(z) J14(z)

0.5 2.613 × 10−13 5.942 × 10−15 1.238 × 10−16 2.382 × 10−18 4.255 × 10−20

0.6 1.614 × 10−12 4.405 × 10−14 1.102 × 10−15 2.544 × 10−17 5.454 × 10−19

0.7 7.518 × 10−12 2.394 × 10−13 6.989 × 10−15 1.883 × 10−16 4.710 × 10−18

0.8 2.848 × 10−11 1.037 × 10−12 3.460 × 10−14 1.065 × 10−15 3.046 × 10−17

0.9 9.212 × 10−11 3.774 × 10−12 1.417 × 10−13 4.911 × 10−15 1.580 × 10−16

1.0 2.631 × 10−10 1.198 × 10−11 5.000 × 10−13 1.925 × 10−14 6.885 × 10−16

1.1 6.791 × 10−10 3.403 × 10−11 1.563 × 10−12 6.623 × 10−14 2.606 × 10−15

1.2 1.613 × 10−09 8.820 × 10−11 4.420 × 10−12 2.044 × 10−13 8.776 × 10−15

1.3 3.570 × 10−09 2.116 × 10−10 1.149 × 10−11 5.761 × 10−13 2.680 × 10−14

1.4 7.444 × 10−09 4.755 × 10−10 2.783 × 10−11 1.502 × 10−12 7.529 × 10−14

1.5 1.474 × 10−08 1.010 × 10−09 6.333 × 10−11 3.665 × 10−12 1.969 × 10−13

1.6 2.791 × 10−08 2.040 × 10−09 1.366 × 10−10 8.433 × 10−12 4.834 × 10−13

1.7 5.080 × 10−08 3.947 × 10−09 2.809 × 10−10 1.844 × 10−11 1.123 × 10−12

1.8 8.924 × 10−08 7.347 × 10−09 5.539 × 10−10 3.852 × 10−11 2.486 × 10−12

1.9 0.00000 01520 1.321 × 10−08 1.052 × 10−09 7.728 × 10−11 5.267 × 10−12

2.0 0.00000 02515 2.304 × 10−08 1.933 × 10−09 1.495 × 10−10 1.073 × 10−11

2.1 0.00000 04059 3.907 × 10−08 3.443 × 10−09 2.798 × 10−10 2.110 × 10−11

2.2 0.00000 06400 6.460 × 10−08 5.968 × 10−09 5.084 × 10−10 4.018 × 10−11

2.3 0.00000 09880 0.00000 01043 1.009 × 10−08 8.987 × 10−10 7.430 × 10−11

2.4 0.00000 14958 0.00000 01650 1.665 × 10−08 1.550 × 10−10 1.338 × 10−10

2.5 0.00000 22247 0.00000 02559 2.693 × 10−08 2.612 × 10−09 2.349 × 10−10

2.6 0.00000 32547 0.00000 03897 4.268 × 10−08 4.309 × 10−09 4.034 × 10−10

2.7 0.00000 46894 0.00000 05837 6.645 × 10−08 6.971 × 10−09 6.781 × 10−10

2.8 0.00000 66611 0.00000 08607 0.00000 01017 1.107 × 10−08 1.118 × 10−09

2.9 0.00000 93376 0.00000 12511 0.00000 01533 1.729 × 10−08 1.810 × 10−09

3.0 0.00001 29284 0.00000 17940 0.00000 02276 2.659 × 10−08 2.880 × 10−09

3.1 0.00001 76936 0.00000 25402 0.00000 03333 4.028 × 10−08 4.512 × 10−09

3.2 0.00002 39530 0.00000 35542 0.00000 04819 6.017 × 10−08 6.962 × 10−09

3.3 0.00003 20960 0.00000 49177 0.00000 06884 8.872 × 10−08 1.059 × 10−08

3.4 0.00004 25933 0.00000 67328 0.00000 09721 0.00000 01292 1.591 × 10−08

3.5 0.00005 60095 0.00000 91267 0.00000 13581 0.00000 01860 2.360 × 10−08

3.6 0.00007 30169 0.00001 22555 0.00000 18781 0.00000 02648 3.459 × 10−08

3.7 0.00009 44103 0.00001 63107 0.00000 25721 0.00000 03732 5.014 × 10−08

3.8 0.00012 11233 0.00002 15242 0.00000 34904 0.00000 05207 7.192 × 10−08

3.9 0.00015 42455 0.00002 81759 0.00000 46955 0.00000 07196 0.00000 01021

4.0 0.00019 50406 0.00003 66009 0.00000 62645 0.00000 09859 0.00000 01436

4.1 0.00024 49655 0.00004 71979 0.00000 82917 0.00000 13391 0.00000 02002

4.2 0.00030 56907 0.00006 04386 0.00001 08925 0.00000 18042 0.00000 02766

4.3 0.00037 91207 0.00007 68775 0.00001 42061 0.00000 24121 0.00000 03789

4.4 0.00046 74150 0.00009 71630 0.00001 84001 0.00000 32010 0.00000 05151

4.5 0.00057 30098 0.00012 20492 0.00002 36751 0.00000 42179 0.00000 06950

5.0 0.00146 78026 0.00035 09274 0.00007 62781 0.00001 52076 0.00000 28013

5.5 0.00335 55759 0.00089 27721 0.00021 55123 0.00004 76455 0.00000 97207

6.0 0.00696 39810 0.00204 79460 0.00054 51544 0.00013 26717 0.00002 97564

6.5 0.01328 82562 0.00429 66118 0.00125 41220 0.00033 39927 0.00008 18487

7.0 0.02353 93444 0.00833 47614 0.00265 56200 0.00077 02216 0.00020 52029

7.5 0.03899 82579 0.01507 61259 0.00522 50447 0.00164 40171 0.00047 42147

8.0 0.06076 70268 0.02559 66722 0.00962 38218 0.00327 47932 0.00101 92562

8.5 0.08943 28589 0.04100 28606 0.01669 21921 0.00612 80346 0.00205 23844

9.0 0.12469 40928 0.06221 74015 0.02739 28887 0.01083 03016 0.00398 46493

9.5 0.16502 64047 0.08969 64137 0.04269 16060 0.01815 60646 0.00699 86761

10.0 0.20748 61066 0.12311 65280 0.06337 02550 0.02897 20839 0.01195 71632

10.5 0.24774 55375 0.16109 40750 0.08978 49053 0.04412 85657 0.01948 58287

11.0 0.28042 82305 0.20101 40099 0.12159 97893 0.06429 46213 0.03036 93155

11.5 0.29975 92326 0.23904 68041 0.15754 76971 0.08974 83898 0.04536 17059

12.0 0.30047 60353 0.27041 24826 0.19528 01827 0.12014 78829 0.06504 02303

12.5 0.27887 17466 0.28991 16646 0.23137 27831 0.15432 40789 0.08962 13011

13.0 0.23378 20102 0.29268 84324 0.26153 68754 0.19014 88760 0.11876 08767

13.5 0.16729 84008 0.27512 88367 0.28105 97034 0.22453 28582 0.15137 39495

14.0 0.08500 67054 0.23574 53488 0.28545 02712 0.25359 79733 0.18551 73935
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z J10(z) J11(z) J12(z) J13(z) J14(z)

14.5 -0.00438 68871 0.17586 61074 0.27121 82225 0.27304 68125 0.21838 29586

15.0 -0.09007 18110 0.09995 04771 0.23666 58441 0.27871 48734 0.24643 99366

15.5 -0.16069 03157 0.01539 53923 0.18254 18403 0.26725 00378 0.26574 85457

16.0 -0.20620 56944 -0.06822 21524 0.11240 02349 0.23682 25048 0.27243 63353

16.5 -0.21975 41120 -0.14041 40283 0.03253 54076 0.18773 82576 0.26329 45740

17.0 -0.19911 33197 -0.19139 53947 -0.04857 48381 0.12281 91527 0.23641 58951

17.5 -0.14745 64908 -0.21378 31764 -0.12129 95024 0.04742 95731 0.19176 62968

18.0 -0.07316 96592 -0.20406 34110 -0.17624 11765 -0.03092 48243 0.13157 19858

18.5 0.11319 16799 -0.16351 79303 -0.20577 29230 -0.10343 07265 0.06041 08209

19.0 0.09155 33316 -0.09837 24007 -0.20545 82166 -0.16115 37677 -0.01506 79918

19.5 0.15357 19323 -0.01905 77146 -0.17507 29436 -0.19641 66776 -0.08681 59598

20.0 0.18648 25580 0.06135 63034 -0.11899 06243 -0.20414 50525 -0.14639 79440

Table of zeros of Bessel functions

Note: The kth zero of Jn is denoted jn,k.

k J0 J1 J2 J3 J4 J5 J6 J7

1 2.40482 55577 3.831706 5.135622 6.380162 7.588342 8.771484 9.936110 11.08637

2 5.52007 81103 7.015587 8.417244 9.761023 11.06471 12.33860 13.58929 14.82127

3 8.65372 79129 10.17347 11.61984 13.01520 14.37254 15.70017 17.00382 18.28758

4 11.79153 44391 13.32369 14.79595 16.22347 17.61597 18.98013 20.32079 21.64154

5 14.93091 77086 16.47063 17.95982 19.40942 20.82693 22.21780 23.58608 24.93493

6 18.07106 39679 19.61586 21.11700 22.58273 24.01902 25.43034 26.82015 28.19119

7 21.21163 66299 22.76008 24.27011 25.74817 27.19909 28.62662 30.03372 31.42279

8 24.35247 15308 25.90367 27.42057 28.90835 30.37101 31.81172 33.23304 34.63709

9 27.49347 91320 29.04683 30.56920 32.06485 33.53714 34.98878 36.42202 37.83872

10 30.63460 64684 32.18968 33.71652 35.21867 36.69900 38.15987 39.60324 41.03077

11 33.77582 02136 35.33231 36.86286 38.37047 39.85763 41.32638 42.77848 44.21541

12 36.91709 83537 38.47477 40.00845 41.52072 43.01374 44.48932 45.94902 47.39417

13 40.05842 57646 41.61709 43.15345 44.66974 46.16785 47.64940 49.11577 50.56818

14 43.19979 17132 44.75932 46.29800 47.81779 49.32036 50.80717 52.27945 53.73833

15 46.34118 83717 47.90146 49.44216 50.96503 52.47155 53.96303 55.44059 56.90525

k J8 J9 J10 J11 J12 J13 J14 J15

1 12.22509 13.35430 14.47550 15.58985 16.69825 17.80144 18.90000 19.99443

2 16.03777 17.24122 18.43346 19.61597 20.78991 21.95624 23.11578 24.26918

3 19.55454 20.80705 22.04699 23.27585 24.49489 25.70510 26.90737 28.10242

4 22.94517 24.23389 25.50945 26.77332 28.02671 29.27063 30.50595 31.73341

5 26.26681 27.58375 28.88738 30.17906 31.45996 32.73105 33.99318 35.24709

6 29.54566 30.88538 32.21186 33.52636 34.82999 36.12366 37.40819 38.68428

7 32.79580 34.15438 35.49991 36.83357 38.15638 39.46921 40.77283 42.06792

8 36.02562 37.40010 38.76181 40.11182 41.45109 42.78044 44.10059 45.41219

k J16 J17 J18 J19 J20 J21 J22 J23

1 21.08515 22.17249 23.25678 24.33825 25.41714 26.49365 27.56794 28.64019

2 25.41701 26.55979 27.69790 28.83173 29.96160 31.08780 32.21059 33.33018

3 29.29087 30.47328 31.65012 32.82180 33.98870 35.15115 36.30943 37.46381

4 32.95366 34.16727 35.37472 36.57645 37.77286 38.96429 40.15105 41.33343

5 36.49340 37.73268 38.96543 40.19210 41.41307 42.62870 43.83932 45.04521

k J24 J25 J26 J27 J28 J29 J30 J31

1 29.71051 30.77904 31.84589 32.91115 33.97493 35.03730 36.09834 37.15811

2 34.44678 35.56057 36.67173 37.78040 38.88671 39.99080 41.09278 42.19275

3 38.61452 39.76179 40.90580 42.04674 43.18477 44.32003 45.45267 46.58280
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k J32 J33 J34 J35 J36 J37 J38 J39

1 38.21669 39.27413 40.33048 41.38580 42.44014 43.49352 44.54601 45.59762

2 43.29082 44.38706 45.48156 46.57441 47.66568 48.75542 49.84371 50.93060

Fourier series

sin(z sin θ) = 2
∞∑

n=0

J2n+1(z) sin(2n+ 1)θ

cos(z sin θ) = J0(z) + 2

∞∑

n=1

J2n(z) cos 2nθ

Jn(z) =
1

π

∫ π

0
cos(nθ − z sin θ) dθ.

Differential equation J ′′
n(z) +

1

z
J ′
n(z) +

(
1− n2

z2

)
Jn(z) = 0

Power series Jn(z) =

∞∑

k=0

(−1)k(z2 )n+2k

k!(n + k)!

Generating function e
1
2 z(t−

1
t
) =

∞∑

n=−∞
Jn(z)t

n

Limiting values

If n is constant, z is real and |z| → ∞,

Jn(z) =
√

2
πz cos(z − 1

2(n+ 1
2)π) +O(|z|−3/2).

[Here, O(|z|−3/2) represents an error term which is bounded by some con-

stant multiple of |z|−3/2]

If z is constant and n→∞, Jn(z) ∼ 1√
2nπ

(
ez
2n

)n
.

For n fixed, as k →∞, jn,k ∼ (k + 1
2n− 1

4)π.

Other formulae

J−n(z) = (−1)nJn(z)

J ′
n(z) = 1

2 (Jn−1(z)− Jn+1(z))

Jn(z) = z
2n (Jn−1(z) + Jn+1(z))

d

dz
(znJn(z)) = znJn−1(z)

1 =

∞∑

n=−∞
Jn(z) = J0(z) + 2J2(z) + 2J4(z) + 2J6(z) + . . .

1 =

∞∑

n=−∞
Jn(z)

2 = J0(z)
2 + 2J1(z)

2 + 2J2(z)
2 + 2J3(z)

2 + . . .
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In particular, |Jn(z)| ≤ 1 for all n and z, and if n 6= 0 then |Jn(z)| ≤ 1√
2
.

Computation

Although the power series converges very quickly for small values of z, and
converges for all values of z, rounding errors tend to accumulate for larger
z because a small number is resulting from addition and subtraction of very
large numbers.

Instead, a computer program for calculating the Bessel functions can
be based on the recurrence relation Jn(z) = (2(n + 1)/z)Jn+1(z) − Jn+2(z)
and normalizing via the relation J0(z) + 2J2(z) + 2J4(z) + · · · = 1. This is
called Miller’s backwards recurrence algorithm (J. C. P. Miller, The Airy in-
tegral, CUP, 1946). Build an array indexed by n and make the last two en-
tries 1 and 0, use the recurrence relation to calculate the remaining entries,
and then normalise. An array containing 100 entries gives reasonable accu-
racy, and does not consume much memory. Here is a simple C++ program
which implements this method. I haven’t put in any exception checking.

/* file bessel.cpp */

#include <iostream.h>
#include <stdio.h>

#define length 100
void main() {
long double X[length], z, sum;

int n=0, j=0;
X[length - 2]=1; X[length - 1]=0;

while (1)
{

printf("\n\nOrder (integer); -1 to exit: ");

cin>>n;
if (n<0)

break;
printf("Argument (real): ");

cin>>z;
if (z==0) // prevent divide by zero

{printf("J_0(0)=1; J_n(0)=0 (n>0)");}

else
{for(j=length - 3; j>=0; --j)

{X[j]=(2*(j+1)/z)*X[j+1] - X[j+2];}
sum=X[0];
for(j=2; j < length; j=j+2)

{sum+=2*X[j];}
printf("J_%d(%Lf)= %11.10Lf",n,z,X[n]/sum);

}
}

}

I compiled this program using Borland C++. It prints out the answer to 10
decimal places, and at least for reasonably small values of n and z, up to
about 50, the answers it gives agree with published tables to this accuracy. If
you need more accuracy, I recommend the standard Unix multiple precision
arithmetic utility bc. If invoked with the option -l (which loads the library
mathlib of mathematical functions), it recognises the syntax j(n,z) and calcu-
lates Jn(z) using the algorithm above. The number of digits after the decimal
point is set to 50, for example, by using the command scale=50. Windows
users can use bc in the free Unix environment Cygwin (www.cygwin.com);
there is also a (free) version compiled for MS-DOS in UnxUtils.zip (unxu-

tils.sourceforge.net). Here is a sample session:
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$ bc -l

j(1,1)
.44005058574493351595
scale=50

for (n=0;n<5;n++) {j(n,1)}
.76519768655796655144971752610266322090927428975532

.44005058574493351595968220371891491312737230199276

.11490348493190048046964688133516660534547031423020

.01956335398266840591890532162175150825450895492805

.00247663896410995504378504839534244418158341533812
quit

$

FM Synthesis

sin(φ+ z sin θ) =
∞∑

n=−∞
Jn(z) sin(φ+ nθ)

The following table shows how index of modulation (z) varies as a func-
tion of operator output level (an integer in the range 0–99) on the Yamaha
six operator synthesizers DX7, DX7IID, DX7IIFD, DX7S, DX5, DX1, TX7,
TX816, TX216, TX802 and TF1:

0 1 2 3 4 5 6 7 8 9

0 0.0002 0.0003 0.0005 0.0007 0.0010 0.0012 0.0016 0.0019 0.0023 0.0027

10 0.0032 0.0038 0.0045 0.0054 0.0064 0.0076 0.0083 0.0091 0.0108 0.0118

20 0.0140 0.0152 0.0166 0.0181 0.0198 0.0216 0.0235 0.0256 0.0280 0.0305

30 0.0332 0.0362 0.0395 0.0431 0.0470 0.0513 0.0559 0.0610 0.0665 0.0725

40 0.0791 0.0862 0.0940 0.1025 0.1118 0.1219 0.1330 0.1450 0.1581 0.1724

50 0.1880 0.2050 0.2236 0.2438 0.2659 0.2900 0.3162 0.3448 0.3760 0.4101

60 0.4472 0.4877 0.5318 0.5799 0.6324 0.6897 0.7521 0.8202 0.8944 0.9754

70 1.0636 1.1599 1.2649 1.3794 1.5042 1.6403 1.7888 1.9507 2.1273 2.3198

80 2.5298 2.7587 3.0084 3.2807 3.5776 3.9014 4.2545 4.6396 5.0595 5.5174

90 6.0168 6.5614 7.1552 7.8028 8.5090 9.2792 10.119 11.035 12.034 13.123

The following table shows how index of modulation (z) varies as a func-
tion of operator output level (an integer in the range 0–99) on the Yamaha
four operator synthesizers DX11, DX21, DX27, DX27S, DX100 and TX81Z:

0 1 2 3 4 5 6 7 8 9

0 0.0004 0.0006 0.0009 0.0013 0.0018 0.0024 0.0031 0.0036 0.0043 0.0052

10 0.0061 0.0073 0.0087 0.0103 0.0123 0.0146 0.0159 0.0174 0.0206 0.0225

20 0.0268 0.0292 0.0318 0.0347 0.0379 0.0413 0.0450 0.0491 0.0535 0.0584

30 0.0637 0.0694 0.0757 0.0826 0.0900 0.0982 0.1071 0.1168 0.1273 0.1388

40 0.1514 0.1651 0.1801 0.1963 0.2141 0.2335 0.2546 0.2777 0.3028 0.3302

50 0.3601 0.3927 0.4282 0.4670 0.5093 0.5554 0.6056 0.6604 0.7202 0.7854

60 0.8565 0.9340 1.0185 1.1107 1.2112 1.3209 1.4404 1.5708 1.7130 1.8680

70 2.0371 2.2214 2.4225 2.6418 2.8809 3.1416 3.4259 3.7360 4.0741 4.4429

80 4.8450 5.2835 5.7617 6.2832 6.8519 7.4720 8.1483 8.8858 9.6900 10.567

90 11.523 12.566 13.704 14.944 16.297 17.772 19.380 21.134 23.047 25.133



APPENDIX C

Complex numbers

We use i to denote
√
−1, and the general complex number is of the

form a+ ib where a and b are real numbers. Addition and multiplication are
given by

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + b1a2).

These formulae follow from the equation i2 = −1 and the usual rules of mul-
tiplication and addition, such as the distributivity of multiplication over ad-
dition.

The real numbers a and b can be thought of as the Cartesian coordi-
nates of the complex number a+ ib, so that complex numbers correspond to
points on the plane. In this language, the real numbers are contained in the
complex numbers as the x axis, and the points on the y axis are called pure
imaginary numbers.

For the purpose of multiplication, it is easier to work in polar coordi-
nates. If z = x + iy is a complex number, we define the absolute value of z

to be |z| =
√
x2 + y2. The argument of z is the angle θ formed by the line

from zero to z. Angle is measured counterclockwise from the x axis.

�
�

�
�

�
�
z
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r

θ ppppppppppp
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The complex conjugate of z = x+ iy is defined to be z̄ = x− iy, so that

zz̄ = |z|2 = x2 + y2.

So division by a non-zero complex number z is achieved by multiplying by

z̄

|z|2 =
x

x2 + y2
− i y

x2 + y2
,

which is the multiplicative inverse of z.
The exponential function is defined for a complex argument z = x+ iy

by
ez = ex(cos y + i sin y).

This means that conversion from Cartesian coordinates to polar coordinates
is given by

z = x+ iy = reiθ,

where r =
√
x2 + y2 and tan θ = y/x. Translation in the other direction is

given by x = r cos θ and y = r sin θ. The trigonometric identities

sin(A+B) = sinA cosB + cosA sinB

cos(A+B) = cosA cosB − sinA sinB.

are equivalent to the statement that if z1 and z2 are complex numbers then

ez1ez2 = ez1+z2 .

So we have Euler’s formula

eiθ = cos θ + i sin θ (C.1)

and

cos θ = 1
2(eiθ + e−iθ) (C.2)

sin θ = 1
2i(e

iθ − e−iθ). (C.3)

Using (C.1), the relation (eiθ)n = einθ translates as de Moivre’s Theorem

(cos θ + i sin θ)n = cosnθ + i sinnθ.

The complex nth roots of unity (i.e., of the number one) are the numbers

e2πim/n = cos 2πm/n+ i sin 2πm/n

for 0 ≤ m ≤ n−1. These are equally spaced around the unit circle in the com-
plex plane. For example, here is a picture of the complex fifth roots of unity.

q e2πi = 1

q e 2
5
πi

qe 4
5
πi

q
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πi q
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Remark. Engineers use the letter j instead of i.

Hyperbolic functions: In §3.9 the analysis of the xylophone involves the
hyperbolic functions coshx and sinhx. These are defined by analogy with
equations (C.2) and (C.3) via

coshx = 1
2(ex + e−x) (C.4)

sinhx = 1
2(ex − e−x). (C.5)

The standard identities for these functions are

cosh2 x− sinh2 x = 1,

and

sinh(A+B) = sinhA coshB + coshA sinhB

cosh(A+B) = coshA coshB + sinhA sinhB.

The values at zero are given by

sinh(0) = 0, cosh(0) = 1.

The derivatives are given by

d

dx
sinhx = coshx,

d

dx
cosh x = sinhx.

Note the changes in sign from the corresponding trigonometric formulae.



APPENDIX D

Dictionary

As an aide to reading the liter-
ature on the subject in French, Ger-
man, Italian, Latin and Spanish, as
well as the literature on ancient Greek
music, here is a dictionary of common
terms. I have tried to avoid including
words whose meaning is obvious.

abaissé (Fr.), lowered
abdämpfen (G.), to damp, mute
Abklingen (G.), decay
Abgeleiteter Akkord (G.), inversion of

a chord
Absatz (G.), cadence
Abstimmung (G.), tuning
accord (Fr.), chord
accordage (Fr.), accordatura (It.),

tuning, intonation
accordo (It.), chord
Achtelnote (G.), eighth note (USA),

quaver (GB)
acorde (Sp.), chord
afinación (Sp.), tuning
affaiblissement (Fr.), decay
aigu (Fr.), acute, high
Akkord (G.), chord
allgemein (G.), general
alma (Sp.), âme (Fr.), sound post
anima (It.), sound post
Anklang (G.), tune, harmony, accord
archet (Fr.), arco (It., Sp.), bow
armoneggiare (It.), to harmonise
armonia (It., Sp.), harmony
armonica (It.), armónico (Sp.), harmonic
armure (Fr.), key signature
atenuamiento (Sp.), attenuazione (It.),

decay
audición (Sp.), audition (Fr.), hearing
auferions (archaic Eng.), wire strings

Aufhaltung (G.), suspension (harmony)
aufzählen (G.), to enumerate
aulos (Gk.), ancient Greek reed

instrument
Ausdruck (G.), expression

B (G.), B ♭ (in German H denotes B)
Balken (G.), beam
barre (Fr.), bar line, beam
battements (Fr.), battimenti (It.), beats
battuta (It.), beat
bec (Fr.), becco (It.), mouthpiece
bécarre (Fr.), becuardo (Sp.),

natural (♮)
Bedingung (G.), condition
Beispiel (G.), example
beliebig (G.), arbitrary
bémol (Fr.), bemol (Sp.), bemolle (It.),

flat (♭)
bequadro (It.), natural (♮)
beweisen (G.), to prove
Beziehung (G.), relation
blanche (Fr.), half note (USA),

minim (GB)
Blasinstrument (G.), wind instrument
Bogen (G.), bow
bois (Fr.), wood, (pl.) woodwind
bruit (Fr.), noise
Bund (G.), fret

cadenza d’inganno (It.), deceptive
cadence

caisse (Fr.), drum
canon (Gk.), monochord
Canonici, followers of the Pythagorean

system of music, where consonance
is based on ratios, see also Musici

chevalet (Fr.), bridge of stringed
instrument

cheville (Fr.), peg, pin
chiave (It.), clave (Sp.), clavis (L.),

clef, key
chiffrage (Fr.), time signature

372
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chiuso (It.), closed
clavecin (Fr.), harpsichord
cloche (Fr.), bell
comma enharmonique (Fr.), great diesis
concento (It.), concentus (L.), harmony
controreazione (It.), feedback
conversio (L.), inversion
cor (Fr.), horn
corde (Fr.), string
crotchet (GB), quarter note (USA)
cuarta (Sp.), fourth
cuerda (Sp.), string
cuivres (Fr.), brass

Dach (G.), sounding board
daher (G.), hence
Darstellung (G.), representation
demi-ton (Fr.), semitone
denarius (L.), numbers 1–10
diapason (Fr., It.), diapasón (Sp.), pitch
diapason (Gk.), octave
diapente (Gk.), fifth
diastema (Gk.), interval
diatessaron (Gk.), fourth
diazeuxis (Gk.), separation of two

tetrachords by a tone
dièse (Fr.), diesis (It.), sharp (♯)
disdiapason (Gk.), two octaves
dodécaphonique (Fr.), twelve tone
Doppelbee (G.), double flat (♭♭)
Doppelkreuz (G.), double sharp (5)
Dreiklang (G.), triad
Dur (G.), major
durchgehend (G.), transient

échantilloneur (Fr.), sampler
échelle (Fr.), scale
écouter (Fr.), to hear
égale (Fr.), equal
eighth note (USA), quaver (GB)
einfach (G.), simple
Einführung (G.), introduction
Einheit (G.), unity
Einklang (G.), consonance
Einselement (G.), identity element
emmeleia (Gk.), consonance
enmascaramiento (Sp.), masking
ensemble (Fr.), set
entier (Fr.), integer
entonación (Sp.), intonation

entsprechen (G.), to correspond to
epimoric, ratio n+1 :n
erhöhen (G.), to raise, increase
erweitern (G.), to extend, augment
escala (Sp.), scale
espectro (Sp.), spectrum
estribo (Sp.), étrier (Fr.), stapes
étroit (Fr.), narrow

faux (Fr.), false, out of tune
feinte brisée (Fr.), split key
fistula (L.), pipe, flute
Folge (G.), sequence, series

gama (Sp.), gamma (It.), gamme (Fr.),
scale

ganancia (Sp.), gain
ganze Note (G.), whole note (USA),

semibreve (GB)
ganze Zahl (G.), integer
ganzer Ton (G.), whole tone
Gegenpunkt (G.), counterpoint
Geige (G.), violin
gerade (G.), even, just, exactly
Geräusch (G.), noise
Gesetz (G.), law, rule
giusto (It.), just, precise
gleichschwebende (G.), equal beating
gleichstufige (G.), equal (temperament)
Gleichung (G.), equation
gleichzeitig (G.), simultaneous
Glied (G.), term
Grundlage (G.), foundation
Grundton (G.), fundamental
guadagno (It.), gain

H (G.), B (in German B denotes B ♭)
Halbton (G.), semitone
half note (USA), minim (GB)
hautbois (Fr.), oboe
hauteur (Fr.), pitch
helicon (Gk.), instrument used for

calculating ratios
hemiolios (Gk.), ratio 3:2
Höhe (G.), pitch
Hörbar (G.), audible
Hören (G.), hearing

impair (Fr.), odd
inégale (Fr.), unequal

Kettenbruch (G.), continued fractions
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Klang(farbe) (G.), timbre
Klangstufe (G.), degree of scale
Klappe (G.), key (wind instruments)
klein (G.), small, minor
Kombinationston (G.), combination tone
Komma (G.), comma
Kraft (G.), force
Kreuz (G.), sharp (♯)

laud (Sp.), Laute (G.), lute
Leistung (G.), power
leiten (G.), to derive, deduce
Leiter (G.), scale
Leitton (G.), leading note
ley (Sp.), law
limaçon (Fr.), cochlea
llave (Sp.), key (wind instruments)
Lösung (G.), solution
loup (Fr.), wolf

maggiore (It.), majeur (Fr.), mayor (Sp.),
major

marche d’harmonie (Fr.), harmonic
sequence

Menge (G.), set
menor (Sp.), minor
mehrstimmig (G.), polyphonic
mesolabium, mechanical means for

producing ratio 18:17, approximation
to equal tempered semitone for lutes

mésotonique (Fr.), meantone
minim (GB), half note (USA)
minore (It.), minor
mitteltönig (G.), meantone
Moll (G.), flat (♭), minor
Mundstück (G.), mouthpiece
Musici, followers of the Aristoxenian

system of music, in which the ear
is the judge of consonance,
see also Canonici

Muster (G.), pattern

Nachhall (G.), reverberation
Naturseptime (G.), natural seventh
Nebendreiklang (G.), secondary triad

(not I, IV or V)
Nenner (G.), denominator
neuvième (Fr.), ninth
niveau (Fr.), level
nœud (Fr.), node (vibration)

None (G.), ninth (interval)
Notenschlussel (G.), clef
numérique (Fr.), digital

Oberwelle (G.), harmonic
offen (G.), open
Ohr (G.), ear
Ohrmuschel (G.), auricle
óıdo (Sp.), ear
onda (It., Sp.), wave
onda portante (It.), onda portadora

(Sp.), carrier
onde (Fr.), wave
ordinateur (Fr.), computer
orecchio (It.), oreille (Fr.), ear
organo (It)., órgano (Sp.), Orgel (G.),

orgue (Fr.), organ
oüıe (Fr.), hearing; sound-hole

padigione (It.), auricle
pair (Fr.), par (Sp.), even
paraphonia (Gk., L.), Intervals of

fourth and fifth
parfait (Fr.), perfect
pavillon (Fr.), auricle
plagal cadence, the cadence IV–I
point d’orgue (Fr.), fermata
portée (Fr.), staff, stave
porteuse (Fr.), carrier
potencia (Sp.), potenza (It.), power
profondeur (Fr.), depth
puissance (Fr.), power
pulsaciones (Sp.), beats

Quadrat (G.), natural (♮)
quadrivium (L.), The four disciplines:

arithmetic, geometry, astronomy
and music

quarta (It., L.), quarte (Fr.), Quarte
(G.), fourth

quarter note (USA), crotchet (GB)
quaternarius (L.), numbers 1–4
quaver (GB), eighth note (USA)
quinta (It., L., Sp.), quinte (Fr.), Quinte

(G.), fifth

réaction (Fr.), feedback
reine (G.), pure
renversement (Fr.), inversion
résoudre (Fr.), to resolve
retard (Fr.), delay
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retroalimentación (Sp.), feedback
ronde (Fr.), whole note (USA),

semibreve (GB)
Rückkopplung (G.), feedback

Saite (G.), string
Satz (G.), theorem; movement
Schall (G.), sound
Scheibe (G.), disc
Schlag (G.), beat
Schlüssel (G.), clef
Schnecke (G.), cochlea
Schwebungen (G.), beats
Schwelle (G.), threshold, limen
Schwingungen (G.), vibrations
semibreve (GB), whole note (USA)
semiquaver (GB), sixteenth note (USA)
senarius (L.), numbers 1–6
sensible (Fr., Sp.), sensibile (I.),

leading note
septenarius (L.), numbers 1–7
septième (Fr.), septima (L.),

Septime (G.), seventh
Septimenakkord (G.), seventh chord
série de hauteurs (Fr.), tone row
sesquialtera (L.), ratio 3:2
sesquitertia (L.), ratio 4:3
settima (It.), seventh
seuil (Fr.), threshold, limen
Sext (G.), sexta (L.), sixth
sibilo (It.), hiss
siècle (Fr.), century
sifflement (Fr.), silbo (Sp.), hiss
sillet (Fr.), bridge
sixteenth note (USA), semiquaver (GB)
Skala (G.), scale
soglia (It.), threshold, limen
son (Fr.), sound
son combiné (Fr.), combination tone
son différentiel (Fr.), difference tone
sonido (Sp.), sound
sonido de combinación (Sp.),

combination tone
sonorità (It.), harmony, resonance
sonus (L.), sound
sostenido (Sp.), sharp (♯)
spectre (Fr.), spectrum
staffa (It.), stapes
stanghetta (It.), bar line

stark (G.), loud
Stege (G.), bridge
Steigbügel (G.), stapes
Stimmstock (G.), sound post
Stimmung (G.), tuning, key, pitch
Stufe (G.), scale degree
subsemitonia (L.), split keys
suono (It.), sound
suono di combinazione (It.), combination

tone
superparticular, ratio n+1 :n
synaphe (Gk.), conjunction, or

overlapping of two tetrachords
système incomplet (Fr.), just intonation

Takt (G.), time, measure, bar
Taktstrich (G.), bar line
tambour (Fr.), tamburo (It.), tambor

(Sp.), drum
Tastame (It.), Tastatur, Tastenbrett,

Tastenleiter (G.), Tastatura,
Tastiera (It.), keyboard of piano
or organ

tasto (It.), tecla (Sp.), fret
teilbar (G.), divisible
Teilmenge (G.), subset
Teilung (G.), division
Temperatur (G.), temperament
temperiert (G.), tempered
temps (Fr.), time, beat, measure
tercera (Sp.), tertia (L.), Terz (G.),

terza (It.), third
tiempo (Sp.), beat
tierce (Fr.), third
ton (Fr.), pitch, tone, key
tonalité (Fr.), Tonart (G.), key
Tonausweichung (G.), modulation
Tonhöhe (G.), pitch
tono medio (It., Sp.), meantone
Tonschluss (G.), cadence
Tonstufe (G.), scale degree
touche (Fr.), fret, key
Träger (G.), carrier
traité (Fr.), treatise
tripla (L.), ratio 3:1
Trommel (G.), drum
tuyau (Fr.), pipe
tuyau à bouche (Fr.), open pipe
tuyau d’orgue (Fr.), organ pipe
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tympan (Fr.), eardrum

überblasen (G.), to overblow

Übereinstimmung (G.), consonance,
harmony

übermässig (G.), augmented
udibile (It.), audible
udito (It.), hearing
uguale (It.), equal
umbral (S.), threshold, limen
Umkehrung (G.), inversion
Unterdominant (G.), subdominant
Unterhalbton (G.), leading note
Unterleitton (G.), dominant seventh
Untergruppe (G.), subgroup
Untertaste (G.), white key

valeur propre (Fr.), eigenvalue
vent (Fr.), wind
Ventil (G.), ventile (It.), valve (wind

instruments)
ventre (Fr.), antinode (vibration)
vents (Fr.), wind instruments
Verbindung (G.), combination, union
Verdeckung (G.), masking
vergleichen (G.), to compare
Verhältnis (G.), ratio, proportion
Verknüpfung (G.), operation
verlängertes Intervall (G.), augmented

interval

vermindert (G.), diminished

versetzen (G.), to transpose

Versetzungszeichen (G.), accidentals

Verspätung (G.), delay

Verstärker (G.), amplifier

Verstärkung (G.), gain

verstimmt (G.), out of tune

verwandt (G.), related

Verzerrung (G.), distortion

Viertel (G.), quarter

voix (Fr.), voice

Vollkommenheit (G.), perfection

Welle (G.), wave

wenig (G.), little, slightly

whole note (USA), semibreve (GB)

wohltemperirte (G.), well tempered

Zahl (G.), number

Zählzeit (G.), beat

Zeichen (G.), sign, note

Zeit (G.), time

Zischen (G.), hiss

Zuklang (G.), unison, consonance
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Equal tempered scales

q p3 e3 p5 e5 p7 e7 e35 e357 e5.q2 e35.q
3
2 e357.q

4
3

2 1 +213.686 1 −101.955 2 +231.174 166.245 190.365 392 470 480
3 1 +13.686 2 +98.045 2 −168.826 70.000 112.993 882 364 489
4 1 −86.314 2 −101.955 3 −68.826 94.459 86.760 1631 756 551
5 2 +93.686 3 +18.045 4 −8.826 67.464 55.319 451 754 473
6 2 +13.686 4 +98.045 5 +31.174 70.000 59.922 3530 1029 653
7 2 −43.457 4 −16.241 6 +59.746 32.804 43.672 796 608 585
8 3 +63.686 5 +48.045 6 −68.826 56.410 60.831 3075 1276 973
9 3 +13.686 5 −35.288 7 −35.493 26.764 23.104 2858 723 433
10 3 −26.314 6 +18.045 8 −8.826 22.561 19.113 1804 713 412
11 4 +50.050 6 −47.410 9 +12.992 48.748 40.503 5737 1778 991
12 4 +13.686 7 −1.955 10 +31.174 9.776 19.689 282 406 541
13 4 −17.083 8 +36.507 10 −45.749 28.500 35.202 6170 1336 1076
14 5 +42.258 8 −16.241 11 −25.969 32.012 30.132 3183 1677 1017
15 5 +13.686 9 +18.045 12 −8.826 16.015 14.034 4060 930 519
16 5 −11.314 9 −26.955 13 +6.174 20.671 17.250 6900 1323 695
17 5 −33.373 10 +3.927 14 +19.409 23.761 22.404 1135 1665 979
18 6 +13.686 11 +31.378 15 +31.174 24.207 26.732 10167 1849 1261
19 6 −7.366 11 −7.218 15 −23.457 7.293 13.745 2606 604 697
20 6 −26.314 12 +18.045 16 −8.826 22.561 19.113 7218 2018 1038
21 7 +13.686 12 −16.241 17 +2.603 15.018 12.354 7162 1445 716
22 7 −4.496 13 +7.136 18 +12.992 5.964 8.943 3454 615 551
31 10 +0.783 18 −5.181 25 −1.084 3.705 3.089 4979 639 301
41 13 −5.826 24 +0.484 33 −2.972 4.134 3.786 814 1085 535
53 17 −1.408 31 −0.068 43 +4.759 0.997 2.866 192 385 570
65 21 +1.379 38 −0.417 52 −8.826 1.018 5.163 1760 534 1349
68 22 +1.922 40 +3.927 55 +1.762 3.092 2.722 18160 1734 755
72 23 −2.980 42 −1.955 58 −2.159 2.520 2.406 10135 1540 721
84 27 −0.599 49 −1.955 68 +2.603 1.446 1.911 13794 1113 703
99 32 +1.565 58 +1.075 80 −0.871 1.343 1.206 10539 1323 552
118 38 +0.127 69 −0.260 95 −2.724 0.205 1.582 3621 262 915
130 42 +1.379 76 −0.417 105 +0.405 1.018 0.864 7040 1509 569
140 45 −0.599 82 +0.902 113 −0.254 0.766 0.642 17682 1269 467
171 55 −0.349 100 −0.201 138 −0.405 0.285 0.330 5866 636 313
441 142 +0.081 258 +0.086 356 −0.118 0.083 0.096 16689 772 324
494 159 −0.079 289 +0.069 399 +0.405 0.074 0.241 16909 815 943
612 197 −0.039 358 +0.006 494 −0.198 0.028 0.117 2166 424 607
665 214 −0.148 389 −0.0001 537 +0.197 0.105 0.142 50 1798 825

This table shows how well the scales based around equal divisions of
the octave approximate the 5:4 major third, the 3:2 perfect fifth and the 7:4
seventh harmonic. The first column (q) gives the number of divisions to the
octave. The second column (p3) shows the scale degree closest to the 5:4 ma-
jor third (counting from zero for the tonic), and the next column (e3) shows
the error in cents:

e3 = 1200

(
p3

q
− log2

(
5

4

))
.

Similarly, the next two columns (p5 and e5) show the scale degree closest to
the 3:2 perfect fifth and the error in cents:

e5 = 1200

(
p5

q
− log2

(
3

2

))
.
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The two columns after that (p7 and e7) show the scale degree closest to the
7:4 seventh harmonic and the error in cents:

e7 = 1200

(
p7

q
− log2

(
7

4

))
.

We write e35 for the root mean square (RMS) error of the major third
and perfect fifth:

e35 =
√

(e23 + e25)/2

and e357 for the RMS error for the major third, perfect fifth and seventh har-
monic:

e357 =
√

(e23 + e25 + e27)/3.

Theorem 6.2.3 shows that the quantity e5.q
2 is a good measure of how

well the perfect fifth is approximated by p5/q of an octave, with respect to
the number of notes in the scale. This theorem shows that there are infin-
itely many values of q for which e5.q

2 < 1200, while on average we should ex-
pect this quantity to grow linearly with q.

Similarly, Theorem 6.2.5 with k = 2 shows that the quantity e35.q
3
2 is

a good measure of how well the major third and perfect fifth are simultane-
ously approximated, and shows that there are infinitely many values of q for

which e35.q
3
2 < 1200, while on average we should expect this quantity to grow

like the square root of q. Theorem 6.2.5 with k = 3 shows that the quantity

e357.q
4
3 is a good measure of how well all three intervals: major third, per-

fect fifth and seventh harmonic are simultaneously approximated, and shows

that there are infinitely many values of q for which e357.q
4
3 < 1200, while on

average we should expect this quantity to grow like the cube root of q.

Particularly good values of e5.q
2, e35.q

3
2 and e357.q

4
3 are indicated in

bold face in the last three columns of the table.
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Frequency and MIDI chart

This table shows the frequencies and MIDI numbers of the notes in the
standard equal tempered scale, based on the standard A4 = 440 Hz.

MIDI Hz USA Eur

piano ↑ 108 4186.01 C8 c′′′′′

violin ↑ 107 3951.07 B7

106 3729.31

105 3520.00 A7

104 3322.44

103 3135.96 G7

102 2959.96

101 2793.83 F7

100 2637.02 E7

99 2489.02

flute ↑ 98 2349.32 D7

97 2217.46

96 2093.00 C7 c′′′′

95 1975.53 B6

94 1864.66

93 1760.00 A6

92 1661.22

− 91 1567.98 G6

90 1479.98

89 1396.91 F6

− 88 1318.51 E6

leger 87 1244.51

lines 86 1174.66 D6

85 1108.73

− 84 1046.50 C6 c′′′

83 987.767 B5

82 932.328

− 81 880.000 A5

80 830.609

79 783.991 G5

78 739.989

p 77 698.456 F5

| 76 659.255 E5

| 75 622.254

⊢ 74 587.330 D5

| 73 554.365

| treble 72 523.251 C5 c′′

⊢ clef 71 493.883 B4

| 70 466.164

| 69 440.000 A4

| 68 415.305

⊢ 67 391.995 G4

| 66 369.994

| 65 349.228 F4

x 64 329.628 E4

63 311.127

62 293.665 D4

61 277.183

middle c 60 261.626 C4 c′

MIDI Hz USA Eur

flute ↓ 59 246.942 B3

58 233.082

p 57 220.000 A3

| 56 207.652

violin ↓ 55 195.998 G3

| 54 184.997

⊢ 53 174.614 F3

| 52 164.814 E3

| bass 51 155.563

⊢ clef 50 146.832 D3

| 49 138.591

| 48 130.813 C3 c

⊢ 47 123.471 B2

| 46 116.541

| 45 110.000 A2

| 44 103.826

x 43 97.9989 G2

42 92.4986

41 87.3071 F2

− 40 82.4069 E2

39 77.7817

38 73.4162 D2

37 69.2957

− 36 65.4064 C2 C

leger 35 61.7354 B1

lines 34 58.2705

− 33 55.0000 A1

32 51.9131

31 48.9994 G1

30 46.2493

− 29 43.6535 F1

28 41.2034 E1

27 38.8909

26 36.7081 D1

25 34.6478

24 32.7032 C1 C1

23 30.8677 B0

22 29.1352

piano ↓ 21 27.5000 A0

20 25.9565

19 24.4997 G0

18 23.1247

17 21.8268 F0

16 20.6017 E0

15 19.4454

14 18.3540 D0

13 17.3239

12 16.3516 C0 C2

11 15.4339
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Intervals

This is a table of intervals not exceeding one octave (or a tritave in the
case of the Bohlen–Pierce, or BP scale). A much more extensive table may
be found in Appendix XX to Helmholtz [55] (page 453), which was added by
the translator, Alexander Ellis. Names of notes in the BP scale are denoted
with a subscript BP, to save confusion with notes which may have the same
name in the octave based scale.

The first column is equal to 1200 times the logarithm to base two of
the ratio given in the second column. Logarithms to base two can be calcu-
lated by taking the natural logarithm and dividing by ln 2. So the first col-
umn is equal to

1200

ln 2
≈ 1731.234

times the natural logarithm of the second column.
We have given all intervals to three decimal places for theoretical pur-

poses. While intervals of less than a few cents are imperceptible to the hu-
man ear in a melodic context, in harmony very small changes can cause large
changes in beats and roughness of chords. Three decimal places gives great
enough accuracy that errors accumulated over several calculations should not
give rise to perceptible discrepancies.

If more accuracy is needed, I recommend using the multiple precision
package bc (see page 367) with the -l option. The following lines can be made
into a file to define some standard intervals in cents. For example, if the file is
called music.bc then the command “bc -l music.bc” will load them at startup.

scale=50 /* fifty decimal places - seems like plenty but you never know */
octave=1200

savart=1.2*l(10)/l(2)
syntoniccomma=octave*l(81/80)/l(2)

pythagoreancomma=octave*l(3^12/2^19)/l(2)
septimalcomma=octave*l(64/63)/l(2)

schisma=pythagoreancomma-syntoniccomma
diaschisma=syntoniccomma-schisma
perfectfifth=octave*l(3/2)/l(2)

equalfifth=700
meantonefifth=octave*l(5)/(4*l(2))

perfectfourth=octave*l(4/3)/l(2)
justmajorthird=octave*l(5/4)/l(2)
justminorthird=octave*l(6/5)/l(2)

justmajortone=octave*l(9/8)/l(2)
justminortone=octave*l(10/9)/l(2)
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Cents Interval ratio Eitz Name, etc. Ref

0.000 1:1 C
0
, C

0

BP Fundamental §4.1
1.000 2

1
1200 :1 Cent §5.4

1.805 2
1

665 :1 Degree of 665 tone scale §6.4
1.953 32805:32768 B♯

−1
Schisma §5.8

3.986 10
1

1000 :1 Savart §5.4
14.191 245:243 C

+1

BP BP-minor diesis §6.7
19.553 2048:2025 D♭♭

+2
Diaschisma §5.8

21.506 81:80 C
+1

Syntonic, or ordinary comma §5.5
22.642 2

1
53 :1 Degree of 53 tone scale §6.3

23.460 312:219 B♯
0

Pythagorean comma §5.2
27.264 64:63 Septimal comma §5.8
35.099 Carlos’ γ scale degree §6.6
41.059 128:125 D♭♭

+3
Great diesis §5.12

49.772 713:323 D♭♭
0

BP BP 7/3 comma §6.7
63.833 Carlos’ β scale degree §6.6
70.672 25:24 C♯

−2
Small (just) semitone §5.5

77.965 Carlos’ α scale degree §6.6
90.225 256:243 D♭

0
Diesis or Limma §5.2

100.000 2
1
12 :1 ≈ C♯

−
7
11 Equal semitone §5.14

111.731 16:15 D♭
+1

Just minor semitone (ti–do, mi–fa) §5.5
113.685 2187:2048 C♯

0
Pythagorean apotomē §5.2

133.238 27:25 D♭
−2

BP §6.7
146.304 3

1
13 :1 BP-equal semitone §6.7

182.404 10:9 D
−1

Just minor tone (re–mi, so–la) §5.5

193.157
√

5:2 D
−

1
2

Meantone whole tone §5.12

200.000 2
1
6 :1 ≈ D

−
2
11 Equal whole tone §5.14

203.910 9:8 D
0

Just major tone (do–re, fa–so, la–ti); §5.5
Pythagorean major tone; §5.2
Ninth harmonic §4.1

294.135 32:27 E♭
0

Pythagorean minor third §5.2

300.000 2
1
4 :1 ≈ E♭

+ 3
11

Equal minor third §5.14
315.641 6:5 E♭

+1
Just minor third (mi–so, la–do, ti–re) §5.5

386.314 5:4 E
−1

Just major third (do–mi, fa–la, so–ti); §5.5
Meantone major third; §5.12
Fifth harmonic §4.1

400.000 2
1
3 :1 ≈ E

−
4
11 Equal major third §5.14

407.820 81:64 E
0

Pythagorean major third §5.2
498.045 4:3 F

0
Perfect fourth §5.2
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Cents Interval ratio Eitz Name, etc. Ref

500.000 2
5
12 :1 ≈ F

+ 1
11 Equal fourth §5.14

503.422 2:5
1
4 F

+ 1
4

Meantone fourth §5.12
551.318 11:8 Eleventh harmonic §4.1

600.000
√

2:1 ≈ F♯
−

6
11 Equal tritone §5.14

611.730 729:512 F♯
0

Pythagorean tritone §5.2

696.579 5
1
4 :1 G

−
1
4

Meantone fifth §5.12

700.000 2
7
12 :1 ≈ G

−
1
11 Equal fifth §5.14

701.955 3:2 G
0

Just and Pythagorean (perfect) fifth; §5.2
Third harmonic §4.1

792.180 128:81 A♭
0

Pythagorean minor sixth §5.2

800.000 2
2
3 :1 ≈ A♭

+ 4
11 Equal minor sixth §5.14

813.687 8:5 A♭
+1

Just minor sixth §5.5
840.528 13:8 Thirteenth harmonic §4.1
884.359 5:3 A

−1
Just major sixth §5.5

889.735 5
3
4 :2 A

−
3
4 Meantone major sixth §5.12

900.000 2
3
4 :1 ≈ A

−
3
11

Equal major sixth §5.14
905.865 27:16 A

0
Pythagorean major sixth §5.2

968.826 7:4 Seventh harmonic §4.1
996.090 16:9 B♭

0
Pythagorean minor seventh §5.2

1000.000 2
5
6 :1 ≈ B♭

+ 2
11

Equal minor seventh §5.14

1082.892 5
5
4 :4 B

−
5
4 Meantone major seventh §5.12

1088.269 15:8 B
−1

Just major seventh; §5.5
Fifteenth harmonic §4.1

1100.000 2
11
12 :1 ≈ B

−
5
11 Equal major seventh §5.14

1109.775 243:128 B
0

Pythagorean major seventh §5.2
1200.000 2:1 C

0
Octave; Second harmonic §4.1

1466.871 7:3 A
0

BP BP-tenth §6.7
1901.955 3:1 C

0

BP BP-Tritave §6.7



APPENDIX J

Just, equal and meantone scales compared

The figure on the next page has its horizontal axis measured in multi-
ples of the (syntonic) comma, and the vertical axis measured in cents. Each
vertical line represents a regular scale, generated by its fifth. The size of the
fifth in the scale is equal to the Pythagorean fifth (ratio of 3:2, or 701.955
cents) minus the multiple of the comma given by the position along the hor-
zontal axis. The three sloping lines show how far from the just values the
fifth, major third and minor third are in these scales. This figure is relevant
to Exercise 2 in §6.4.

It is worth noting that if 1
11 comma meantone were drawn on this di-

agram, it would be indistinguishable from 12 tone equal temperament; see
§5.14.

383



3
8
4

J
.
J
U

S
T

,
E

Q
U

A
L

A
N

D
M

E
A

N
T

O
N

E
S
C

A
L
E

S
C

O
M

P
A

R
E

D

-20

-15

-10 -5 0 5

10 15 20

cents from just

com
m

as
0.5

0.4
0.3

0.2
0.1

m
inor

third
m
ajorthird

fi
fth

R
egu

lar
scales

an
d

th
eir

d
ev

iation
s

from
ju

st
in

ton
ation

Pythagorean intonation

(11) 19 tone equal temperament

1
3 comma meantone

2
7 comma meantone

1
4 comma meantone

(18) 31 tone equal temperament

1
5 comma meantone

(25) 43 tone equal temperament
(32) 55 tone equal temperament

1
6 comma meantone

(7) 12 tone equal temperament



APPENDIX L

Logarithms

The purpose of this appendix is to give a quick review of the defini-
tion and standard properties of logarithms, since they are so important to
the theory of scales and temperaments. A commonly used definition of log-
arithm is that b = loga(c) means the same as ab = c.

The main problem in understanding the above definition is understand-
ing what the notation ab means. If b is rational, this can be explained in
terms of multiplication and extraction of roots. But what on earth does 2π

mean? How do we multiply 2 by itself π times? It turns out that logically,
the easiest way to develop exponentials and logarithms begins with the loga-
rithm as a definite integral and proceeds in the reverse of the order in which
these concepts are usually learned.

The definition of the natural logarithm is

ln(x) =

∫ x

1

1

t
dt,

which makes sense provided x > 0. In other words, ln(x) is the area under
the graph of the function y = 1/t between t = 1 and t = x.

t

y

1 x

y= 1
t

According to the usual conventions of calculus, if x lies between zero and one,
this area is interpreted as negative, while for x > 1 it is positive. It is imme-
diately apparent from the definition that

ln(1) = 0.

The fundamental theorem of calculus implies that

d

dx
ln(x) =

1

x
.

Applying the chain rule, if a is a constant then

d

dx
ln(ax) =

a

ax
=

1

x
.

385



386 L. LOGARITHMS

One of the consequences of the mean value theorem is that two functions with
the same derivative differ by a constant. We apply this to ln(ax) and ln(x),
and find out the value of the constant by setting x = 1, to get ln(ax)−ln(x) =
ln(a)− ln(1) = ln(a). If b is another constant, then evaluating at x = b gives

ln(ab) = ln(a) + ln(b).

The particular case where a = 1/b gives us

ln(1/b) = − ln(b).

Combining these formulae gives

ln(a/b) = ln(a)− ln(b).

From these properties and the definition, it easily follows that the logarithm
function is monotonically increasing, with domain (0,∞) and range (−∞,∞).

y=ln(x)

x

y

1 e

1

The exponential function exp(x) is defined to be the inverse function
of ln(x). In other words, y = exp(x) means the same as x = ln(y).

y=exp(x)

x

y

So the area under the graph of y = 1/t between t = 1 and t = exp(x) is
equal to x. The above properties of the logarithm translate into the follow-
ing properties of the exponential function:

exp(0) = 1

exp(a+ b) = exp(a) exp(b)

exp(−b) = 1/ exp(b)

exp(a− b) = exp(a)/ exp(b).

The number e is defined to be exp(1), and it is an irrational number whose
approximate value is 2.71828. The domain of the exponential function is
(−∞,∞), and its range is (0,∞).
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We define ab to mean exp(b ln(a)) (a > 0). So the area under the graph
of y = 1/t between t = 1 and t = ab is exactly b times as big as the area be-
tween t = 1 and t = a. It follows immediately from this definition that

ln(ab) = b ln(a) (a > 0).

If b = m/n is rational, it is not hard to check using the above properties of
the exponential and logarithm function that this definition agrees with the
more usual one with powers and roots (am/n is the unique positive number
whose nth power equals the mth power of a). But this definition gets us
around the problem of trying to understand what it means to multiply a by
itself an irrational number of times! Thus for example

ex = exp(x ln(e)) = exp(x)

so that the exponential function can be written as ex. With these definitions,
it is easy to prove the usual laws of indices:

a0 = 1, a1 = a, a−1 = 1/a, a−b = 1/ab, ab+c = abac,

ab−c = ab/ac, acbc = (ab)c, (ab)c = abc, a
1
n = n

√
a

We define

loga(b) =
ln(b)

ln(a)
(a > 0, b > 0).

Thus c = loga(b) is equivalent to c ln(a) = ln(b), or exp(c ln(a)) = b, or
ac = b. So c = loga(b) means that c is the power to which a has to be raised
to obtain b. For example, loge(b) is the same as ln(b), the natural logarithm
of b, because ln(e) = 1.

If we write out what it means for the derivative of ln(t) to be 1
t , we get

1

t
= lim

h→0

ln(t+ h)− ln(t)

h
= lim

h→0
ln

(
t+ h

t

) 1
h

.

The exponential function is continuous, so we can exponentiate both sides to
get

e
1
t = lim

h→0

(
t+ h

t

) 1
h

.

Substituting x for 1/t and n for 1/h, we get

ex = lim
n→∞

(1 + x
n)n.

Expand out using Pascal’s triangle to get

ex = lim
n→∞

(1 + n xn + n(n−1)
2!

x2

n2 + n(n−1)(n−2)
3!

x3

n3 + · · · )

= lim
n→∞

(1 + x+ (1− 1
n)x

2

2! + (1− 1
n)(1 − 2

n)x
3

3! + · · · )

= 1 + x+ x2

2! + x3

3! + · · ·
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In particular, putting x = 1 gives

e = 1 + 1 + 1
2! + 1

3! + · · · = 2.71828 . . .

The scale of cents in music theory is defined in such a way that a fre-
quency ratio of f :1 is represented as an interval of

1200 log2(f) cents =
1200 ln(f)

ln(2)
cents.

Thus one octave, or a frequency ratio of 2:1, is an interval of 1200 cents. In
the 12 tone equal tempered scale, this is divided into 12 equal semitones of
100 cents each. For more details, see §5.4.

The scale of decibels (dB) for loudness is also logarithmic. Adding 10
decibels multiplies the signal power by 10. So an acoustic signal power ratio
of b:1 is represented as a difference of

10 log10(b) dB =
10 ln(b)

ln(10)
dB.

Since power is proportional to the square of amplitude, an acoustic signal
amplitude ratio of a:1 is represented by a difference of

10 log10(a
2) dB = 20 log10(a) dB =

20 ln(a)

ln(10)
dB.



APPENDIX M

Music theory

This appendix consists of the background in elementary music theory
needed to understand the main text. The emphasis is slightly different than
that of a standard music text. We begin with the piano keyboard, as a con-
venient way to represent the modern scale (see also Appendix F).

C

C♯

D♭

D

D♯

E♭

E F

F♯

G♭

G

G♯

A♭

A

A♯

B♭

B C

C♯

D♭

D

D♯

E♭

E

Both the black and the white keys represent notes. This keyboard is periodic
in the horizontal direction, in the sense that it repeats after seven white notes
and five black notes. The period is one octave, which represents doubling
the frequency corresponding to the note. The principle of octave equivalence
says that notes differing by a whole number of octaves are regarded as play-
ing equivalent roles in harmony. In practice, this is not quite completely true.

On a modern keyboard, each of the twelve intervals making up an oc-
tave represents the same frequency ratio, called a semitone. The name comes
from the fact that two semitones make a tone. The twelfth power of the
semitone’s frequency ratio is a factor of 2:1, so a semitone represents a fre-

quency ratio of 2
1
12 :1. The arrangement where all the semitones are equal in

this way is called equal temperament. Frequency is an exponential function
of position on the keyboard, and so the keyboard is really a logarithmic rep-
resentation of frequency.

Because of this logarithmic scale, we talk about adding intervals when
we want to multiply the frequency ratios. So when we add a semitone to an-

other semitone, for example, we get a tone with a frequency ratio of 2
1
12×2

1
12 :1

or 2
1
6 :1. This transition between additive and multiplicative notation can be

a source of great confusion.
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Staff notation works in a similar way, except that the logarithmic fre-
quency is represented vertically, and the horizontal direction represents time.
So music notation paper can be regarded as graph paper with a linear hori-
zontal time axis and a logarithmic vertical frequency axis.

�IG
log(Frequency)

↑ "
Time

"
−→

" " " "

In the above diagram, each note is twice the frequency of the previous one,
so they are equally spaced on the logarithmic frequency scale (except for the
break between the bass and treble clefs). The gap between adjacent notes is
one octave, so the gap between the lowest and highest note is described ad-
ditively as five octaves, representing a multiplicative frequency ratio of 25:1.

There are two clefs on this diagram. The upper one is called the tre-
ble clef, with lines representing the notes E, G, B, D, F, beginning with the
E two white notes above middle C and working up the lines. The spaces be-
tween them represent the notes F, A, C, E between them, so that this takes
care of all the white notes between the E above middle C and the F an oc-
tave and a semitone above that. The black notes are represented in by us-
ing the line or space with the likewise lettered white note with a sharp (♯) or
flat (♭) sign in front.

The lower clef is called the bass clef, with lines representing the notes G,
B, D, F, A, with the last note representing the A two white notes below mid-
dle C and the first note representing the G an octave and a tone below that.

Middle C itself is represented using a leger line, either below the tre-
ble clef or above the bass clef.I

F

#
G

#
A

#
B

#
C

#
D

#
E

#
F

#
G

#
A

#
B

#
C

# H
= C

#
D

#
E

#
F

#
G

#
A

#
B

#
C

#
D

#
E

#
F

#
G

#
The frequency ratio represented by seven semitones, for example the

interval from C to the G above it, is called a perfect fifth. Well, actually, this
isn’t quite true. A perfect fifth is supposed to be a frequency ratio of 3:2, or
1.5:1, whereas seven semitones on our modern equal tempered scale produce

a frequency ratio of 2
7
12 :1 or roughly 1.4983:1. The perfect fifth is a conso-

nant interval, just as the octave is, for reasons described in Chapter 4. So
seven semitones is very close to a consonant interval. It is very difficult to
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discern the difference between a perfect fifth and an equal tempered fifth ex-
cept by listening for beats; the difference is about one fiftieth of a semitone.

The perfect fourth represents the interval of 4:3, which is also conso-
nant. The difference between a perfect fourth and the equal tempered fourth
of five semitones is exactly the same as the difference between the perfect
fifth and the equal tempered fifth, because they are obtained from the corre-
sponding versions of a fifth by subtracting from an octave.

The frequency ratio represented by four semitones, for example the in-
terval from C to the E above it, is called a major third. This represents a

frequency ratio of 2
4
12 :1 or 3

√
2:1, or roughly 1.25992:1. The just major third

is defined to be the frequency ratio of 5:4 or 1.25:1. Again it is the just ma-
jor third which represents the consonant interval, and the major third on our
modern equal tempered scale is an approximation to it. The approximation
is quite a bit worse than it was for the perfect fifth. The difference between
a just major third and an equal tempered major third is quite audible; the
difference is about one seventh of a semitone.

The frequency ratio represented by three semitones, for example the
interval from E to the G above it, is called a minor third. This represents

a frequency ratio of 2
3
12 :1 or 4

√
2:1, or roughly 1.1892:1. The consonant just

minor third is defined to be the frequency ratio of 6:5 or 1.2:1. The equal
tempered minor third again differs from it by about a seventh of a semitone.

A major third plus a minor third makes up a fifth, either in the
just/perfect versions or the equal tempered versions. So the intervals C to
E (major third) plus E to G (minor third) make C to G (fifth). In the
just/perfect versions, this gives ratios 4:5:6 for a just major triad C—E—G.
We refer to C as the root of this chord. The chord is named after its root, so
that this is a C major chord. G """

4:5:6

If we used the frequency ratios 3:4:5, it would just give an inversion of this
chord, which is regarded as a variant form of the C major chord, because of
the principle of octave equivalence.G """ 3:4:5

while the frequency ratios 2:3:4 give a much simpler chord with a fifth and
an octave.
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So the just major triad 4:5:6 is the chord that is basic to the western
system of musical harmony. On an equal tempered keyboard, this is approx-

imated with the chord 1: 2
4
12 : 2

7
12 , which is a good approximation except for

the somewhat sharp major third.
The major scale is formed by taking three major triads on three notes

separated by intervals of a fifth. So for example the scale of C major is formed
from the notes of the F major, C major and G major triads. Between them,
these account for the white notes on the keyboard, which make up the scale
of C major. So in just intonation, the C major scale would have the follow-
ing frequency ratios.

C D E F G A B C D

1
1

9
8

5
4

4
3

3
2

5
3

15
8

2
1

9
4

4 : 5 : 6 : (8)

4 : 5 : 6

(3) : 4 : 5 : 6

Here, we have made use of 2:1 octaves to transfer ratios between the right
and left end of the diagram.

The basic problem with this scale is that the interval from D to A is
almost, but not quite equal to a perfect fifth. It is just close enough that it
sounds like a nasty, out of tune fifth. It is short of a perfect fifth by a ratio
of 81:80. This interval is called a syntonic comma. In this text, when we use
the word comma without further qualification, it will always mean the syn-
tonic comma. This and other commas are investigated in §5.8.

The meantone scale addresses this problem by distributing the syn-
tonic comma equally between the four fifths C–G–D–A–E. So in the meantone
scale, the fifths are one quarter of a comma smaller than the perfect fifth, and
the major thirds are just. In the meantone scale, a number of different keys
work well, but the more remote keys do not. For further details, see §5.12.

To make all keys work well, the meantone scale must be bent to meet
around the back. A number of different versions of this compromise have been
used historically, the first ones being due to Werckmeister. Some of these well
tempered scales are described in §5.13. Meantone and well tempered scales
were in common use for about four centuries before equal temperament be-
came widespread in the late nineteenth and early twentieth century.

A minor triad is obtained by inverting the order of the intervals in a
major triad. So for example the minor triad on the note C consists of C, E♭
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and G. In just intonation, the frequency ratios are 5:6 for C–E♭ and 4:5 for
E♭–G, so that C–G still makes a perfect fifth. So the ratios are 10:12:15. See
§5.6 for a discussion of the role of the minor triad. A minor scale can be
built out of three minor triads in the same way as we did for the major scale,
to give the following frequency ratios.

C D E♭ F G A♭ B♭ C D

1
1

9
8

6
5

4
3

3
2

8
5

9
5

2
1

9
4

10 : 12 : 15

10 : 12 : 15

10 : 12 : 15

This is called the natural minor scale. Other forms of the minor scale occur
because the sixth and seventh notes can be varied by moving one or both of
them up a semitone to their major equivalents.

The concept of key signature arises from the following observation. If
we look at major scales which start on notes separated by the interval of a
fifth, then the two scales have all but one of the notes in common. For exam-
ple, in C major, the notes are C–D–E–F–G–A–B–C, while in G major, the
notes are G–A–B–C–D–E–F♯–G. The only difference, apart from a cyclic re-
arrangement of the notes, is that F♯ appears instead of F. So to indicate that
we are in G major rather than C major, we write a sharp sign on the F at
the beginning of each stave.

Similarly, the key of F major uses the notes F–G–A–B♭–C–D–E–F,
which only differs from C major in the use of B♭ instead of B.

This means that key signatures are regarded as “adjacent” if they begin
on notes separated by a fifth. So the key signatures form a “circle of fifths.”G222222

G♭

22222
D♭

2222
A♭

222
E♭

22
B♭

2
F C

4
G

44
D

444
A

4444
E

44444
B

444444
F♯

In the above sequence of key signatures, the first and last are enharmonic
versions of the same key. This means that in equal temperament, they are
just different ways of writing the same keys, but in other systems such as
meantone, the actual pitches may differ.

There is an easy way to memorise the correspondence between key sig-
natures and the names of the major keys. For key signatures with sharps, the
last sharp in the signature is the leading note of the key (i.e., a semitone be-
low the note describing the key signature). So for example with four sharps,
the last sharp is D♯ and so the key is E major. For key signatures with flats,
the second to last flat gives the key signature. So for example with four flats,
the second to last flat is A♭, so the key is A♭ major. The only case where
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this fails is if there is only one flat, and this is such a familiar key signature
that most people find it easy to remember that it’s F major.

The notes which occur in a natural minor scale are the same as the
notes which occur in the major scale starting three semitones higher. For ex-
ample, the notes of A minor are A–B–C–D–E–F–G–A. So the same key sig-
nature is used for A minor as for C major, and we say that A minor is the
relative minor of C major.

The note on which a scale starts is called the tonic. The word dominant
refers to the fifth above the tonic. The roman numeral notation is a device
for naming triads relative to the tonic. So for example the major triad on the
dominant is written V. Upper case roman numerals refer to major triads and
lower case to minor. So for example in C major, the chords are as follows.G

I
!!!

ii
!!!

iii

!!!
IV

!!!
V

!!!
vi

!!!
viio

!!!
I

!!!
In D major, each chord would be a whole tone higher; so V would refer to
the chord of A major instead of G major. So the roman numeral refers to the
harmonic function of the chord within the key signature, rather than giving
the absolute pitches.

The only triad here which is neither major nor minor is the diminished
triad on the seventh note of the scale. This is denoted viio, and consists of
two intervals of a minor third with no major thirds.

Mode. The word mode refers to an arrangement of tones and semitones,
with the tones approximately twice the size of the semitones (exact size de-
pending on choice of scale), to form an octave. The naming of the modes
can be a source of considerable confusion. The problem is that the names
of the mediæval church modes conflict with the names of the ancient Greek
tonoi, because of a misreading of the ancient literature by some tenth cen-
tury authors. The two definitions of Hypodorian agree, but then the mediæ-
val church modes go the wrong way around the circle.

Each mode can be considered to be the set of white keys on the piano,
for a given choice of starting point. So for example Hypodorian goes from A
to A, so that the arrangement of tones and semitones, from bottom to top,
is tsttstt, like the minor scale. Of course, it should be realised that the
pitches in a mode are not absolute, so the entire discussion can be transposed
into any other key signature. For convenience, we stick to the “white note”
key signature of C.

The mediæval church modes also come with a choice of finalis or final
note, which would normally be used as the last note of the melody. The au-
thentic modes start and end with the finalis, while the plagal mode has its
finalis on the fourth note of the scale. The four choices of finalis were D, E,
F, G, corresponding to the authentic modes Dorian, Phrygian, Lydian and



M. MUSIC THEORY 395

Mixolydian. The prefix Hypo- then turns it into the plagal mode with the
same finalis.

To add to the confusion, the sixteenth century Swiss theorist Glare-
anus added four more modes with finalis A and C, whose authentic forms he
called Aeolian and Ionian. He did not consider B to be a valid choice of fi-
nalis, because the fifth above it has the wrong size. More information can be
found in the excellent discussion of mode in Grout and Palisca, A history of
western music (fifth edition, Norton, 1996).

We summarise with a table. The first column gives the pattern of semi-
tones and tones, from the bottom to the top of the scale. The finalis col-
umn only refers to the mediæval church modes, not to the Greek tonoi. The
numbers 1 to 8 are used in most mediæval treatises rather than the names,
and 9 to 12 are from Glareanus. Modern books on music theory often use
the names for numbers 1, 3, 5, 7, 9, 4 and 11 in the following table as their
names of the modes.

Intervals Greek tonoi Mediæval church modes White keys finalis

tstttst Phrygian 1. Dorian D → D D

stttstt Dorian 3. Phrygian E → E E

tttstts Hypolydian 5. Lydian F → F F

ttsttst Hypophrygian 7. Mixolydian G → G G

tsttstt Hypodorian 2. Hypodorian A → A D

sttsttt Mixolydian 4. Hypophrygian B → B E

ttsttts Lydian 6. Hypolydian C → C F

tstttst 8. Hypomixolydian D → D G

tsttstt 9. Aeolian A → A A

stttstt 10. Hypoaeolian E → E A

ttsttts 11. Ionian C → C C

ttsttst 12. Hypoionian G → G C

To put it briefly, the reason for the ascendence of the Ionian mode to
the role of the modern major scale is that this is the mode where the three
available major chords are best situated for use in harmony.
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Online papers

This appendix appears in the online version of the book only, not the
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James A. Moorer, John Grey and John Strawn, Lexicon of analyzed tones. Part 3: the

trumpet, CMuJ 2 (2) (1978), 23–31.

Curtis Roads, Automated granular synthesis of sound, CMuJ 2 (2) (1978), 61–62.
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cian numbers and the golden mean, MQ 65 (1) (1979), 72–82.

M. Perlman, American gamelan in the Garden of Eden: intonation in a cross-cultural en-

counter, MQ 78 (3) (1994), 510–555.

Music Theory Spectrum (MTS) at JSTOR:

J. Herlinger, Fractional divisions of the whole tone, MTS 3 (1981), 74–83.

R. Gauldin, The cycle-7 complex: relations of diatonic set theory to the evolution of an-

cient tone systems, MTS 5 (1983), 39–55.

N. Carey and D. Clampitt, Aspects of well-formed scales, MTS 11 (2) (1989), 187–206.

J. Lewin, Klumpenhouwer networks and some isographies that involve them, MTS 12 (1)

(1990), 83–120.

R. Bass, Sets, scales and symmetries: the pitch-structural basis of George Crumb’s

“Macrokosmos” I and II, MTS 13 (1) (1991), 1–20.

H. Klumpenhouwer, The Cartesian choir, MTS 14 (1) (1992), 15–37.

J. Clough, J. Douthett, N. Ramanathan and L. Rowell, Early Indian heptatonic scales and

recent diatonic theory, MTS 15 (1) (1993), 36–58.

D. Lewin, Generalized interval systems for Babbitt’s lists, and for Schoenberg’s string trio,

MTS 17 (1) (1995), 81–118.

P. Westergaard, Geometries of sounds in time, MTS 18 (1) (1996), 1–21.

R. P. Morgan, Symmetrical form and common-practice tonality, MTS 20 (1) (1998), 1–47.

S. Heinemann, Pitch-class set multiplication in theory and practice, MTS 20 (1) (1998), 72–

96.



410 O. ONLINE PAPERS

J. L. Hook, Rhythm in the music of Messiaen: an algebraic study and an application in the

Turangal̂ıla Symphony, MTS 20 (1) (1998), 117–144.

J. Clough, N. Engebretsen and J. Kochavi, Scales, sets, and interval cycles: a taxonomy,

MTS 21 (1) (1999), 74–104.

M. Santa, Defining modular transformation, MTS 21 (2) (1999), 200–229.

L. Rowell, Scale and mode in the music of the early Tamils of South India, MTS 22 (2)

(2000), 135–156.

B. Alegant, Cross-partitions as harmony and voice leading in twelve-tone music, MTS 23

(1) (2001), 1–40.

S. C. Brown, Dual interval space in twentieth-century music, MTS 25 (1) (2003), 35–57.

C. Nolan, Combinatorial space in nineteenth- and early twentieth-century music theory,

MTS 25 (1) (2003), 205–241.

The Musical Times at JSTOR:

E. P. Lennox Atkins, The scientific basis of tuning, The Musical Times 55 #859 (1914),

587–588.

W. F. H. Blandford, The intonation of brass instruments, The Musical Times 77 #1115

(1936), 19–21.

W. F. H. Blandford, The intonation of brass instruments (concluded), The Musical Times

77 #1116 (1936), 118–121.

Richard Orton, The 31-tone organ, The Musical Times 107 #1478 (1966), 342–343.

J. Meffen, A question of temperament: Purcell and Croft, The Musical Times 119 #1624

(1978), 504–506.

M. Lindley, J. S. Bach’s tunings, The Musical Times 126 #1714 (1985), 721–726.

Perspectives of New Music (PNM) at JSTOR:

M. Babbitt, Twelve-tone rhythmic structure and the electronic medium, PNM 1 (1) (1962),

49–79.

D. Lewin, A theory of segmental association in twelve-tone music, PNM 1 (1) (1962), 89–

116.

A. Forte, Context and continuity in an atonal work: a set-theoretic approach, PNM 1 (2)

(1963), 72–82.

B. Johnston, Scalar order as a compositional resource, PNM 2 (2) (1964), 56–76. (discusses

53 tone just intonation)

S. Bauer-Mengelberg and M. Ferentz, On eleven-interval twelve-tone rows, PNM 3 (2)

(1965), 93–103.

H. S. Howe, Jr., Some combinatorial properties of pitch structures, PNM 4 (1) (1965), 45–61.

M. Kassler, Toward a theory that is the twelve-note-class system, PNM 5 (2) (1967), 1–80.

J. K. Randall, Three lectures to scientists, PNM 5 (2) (1967), 124–140.



O. ONLINE PAPERS 411

A. G. Wilcox, Perfect fourths as a scalar option, PNM 5 (2) (1967), 141–145.

D. Lewin, A study of hexachord levels in Schoenberg’s violin fantasy, PNM 6 (1) (1967),

18–32.

E. Regener, Layered music-theoretic systems, PNM 6 (1) (1967), 52–62.

M. Starr, Webern’s palindrome, PNM 8 (2) (1970), 127–142.

B. Archibald, Some thoughts on symmetry in early Webern: Op. 5, No. 2, PNM 10 (2)

(1972), 159–163.

L. J. Solomon, New symmetric transformations, PNM 11 (2) (1973), 257–264.

E. Regener, On Allen Forte’s theory of chords, PNM 13 (1) (1974), 191–212.

D. Lewin, On partial ordering, PNM 14 (2) (1976), 252–257.

D. Starr and R. Morris, A general theory of combinatoriality and the aggregate (Part 1),

PNM 16 (1) (1977), 3–35.

D. Starr and R. Morris, A general theory of combinatoriality and the aggregate (Part 2),

PNM 16 (2) (1978), 50–84.

D. Lewin, A communication on some combinatorial problems, PNM 16 (2) (1978), 251–254.

H. Wilcox and P. Escot, A musical set theory Ia, PNM 17 (1) (1978), 230–234.

W. Berry, Symmetrical interval sets and derivative pitch materials in Bartók’s String Quar-
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M. Özakça and M. T. Göğüş, Structural analysis and optimization of bells using finite ele-

ments, JNMR 33 (1) (2004), 61–69.

Aline Honingh and Rens Bod, Convexity and well-formedness of musical objects, JNMR 34

(3) (2005), 293–303.

John Rahn, Cool tools: polysemic and non-commutative nets, subchain decompositions and

cross-projecting pre-orders, object-graphs, chain-hom-sets and chain-label-hom-sets, forget-

ful functors, free categories of a net, and ghosts, JMM 1 (1) (2007), 7–22.

Guerino Mazzola and Moreno Andreatta, Diagrams, gestures and formulae in music, JMM

1 (1) (2007), 23–46.

J. Douthett and R. Krantz, Continued fractions, best measurements, and musical scales

and intervals, JMM 1 (1) (2007), 47–70.

University of California Press at caliber.ucpress.net offers the following
papers.

David Huron, Tone and voice: a derivation of the rules of voice-leading from perceptual

principles, Music Percept. 19 (1) (2001), 1–64.

Frank Ragozzine, The tritone paradox and perception of single octave-related complexes,

Music Percept. 19 (2) (2001), 155–168.

J. Giangrande, B. Tuller and J. A. S. Kelso, Perceptual dynamics of circular pitch, Music

Percept. 20 (3) (2003), 241–262.

Reinhard Kopiez, Intonation of harmonic intervals: adaptability of expert musicians to
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equal temperament and just intonation, Music Percept. 20 (4) (2003), 383–410.

Diana Deutsch, Trevor Henthorn and Mark Dolson, Speech patterns heard in early life in-

fluence later perception of the tritone paradox, Music Percept. 21 (3) (2004), 357–372.

Rudi Črnčec, Sarah J. Wilson and Margot Prior, No evidence for the Mozart effect in chil-

dren, Music Percept. 23 (4) (2006), 305–318.

Michael W. Beauvoir, Quantifying aesthetic preference and perceived complexity for fractal

melodies, Music Percept. 24 (3) (2007), 247–264.



APPENDIX P

Partial derivatives

Partial derivatives are what happens when we differentiate a function
of more than one variable. For example, a geographical map which indicates
height above sea level, by some device such as colouration or contours, can
be regarded as describing a function z = f(x, y). Here, x and y represent the
two coordinates of the map, and z denotes height above sea level. If we move
due east, which we take to be the direction of the x axis, then we are keep-
ing y constant and changing x. So the slope in this direction would be the
derivative of z = f(x, y) with respect to x, regarding y as a constant. This

derivative is denoted
∂z

∂x
. More formally,

∂z

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
.

Similarly,
∂z

∂y
is the derivative of z with respect to y, regarding x as a con-

stant. As an example, let z = x4 +x2y−2y2. Then we have
∂z

∂x
= 4x3 +2xy,

because x2y is being regarded as a constant multiple of x2, and −2y2 is just

a constant. Similarly,
∂z

∂y
= x2 − 4y, because x4 is a constant and x2y is a

constant multiple of y.
Second partial derivatives are defined similarly, but we now find that

we can mix the variables. As well as
∂2z

∂x2
and

∂2z

∂y2
, we can now form

∂2z

∂x∂y

by taking the partial derivative of
∂z

∂y
with respect to x, regarding y as con-

stant, and we can also form
∂2z

∂y∂x
by taking partial derivatives in the oppo-

site order. So in the above example, we have

∂2z

∂x2
= 12x2 + 2y,

∂2z

∂y2
= −4,

∂2z

∂x∂y
=

∂2z

∂y∂x
= 2x.

In fact, the two mixed partial derivatives agree under some fairly mild hy-
potheses.
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Theorem P.1. Suppose that the partial derivatives
∂2z

∂x∂y
and

∂2z

∂y∂x
both exist and are both continuous at some point (i.e., for some chosen val-
ues of x and y). Then they are equal at that point.

Proof. See any book on elementary analysis; for example, J. C. Burkhill,
A first course in mathematical analysis, CUP, 1962, theorem 8.3. �

Partial derivatives work in exactly the same way for functions of more

variables. So for example if f(x, y, z) = xy2 sin z then we have
∂f

∂x
= y2 sin z,

∂f

∂y
= 2xy sin z, and

∂f

∂z
= xy2 cos z. For each pair of variables, the two

mixed partial derivatives with respect to those variables agree provided they
are both continuous.

The chain rule for partial derivatives needs some care. Suppose, by
way of example, that z is a function of u, v and w, and that each of u, v and
w is a function of x and y. Then z can also be regarded as a function of x
and y. A change in the value of x, keeping y constant, will result in a change
of all of u, v and w, and each of these changes will result in a change in the
value of z. These changes have to be added as follows:

∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
+
∂z

∂w

∂w

∂x
.

Similarly, we have

∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
+
∂z

∂w

∂w

∂y
.

It is essential to keep track of which variables are independent, intermediate,
and dependent. In this example, the independent variables are x and y, the
intermediate ones are u, v and w, and the dependent variable is z.

A good illustration of the chain rule for partial derivatives is given by
the conversion from Cartesian to polar coordinates. If z is a function of x
and y then it can also be regarded as a function of r and θ. To convert from
polar to Cartesian coordinates, we use x = r cos θ and y = r sin θ, and to con-

vert back we use r =
√
x2 + y2 and tan θ = y/x. Let us convert the quantity

∂2z

∂x2
+
∂2z

∂y2
,

into polar coordinates, assuming that all mixed second partial derivatives
are continuous, so that the above theorem applies. This calculation will be
needed in §3.6, where we investigate the vibrational modes of the drum. For
this purpose, it is actually technically slightly easier to regard x and y as the
intermediate variables and r and θ as the independent variables, although it
would be quite permissible to interchange their roles. The dependent vari-
able is z. We have

∂z

∂r
=
∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
= cos θ

∂z

∂x
+ sin θ

∂z

∂y
. (P.1)
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To take the second derivative, we do the same again.

∂2z

∂r2
= cos θ

∂

∂r

(
∂z

∂x

)
+ sin θ

∂

∂r

(
∂z

∂y

)

= cos θ

(
cos θ

∂2z

∂x2
+ sin θ

∂2z

∂y∂x

)
+ sin θ

(
cos θ

∂2z

∂x∂y
+ sin θ

∂2z

∂y2

)

= cos2 θ
∂2z

∂x2
+ 2 sin θ cos θ

∂2z

∂x∂y
+ sin2 θ

∂2z

∂y2
. (P.2)

Similarly, we have

∂z

∂θ
=
∂z

∂x

∂x

∂θ
+
∂z

∂y

∂y

∂θ
= (−r sin θ)

∂z

∂x
+ (r cos θ)

∂z

∂y
,

and

∂2z

∂θ2
= (−r sin θ)

∂

∂θ

(
∂z

∂x

)
+ (−r cos θ)

∂z

∂x

+ (r cos θ)
∂

∂θ

(
∂z

∂y

)
+ (−r sin θ)

∂z

∂y

= (−r sin θ)

(
(−r sin θ)

∂2z

∂x2
+ (r cos θ)

∂2z

∂y∂x

)
+ (−r cos θ)

∂z

∂x

+ (r cos θ)

(
(−r sin θ)

∂2z

∂x∂y
+ (r cos θ)

∂2z

∂y2

)
+ (−r cos θ)

∂z

∂y

= r2
(

sin2 θ
∂2z

∂x2
− 2 sin θ cos θ

∂2z

∂x∂y
+ cos2 θ

∂2z

∂y2

)

− r
(

cos θ
∂z

∂x
+ sin θ

∂z

∂y

)
. (P.3)

Comparing the formula (P.2) for
∂2z

∂r2
with the formula (P.3) for

∂2z

∂θ2
, and us-

ing the fact that sin2 θ + cos2 θ = 1, we see that

∂2z

∂r2
+

1

r2
∂2z

∂θ2
=
∂2z

∂x2
+
∂2z

∂y2
− 1

r

(
cos θ

∂z

∂x
+ sin θ

∂z

∂y

)
.

Finally, looking back at equation (P.1) for
∂z

∂r
, we obtain the formula we were

looking for, namely

∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2
∂2z

∂θ2
=
∂2z

∂x2
+
∂2z

∂y2
. (P.4)



APPENDIX R

Recordings

Go to the entry “compact discs” in the index to find the points in the text which
refer to these recordings.

Bill Alves, Terrain of possibilities, Emf media #2, 2000. Music made with Syn-
clavier and CSound using just intonation.

Johann Sebastian Bach, The Complete Organ Music, recorded by Hans Fagius, Vol-
umes 6 and 8, BIS-CD-397/398 (1989) and BIS-CD-443/444 (1989 & 1990). These
recordings are played on the reconstructed 1764 Wahlberg organ, Fredrikskyrkan,
Karlskrona, Sweden. This organ was reconstructed using the original temperament,
which was Neidhardt’s Circulating Temperament No. 3 “für eine grosse Stadt” (for
a large town).

Johann Sebastian Bach, Italian Concerto, BWV 971; French Concerto, BWV 831;
4 duetti, BWV 802–5; Chromatic Fantasy & Fugue, BWV 903. Recorded by
Christophe Rousset, Editions de l’Oiseau-Lyre 433 054-2, Decca 1992. These works
were recorded on a 1751 Henri Hemsch (Paris) harpischord tuned in Werckmeister
III temperament.

Clarence Barlow’s “OTOdeBLU” is in 17 tone equal temperament, played on two
pianos. This piece was composed in celebration of John Pierce’s eightieth birthday,
and appeared as track 15 on the Computer Music Journal’s Sound Anthology CD,
1995, to accompany volumes 15–19 of the journal. The CD can be obtained from
MIT press for $15.

Between the Keys, Microtonal masterpieces of the 20th century, Newport Classic
CD #85526, 1992. This CD contains recordings of Charles Ives’ Three quartertone
pieces, and a piece by Ivan Vyshnegradsky in 72 tone equal temperament.

Heinrich Ignaz Franz von Biber, Violin Sonatas, Romanesca (Andrew Manze,
baroque violin; Nigel North, lute and theorbo; John Toll, harpsichord and organ),
Harmonia Mundi (1994, reissued 2002), HMU 907134.35. This recording is on orig-
inal and reproductions of original instruments tuned in quarter comma meantone
temperament, with A at 440Hz.

Easley Blackwood has composed a set of microtonal compositions in each of the
equally tempered scales from 13 tone to 24 tone, as part of a research project funded
by the National Endowment for the Humanities to explore the tonal and modal be-
haviour of these temperaments. He devised notations for each tuning, and his com-
positions were designed to illustrate chord progressions and practical application of
his notations. The results are available on compact disc as Cedille Records CDR
90000 018, Easley Blackwood: Microtonal Compositions (1994). Copies of the scores
of the works can be obtained from Blackwood Enterprises, 5300 South Shore Drive,
Chicago, IL 60615, USA for a nominal cost.

446
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Dietrich Buxtehude, Orgelwerke, Volumes 1–7, recorded by Harald Vogel, published
by Dabringhaus and Grimm. These works are recorded on a variety of European or-
gans in different temperaments. Extensive details are given in the liner notes.

CD1 Tracks 1–8: Norden – St. Jakobi/Kleine organ in Werckmeister III;

Tracks 9–15: Norden – St. Ludgeri organ in modified 1
5

Pythagorean comma meantone with C♯
−

6
5

p

,

G♯
−

6
5

p

, B♭
+ 1

5
p

and E♭
0
;

CD2 Tracks 1–6: Stade – St. Cosmae organ in modified quarter comma meantone with1 C♯
−

3
2

, G♯
−

3
2

,

F
0
, B♭

0
, E♭

−
1
5

;

Tracks 7–15: Weener – Georgskirche organ in Werckmeister III;

CD3 Tracks 1–10: Grasberg organ in Neidhardt No. 3;

Tracks 11–14: Damp – Herrenhaus organ in modified meantone with pitches taken from original pipe

lengths;

CD4 Tracks 1–8: Noordbroeck organ in Werckmeister III;

Tracks 9–15: Groningen – Aa-Kerk organ in (almost) equal temperament;

CD5 Tracks 1–5: Pilsum organ in modified 1
5

Pythagorean comma meantone (the same as the Norden –

St. Ludgeri organ described above);

Tracks 6–7: Buttforde organ;

Tracks 8–10: Langwarden organ in modified quarter comma meantone with G♯
−

7
4 , B♭

−
1
4 , E♭

−
1
4 ;

Tracks 11–13: Basedow organ in quarter comma meantone;

Tracks 14–15: Groß Eichsen organ in quarter comma meantone;

CD6 Tracks 1–10: Roskilde organ in Neidhardt (no. 3?);

Track 11: Helsingør organ (unspecified temperament);

Tracks 12–15: Torrlösa organ (unspecified temperament);

CD7 Tracks 1–10 modified 1
5

comma meantone with2 C♯
−

6
5

, G♯
−

6
5

, B♭
+ 1

5
and E♭

1
5
−

1
10

p

.

William Byrd, Cantones Sacrae 1575, The Cardinall’s Music, conducted by David
Skinner. Track 12, Diliges Dominum, exhibits temporal reflectional symmetry, so
that it is a perfect palindrome (see §9.1).

Wendy Carlos, Beauty in the Beast, Audion, 1986, Passport Records, Inc., SYNCD
200. Tracks 4 and 5 make use of Carlos’ just scales described in §6.1.

Wendy Carlos, Switched-On Bach 2000, 1992. Telarc CD-80323. Carlos’ original
“Switched-On Bach” recording was performed on a Moog analogue synthesizer, back
in the late 1960s. The Moog is only capable of playing in equal temperament. Im-
provements in technology inspired her to release this new recording, using a variety
of temperaments and modern methods of digital synthesis. The temperaments used
are 1

5 and 1
4 comma meantone, and various circular (irregular) temperaments.

Wendy Carlos, Tales of Heaven and Hell, 1998. East Side Digital, ESD 81352. The
third track, Clockwork Black, uses 1

5 th comma meantone temperament. The sixth
track, Afterlife, uses 15 tone equal temperament, alternating with another more
ad hoc scale. The seventh and final track uses a variation of Werckmeister III.

1The liner notes are written as though G♯
−

3
2

were equal to A♭
−

2
5

, which is not quite true. But the
discrepancy is only about 0.2 cents.

2 The liner notes identify A♭
−

1
10

p

with G♯
−

6
5 , in accordance with the approximation of Kirnberger

and Farey described in §5.14.
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Charles Carpenter has two CDs, titled Frog à la Pêche (Caterwaul Records,
CAT8221, 1994) and Splat (Caterwaul Records, CAT4969, 1996), composed using
the Bohlen–Pierce scale, and played in a progressive rock/jazz style. Although Car-
penter does not restrict himself to sounds composed mainly of odd harmonics, his
compositions are nonetheless compelling.

Jacques Champion de Chambonnières, Pièces pour Clavecin, Françoise Lengellé,
Clavecin. Lyrinx, LYR CD066, France. These pieces were recorded on copies of orig-
inal harpsichords, tuned in quarter comma meantone, with A at 415Hz.

Jane Chapman, Beau Génie: Pièces de Clavecin from the Bauyn Manuscript, Vol. I,
Collins Classics 14202, 1994. These pieces were recorded on a 1614 Ruckers harpsi-
chord, tuned in quarter comma meantone with A at 415Hz.

Marc Chemillier and E. de Dampierre, Central African Republic. Music of the for-
mer Bandia courts, CNRS/Musée de l’Homme, Le Chant du Monde, CNR 2741009,
Paris, 1996.

Perry Cook (ed.), Music, cognition and computerized sound. An introduction to psy-
choacoustics [20] comes with an accompanying CD full of sound examples.

Jean-Henry d’Anglebert, Harpsichord Suites and Transcriptions, Byron Schenkman,
Harpsichord. Centaur CRC 2435, 1999. These pieces were recorded on a copy of an
original 1638 harpsichord, tuned in quarter comma meantone.

Johann Jakob Froberger, The Complete Keyboard Works, Richard Egarr, Harpsi-
chord and Organ. Globe GLO 6022–5, 1994. The organ works in this collection were
recorded on the organ at St. Martin’s Church in Cuijk, tuned in 1/5 comma mean-
tone with A at 413Hz. The suites for harpsichord were recorded in “the tuning de-
scribed by Marin Mersenne in his Harmonie universelle of 1636 (generally known
as ‘Ordinaire’)”. The remaining harpsichord works were recorded in quarter comma
meantone. The harpsichords were tuned with A at 415Hz.

Lou Harrison, Complete harpsichord works; music for tack piano and fortepiano; in
historic and experimental tunings, New Albion Records (2002). Linda Burman-Hall,
solo keyboards. The pieces on this recording are: A sonata for harpsichord (Kirn-
berger II with A at 415Hz), Village music (A well temperament with A at 415Hz),
Six sonatas for cembalo (Werckmeister III with A at 440Hz), Instrumental music
for Corneille’s ‘Cinna’ (7 limit just intonation), A Summerfield set (Werckmeister
III), Triphony (modified well temperament based on Charles, Earl of Stanhope), A
twelve-tone morning after to amuse Henry, and Largo ostinato (both in the same
unspecified temperament based on tuning its core sonorities in just intonation).

Michael Harrison, From Ancient Worlds, for Harmonic Piano, New Albion Records,
Inc., 1992. NA 042 CD. The pieces on this recording all make use of his 24 tone just
scale, described in §6.1.

Michael Harrison has also released another CD using his Harmonic Piano, Revela-
tion, recorded live in the Lincoln Center in October 2001 and issued in January 2002.
In this recording, the harmonic piano is tuned to a just scale using only the primes
2, 3 and 7 (not 5). The 12 notes in the octave have ratios

1:1, 63:64, 9:8, 567:512, 81:64, 21:16, 729:512, 3:2,

189:128, 27:16, 7:4, 243:128, (2:1).
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The scale begins on F, and has the peculiarity that ♯ lowers a note by a septimal
comma.

Jonathan Harvey, Mead: Ritual melodies, Sargasso CD #28029, 1999. Track two on
this CD, Mortuos Plango, Vivos Voco, makes use of a scale derived from a spectral
analysis of the Great Bell of Winchester Cathedral.

Neil Haverstick, Acoustic stick, Hapi Skratch, 1998. The pieces on this CD are played
on custom made guitars using 19 and 34 tone equal temperament.

In Joseph Haydn’s Sonata 41 in A (Hob. XVI:26), the movement Menuetto al
rovescio is a perfect palindrome (see §9.1). This piece can be found as track 16 on
the Naxos CD number 8.553127, Haydn, Piano sonatas, Vol. 4, with Jenõ Jandó at
the piano.

A. J. M. Houtsma, T. D. Rossing and W. M. Wagenaars, Auditory Demonstrations,
Audio CD and accompanying booklet, Philips, 1987. This classic collection of sound
examples illustrates a number of acoustic and psychoacoustic phenomena. It can
be obtained from the Acoustical Society of America at asa.aip.org/discs.html for $26 +
shipping.

Ben Johnson, Music for piano, played by Phillip Bush, Koch International Classics
CD #7369. Pieces for piano in a microtonal just scale.

Enid Katahn, Beethoven in the Temperaments (Gasparo GSCD-332, 1997). Katahn
plays Beethoven’s Sonatas Op. 13, Pathétique and Op. 14 Nr. 1 using the Prinz tem-
perament, and Sonatas Op. 27 Nr. 2, Moonlight and Op. 53 Waldstein in Thomas
Young’s temperament. The instrument is a modern Steinway concert grand rather
than a period instrument. The tuning and liner notes are by Edward Foote.

Enid Katahn and Edward Foote have also brought out a recording, Six degrees of
tonality (Gasparo GSCD-344, 2000). This begins with Scarlatti’s Sonata K. 96 in
quarter comma meantone, followed by Mozart’s Fantasie K. 397 in Prelleur tem-
perament, a Haydn sonata in Kirnberger III, a Beethoven sonata in Young tem-
perament, Chopin’s Fantaisie-Impromptu in DeMorgan temperament, and Grieg’s
Glochengeläute in Coleman 11 temperament. Finally, and in many ways the most
interesting part of this recording, the Mozart Fantasie is played in quarter comma
meantone, Prelleur temperament and equal temperament in succession, which al-
lows a very direct comparison to be made. Unfortunately, the tempi are slightly dif-
ferent, which makes this recording not very useful for a blind test.

Bernard Lagacé has recorded a CD of music of various composers on the C. B. Fisk
organ at Wellesley College, Massachusetts, USA, tuned in quarter comma meantone
temperament. This recording is available from Titanic Records Ti-207, 1991.

Guillaume de Machaut (1300–1377), Messe de Notre Dame and other works. The
Hilliard Ensemble, Hypeŕıon, 1989, CDA66358. This recording is sung in Pythagor-
ean intonation throughout. The mass alternates polyphonic with monophonic sec-
tions. The double leading-note cadences at the end of each polyphonic section are
particularly striking in Pythagorean intonation. Track 19 of this recording is Ma
fin est mon commencement (My end is my beginning). This is an example of retro-
grade canon, meaning that it exhibits temporal reflectional symmetry (see §9.1).
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Mathews and Pierce, Current directions in computer music research [87] comes with
a companion CD containing numerous examples; note that track 76 is erroneous, cf.
Pierce [108], page 257 of 2nd ed.

Microtonal works, Mode CD #18, contains microtonal works of Joan la Barbara,
John Cage, Dean Drummond and Harry Partch.

Edward Parmentier, Seventeenth Century French Harpsichord Music, Wildboar,
1985, WLBR 8502. This collection contains pieces by Johann Jakob Froberger,
Louis Couperin, Jacques Champion de Chambonnières, and Jean-Henri d’Anglebert.
The recording was made using a Keith Hill copy of a 1640 harpsichord by Joannes
Couchet, tuned in 1

3 comma meantone temperament.

Many of Harry Partch’s compositions have been rereleased on CD by Composers
Recordings Inc., 73 Spring Street, Suite 506, New York, NY 10012-5800. As a start-
ing point, I would recommend The Bewitched, CRI CD 7001, originally released on
Partch’s own label, Gate 5. This piece makes extensive use of his 43 tone just scale,
described in §6.1.

A number of Robert Rich’s recordings are in some form of just scale. His basic scale
is mostly 5-limit with a 7:5 tritone:

1:1, 16:15, 9:8, 6:5, 5:4, 4:3, 7:5, 3:2, 8:5, 5:3, 9:5, 15:8.

This appears throughout the CDs Numena, Geometry, Rainforest, and others. One
of the nicest examples of this tuning is The Raining Room on the CD Rainforest,
Hearts of Space HS11014-2. He also uses the 7-limit scale

1:1, 15:14, 9:8, 7:6, 5:4, 4:3, 7:5, 3:2, 14:9, 5:3, 7:4, 15:8.

This appears on Sagrada Familia on the CD Gaudi, Hearts of Space HS11028-2.

William Sethares, Xentonality, Music in 10-, 13-, 17- and 19-tone equal tempera-
ment using spectrally adjusted instruments. Frog Peak Music www.frogpeak.org, 1997.

William Sethares, Tuning, timbre, spectrum, scale [134] comes with a CD full of ex-
amples.

Isao Tomita, Pictures at an Exhibition (Mussorgsky), BMG 60576-2-RG. This
recording was made on analogue synthesizers in 1974, and is remarkably sophisti-
cated for that era.

Johann Gottfried Walther, Organ Works, Volume 1, played by Craig Cramer on the
organ of St. Bonifacius, Tröchtelborn, Germany. Naxos CD number 8.554316. This
organ was restored in Kellner’s reconstruction of Bach’s temperament, see §5.13. For
more information about the organ (details are not given in the CD liner notes), see
www.gdo.de/neurest/troechtelborn.html.

Aldert Winkelman, Works by Mattheson, Couperin, and others. Clavigram VRS

1735-2. This recording is hard to obtain. The pieces by Johann Mattheson, François

Couperin, Johann Jakob Froberger, Joannes de Gruytters and Jacques Duphly are

played on a harpsichord tuned to Werckmeister III. The pieces by Louis Couperin

and Gottlieb Muffat are played on a spinet tuned in quarter comma meantone.



APPENDIX W

The wave equation

This appendix is a supplement to §3.7. Its purpose is to justify the
method of separation of variables for the wave equation, to show that a drum
has “enough” eigenvalues, and to explain the construction of two different
drums with the same Dirichlet spectrum. The account of the solution of the
wave equation given here is deliberately much more compressed than the ac-
count usually given in books on partial differential equations, to emphasise
the shape of the reasoning rather than the more computational aspects usu-
ally considered. The level of mathematical sophistication needed to follow
this appendix is rather greater than for the rest of the book. The reader ea-
ger to understand how two different drums can have the same Dirichlet spec-
trum should jump straight to page 473 and examine the correspondence of
eigenfunctions described there.

We discuss solutions z of the two dimensional wave equation

∂2z

∂t2
= c2∇2z, (W.1)

on a closed, bounded domain Ω. For boundary conditions, we assume that
z is identically zero on the boundary S (Dirichlet boundary conditions). Ini-
tial conditions are given by specifying the values of z and ∂z

∂t at t = 0.

Throughout this appendix, Ω is a closed, bounded, simply connected
domain in R2 with piecewise twice continuously differentiable boundary S.
We write x for the position vector (x, y) on Ω, and dx for the element dx dy
of area on Ω. We write n for the outward normal vector to S, and dσ de-
notes the element of length on S. With this notation, the divergence theo-
rem states that if f(x) is a continuously differentiable function on Ω then∫

S
f .n dσ =

∫

Ω
∇f dx. (W.2)

In order to solve the wave equation, we begin with a study of Laplace’s
equation

∇2φ = 0

on Ω, with Dirichlet boundary conditions, in other words with given value of
φ on the boundary S. We then use this to construct Green’s functions, which
we in turn use in order to find an integral operator which is an inverse for ∇2.
This integral operator K will turn out to be a compact positive self-adjoint
operator, which is what allows us to get information about its eigenvalues.

451
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Green’s identities

Let Ω be a closed bounded region with boundary S. Suppose that f(x)
and g(x) are functions on Ω. Then we have

∇.(f∇g) = f∇2g +∇f .∇g. (W.3)

If Ω is a closed bounded region with boundary S, then integrating over Ω
and using the divergence theorem (W.2), we get Green’s first identity.

Theorem W.1 (Green’s First Identity). Let f(x) be continuously dif-
ferentiable, and g(x) be twice continuously differentiable on Ω. Then∫

S
(f∇g) .n dσ =

∫

Ω
(f∇2g +∇f .∇g) dx. (W.4)

Reversing the roles of f and g and subtracting gives Green’s second
identity.

Theorem W.2 (Green’s Second Identity). Let f(x) and g(x) be twice
continuously differentiable on Ω. Then∫

S
(f∇g − g∇f) .n dσ =

∫

Ω
(f∇2g − g∇2f) dx. (W.5)

The following is a useful consequence of Green’s second identity.

Lemma W.3. For twice continuously differentiable functions f and g
on Ω vanishing on the boundary S, we have∫

Ω
f∇2g dx =

∫

Ω
g∇2f dx. �

Gauss’ formula

We start with the function of two variables x and x′ in Ω given by
z = ln |x−x′|. For functions of two variables, it makes sense to apply ∇ with
respect to x keeping x′ constant, or vice versa. These are analogues of partial
differentiation. To distinguish between these two options, we write ∇x or ∇

x
′ .

An easy calculation in terms of coordinates shows that as long as
x 6= x′, we have

∇x
′ ln |x− x′| = − x− x′

|x− x′|2 (W.6)

and
∇2

x
′ ln |x− x′| = 0. (W.7)

For x = x′, the quantity ∇2
x
′ ln |x− x′| doesn’t make sense, because the log-

arithm isn’t defined. But if we pretend that it is continuously differentiable,
and integrate using the divergence theorem (W.2) we get
∫

Ω
∇2

x
′ ln |x− x′| dx′ =

∫

S
∇x

′ ln |x− x′| .n′ dσ′ = −
∫

S

x− x′

|x− x′|2 .n
′ dσ′,

(W.8)
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where n′ and σ′ are with respect to x′. The shape of the region Ω doesn’t
matter in this calculation, as long as x′ is in the interior, because of equation
(W.7). If we measure using x as the origin and make the region a unit disk
centred at the origin, then the calculation reduces to

∫
S x′.n′ dσ′. But in this

case x′ and n′ are unit vectors in the same direction, so x′.n′ = 1. Since the
circumference of the unit circle is 2π, the integral gives 2π,∫

S
∇

x
′ ln |x− x′| .n′ dσ′ = 2π. (W.9)

The interpretation of this calculation is that although ln |x− x′| is not
differentiable with respect to x′ at x′ = x, we can think of ∇2

x
′ ln |x−x′| as a

distribution, in the sense in which we introduced the term in §2.17. We have
to replace

∫∞
−∞ with

∫
Ω, so that the delta function δ(x) is defined to be zero

for x 6= 0, and
∫
Ω δ(x) dx = 1. In terms of this delta function, the above cal-

culation can be expressed as saying that

∇2
x
′ ln |x− x′| = 2πδ(x − x′). (W.10)

So far, we have assumed that x′ is in the interior of Ω. For a point x′

outside Ω, the integrand in equation (W.8) is zero so the integral is zero. If
x′ is on the boundary S, and it is a point where S is continuously differen-
tiable, then instead of a circle, in the above calculation we have to integrate
over a semicircle. So the integral is π instead of 2π. At a corner with angle
θ, we are integrating over a sector of a circle with angle θ, so the integral is
θ. So we define a function p(x) on R2 by

p(x) =





2π if x is in the interior of Ω,

0 if x is not in Ω,

π if x is a continuously differentiable point on S,

θ if x is a corner of S with interior angle θ.

Then the extension of equation (W.9) to the plane is Gauss’ formula∫

S
∇x

′ ln |x− x′| .n′ dσ′ = p(x). (W.11)

If f(x) is any continuous function on Ω, then we have∫

Ω
f(x′)∇2

x
′ ln |x− x′| dx′ = p(x)f(x). (W.12)

This is because the integrand is zero except near x = x′, so f(x′) may as well
be replaced by f(x) and taken out of the integral before applying the diver-
gence theorem.

Remark. The above calculation was performed in two dimensions. The correspond-
ing calculation in three dimensions uses the function 1/|x−x′| instead of ln |x−x′|.
The unit circle is replaced by the unit sphere, of surface area 4π, and the analogue
of equation (W.9) is ∫

S

∇x′

1

|x− x′| .n
′ dσ′ = 4π.
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The definition of h(x,x′) and G(x,x′) below are adjusted accordingly.
Similarly, in n dimensions (n ≥ 3), the corresponding formula is∫

S

∇x′

1

|x− x′|n−2
.n′ dσ′ = n(n− 2)α(n)

where α(n) denotes the (n − 1)-dimensional volume of the surface of the n-

dimensional sphere.

Green’s functions

Equation (W.10) is an important property of the function ln |x − x′|.
But the main problem with this function is that it doesn’t vanish on the
boundary S of Ω. To remedy this, we adjust it as follows. Suppose that we
can find a solution h(x,x′) to Laplace’s equation

∇2
x
′h(x,x′) = 0 (W.13)

on Ω, with boundary conditions

h(x,x′) =
1

2π
ln |x− x′| (W.14)

for x′ on S. That is, we insist that h(x,x′) is defined even when x = x′ (in
the interior of Ω). Then the function

G(x,x′) = h(x,x′)− 1

2π
ln |x− x′|

still satisfies
∇2

x
′G(x,x′) = δ(x − x′) (W.15)

for x′ in the interior of Ω, but it now also satisfies G(x,x′) = 0 for x′ on S.
The function G(x,x′) defined this way is called the Green’s function for the
Laplace operator ∇2.

Lemma W.4. The Green function, if it exists, satisfies the symmetry
relation G(x,x′) = G(x′,x).

Proof. Since G(x,x′) = 0 for x′ on S, Lemma W.5 shows that∫

Ω
G(x,x′′)∇2

x
′′G(x′,x′′) dx′′ =

∫

Ω
G(x′,x′′)∇2

x
′′G(x,x′′) dx′′.

Since ∇2
x
′G(x,x′) = δ(x− x′), this gives
∫

Ω
G(x,x′′)δ(x′ − x′′) dx′′ =

∫

Ω
G(x′,x′′)δ(x − x′′) dx′′,

so that G(x,x′) = G(x′,x). �

The construction of the Green’s function G(x,x′) depends on solving
Laplace’s equation (W.13) with boundary conditions (W.14). We do this us-
ing Fredholm theory.
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Hilbert space

A Hilbert space V is a (usually infinite dimensional) complex vector
space with inner product 〈 , 〉 satisfying

(i) 〈x, λy1 + µy2〉 = λ〈x, y1〉+ µ〈x, y2〉,
(ii) 〈x, y〉 = 〈y, x〉 (and in particular 〈x, x〉 is real), and

(iii) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0,

(iv) Writing |x| for
√
〈x, x〉, the metric with distance function |x − y|

is complete. In other words, every Cauchy sequence has a limit.

For example, if D is a compact domain in Rn then the space L2(D) of
square integrable functions on D is a Hilbert space, with inner product

〈f, g〉 =

∫

D
f̄ g dx.

In this example, the completeness is a standard fact from Lebesgue integra-
tion theory. In order to satisfy (iii), we stipulate that two functions are iden-
tified if they agree except on a set of measure zero. Of course, this never
identifies two different continuous functions.

In terms of this inner product, we can write Lemma W.3 (with f̄ in
place of f) as follows.

Lemma W.5. Let f(x) and g(x) be twice continuously differentiable
functions on Ω. Then 〈f,∇2g〉 = 〈∇2f, g〉. �

We shall often need to make use of the following inequality.

Lemma W.6 (Schwartz’s inequality). For vectors x and y in Hilbert
space, we have |〈x, y〉| ≤ |x||y|.

Proof. Consider the quantity

〈x− ty, x− ty〉 = |x|2 − t〈x, y〉 − t̄〈y, x〉+ t2|y|2 ≥ 0.

Setting t = 〈y, x〉/|y|2, we get

|x|2 − 2|〈x, y〉|2/|y|2 + |〈x, y〉|2/|y|2 ≥ 0,

or |〈x, y〉|2/|y|2 ≤ |x|2. Now multiply by |y|2 and take the square root to get
|〈x, y〉| ≤ |x||y|. �

Elements x and y satisfying 〈x, y〉 = 0 are said to be orthogonal. If W
is a subspace of V , we write W⊥ for the subspace consisting of vectors v such
that for all w ∈ W we have 〈v,w〉 = 0. If W is finite dimensional, then any
vector v in V can be written in a unique way as v = w+ x with w in W and
x in W⊥. So we have

V = W ⊕W⊥.

If K is a linear operator on V , its image is

Im (K) = {Kv, v ∈ V }
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and its kernel is
Ker (K) = {v ∈ V | Kv = 0}.

Operators K and K∗ on V are said to be adjoint (to each other) if for
all x and y in V we have

〈K∗x, y〉 = 〈x,Ky〉.
Lemma W.7. If K and K∗ are adjoint linear operators on V and the

image of K is finite dimensional, then

(i) V = ImK⊕KerK∗, and

(ii) V = ImK∗ ⊕KerK

are orthogonal direct sum decompositions of V , and

dim Im (K) = dim Im(K∗).

Proof. If K∗x ∈ Im (K∗) and y ∈ Ker (K) then

〈K∗x, y〉 = 〈x,Ky〉 = 0

so Im (K∗) ⊥ Ker (K). If x ∈ Im (K∗)∩Ker (K) then 〈x, x〉 = 0 and so x = 0.
Thus

Im (K∗)⊕Ker (K) ≤ V. (W.16)

so we have

dim Im(K) = dim(V/Ker (K)) ≥ dim Im (K∗), (W.17)

with equality if and only if (W.16) is an equality. In particular, it follows
that Im (K∗) is also finite dimensional. So we may repeat the above argu-
ment with the roles of K and K∗ reversed, so that

Im (K)⊕Ker (K∗) ≤ V (W.18)

and
dim Im (K∗) ≥ dim Im (K) (W.19)

with equality if and only if (W.18) is an equality. Comparing (W.17) with
(W.19), we see that both must be equalities, so (W.16) and (W.18) are equal-
ities. �

Lemma W.8. If K and K∗ are adjoint operators and Im (K) is finite
dimensional then

(i) V = Im(I −K)⊕Ker (I−K∗) and

(ii) V = Im (I−K∗)⊕Ker (I−K)

are orthogonal decompositions of V , and dim Ker (I−K) = dimKer (I−K∗)
is finite.

Proof. By Lemma W.7, Im (K∗) is finite dimensional, so setting V1 =
Im(K) + Im (K∗) ≤ V , we see that V1 is also finite dimensional. So V =
V1 ⊕ V2 where

V2 = V ⊥
1 = Ker (K) ∩Ker (K∗).

So I−K and I−K∗ send V1 into V1 and act as the identity map on V2. Ap-
plying Lemma W.7 with I −K instead of K and V1 in place of V , we see
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that V1 decomposes in the way described in the lemma. Since I − K and
I −K∗ act as the identity on V2, this just contributes another summand to
Im (I −K) and Im (I−K∗), so the decomposition holds for V .

Since the dimensions of Im (I −K) and Im (I −K∗) on V1 are equal,
and V1 is finite dimensional, the dimensions of Ker (I−K) and Ker (I−K∗)
on V1 must also be equal. But the kernels of these operators are contained
in V1, so this proves the last statement of the lemma. �

The Fredholm alternative

Now let V be the vector space L2(D) of Lebesgue square integrable
functions on a compact domain D in Rn. Suppose that K(x,x′) is a contin-
uous complex valued function of two variables x and x′ in D. We are inter-
ested in the operator K on L2(D) given by

Kψ(x) =

∫

D
ψ(x′)K(x,x′) dx′. (W.20)

Such an operator is called a Fredholm operator, and the function K(x,x′) is
called the kernel function. The adjoint of K is given by

K∗ψ(x) =

∫

D
ψ(x′)K(x′,x) dx′, (W.21)

because

〈ψ,Kφ〉 =

∫

D

∫

D
φ(x)ψ(x′)K(x,x′) dx dx′ = 〈K∗ψ, φ〉

(reverse the roles of x and x′ !). In general, the image of a Fredholm operator
is not finite dimensional, so we can’t apply Lemma W.8 directly. However, a
separable function, namely one of the form K(x,x′) = g(x)h(x′), gives rise
to an operator K with one dimensional image spanned by g(x). Any polyno-
mial function of x and x′ can be written as a finite sum of monomials, each
of which has this form. So if K(x,x′) is a polynomial function, we may ap-
ply Lemma W.8.

The Weierstrass approximation theorem states that any continuous
function on a compact domain in Rn may be uniformly approximated by
polynomial functions. Applying this to K(x,x′) on D × D, we may write
K = K1 + K2 where K1 is a polynomial function and K2 satisfies B < 1,
where B is defined by

B =

∫∫

D
|K2(x,x

′)|2 dx dx′. (W.22)

For any function ψ(x) in L2(D), Schwartz’s inequality (Lemma W.6) implies
that for any x in D we have

|K2ψ(x)|2 =

∣∣∣∣
∫

D
ψ(x′)K2(x,x

′) dx′
∣∣∣∣
2

≤ 〈ψ,ψ〉
∫

D
|K2(x,x

′)|2 dx′.
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Integrating with respect to x gives

〈K2ψ,K2ψ〉 ≤ B〈ψ,ψ〉.
It follows by comparing with the geometric series

1 +B +B2 +B3 + . . .

that the sequence whose nth term is
n∑

i=0

Ki
2ψ

forms a Cauchy sequence in L2(D). Since L2(D) is complete, it follows that
this Cauchy sequence has a limit; in other words, the infinite sum

∞∑

i=0

Ki
2ψ = ψ + K2ψ + K2

2ψ + K3
2ψ + · · ·

converges in L2(D). It is now easy to check that the operator

I + K2 + K2
2 + K3

2 + . . .

is an inverse to I −K2 on L2(D). So we write (I −K2)
−1 for this inverse.

Similarly, I−K∗
2 is invertible, with inverse I + K∗

2 + (K∗
2)

2 + (K∗
2)

3 + . . .
We use this to prove the following theorem, which is known as the Fred-

holm alternative.

Theorem W.9. With K and K∗ defined by equations (W.20) and
(W.21), the kernels of I−K and I−K∗ are finite dimensional, and have the
same dimension. If this dimension is zero, then I −K is invertible, so that
the equation

ψ −Kψ = f

has a unique solution ψ for any given element f of L2(D).

Proof. The idea is to make use of the identity

I−K = I− (K1 + K2) = (I−K2)(I − (I−K2)
−1K1).

Since K1 is a polynomial, and hence a finite sum of separable functions, the
image of K1 is finite dimensional. It follows that the image of (I−K2)

−1K1

is also finite dimensional. So by Lemma W.8, L2(D) decomposes as a direct
sum of the kernel of I− (I−K2)

−1K1, which has finite dimension, say d, and
the image of I−((I−K2)

−1K1)
∗. Since I−K2 is invertible, the kernel of I−K

is the same as the kernel of I− (I−K2)
−1K1, and therefore has dimension d.

The adjoint of I−K is

I−K∗ = (I− (I−K2)
−1K1)

∗(I−K2)
∗.

Since (I−K2)
∗ = I−K∗

2 is also invertible, the kernel of I−K∗ has the same
dimension as the kernel of (I − (I − K2)

−1K1)
∗, which by Lemma W.8 is

equal to d.
If the kernel of I−K∗ is zero then so is the kernel of (I−(I−K2)

−1K1)
∗.

So again applying Lemma W.8, it follows that the image of I− (I−K2)
−1K1



SOLVING LAPLACE’S EQUATION 459

is the whole of L2(D). Since I−K2 is invertible, it follows that the image of
I−K is also the whole of L2(D). In other words, the equation ψ −Kψ = f
has a solution for every value of f . The solution is unique because the differ-
ence of two solutions is in the kernel of I−K, which is zero. �

We have proved the Fredholm alternative under the condition that
K(x,x′) is continuous. Actually, we are going to want to use the theory for
kernel functions K with singularities along x = x′ which are not too bad.
The definition of “not too bad” depends on the dimension of D. In n di-
mensions, we allow kernel functions of the form K(x,x′) = κ(x,x′)/|x−x′|α
with 0 ≤ α < n and κ(x,x′) continuous on D × D. The point is that if Σ
is a disc of radius ε around x, then

∫
Σ |K(x,x′)| dx′ tends to zero as ε tends

to zero. So we can approximate the value of K by a polynomial K1 on the
closed subset of D×D consisting of the points with |x− x′| ≥ ε, and let K2

absorb the singularity. In this way, we can arrange for ε to be small enough
so that B < 1, where B is defined in equation (W.22), and the arguments go
through exactly as above.

Solving Laplace’s equation

In the section on Green’s functions (page 454), we saw that if we can
solve Laplace’s equation (W.13) with boundary conditions (W.14) then we
can construct a Green’s function G(x,x′) satisfying equation (W.15) and zero
on the boundary S. In this section we use Fredholm theory to solve Laplace’s
equation

∇2φ(x) = 0 (W.23)

subject to twice continuously differentiable boundary conditions φ(x) = f(x)
on S.

We begin with uniqueness. We define the potential energy of a contin-
uously differentiable function φ on Ω by

E = ρc2
∫

Ω
∇φ .∇φdx.

So E ≥ 0, and if E = 0 then ∇φ = 0, so that φ is constant. If φ1 and
φ2 are solutions of (W.23) satisfying the same boundary conditions, then
φ = φ1 − φ2 satisfies (W.23) and is zero on the boundary. By Green’s first
identity (W.4) with f = g = φ, we see that we have E = 0, so φ is constant;
since φ = 0 on the boundary, this constant is zero. We conclude that if a so-
lution to Laplace’s equation (W.23) with given values on the boundary ex-
ists, then it is unique.

The same method can also be used for solutions of Laplace’s equation
(W.23) for the unbounded region Ω′ obtained by removing the interior of Ω
from R2, but we need to be careful about the behaviour of φ as x goes off
to infinity. The point is that we need to apply Green’s first identity (W.4)
for a region with a hole, bounded by S and a large circle S′ of radius R sur-
rounding Ω, and then let R → ∞. The extra term we get from the second
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boundary component is
∫
S′ φ∇φ .

(
x

R

)
dσ, because the unit normal vector is

x/R. The length of S′ is 2πR, so we need to check that 2πR|φ∇φ .
(

x

R

)
| → 0

as |x| → 0. So we have proved the following theorem.

Theorem W.10. (i) If ∇2φ = 0 has a solution on Ω with specified val-
ues on S, then the solution is unique.

(ii) If ∇2φ = 0 has a solution on Ω′ with specified values on S, and sat-
isfying

lim
|x|→∞

|φ∇φ .x| = 0

then that solution is unique. �

We now examine the question of existence of solutions. To this end,
we look for solutions of equation (W.23) of the form

φ(x) =

∫

S
ψ(x′)∇x

′ ln |x− x′| .n′ dσ′, (W.24)

with ψ a twice continuously differentiable function defined on S.
Any twice continuously differentiable function ψ on S can be extended

to a twice continuously differentiable function on Ω,1 which we also denote
by ψ. So we can use Green’s first identity (W.4) with f(x′) = ψ(x′) and
g(x′) = ln |x− x′| to write

φ(x) =

∫

Ω
(ψ(x′)∇2

x
′ ln |x− x′|+∇ψ(x′) .∇x

′ ln |x− x′|) dx′.

By equation (W.12), we have

φ(x) = p(x)ψ(x) +

∫

Ω
∇ψ(x′) .∇x

′ ln |x− x′| dx′. (W.25)

Now if Σ is a disc of radius ε around x then using (W.6) and changing vari-
ables to polar coordinates around x, we have

∫

Σ
|∇

x
′ ln |x− x′|| dx′ =

∫ 2π

0

∫ ε

0

|r|
r2
r dr dθ = 2πε. (W.26)

Since ∇ψ(x′) is continuous, the singularity of the logarithm function can be
excised with as small an effect as we please on the integral in equation (W.25).
It follows that the integral term is continuous as x crosses the boundary S.
Now p(x) is discontinuous at S, so φ(x) is also discontinuous at S, and to
solve Laplace’s equation (W.23) using φ, we should use the limiting value at
the boundary rather than the actual value. Namely, for x0 in S and x in Ω
but not in S, we have

lim
x→x0

φ(x) = 2πψ(x0) +

∫

Ω
∇ψ(x′) .∇x

′ ln |x0 − x′| dx′,

1The function we’re going to use for ψ(x) is the logarithmic function h(x,x′) of equa-
tion (W.14), which obviously extends to an open neighbourhood of S, and therefore can
be adjusted to extend in this manner over the whole of Ω.
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whereas except at the corners, the value of φ on S is given by

φ(x0) = πψ(x0) +

∫

Ω
∇ψ(x′) .∇x

′ ln |x0 − x′| dx′.

So we have
lim

x→x0

φ(x) = φ(x0) + πψ(x0).

In order to satisfy the boundary condition we want

lim
x→x0

φ(x) = f(x0).

So we must solve the equation

φ(x) + πψ(x) = f(x) (W.27)

on S. Notice that the value of ψ at corners is irrelevant to the integral (W.24),
so we just ignore the anomalous values of φ at corners and solve (W.27) for
all x in S.

We rewrite equation (W.27) as

ψ(x) +
1

π

∫

S
ψ(x′)∇x

′ ln |x− x′|.n′ dσ′ =
1

π
f(x). (W.28)

Setting

K(x,x′) = − 1

π
∇x

′ ln |x− x′|.n′ =
(x− x′).n′

π|x− x′|2
and D = S, we use equation (W.20) to obtain an operator K on L2(S) given
by

Kψ(x) = − 1

π

∫

S
ψ(x′)∇x

′ ln |x− x′|.n′ dσ′.

Equation (W.28) then becomes

ψ −Kψ =
1

π
f. (W.29)

The kernel function K(x,x′) has a singularity at x = x′; it is of the
form κ(x,x′)/|x−x′|, where κ is continuous. The Fredholm alternative (The-
orem W.9) therefore applies for this function, by the argument described in
the paragraph following the theorem. So equation (W.29) always has a solu-
tion provided we can prove that the only solution of the equation

ψ −Kψ = 0

is the zero function. So assume that ψ satisfies this equation, and define
φ(x) by equation (W.24). Then ∇2φ = 0, and φ(x)→ 0 as x approaches the
boundary from inside Ω. So by Theorem W.10 (i), we have φ(x) = 0 for x

in Ω. Similarly, we define φ(x) by equation (W.24) on the unbounded region
Ω′. Then using equation (W.6) we find that |φ∇φ .x| → 0 as R→∞. So by
Theorem W.10 (ii), we have φ(x) = 0 in Ω′. Now since p(x) changes value
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by 2π as we cross from one side of the boundary to the other, it follows from
equation (W.25) that for a point x0 on S

lim
x→x0
in Ω

φ(x)− lim
x→x0
in Ω′

φ(x) = 2πψ(x0).

Since we’ve just shown that the left hand side is zero, it follows that ψ(x0) =
0. This completes the proof that the only solution of ψ −Kψ = 0 is ψ = 0.
Applying Fredholm theory as mentioned above, this completes the proof of
existence of solutions of Laplace’s equation. We summarise what we have
proved in the following theorem.

Theorem W.11. Given any twice continuously differentiable function
ψ on S, there exists a unique twice continuously differentiable function φ on
Ω satisfying ∇2φ = 0 and φ(x) = ψ(x) on S. �

Applying this theorem to equation (W.13) with boundary conditions
(W.14) as promised, we obtain the existence of Green’s functions. The fol-
lowing theorem summarises the properties of Green’s functions.

Theorem W.12. There exists a Green’s function G(x,x′), a function
of two variables x and x′ in Ω, satisfying

(i) G(x,x′) + 1
2π ln |x− x′| is twice continuously differentiable,

(ii) ∇2
x
′G(x,x′) = δ(x − x′),

(iii) G(x,x′) = G(x′,x), and

(iv) G(x,x′) = 0 for x′ on the boundary S of the region Ω. �

Conservation of energy

We are now ready to begin proving existence and uniqueness for solu-
tions of the wave equation (W.1). The basic tool for proving uniqueness of
solutions is the conservation of energy. We define the energy E(t) of a con-
tinuously differentiable function z of x and t to be the quantity

E(t) = ρ

∫

Ω

((
∂z

∂t

)2

+ c2∇z.∇z
)
dx. (W.30)

The two terms in this integral correspond to kinetic and potential energy re-
spectively. Since E(t) is obtained by integrating a sum of squares, it satis-
fies E(t) ≥ 0. Furthermore, E(t) = 0 can only occur if the integrand is zero;
namely if ∂z

∂t and ∇z are zero.
Suppose that z satisfies the wave equation (W.1). Differentiating, and

using the divergence theorem (W.2), we get

dE

dt
=

∫

Ω
ρ

(
2
∂z

∂t

∂2z

∂t2
+ 2c2∇z .∂∇z

∂t

)
dx

=

∫

Ω
ρ

(
2
∂z

∂t
c2∇2z + 2c2∇z .∇∂z

∂t

)
dx
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=

∫

Ω
2ρc2∇.

(
∂z

∂t
∇z
)
dx

=

∫

S
2ρc2

(
∂z

∂t
∇z
)
.n dσ.

Since ∂z
∂t = 0 on S, we obtain

dE

dt
= 0

so that E is a constant, independent of t. This is the statement of the con-
servation of energy for solutions of the wave equation.

Uniqueness of solutions

We now prove the uniqueness theorem for solutions to the wave equa-
tion. Suppose that z1 and z2 are solutions to the wave equation (W.1) on Ω,
with the same initial conditions (i.e., the same values of z and ∂z

∂t for t = 0),
and both vanishing on S. Then z = z1 − z2 satisfies the initial conditions
z = 0 and ∂z

∂t = 0 at t = 0. Equation (W.30) then shows that E(0) = 0. Con-

servation of energy implies that E(t) = 0 for all t. So ∂z
∂t = 0 for all t, which

implies that z is independent of t. Since it is zero at t = 0, we deduce that
z = 0 for all values of t. Thus z1 and z2 are equal. It follows that there is at
most one solution to the wave equation (W.1) for a given set of initial con-
ditions for z and ∂z

∂t .
It is less easy to prove existence of solutions. For this, we use the eigen-

value method. This will occupy the rest of the appendix.

Eigenvalues are nonnegative and real

We now prove that the eigenvalues of the Laplace operator −∇2 are
nonnegative and real—even if we allow f to take complex values (for real val-
ued functions, ignore the bars in the proof of the lemma).

Lemma W.13. If f is a non-zero (complex valued) twice differen-
tiable function on Ω satisfying f = 0 on the boundary S, then the quantity
〈f,−∇2f〉 is a nonnegative real number.

Proof. Let f̄ be the complex conjugate of f . Then using Green’s first
identity (W.4), we have∫

S
(f̄ ∇f) .n dσ =

∫

Ω
∇f̄ .∇f dx +

∫

Ω
f̄(∇2f) dx.

The left hand side vanishes because f = 0 on S, and the right hand side is
|∇f |2 − 〈f,−∇2f〉. So we have

〈f,−∇2f〉 = |∇f |2, (W.31)

which is nonnegative and real. �
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In particular, if f is an eigenfunction of −∇2 with eigenvalue λ, in other
words, if

∇2f = −λf,
then λ is a nonnegative real number. In fact, equation (W.31) shows that

λ =
|∇f |2
|f |2 .

This expression for λ is called Rayleigh’s quotient.

Orthogonality

The relationship between ∇2 and the inner product for functions on Ω
is expressed in Lemma W.5, which says that for functions f and g vanishing
on the boundary, ∇2 is self-adjoint with respect to the inner product:

〈f,∇2g〉 = 〈∇2f, g〉.
This allows us to see easily why the eigenvalues of ∇2 are real numbers

(Lemma W.13). Namely if ∇2f = −λf , and f(x) = 0 on the boundary S,
then we have

λ̄〈f, f〉 = 〈λf, f〉 = −〈∇2f, f〉 = −〈f,∇2f〉 = 〈f, λf〉 = λ〈f, f〉.
Since 〈f, f〉 6= 0, we have λ = λ̄. However, positivity is less easy to see from
this point of view.

A similar argument shows that eigenfunctions with distinct eigenval-
ues are orthogonal, as in the following lemma.

Lemma W.14. Let f and g be Dirichlet eigenfunctions on Ω with eigen-
values λ and µ respectively. If λ 6= µ Then

〈f, g〉 = 0.

Proof. Using the fact that ∇2 is self-adjoint (see Lemma W.5), we have

λ〈f, g〉 = 〈∇2f, g〉 = 〈f,∇2g〉 = µ〈f, g〉,
and so (λ− µ)〈f, g〉 = 0. If λ 6= µ, it follows that 〈f, g〉 = 0. �

Inverting the Laplace operator

The key to understanding the eigenvalues and eigenfunctions of the
Laplace operator ∇2 is to find an inverse K for the operator −∇2 using
Green’s functions. The inverse is an integral operator with a wider domain of
definition, and whose eigenvalues are the reciprocals of those for −∇2. The
operator K is an example of a compact operator, which is what makes the
eigenvalue theory easier.

The construction of the inverse goes as follows. If f(x) satisfies

∇2f(x) = g(x)
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on Ω and f(x) = 0 on S, then using equation (W.15) and Green’s second
identity (W.5), for x in Ω but not on S, we have

f(x) =

∫

Ω
f(x′)δ(x − x′) dx′ =

∫

Ω
f(x′)∇2G(x,x′) dx′

=

∫

Ω
G(x,x′)∇2f(x′) dx′ =

∫

Ω
g(x′)G(x,x′) dx′.

So the operator sending g(x) to
∫
Ω g(x

′)G(x,x′) dx′ undoes the effect of ∇2.
We write K for the operator defined by

Kf(x) = −
∫

Ω
f(x′)G(x,x′) dx′. (W.32)

for x in Ω but not in S, and Kf(x) = 0 for x in S. Then the above calcu-
lation shows that for twice continuously differentiable functions f(x) which
vanish on S, we have

f(x) = −K∇2f(x). (W.33)

Also, differentiating under the integral sign and using equation (W.15) shows
that for any continuous function f on Ω, Kf(x) is twice continuously differ-
entiable, and we have

f(x) = −∇2Kf(x). (W.34)

So K and −∇2 are inverse operators.
If f(x) satisfies

∇2f(x) = −λf(x) (W.35)

on Ω and f(x) = 0 on S, then we have

f(x) = λKf(x).

In particular, f(x) 6= 0 implies λ 6= 0, so zero is not an eigenvalue of ∇2. So
if f(x) satisfies (W.35) then

Kf(x) =
1

λ
f(x).

It follows that f(x) is an eigenfunction of K with eigenvalue 1/λ.
Conversely, if f(x) is an eigenfunction of K then equation (W.34) shows

that it has non-zero eigenvalue µ, and that it is also an eigenfunction of −∇2

with eigenvalue λ = 1/µ. Applying the equation repeatedly shows that any
such eigenfunction f(x) is infinitely differentiable.

Lemma W.15. If f is a continuous function on Ω then 〈Kf, f〉 is a
nonnegative real number.

Proof. It follows from equation (W.34) and Lemma W.13 that

〈Kf, f〉 = 〈Kf,−∇2Kf〉
is nonnegative and real. �

A non-zero self-adjoint operator K satisfying 〈Kf, f〉 ≥ 0 for all f is
said to be positive.
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Lemma W.16. If K is a self-adjoint operator on a Hilbert space V , and
〈Kx, x〉 = 0 for all x in V , then K = 0.

Proof. For all x and y in V we have

0 = 〈K(x+ y), x+ y〉 = 〈Kx, x〉+ 〈Kx, y〉+ 〈Ky, x〉+ 〈Ky, y〉
= 〈Kx, y〉+ 〈x,Ky〉
= 2〈Kx, y〉.

Given x in V , the fact that this holds for all y in V shows that Kx = 0. This
is true for all x in V , so K = 0. �

Compact operators

Let V be a Hilbert space. We say that a sequence of elements x1, x2, . . .
of elements of V is bounded if there is some positive constant M such that
all the xi satisfy |xi| ≤ M . A continuous operator K on V is said to be
compact if, given any bounded sequence x1, x2, . . . , the sequence of images
Kx1,Kx2, . . . has a convergent subsequence.

Example. If the image of K is finite dimensional then the Bolzano–
Weierstrass theorem implies that K is compact. More generally, the Fred-
holm alternative can be expressed in terms of compact operators.

Theorem W.17. If K is a compact positive self-adjoint operator then
K has an eigenvalue µ > 0.

Proof. There is an upper bound to the values of 〈Kx, x〉 as x runs over
the elements of V satisfying |x| = 1. This is because otherwise, there would
be a sequence x1, x2, . . . such that 〈Kxi, xi〉 > i, and then by Schwartz’s in-
equality (Lemma W.6), 〈Kxi,Kxi〉 > i2, so that there could not exist a con-
vergent subsequence; this would contradict the fact that K is compact. Writ-
ing µ for the least upper bound of the values for 〈Kx, x〉 for |x| = 1, Lemma
W.16 shows that µ > 0.

We can find a sequence x1, x2, . . . of elements with |xi| = 1, such that
〈Kx1, x1〉, 〈Kx2, x2〉, . . . converges to µ. Using Schwartz’s inequality again,
we have

〈Kxi − µxi,Kxi − µxi〉 = 〈Kxi,Kxi〉 − 2µ〈Kxi, xi〉+ µ2

≤ 〈Kxi, xi〉2 − 2µ〈Kxi, xi〉+ µ2

≤ 2µ2 − 2µ〈Kxi, xi〉
= 2µ(µ− 〈Kxi, xi〉)
→ 0 as i→∞,

and so Kxi − µxi → 0 as i→∞.
Since K is compact, we can replace x1, x2, . . . by a subsequence with the

property that Kx1,Kx2, . . . converges. So µx1, µx2, . . . converges, and since
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µ 6= 0, this implies that x1, x2, . . . also converges. Setting x = limi→∞ xi, the
continuity of K implies that Kx = limi→∞ Kxi, so we have

Kx = µx.

In other words, x is an eigenvector of K with eigenvalue µ. �

Remark. The method of proof of the above theorem finds the largest eigen-
value of K. This is because if µ′ ≥ 0 is any eigenvalue then an eigenvector x
chosen with |x| = 1 will satisfy µ ≥ 〈Kx, x〉 = µ′〈x, x〉 = µ′.

Lemma W.18. Let K be a compact operator. Then given any ε > 0,
all but a finite number of the eigenvalues µ of K satisfy |µ| < ε. The linear
span of the eigenvectors with eigenvalue ≥ ε is finite dimensional.

Proof. If not, then there is an infinite sequence of orthogonal eigenvec-
tors x1, x2, . . . with |xi| = 1, with eigenvalues µi satisfying |µi| ≥ ε. But
then the sequence Kx1,Kx2, . . . has the property that every pair of terms
has distance ≥ ε, and so it does not have a convergent subsequence, contra-
dicting the definition of a compact operator. �

The inverse of the Laplace operator is compact

Theorem W.19. The operator K defined in equation (W.32), which is
inverse to −∇2, is compact.

Proof. The argument is essentially due to Arzelà and Ascoli.2 We are
given a sequence of functions f1, f2, . . . , and we must show that the sequence
Kf1,Kf2, . . . has a convergent subsequence.

For this purpose, we begin by choosing a sequence of points x1,
x2,x3, . . . which are dense in Ω. Using Schwartz’s inequality, we have

|Kfi(x)|2 ≤
∫

Ω
|G(x,x′)|2 dx′.

So maxx∈Ω |Kfi(x)| is bounded, independent of i. It follows that we can
choose a subsequence f1,1, f1,2, f1,3, . . . of the sequence f1, f2, f3, . . . such that
Kf1,1(x1),Kf1,2(x1),Kf1,3(x1), . . . converges. Repeating this argument, we
choose a subsequence f2,1, f2,2, f2,3, . . . of the sequence f1,1, f1,2, f1,3, . . . such
that Kf2,1(x1),Kf2,2(x1),Kf2,3(x1), . . . converges. Continue this way, and
then take the diagonal subsequence f1,1, f2,2, f3,3, . . . We claim that the se-
quence Kf1,1,Kf2,2,Kf3,3, . . . converges.

2What is usually referred to as the Arzelà-Ascoli theorem states that if a sequence of
continuous functions on a compact set is uniformly bounded and equicontinuous then it
has a uniformly convergent subsequence. This is the statement that is really being proved
in this section. For further details, see Theorem IV.6.7 and the notes and remarks at the
end of Chapter IV of Dunford and Schwartz, Linear Operators, Part I, Wiley Interscience,
1967; or Theorem 43 in §5.4 of Colton [19].
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To prove this, we argue as follows. Using Schwartz’s inequality again,
for y and z in Ω we have

|Kfi(y) −Kfi(z)| ≤
∫

Ω
|G(y,x′)−G(z,x′)| dx′.

So given ε > 0, we can choose δ > 0 (independent of i) such that if |y−z| < δ
then |Kfi(y)−Kfi(z)| < ε.

Now choose M large enough so that every point of Ω is within δ of one
of the points x1, . . . ,xM . Choose N large enough so that

|Kfm,m(xi)−Kfn,n(xi)| < ε

for m,n ≥ N and 1 ≤ i ≤ M . Then for x ∈ Ω, choose xi within δ of x. We
have

|Kfm,m(x)−Kfn,n(x)| ≤ |Kfm,m(x)−Kfm,m(xi)|
+ |Kfm,m(xi)−Kfn,n(xi)|
+ |Kfn,n(xi)−Kfn,n(x)|

< 3ε.

This proves that the sequence Kfn,n converges, as claimed, and completes
the proof that K is compact. �

Eigenvalue stripping

Let K be a compact positive self-adjoint operator on an infinite dimen-
sional Hilbert space V . We have an inductive procedure for finding eigenval-
ues, which goes as follows. Suppose that we have found orthogonal eigenvec-
tors x1, . . . , xn of K with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn, and that for all
x ∈ V , 〈Kx, x〉 ≤ µn. Then we define

Knx = Kx−
n∑

i=1

µi〈x, xi〉xi.

Then Knxi = 0 for 1 ≤ i ≤ n, and if x is orthogonal to xi for all 1 ≤ i ≤ n
then Knx = Kx. So the eigenvalues of Kn are the same as those of K, ex-
cept that µ1, . . . , µn have been replaced by zero. It is easy to check that Kn

is either a compact positive self-adjoint operator or it is the zero operator.
Now we apply Theorem W.17 to the operator Kn, provided it is non-zero, to
find an eigenvector xn+1 for its largest eigenvalue µn+1, which is necessarily
≤ µn, and form the operator Kn+1 as above.

This process either stops at some finite stage with Kn = 0, in which
case K has zero as an eigenvalue, or we find an infinite sequence of eigenval-
ues µ1 ≥ µ2 ≥ · · · . By Lemma W.18, we have

lim
n→∞

µn = 0.
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The convergence of the sum
∞∑

i=1

µi〈x, xi〉xi

is a consequence of the fact that the µi are bounded, together with Bessel’s
inequality, which is as follows.

Lemma W.20 (Bessel’s inequality). If x1, x2, . . . are orthogonal ele-
ments of a Hilbert space V with |xi| = 1, then for any x ∈ V we have

∞∑

i=1

|〈x, xi〉|2 ≤ |x|2.

Proof. Set yn =
∑n

i=1〈x, xi〉xi, zn = x− yn. Then

〈yn, zn〉 =

〈
n∑

i=1

〈x, xi〉xi, x
〉
−
〈

n∑

i=1

〈x, xi〉xi,
n∑

i=1

〈x, xi〉xi
〉

=
n∑

i=1

|〈x, xi〉|2 −
n∑

i=1

|〈x, xi〉|2 = 0.

So |x|2 = |yn|2 + |zn|2 ≥ |yn|2 =
∑n

i=1 |〈x, xi〉|2. This holds for all n ≥ 1, and
so the lemma is proved. �

Now set

K∞x = Kx−
∞∑

i=1

µi〈x, xi〉xi.

Then K∞ is either zero or compact, positive and self-adjoint. By Lemma
W.18, given any ε > 0, all its eigenvalues are bounded above by ε. So apply-
ing Theorem W.17, we see that the only possibility is that K∞ = 0. So we
have the following equation.

Kx =

∞∑

i=1

µi〈x, xi〉xi. (W.36)

To summarise, if K is a compact positive self-adjoint operator on an infi-
nite dimensional Hilbert space V , then either equation (W.36) holds, where
xi are eigenvectors with strictly positive real eigenvalues µ1 ≥ µ2 ≥ · · · sat-
isfyint limn→∞ µn = 0, or a similar equation holds with just a finite sum. In
the latter case, K has zero as an eigenvalue.

Solving the wave equation

We are finally ready to show existence of solutions of the wave equa-
tions with given initial conditions. Let K be defined by equation (W.32), so
that K and −∇2 are inverse operators by equations (W.33) and (W.34). By
Theorem W.19, K is compact. Since it is inverse to −∇2, it does not have
zero as an eigenvalue. So equation (W.36) applies to K. Namely, there is a
sequence of infinitely differentiable orthogonal eigenfunctions f1, f2, . . . of K
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with strictly positive eigenvalues µ1 ≥ µ2 ≥ . . . satisfying limn→∞ µn = 0.
In particular, for any f ∈ L2(Ω), the sum

∞∑

i=1

〈f, fi〉fi

converges in L2(Ω) by Bessel’s inequality, and the function

f∞ = f −
∞∑

i=1

〈f, fi〉fi

has the property that Kf∞ = 0, so f∞ = 0. It follows that we have

f =

∞∑

i=1

〈f, fi〉fi, Kf =

∞∑

i=1

µi〈f, fi〉fi,

and so

−∇2f =

∞∑

i=1

λi〈f, fi〉fi

where λi = 1/µi are the eigenvalues of −∇2, with the same eigenfunctions fi
as K.

Now suppose that we wish to solve the wave equation (W.1) on Ω with
initial conditions z(x, 0) = f(x) and ∂z

∂t (x, 0) = g(x). Set

z(x, t) =
∞∑

i=1

fi(x)

(
〈f, fi〉 cos(c

√
λi t) +

〈g, fi〉
c
√
λi

sin(c
√
λi t)

)
. (W.37)

Then z(x, 0) =
∑∞

i=1〈f, fi〉fi(x) = f(x) and ∂z
∂t (x, 0) =

∑∞
i=1〈g, fi〉fi(x) =

g(x), so the initial conditions are satisfied. It is an easy exercise to show that
z also satisfies the wave equation (W.1). We proved uniqueness on page 463,
and so this is the unique function with these properties.

Polyhedra and finite groups

In this section, we consider what happens if we allow ourselves to take
a finite set of polygonal regions in R2 and glue them together using distance
preserving linear maps along the edges, to form a polyhedron Ω. We allow
at most two faces to meet at an edge, so that Ω is a 2-dimensional manifold,
possibly with boundary. The operator ∇2 on this manifold comes from the
individual faces, matched along the edges. We also assume that we have a fi-
nite group G acting on Ω in such a way that each group element takes each
face isometrically to the same face or another face of Ω, and that if it is taken
to the same face then the isometry is the identity map. If H is a subgroup
of G, then the quotient Ω/H is also a polyhedron in which the faces are or-
bits of H on the faces of Ω.

In order to deal with the possibility that an element g ∈ G takes a face
to an adjacent face, we give each face an orientation in such a way that ad-
jacent faces have opposite orientations, and we assume that the action of G
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preserves orientation. The effect of this is that if there is an element g ∈ G
which swaps two faces glued along an edge, then G-invariant functions van-
ish along that edge. So H-invariant functions on Ω vanishing on the bound-
ary correspond to functions on Ω/H vanishing along the boundary.

Imagine that we have already found the Dirichlet eigenspaces of ∇2 on
Ω. We write Vλ for the eigenspace corresponding to the eigenvalue λ. So
Vλ is a finite dimensional complex vector space. Then each element g ∈ G
transports eigenfunctions of ∇2 on Ω to eigenfunctions with the same eigen-
value, and induces a linear map from Vλ to itself. This way, we get a linear
representation of G on Vλ; namely a homomorphism φ : G→ GL(Vλ), where
GL(Vλ) is the general linear group of invertible linear transformations on Vλ.

If H is a subgroup of G, then the eigenfunctions of ∇2 on Ω/H are the
H-invariant elements of Vλ, denoted V H

λ . Now 1
|H|
∑

h∈H φ(H) is a matrix

which sends each element of Vλ to an H-invariant element, and which acts
as the identity map on the H-invariant elements. So its trace is the dimen-
sion of V H

λ ,

dimV H
λ =

1

|H|
∑

h∈H
Tr(h, Vλ).

Now conjugate elements of G have the same trace on Vλ, so we can divide
up the above sum into contributions from the conjugacy classes of G.

dimV H
λ =

1

|H|
∑

conj. classes
Cg of elements of G

|Cg ∩H|Tr(g, Vλ).

The upshot of this computation is that if H1 and H2 are two subgroups of G
with the property that for each conjugacy class C in G we have

|C ∩H1| = |C ∩H2|
then for all λ we have dimV H1

λ = dimV H2
λ . We summarise this in the fol-

lowing theorem, essentially due to Sunada.

Theorem W.21. Let H1 and H2 be subgroups of G such that for each
conjugacy class C of elements of G we have

|C ∩H1| = |C ∩H2|.
Then the Dirichlet eigenvalues of ∇2 and their multiplicities on Ω/H1 and
Ω/H2 coincide. �

An example

To find inequivalent drums with the same resonant frequencies (see
§3.7), we apply Theorem W.21 to construct planar regions with the same



472 W. THE WAVE EQUATION

Dirichlet spectrum.3 We need to begin by choosing a finite group G with sub-
groupsH1 andH2 which are not conjugate inG, but which satisfy the hypoth-
esis of the theorem. An example is G = GL(3,F2), the general linear group
of invertible matrices with entries in the field of two elements F2 = {0, 1}.
This group has 168 elements, and it has subgroups H1 and H2 of order 24

consisting of the matrices of the form
( ∗ ∗ ∗

∗ ∗ ∗
0 0 1

)
and

(
1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

)
respectively. The

left cosets of H1 and H2 in G correspond to non-zero row vectors and col-
umn vectors of length three respectively.

Let T be a triangle in R2 with acute angles and three edges of differ-
ent lengths, coloured red, blue and yellow. We construct Ω from 168 trian-
gles Tg, one for each g ∈ G, each one of which is a copy of T . Let r, b and y
be the following elements of G:

r =




1 1 0
0 1 0
0 0 1


 b =




1 0 0
0 1 1
0 0 1


 y =




1 0 0
0 1 0
1 0 1


 .

It is easy to check that these matrices satisfy the following relations:

r2 = b2 = y2 = 1, (rb)4 = (by)4 = (yr)4 = 1.

We glue a triangle Tg along its red edge to Tgr, along its blue edge to Tgb, and
along its yellow edge to Tgy, in such a way that adjacent triangles have op-
posite orientations. The above relations between r, b and y imply that there
are eight triangles around each vertex. The resulting polyhedron Ω has 168
faces, 3

2 × 168 = 252 edges and 3
8 × 168 = 63 vertices.4 The action of G on Ω

is given by the formula h(Tg) = Thg. It is easy to check that this action pre-
serves the way that the faces are glued along the edges.

Each of Ω/H1 and Ω/H2 has 168/24 = 7 triangular faces, and each
of them embeds in the plane, but the configuration of faces is different. So
these are examples of inequivalent drums with the same Dirichlet spectrum.

3The example described in this section is an elaboration of an example taken from
Peter Buser, John Conway, Peter Doyle and Dieter Semmler, Some planar isospectral do-
mains, International Mathematics Research Notices (1994), 391–400.

4In particular, the Euler characteristic of Ω is 168 − 252 + 63 = −21, which is odd. So
Ω is not orientable; it is a connected sum of 23 real projective planes.
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The method described above can even be used to give an explicit cor-
respondence between eigenfunctions of ∇2 on Ω/H1 and Ω/H2 (Bérard).
Take a vector space C[G/H1] whose basis elements are the left cosets of H1

in G, and let G permute these basis elements by left multiplication. This
gives a matrix representation of G on C[G/H1] in which the matrices have
the property that each row and each column have one entry equal to 1 and
the rest equal to zero. Doing the same with H2, we obtain representations
φ1 : G → GL(C[G/H1]) and φ2 : G→ GL(C[G/H2]. The hypothesis of The-
orem W.21 can be expressed by saying that for each group element g ∈ G, we
have Tr(g,C[G/H1]) = Tr(g,C[G/H2]). Character theory of finite groups5

implies that there is an invertible linear map ψ : C[G/H1] → C[G/H2] such
that for all g ∈ G and v ∈ C[G/H1] we have φ2(g)(ψ(v)) = ψ(φ1(g)(v)). Such
a map ψ can be used to create eigenfunctions on Ω/H2 out of eigenfunctions
on Ω/H1. One way of explaining this is that Frobenius reciprocity gives an

isomorphism V H1
λ
∼= HomG(C[G/H1], Vλ) (and similarly for H2) so that

V H2
λ
∼= HomG(C[G/H2], Vλ) ∼= HomG(C[G/H1], Vλ) ∼= V H1

λ ,

where the middle isomorphism is given by composition with ψ.
In the example above, one possible choice for ψ takes the basis element

of C[G/H1] corresponding to a length three row vector (α, β, γ) to the sum of
the three basis elements of C[G/H2] corresponding to the three column vec-
tors (u, v,w) satisfying αu+βv+γw = 0. So taking the orientations into ac-
count, the correspondence between eigenfunctions is given by the following
diagram.

5See for example G. D. James and M. Liebeck, Representations and characters of
groups, 2nd edition, Cambridge University Press, 2001.
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Even without knowing how this example was constructed, it is easy to
check that this recipe works. It is necessary to notice that if an eigenfunc-
tion which is zero on the boundary were continued beyond the boundary, it
would get negated and reflected (the principle of reflection). So for exam-
ple, let’s see what happens when we go from the middle region of Ω/H2 to
the neighbour below it. Looking at Ω/H1, we see that as we pass through
a long edge, −f1 gets replaced by f6, and so f1 gets replaced by −f6. Simi-
larly, f4 gets replaced by −f0. The long edge of the region of Ω/H1 involv-
ing f2 is a boundary edge, so by the principle of reflection, f2 gets replaced
by −f2. In total, we see that f1 + f2 + f4 gets replaced by −(f0 + f2 + f6),
which matches with the value given in the diagram for Ω/H2.

This kind of check can be used for the example of Gordon, Webb and
Wolpert in §3.7 too. Here is the recipe for transporting eigenfunctions.
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This example is based on the same group and subgroups, but with a differ-
ent choice of elements of order two for the gluing of faces.

Other choices of G with pairs of nonconjugate subgroups H1 and H2

satisfying the condition of Theorem W.21 include the following.

(i) G is the semidirect product Z/8 ⋊ (Z/8)× where (Z/8)× is the mul-
tiplicative group {1, 3, 5, 7} of the invertible numbers modulo eight, which
acts as the automorphism group of Z/8 by multiplication. The subgroups
are H1 = {(0, 1), (0, 3), (0, 5), (0, 7)} and H2 = {(0, 1), (4, 3), (4, 5), (0, 7)}.

More generally, we can let G = K ⋊ H, any semidirect product with
nonconjugate complements H1 and H2 for K in G, but where each element
of H1 is conjugate to the corresponding element of H2.

(ii) G is the symmetric group on six letters, a group of order 720,
H1 = {(12)(34), (13)(24), (14, 23)} and H2 = {(12)(34), (12)(56), (34)(56)}.
This example works with the same choice of H1 and H2, with G equal to the
alternating group of degree six.

More generally, if H1 and H2 are two nonisomorphic groups of order n
with the same number of elements of each order, then the regular permuta-
tion representation embeds H1 and H2 as subgroups of the symmetric group
on n letters, which is the choice for G.

(iii) G = PSL(3,F3), H1 and H2 representatives of the two conjugacy
classes of subgroups of index 13.

(iv) G = GL(4,F2), H1 and H2 representatives of the two conjugacy
classes of subgroups of index 15.

(v) G = PSL(3,F4), H1 and H2 representatives of the two conjugacy
classes of subgroups of index 21.

The papers of de Smit and Lenstra, Guralnick, and Guralnick and
Wales listed below contain a discussion of groups with a pair of subgroups
satisfying the condition of Theorem W.21.

Further reading:

P. Bérard, Transplantation et isospectralité, I, Math. Ann. 292 (1992), 547–559.

P. Buser, J. H. Conway, P. Doyle and K.-D. Semmler, Some planar isospectral do-
mains, International Mathematics Research Notices (1994), 391–400.

A. Caranti, N. Gavioli and S. Mattarei, Subgroups of finite p-groups inducing the
same permutation character Comm. in Algebra 22 (3) (1994), 877-895.

S. J. Chapman, Drums that sound the same, Amer. Math. Monthly 102 (2) (1995),
124–138.

D. Colton, Partial differential equations, an introduction [19].

R. Courant and D. Hilbert, Methods of mathematical physics, I, Chapters III and
V, Interscience, 1953.

P. de Smit and H. W. Lenstra Jr., Linearly equivalent actions of solvable groups, J.
Algebra 228 (2000), 270–285.
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C. Gordon, D. Webb and S. Wolpert, Isospectral plane domains and surfaces via
Riemannian orbifolds, Invent. Math. 110 (1992), 1–22.

R. M. Guralnick, Subgroups inducing the same permutation representation, J. Alge-
bra 81 (1983), 312–319.

R. M. Guralnick and D. B. Wales, Subgroups inducing the same permutation repre-
sentation, II, J. Algebra 96 (1985), 94–113.

T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. 121
(1985), 169–186.

Koen Thas, PSLn(q) as operator group of isospectral drums, J. Phys. A: Math.

Gen. 39 (2006), 673–675.
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pages, in print. ISBN 2271058406.

“A history of musical acoustics.” This French book can be ordered from www.amazon.fr.
The six chapters cover Greek antiquity, the renaissance, the classical age, the enlight-
enment, Helmholtz, and the twentieth century.

477



478 BIBLIOGRAPHY

5. J. Murray Barbour, Tuning and temperament, a historical survey, Michigan State Col-
lege Press, E. Lansing, 1951. Reprinted by Dover, 2004. 228 pages, in print. ISBN
0486434060.

Setting a high standard for academic excellence, this book is a standard source on
scales and temperaments, and their history. It compares and contrasts Pythagorean
tuning, just intonation, meantone, irregular temperaments, and finally equal temper-
ament. Barbour displays a strong predisposition towards twelve tone equal tempera-
ment in this work, and interprets the history of scales and temperaments as an inex-
orable march towards equal temperament.

6. Scott Beall, Functional melodies: finding mathematical relationships in music, Key
Curriculum Press, 2000. 170 pages, in print. ISBN 1559533781.

This is one of the few books on mathematics and music aimed at secondary school
level; the only other one that I’m aware of is Garland and Kahn [42]. This one comes
with a CD of musical examples.

7. James Beament, The violin explained: components, mechanism, and sound, Oxford
University Press, 1997. 245 pages, in print. ISBN 0198167393 (pbk), 0198166230 (hbk).

8. , How we hear music: the relationship between music and the hearing mech-
anism, The Boydell Press, Woodbridge, Suffolk, 2001. 174 pages, in print. ISBN
0851159400 (pbk), 0851158137 (hbk).
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transmission, MIDI, 241

DATA chunk, 239
dB, 9, 388
dB SPL, 10
dBA, 10
de Moivre, Abraham (1667–1754)

—’s theorem, 370
dead beat, 24
Debussy, Claude (1862–1918)
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function exp(x), 386
function, complex, 47, 370
interpolation, 287

extension, 116
extraduction, 342

f̂(ν) =
R ∞
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exponential —, 370, 386

generalised —, 75
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Green’s —, 454
Heaviside —, 77
hyperbolic —, 371
inverse —, 312, 317
kernel —, 76, 457
L1 —, 65
L2 —, 455
logarithm —, 158, 380, 385

periodic —, 31, 33, 142
rational —, 249
sampling —, 242
sawtooth —, 40, 42, 43
sine —, 18
square wave —, 34, 40, 43, 63, 257
tangent —, 207
test —, 75
transfer, 248
triangular —, 42
Weber —, 57

fundamental, 136, 143
domain, 227
frequency, x, 17, 18, 34
missing —, 2, 108, 148
theorem of calculus, 385

fundamental root (Rameau), 140

Gaffurius, Franchinus (1451–1522), 139
Galilei, Galileo (1564–1642)

—’s experiment, 1
pitch and frequency, 140

gamelan, x, 137, 198, 402
gamma scale (Carlos), 223, 381
gas, 1
Gaudi (Rich), 450
Gauss, Johann Carl Friedrich
(1777–1855), 50, 209, 211

—’ formula, 452
—ian integers, 212

GEN05 (CSound), 287
GEN07 (CSound), 284
GEN10 (CSound), 281
general linear group, 471
generalised

function, 75
keyboard harmonium, 215

generators
for a group, 320
for a sublattice, 229

genus, 193
geometric series, 50
geometry, 138

fractal —, 439
Germain, Sophie (1776–1831), 125

Gibbs, Josiah Willard (1839–1903)
phenomenon, 36, 43

Gibelius’ monochord, 178
Gilbert and Sullivan, 30
gitangi, 308
Glareanus, 395
glide reflection, 299
global variables (CSound), 283
golden ratio, 207, 211, 277, 287, 289,

396, 405, 408, 409
gong, 124, 137, 424
Gordon, Webb and Wolpert, 111
gourd, 122
grains, 293
grand piano, 432
granular synthesis, 278, 293
graphicx, xiv
Gray’s Anatomy, 3
great diesis, 163, 178, 188, 381
Great Highland Bagpipe, 201
greatest common divisor, 155, 321
Greek

music, 193, 416
scales, 193

Green, George (1793–1841)
—’s function, 454
—’s theorem, 452

group, 296, 310

abelian —, 311
alternating —, 338
cyclic —, 320
dihedral —, 325
finite —, 470
general linear —, 471
infinite cyclic —, 296
infinite dihedral —, 301
Klein four —, 325
Mathieu — M12, 341
permutation —, 314
simple —, 341
sporadic —, 342
symmetric —, 313

Gruytters, Joannes de (1709–
1772), 189, 450

gu, 132
guitar, 397, 401, 423, 430–432

electric, 84
guqin, 435

H(t), 77
~, 65
Hába, Alois (1893–1973), 218
half-period symmetry, 38
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Hall, Donald E., 187
hammer, 3
Hammond organ, 259
Han dynasty (206 b.c.e.–221 c.e.), 201
Hanson, Howard (1896–1981), 218
Hardy and Wright, 208, 212
harmonic, 1, 159, 381

fifth —, 159
law (Kepler), 138
motion, 14

damped —, 23
forced —, 26

mth —, 136
odd —, 34
piano (Harrison), 202
scale (Carlos), 201
second —, 382
series, 136, 282
seventh —, 136, 159, 223, 382
third —, 159

harmonica, 428
Harmonices Mundi (Kepler), 138
harmonium, 215

voice — (Colin Brown), 172
harmony, 12, 173

septimal —, 232
harp, 83, 307, 326, 402, 412, 435
harpsichord, 83, 180, 189, 402, 427, 448,

450
Harris, Sidney, 109, 211, 235
Harrison, John (1693–1776), 180
Harrison, Lou (1917–2003), 202, 448
Harrison, Michael, 202
Hauptmann, Moritz (1792–1868), 164
Haverstick, Neil, 449
Haydn, Franz Joseph (1732–

1809), 306, 449
Hayman’s theorem, 111
header (CSound), 279
hearing

range (frequency), 9
threshold of —, 10

Heaviside, Oliver (1850–1925)
function, 77

Heisenberg, Werner Karl (1901–1976)
uncertainty principle, 65, 134

helioctrema, 5
helix, 3
Helmholtz, Hermann

(1821–1894), 6, 95, 140, 164
Hertz, Gustav Ludwig (1887–1975)

unit of frequency, 8
hexachord, 335, 339

hexadecimal, 238
9, 212
Hilbert, David (1862–1943)

space, 455
transform, 80

Hilliard Ensemble, 449
Hindemith, Paul (1895–1963), 138, 306
history of temperament, 193
Hoffnung, Gerard (1925–1959), 103, 224
Hofstadter, Douglas R., 212
hole, 101
homogeneity, 21
homomorphism, 317
Hooke, Robert (1635–1703)

—’s law, 99, 116, 117, 133
horn

Bessel, 113
equation, Webster’s, 113

Hornbostel, Erich Moritz von
(1877–1935), 83

Houtsma, Rossing and Wagenaars, 449
Hua Loo Keng, 212
Huai-nan-dsi, 201
Hubei province, China, 130
Huffman coding, 241
hum (bell), 129
human ear, 3, 380
Huygens, Christiaan (1629–

1695), 217, 219
hyperbolic

Bessel functions, 125
functions, 371

Hypoaeolian, 395
Hypodorian, 394
Hypoionian, 395
Hypolydian, 395
Hypomixolydian, 395
Hypophrygian, 395
Hz, 8

In(z), 125
I (inversion), 323
i =

√
−1, 369

Iamascope, 437
identity

element, 77, 311

Parseval’s —, 71, 76, 243
trigonometric, 18, 370

idiophones, 83
Ile de feu 2 (Messiaen), 341
illusion, visual, 153
image, 317
imaginary numbers, 369
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I’m Old Fashioned (Kern/Mercer), 175
Impromptu No. 3 (Schubert), 182
impulse response, 78, 248
incus, 3
index, 493

of modulation, 269
of unison sublattice, 230

Indian
drum, 108
Sruti scale, 202

inductive algorithm, 205
inequality, Schwartz’s, 455, 457
infinite

cyclic group, 296
dihedral group, 301, 325
order, 313

information theory, 240
inharmonic spectrum, 271, 277
initial conditions, 91, 451
injective function, 317
inner

ear, 3
product, 33, 47, 455

instantaneous
amplitude, 80
frequency, 80

instrument
bowed string —, 42
percussion —, 83, 262, 277
wind —, 99

int (CSound), 291
integer, 31, 32, 136, 138–159, 312

Gaussian —, 212
part, 45, 205
ratio, 137

integral
double —, 66
for 22

7
− π, 212

formula, Cauchy’s, 59
particular —, 26

integration, Lebesgue, 455
intensity, sound, 9, 11
internal direct product, 324
internet resources

online papers, 396
Interplanetary Music Festival, 224
interpolation

exponential —, 287
linear —, 236, 284

interval
major

sixth, 217
third, 159, 217

minor
seventh, 154
sixth, 154, 217
third, 154, 217

perfect fifth, 138, 217
table of —s, 351, 353, 380
vector, 334
wolf —, 178

intonation, just, 12, 159, 200, 227
inverse, 337

element, 311
Fourier transform, 67
function, 312, 317
multiplicative —, 370

inversion, 297, 323, 391
Ionian, 395
Iranian music, 415
irrational numbers, 142, 204
irregular temperament, 181
isomorphism, 317
isophon, 11
isospectral plane domains, 111
iTunes, 68, 241
Ives, Charles (1874–1954), 218, 446

Jn(z), 51, 61, 360
j =

√
−1 (engineers), 371

Jaja, Bruno Heinz, 224
Japanese music, 402, 415
JASA, 417
Java, 401
jazz, 173
Jesu, der du meine Seele (J. S. Bach), 176
jew’s harp, 423
Johnson, Ben (1926– ), 449
Johnson, Tom, xiii
joke, Euler’s, 246
Jones, Lindley Armstrong “Spike”

(1911–1965), 324
Josquin Desprez (ca. 1440–1521), 194
Journal of Mathematics and Music, 441
JP-8000/JP-8080, 63
Jupiter, orbit of, 211
just

intonation, 12, 159, 200, 227
major

scale, 160, 165, 172
sixth, 144, 160, 382
third, 144, 160, 381
triad, 172

minor
semitone, 381
sixth, 160
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third, 144, 160, 381
tone, 381
triad, 164, 172

noticeable difference, 11
super — scale, 200

Kac, Mark (1914–1984), 111
kalimba, 122
kantele, 431
Karplus–Strong algorithm, 262, 278, 399
Katahn, Enid (pianist), 449
kazoo, 83
Kelletat, Herbert, 187
Kellner, Herbert Anton, 187, 189, 450
Kepler, Johannes (1571–1630)

—’s laws, 60, 138
—’s monochord, 167

Kern, Jerome (1885–1945), 175
kernel

Dirichlet —, 50
Fejér —, 48
functions, 76, 457
of a homomorphism, 329

kettledrum, 106, 107, 429, 433
key

characteristics, 183
off, key on, 257
signature, 393
split —s, 195

Keyboard (magazine), xiii, 292, 293
King Fâng (3rd c. b.c.e.), 217
Kirchoff, Gustav (1824–1887), 127
Kirnberger, Johann Philipp (1721–1783)

approximation of —, 191
scales of —, 170, 185

Klavierstück (Schoenberg), 304
Klein four group, 325
Kliban, B., 72
Klytemnestra, 297
Körner, T. W. (1946– ), 31

L1 function, 65
L2 function, 455
labyrinth, 3

membranous —, 4
osseous —, 4

Lagacé, Bernard, 181, 449
Lambda scale, 225
Lambert, Johann Heinrich, 185
lamellophone, 83, 122
lamina spiralis

ossea, 5
secundaria, 5

Laplace, Pierre-Simon (1749–1827)
—’s equation, 454
operator, 109, 454, 463

lattice, 203, 227
Laurent, Pierre-Alphonse (1813–1854)

expansion, 59
law

associative, 311
commutative, 311
Hooke’s —, 99, 116, 117, 133
Kepler’s —s, 60, 138
Mersenne’s —s of stretched strings, 91
Newton’s —s of motion, 14, 86, 99,

104, 116, 133
leak (diesis), 163
Lebesgue, Henri Léon (1875–1941)

integration, 455
leger line, 379, 390
Lehman, Bradley, 188
lemma, Burnside’s, 330, 339
length, effective, 101
Leonardo da Vinci (1452–1519), 195
LFO (low frequency oscillator), 63, 256,

257
Licklider, J. C. R., 148
Liebestraum (Spike Jones), 324
liftering, 79
light, 138
likembe, 122
limanza, 308
limen, 11
limit, 45, 65, 201

left/right —, 43
of discrimination, 12

limitations of the ear, 8
limma, 155, 381
Linderholm, Carl E., 342
linear

algebra, 109
density, 85, 116
interpolation, 236, 284

linearity, 21
lineseg (CSound), 290
Lissajous figures, 95
little endian, 238
ln(x), 385
local variables (CSound), 283
logarithm, 380, 385

—ic scale for cepstrum, 79
—ic scale of cents, 158
—ic scale of decibels, 10
log2(3) is irrational, 204
log, log10 (CSound), 291
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natural —s, 385
base of (e), 207

long division, 212
longitudinal

elasticity, 116
wave, 2, 85

lookup table, 269
loop, 293
lossless compression, 240
lossy compression, 240
loudness, 2
low frequency oscillator (LFO), 63, 257
low pass filter, 237, 245
Lü scale, Chinese, 201
Lucy, Charles, 180
Ludus Tonalis (Hindemith), 306
lunar eclipse, 212
lute, 374

tunings, Mersenne’s, 168
Lyapunov, Aleksandr Mikhailovich
(1857–1918) exponent, 428
Lydian, 394
Lyndon, J. A., 300
lyre, 88
Lyric Suite (Berg), 304

m4a, 241
MacCsound, 279
Machaut, Guillaume de

(1300–1377), 157, 306, 449
Madden, Charles, xiii
magazine

Electronic Musician, xiii, 292
Keyboard, xiii, 292, 293

major
scale, 154
seventh, 382
sixth, 217

just —, 144, 160
third, 12, 159, 193, 217

just —, 144, 160
tone, 155
triad, 159, 160

Malamini organ, 195
Malcolm’s monochord, 169
malleus, 3
mammoth, woolly, 99
Mandelbaum, M. Joel, 219
Maori chant, 401
marimba, 121, 436

bamboo (Partch), 200
Marpurg, Friedrich Wilhelm (1718–1795)

—’s monochord, 168

—’s temperament I, 185
Marquis Yi, 130
masking, 7, 147, 148, 240
master volume, 241
Mathieu, E. (1835–1900)

group M12, 341
mathlib, 367
matrix, 230

algebra, 404
Mattheson, Johann

(1681–1764), 189, 450
mbira, 83, 122
mean

free path, 1
square convergence, 41
square error, 41, 180
value theorem, 386
velocity of air molecules, 1

meantone scale, 154, 177, 178, 179, 221,
380, 392, 448

meatus auditorius externus, 3
Media Lab, MIT, 278
mediæval church modes, 394
Melanesian music, 402
membrana

basilaris, 5
tympani secundaria, 5

membrane
basilar —, 5, 142
tympanic —, 3

membranophones, 83
membranous labyrinth, 4
Menuetto al rovescio (Haydn), 306
Mercer, Johnny (1909–1976), 175
Mercury, rotation of, 211
Mersenne, Marin (1588–1648), 31

improved meantone temperament, 184
law of stretched strings, 91
picture, 90
pitch and frequency, 140
spinet/lute tunings, 168

mesolabium, 374
message, system exclusive, 241, 352
Messiaen, Olivier (1908–

1992), 306, 341, 410
Metamagical Themas (Hofstadter), 212
MetaPost, xiv
Mexican hat, 81
Meyer, Alfred, 7
middle ear, 3
MIDI, xiii, 241, 278, 379, 400

baud rate, 241
files, 180
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to CSound, 278
MIDI2CS, 278
Miller, James Charles Percy

—’s algorithm, 367
minor

scale, 154
semitone, 155, 217

just —, 381
seventh, 154
sixth, 154, 217

just —, 160
third, 154, 217

just —, 144, 160
tone, just, 381
triad, 161, 392

just —, 164
Mirror duet (attr. Mozart), 298
missing fundamental, 2, 108, 148
MIT Media Lab, 278
mixed partial derivative, 443
Mixolydian, 395
mode, 394

Dorian —, 193
vibrational —, 15

modeling, physical, 260
Modern Major General, 30
modification, 161
modiolus, 5
modulation

amplitude —, 265
frequency —, 265, 430
index of —, 269
pulse width —, 63, 257
ring —, 266

modulus
bulk —, 99, 133
Young’s —, 116, 125

moment
bending —, 115
sectional —, 118, 125

Mongean shuffle, 342
monkeys, 431
monochord

Agricola’s —, 166
BP —, 226
de Caus’s —, 166
Erlangen —, 166
Euler’s —, 169, 230
Fogliano’s —, 166
Gibelius’ —, 178
Kepler’s —, 167
Malcolm’s —, 169
Marpurg’s —, 168

Montvallon’s —, 169
Ramis’ —, 166
Romieu’s —, 170
Rousseau’s —, 171

monomorphism, 317
Monteverdi, Claudio (1567–1643), 194
Montvallon, André Barrigue de

—’s monochord, 169
Moog, Robert A. (1934– )

synthesizer, 198, 447
moon, 211, 212
Moonlight Sonata (Beethoven), 296
motion

Brownian —, 40, 71
circular —, 21
damped harmonic —, 13, 23
harmonic —, 14
planetary —, 60, 138
simple harmonic —, 13

Mozart, Wolfgang Amadeus (1756–1791)
effect, 442
Fantasie (K. 397), 176, 180, 189, 449
—’s pitch, 17
Sinfonia Concertante, 182
Sonata (K. 333), 175
Spiegel, 298

MP3 sound file, 238
MPEG, 240
MPEG 4 Audio, 241
Muffat, Gottlieb (1690–1770), 180
multiplication table, 311
multiplicative inverse, 370
Musæ Sioniæ (M. Praetorius), 12
music

atonal —, 197, 332
baroque —, 173
digital —, 235
electronic —, xiii
folk —, 173
fractal —, xiii
Greek —, 193
of the spheres, 138
polyphonic —, 194
random —, xiii
rock —, 173
romantic —, 173
theory, 389
twelve tone —, 197

Musical Offering (J. S. Bach), 299
Musical World, 153
Musici, 374
MusicTEX, xiv
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Mussorgsky, Modest (1839–
1881), 256, 450

N (sample rate), 242
nabla squared (∇2), 109, 463
Nachbaur, Fred, 298
natural

logarithms, 385
base of (e), 207

minor scale, 393
pitch, 15

Nature, 44
necklace, 336
Neidhardt, Johann Georg (1685–

1739), 184, 185, 189, 446
Neumann, Carl Gottfried (1832–1925)

—’s Bessel function, 57
spectrum, 110

neutral surface, 117
new moon, 212
newton (unit of force), 85
Newton, Sir Isaac (1642–1727)

—’s laws of motion, 14, 86, 99, 104,
116, 133

ngbàkià, 308
Nicomachus (ca. 60–120 c.e.), 198
Nine Taylors (Dorothy Sayers), 314
nineteen tone scale, 202, 217
ninth harmonic, 381
node, 212
noise, 40, 275

white, pink, brown —, 71
nominal

(bell), 129
frequency, 108

nonlinear acoustics, 62
nonlinearity, 147
normal subgroup, 328
notation

cycle, 312
dot — (derivative), 14
Eitz’s —, 164, 226, 351, 353
roman numeral —, 173

notepad, 282
nu (ν, frequency), 17
numbers, 138

complex —, 24, 27, 47, 212, 369

imaginary —, 369
irrational —, 142, 204
rational —, 204, 205

Nyquist, Harold (1889–1976)
frequency, 244
—’s theorem, 244

Nzakara, 307, 326

oboe, 83, 101
Ockeghem, Johannes

(ca. 1415–1497), 194
octahedron, 203
octave, 11, 15, 137, 143, 389

dissonant —, 145
equivalence, 138, 227, 319
stretched —, 180, 192

odd
function, 37
harmonics, 34

Odington, Walter
(fl. 1298–1316), 194

Ohm’s acoustic law, 6
omega ω = 2πν, 17
one-one correspondence, 317
online papers, 396
Op de Coul, Manuel, xiii
opcode (CSound), 280
open tube, 99
operator, 269

adjoint —, 456
compact, 464, 466
Fredholm —, 457
Laplace —, 109, 454, 463
positive, 465
self-adjoint —, 464

orbit, 327
orchestra, 83

file (CSound), 278
order, 313
ordered pairs, 324
ordinary

comma, 160
differential equation, 13, 14, 23, 56

organ, 259, 418, 423, 428–430
31-tone, 410
Duke/Brombaugh, 181
Knox/Toronto/Wollf, 181
Malamini —, 195
of Corti, 6
stops, 259
Tröchtelborn —, 189, 450
Wahlberg —, 446
Wellesley/Fisk, 180

organum, parallel, 194
orientation, 230, 470
origin, 227
orthogonality relation, 33, 47, 251, 464
oscil, oscili (CSound), 280
oscillator, 257
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—s, coupled, 211
low frequency (LFO), 257

oscilloscope, 68
osseous labyrinth, 4
Osserman, R., 111
ossicular chain, 3
outer ear, 3
oval window, 3, 5
overblowing, 101
overdamped system, 24
overtone, 136

p-limit, 201
Palestrina, Giovanni Pierluigi da

(ca. 1526–1594), 194
palindrome, 299, 306
Pallas, orbit of, 211
panning, 241, 290
panpipes, 401, 433
papers online, 396
parabolic envelope (bowed string), 95
paradox

Russell’s, 310
Shepard’s —, 150
tritone —, 151, 152, 441

parallel organum, 194
parallelogram, 23, 230
parameter, flare, 113
paranoia in the music business, 236
Parmentier, Edward, 450
Parseval, Marc Antoine (1755–1836)

—’s identity, 71, 76, 243
Partch, Harry (1901–1974), 176, 200, 450
partial, 136, 137, 148, 259

derivative, 85, 443
differential equation, 62, 85, 104, 451
fractions, 212, 249

particular integral, 26
Partitia no. 5, Gigue (J. S. Bach), 175
patch, 241, 275
patterns, frieze, 302
peak

amplitude, 16, 21
of consonance, 144

pelog scale, 198, 401
percussion instruments, 83, 262, 277
perfect

BP-tenth, 225
fifth, 138, 143, 217, 390

Cordier’s equal temperament, 192
fourth, 144, 153, 159, 193

periodic
continued fraction, 211

function, 31, 33, 142
Riemann integrable —, 40

wave, 31
periodicity block, 227, 230, 329
permutation, 197

group, 314
perpendicular, 33
Perret, Wilfrid, 202
Peruvian music, 401
phase, 17, 20–22, 71, 99, 258

vocoder, 278, 293, 399
phenomenon, Gibbs, 36, 43
phi function, Euler’s, φ(n), 321, 337
Philolaus of Tarentum (d. ca. 390

b.c.e.), 163, 217
phon, 11
Phrygian, 394
physical modeling, 260
pi

biblical value of —, 206
continued fraction for —, 205
is irrational, 207
is smaller than 22

7
, 212

meantone scale based on π
√

2, 180
16th c. approximation to —, 397
2π radians in a circle, 16

piano, 83, 424–427, 431
computer-controlled, 427
hammer, 429, 430
harmonic — (Harrison), 202
soundboard, 427, 428
strings, 427
tuning, 20

Cordier’s equal temperament, 192
Pleyel, 192

pictures
air guitar, 84
bells, 129
Boole orders lunch, 235
Bosanquet’s harmonium, 214
Brown’s voice harmonium, 171
Calvin and Hobbes, 47
Carlos, Wendy, 222
Chinese bell, 131
Chinese flute, 99
Chladni patterns on drum, 107
Chladni’s drawings, 128
Chowning, John, 267
cochlea, 4
coneflower, 301
Congo banknote, 307
d’Alembert, Jean-le-Rond, 87
ear chart, 8
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Escher, Ascending and descending, 150
Euler, Leonhard, 170
feedback in the cochlea, 7
Fibonacci, 211
Fourier, Joseph, 31
Frank and Ernest, 84, 135, 165, 296
Gaffurius’ Experiences of Pythagoras,

139
gong, 126
Hammond B3 organ, 259
Italian clavecin with split keys, 196
Kepler, Johannes, 167
lather, rinse, repeat, 296
laugh track, 135
lyre, 88
Malamini organ (split keys), 195
Marpurg, Wilhelm, 169
mbira, 123
Mersenne, Marin, 90
mobile instrument, Arthur Frick, 492
osseous labyrinth, 4
Partch, Harry, 200
piano keyboard, 305
poor acoustics, 134
proving the existence of fish, 72
Pythagoras, 154
riti, 94
simplified version for public, 109
singing bowl, 130
Theorbo, 85
timpani (Hoffnung), 103
Trasuntinis’ 31 tone harpsichord, 220
tuba curva, 113
tuna fish, 165
Vallotti, Francescantonio, 186
visual illusion, 153
WABOT-2, 255
Webern, Op. 24/28, 325
xylophone, 114
Yamaha DX7, 268

Pictures at an Exhibition (Mussorgsky),
256, 450

piecewise continuity, 43
Pierce, John R. (1910– ), 11, 145
Pierrot Lunaire (Schoenberg), 197
pink noise, 71
pinna, 3
pipe, 99
pitch, 2, 17, 140

class set, 332
classes, 286, 319
envelope, 278
in Tudor Britain, 17

Mozart’s —, 17
natural —, 15
perception, place theory of, 6
virtual —, 148

place theory, 6
plagal

cadence, 374
mode, 394

Plain Bob, 315
Plain Hunt, 316
Planck, Max (1858–1947)

—’s constant, 65
plane domains, isospectral, 111
planetary motion, 60, 138
Plato (427–347 b.c.e.), 193

Republic, 138
Pleyel, piano tuning, 192
Plomp, R. and Levelt, W. J. M., 142
plucked

bottle, 263
string, 262, 399

pointwise convergence, 44, 46

Poisson, Siméon Denis (1781–1840)
—’s ratio, 125
—’s summation formula, 72, 243

polar coordinates, 66, 71, 104, 369, 444
poles, 249
Pólya, George (1887–1985)

—’s enumeration theorem, 336
polyhedron, 470
polynomials, Chebyshev, 293
polyphonic music, 194
Portuguese square drum, 108
position, equilibrium, 14
positive operator, 465
potential energy, 459
power

gain, 10
intensity, 9
series, 338
series for Jn(z), 58, 59

Praetorius, Michael (1571–1621)
Musæ Sioniæ, 12

predictability in music, 299
Preludes and Fugues (J. S. Bach), 181
pressure, acoustic, 99, 110, 133
prime

(bell), 129
form, 324, 333

principal value, Cauchy, 65
principle of reflection, 89, 474
Pringsheim, Alfred (1850–1941), 207
product
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Cartesian —, 324
direct —, 324
inner —, 33, 47, 455

programming language, C, 278
progression, 173
proving the existence of fish, 72
psychoacoustics, 2, 148, 240, 449
Ptolemy, Claudius (ca. 83–161 c.e.), 198

comma, 160
diatonic syntonon, 193

public domain, 278
pulse width modulation, 63, 257
pure imaginary numbers, 369
PWM, 63, 257
pyknon, 193
Pythagoras (ca. 569–500 b.c.e.), 138
Pythagorean, 217

apotomē, 155, 381
comma, 155, 158, 182, 192, 212, 215,

381
minor semitone, 155
scale, 154, 380

quadratic equation, 23, 211
quadrivium, 138, 374
quantization, 235
quantum mechanics, 65
quarter-tone scale, 217
quaternarius, 374
quefrency, 79
quint (bell), 129
Quintilianus, Aristides, 198
quotient, Rayleigh’s, 464

R2, 451
R (retrograde), 323
radians, 16, 291

per second, 22
radio, AM and FM, 265
radius of curvature, 117
ragas, 202
rahmonics, 79
rainbow, 138
Rainforest (Rich), 450
Raman, Chandrasekhra Venkata

(1888–1970), 98, 108
Ramanujan, Srinivasa Aiyangar

(1887–1920), 204
Rameau, Jean-Philippe (1693–

1764), xiii, 140, 141, 190, 197
Ramis, Bartolomeus — de Pareja

(1440–ca. 1491)
—’ monochord, 166

random
music, xiii
wave, 257

ratio, 10
frequency —, 158
golden —, 207, 211, 277, 287, 289,

396, 405, 408, 409
of integers, 137, 138, 159
Poisson’s —, 125

rational
approximation, 204–212
function, 249
numbers, 205

Ravel, Maurice (1875–1937)
Rhapsodie Espagnole, 301

Rayleigh, John William Strutt (1842–
1919)

—’s quotient, 464
recorder, 427
recordings, 446
recurrence relation

for Jn(z), 55
Karplus–Strong algorithm, 262

recursive index, 510
reflection, principle of, 89, 474
reflectional symmetry, 297
register stops (organ), 259
Reiner, David, 332
relation

orthogonality —, 33, 47, 251, 464
recurrence —, 55

relative minor, 394
release, 256
repetition, 296
representation of sound, digital, 235
representatives, coset, 227, 327
Republic (Plato), 138
resonance, 26, 28, 250, 258
resonant frequency, 13, 28, 29
response, impulse, 248
retrograde, 323

canon, 299
reverberation, 241, 258
Rêverie (Debussy), 304
Rhapsodie Espagnole (Ravel), 301
ρ (density), 85, 103, 116, 125
Rich, Robert, xiii, 159, 199, 450
Riemann, (Georg Friedrich) Bernhard
(1826–1866)

integrable periodic function, 40
sum, 45

Riemann, (Karl Wilhelm Julius) Hugo
(1849–1919), 165
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RIFF, 238, 239
ring

commutative —, 338
modulation, 266

Risset, Jean-Claude (1938– ), 152
riti, 94
RMS amplitude, 21
rnd (CSound), 291
rock music, 173
rod, vibrating, 114
Roland

JP-8000/JP-8080, 63
sound canvas, 352

Roman Empire, decline of, 194
roman numeral notation, 173, 394
romantic music, 173
Romieu, Jean Baptiste (1723–

1766), 147, 179
—’s monochord, 170

root, 391
mean square, 21
—s of unity, 370

rosewood, 117, 120, 121
Rossi, Lemme

—’s 2
9
-comma temperament, 179

rotational symmetry, 301
roughness, 137, 141
round window, 5
Rousseau, Jean-Jacques (1712–1778)

—’s monochord, 171
Russell, Bertrand (1872–1970)

—’s paradox, 310

sm = 1
2
a0 +

m
X

n=1

(an cos(nθ) + bn sin(nθ)),

40
saccule, 9
Sachs, Curt (1881–1959), 83
sadness, 161
Salinas, Francisco de (1513–1590)

—’s 1
3
-comma temperament, 179

sample
and hold, 236
dump, 241
frames, 239
rate, 236

(CSound), 279
sampling, 292

function, 242
theorem, 237, 245

Sankey, John, 180
sanzhi, 122
Savart, Félix (1791–1841), 158, 381

saw, bowed, 83
sawtooth function, 40, 42, 43, 257
saxophone, 426, 434
Sayers, Dorothy Leigh (1893–1957), 314
scala

tympani, 5
vestibuli, 5, 9

scale, xiii, 153
Aaron’s meantone —, 178
Agricola’s monochord, 166
alpha — (Carlos), 198, 222, 381
Barca’s 1

6
-comma —, 186

Bendeler, 184
beta — (Carlos), 198, 223, 381
Bohlen–Pierce —, 154, 224, 380
BP-just —, 226
Chalmers’ just —, 202
Chinese Lü —, 201
chromatic —, 197
de Caus’s monochord, 166
diatonic syntonic —, 193
equal tempered —, 190, 380
Erlangen monochord, 166
Euler’s monochord, 169, 230
fifty-three tone —, 215
Fogliano’s monochord, 166
forty-three tone —, 200
gamma — (Carlos), 223, 381
Gibelius’ meantone —, 178
Greek —, 193
harmonic — (Carlos), 201
Indian Sruti —, 202
irregular —, 170, 181, 184–186
just —, 160, 166–171

Carlos, 201
Chalmers, 202
Lou Harrison, 202
Michael Harrison, 202
Perret, 202

Kepler’s monochord, 167
Kirnberger I, 170
Kirnberger II–III, 185
Lambda, 225
Lambert’s 1

7
-comma —, 185

logarithmic — of cents, 158
Lou Harrison’s just —, 202
Lü — (Chinese), 201
major —, 154
Malcolm’s monochord, 169
Marpurg’s

monochord, 168
temperament I, 185
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meantone —, 154, 177–
179, 221, 380, 392

Mersenne’s
improved meantone —, 184
lute tunings, 168
spinet tunings, 168

Michael Harrison’s just —, 202
minor —, 154
Montvallon’s monochord, 169
Neidhardt, 184, 185, 189, 446
nineteen tone —, 202, 217
of commas, 217
Partch’s forty-three tone —, 200
pelog —, 198
Perret’s just —, 202
Pythagorean —, 154, 380
quarter-tone —, 217
Ramis’ monochord, 166
Romieu’s monochord, 170
Rossi’s 2

9
-comma —, 179

Rousseau’s monochord, 171
Salinas’ 1

3
-comma —, 179

665 tone —, 217
sixteen tone —, 202
slendro —, 198
Sruti — (Indian), 202
super just —, 200
tables, 353
tempered —, 176
thirty-one tone —, 219
tuna fish, 165
twelve tone —, 155, 190, 201
twenty-four tone —, 217
twenty-four tone just —, 202
twenty-two tone —, 202
Vallotti and Young, 186
well tempered —, 181
Werckmeister

I–II, 181
III, 189, 446
III–V (Correct Temperament No.

1–3), 181
VI (Septenarius), 181

Young’s No. 1, 186
Zarlino’s 2

7
-comma —, 179

Scarlatti, Domenico (1685–1757), 449
SCC-1 card, 352
schisma, 162, 163, 165, 166, 172, 381
Schoenberg, Arnold (1874–1951)

Klavierstück Op. 33a, 304
Pierrot Lunaire, 197

Schouten, J. F., 148
Schubart, Christian Friedrich Daniel

(1739–1791), 183
Schubert, Franz (1797–1828)

Impromptu No. 3, 182
Schwartz, Laurent (1915–2002)

—’s inequality, 455, 457
space, 75

scordatura, 182
score file (CSound), 278
scot (CSound), 292
Scotland, 201
second harmonic, 382
sectional moment, 118, 125
sections (CSound), 285
self-adjoint operator, 464
self-modulation, 274
self-reference, 512
self-similarity, 40
semicircular canals, 4
semitone, 158, 177, 381, 389

minor —, 155, 217
small —, 381

senarius, 375
separable solution, 104
separation, spatial, 3
septenarius, 181, 375
septimal

comma, 163, 381
harmony, 232

sequence, 297
bounded, 466
of fifths, 154

Serbian pipes, 401
series

configuration counting —, 338
Fibonacci —, 211, 404, 405
Fourier —, 16, 30, 50
geometric —, 50
harmonic —, 136, 282
power —, 58, 59, 338
trigonometric —, 33

sesquialtera, 375
sesquitertia, 375
set, 310

pitch class —, 332
Sethares, William A. (1955–

), 146, 218, 450
seventh

dominant —, 161
harmonic, 136, 159, 223, 382
major —, 382
minor —, 154

shamisen, 402
sharp, double, 156
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shearing force, 115
Shepard scale, 150
sho, 432
Shona people, 122
shuffle, Mongean, 342
SIAM, 415
side band, 268, 270
σm = (s0 + · · · + sm)/(m+ 1), 40
signal

analogue —, 235
digital —, 235
to noise ratio, 10

signature, key, 393
Silbermann, Gottfried (1683–1753), 179
simple

group, 341
harmonic motion, 13

simply connected, 111, 112
sin, sinh, sininv (CSound), 291
sine wave, 6, 13, 257
Sinfonia Concertante (Mozart), 182
singer, bass, 11
singing bowl, 130
sinhx, 371
sixteen tone scale, 202
sixth

major —, 144, 217
minor —, 154, 217

slendro scale, 198
Slonimsky, Nicolas (1894–1995), iii, 153
slur, 263
small semitone, 381
smell, xii
snail, 4
software

CSound, 278
MetaPost, xiv

solar eclipse, 212
solution

separable —, 104
steady state —, 27

Sonata K. 333 (Mozart), 175
soprano, coloratura, 227
Sorge, Georg Andreas (1703–

1778), 141, 147, 179
sound

canvas, Roland, 352
focusing of —, 3
intensity, 9, 11
spectrum, 2, 10, 64
what is it?, 1

Sound Frequency Analyzer (freeware), 68
space, Hilbert, 455

Sparschuh, Andreas, 187
spatial separation, 3
spectral display (CSound), 291
SpectroGraph, 68
spectrum, 2, 10, 17, 70, 71, 109, 145

Dirichlet —, 110
inharmonic —, 271, 277
Neumann —, 110

spherical symmetry, 134
Spiegel (attr. Mozart), 298
spinet, 180

tunings, Mersenne’s, 168
spiral of fifths, 156
split keys, 195
sporadic group, 342
sqrt (CSound), 291
square

drum, 108
integrable functions, 455
wave, 34, 40, 43, 63, 257

Sruti scale (Indian), 202
stabiliser, 327
stability, 249
staircase, 236
stapes, 3
star sphere, 212
static friction, 42
steady state solution, 27
steelpans, 430
Stein, Richard Heinrich (1882–1942), 218
stereo, 290
Stevin, Simon (1548–1620), 179
stirrup, 3
Stockhausen, Karlheinz (1928– ), 163
stops (organ), 259
Strähle, Daniel, 193
strain, tension, 116
Strauss, Richard, 297
Stravinsky, Igor (1882–1971), 224
stress, tension, 116
stretch factor, 263
stretched strings, laws of, 91
strike points, 130
string

bowed, 42, 94
plucked —, 262, 399
vibrating —, 15, 85, 260

stroboscopic tuning, 121
Sturm–Liouville equation, 113
subgroup, 314

normal, 328
sublattice, 229
subsemitonia, 375
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subtraction, continued, 155
Sudan, 88
sui, 132
sum

Cesàro —, 40, 44, 48
Riemann —, 45

sumer is icumen in, 194
summation formula, Poisson’s, 72, 243
super just scale, 200
superparticular, 375
superposition, 21
superscript notation, Eitz’s, 164
surface, neutral, 117
surjective function, 317
surprise in music, 299
sustain, 256
Switched on Bach (Carlos), 198
Symm(X), 313
symmetric group, 313
symmetry, 38, 296

spherical, 134
synodic month, 212
synthesis, 255, 256

additive —, 258
FM —, xiii, 53, 60, 267, 268, 278,

284, 368, 400
fractal, 82
fractal —, 401
granular —, 278, 293
software, 278
wavetable —, 292

synthesizer, 144, 197
analogue —, 63, 257, 450
analogue modeling —, 63
Moog —, 198
Yamaha DX7 —, 269

syntonic comma, 160, 172, 381, 392
system exclusive messages, 241, 352

Tn(x) (Chebyshev polynomials), 294
T (transposition), 323
table of intervals, 351, 353, 380
tan, tanh, taninv (CSound), 291
tangent function, 207
Tartini, Giuseppe (1692–1770)

—’s tones, 147
taste, xii
Tavener, John Kenneth (1944– ), 303
Tchebycheff, 294
temperament, xiii

Aaron’s meantone —, 178
Barca’s 1

6
-comma —, 186

Bendeler, 184

calm —, 190
circulating —, 181
equal —, 181, 190, 204, 380

Cordier’s, for piano, 192
irregular —, 181
Kirnberger I, 170
Kirnberger II–III, 185
Lambert’s 1

7
-comma —, 185

Marpurg I, 185
Mersenne’s improved meantone —, 184
Neidhardt’s —s, 184, 185, 189, 446
Rossi’s 2

9
-comma —, 179

Salinas’ 1
3
-comma —, 179

Vallotti and Young, 186
Werckmeister III, 189, 446
Werckmeister III–V (Correct

Temperament No. 1–3), 181
Young’s No. 1, 186
Zarlino’s 2

7
-comma —, 179

tempered
distributions, 75
scale, 176

tempo (CSound), 290
tension, 85, 103, 116

strain, 116
stress, 116

test function, 75
tetrachord, 193
tetrahedron, 203
Thabala, 421
Thai musical notation, 402
Theinred of Dover (12th c.), 194
Theorbo, 85
theorem

Arzelà-Ascoli, 467
Bolzano–Weierstrass —, 466
de Moivre’s —, 370
divergence —, 109, 451
Fejér’s —, 40
Fermat’s last —, 125
first isomorphism —, 329
fundamental — of calculus, 385
Green’s —, 452
Hayman’s —, 111
mean value —, 386
Nyquist’s —, 244
Pólya’s enumeration —, 336
sampling —, 237, 245
uniqueness —, 463

therapy, 342
third

harmonic, 159, 382
major —, 12, 144, 159, 193, 217
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minor —, 144, 154, 217
thirteen tone scale, 224
thirteenth harmonic, 382
thirty-one tone scale, 219
3-limit, 201
threshold

of hearing, 10
of pain, 10

Tibetan
ROL MO, 401
singing bowl, 130

tie, 263
tierce (bell), 129
timbre, 2, 257, 271
timpani, 103, 427
tinnitus, 7
Toccata and Fugue in D (J. S. Bach), 297
Toccata in F♯ minor (J. S. Bach), 182
Tomita, Isao (synthesist), 256, 450
tone, 11, 389

combination —, 147
control, 258
difference —, 147
major, 155
Tartini’s —s, 147

tonic, 394
tonoi, 394
torque, 114
torus of thirds and fifths, 216
transfer function, 248
transform

discrete Fourier —, 250, 322
fast Fourier —, 253
Fourier —, 64

of f ′(t), 67
of a distribution, 76

Hilbert —, 80
wavelet —, 81
z-—, 246, 248, 263

transients, 258
transitive action, 327
translational symmetry, 296
transposition, 323
transverse wave, 2, 85
Trasuntinis, Vitus, 220
treble clef, 379, 390
Treitler, Leo, 198
tremolo, 257, 289
triad, 173

augmented —, 326
diminished —, 174
just major —, 159, 160
just minor —, 164

minor, 161
triangular wave, 42, 257
trigonometric

identities, 18, 370
series, 33

tritave (BP), 224
tritone, 382

paradox, 151, 152, 441
Tröchtelborn organ, 189, 450
trombone, 11, 83, 426, 431
trumpet, 83, 276, 429, 432
Tsu Ch’ung-Chi, 206
tube, 99
tubular bells, 114, 120
Tudor pitch (Britain), 17
tuning

Mersenne’s lute —, 168
Mersenne’s spinet —, 168
piano —, 20
stroboscopic —, 121

Turkish music, 415, 416, 441
twelve tone

music, 197
row, 322
scale, 155, 190, 201

twenty-four tone scale, 217
twenty-two tone scale, 202
two’s complement, 239
tympanic membrane, 3
tympanum, 3
tyre, 216

uncertainty principle, 65, 134
underdamped system, 24
uniform convergence, 33, 36, 44, 46

uniqueness theorem, 463
unison, 138

sublattice, 229
vector, 227, 329

unity, roots of, 370
Unix, 367
UnxUtils.zip, 367

Vallotti, Francescantonio
(1697–1780), 186

variables (CSound), 283
vector

calculus, 109
interval —, 334
space, 33
unison —, 227, 329

velocity, angular ω = 2πν, 17, 27
Vercoe, Barry, 278
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Verheijen, Abraham, 179
vestibule, 4
vibe, 121
vibrating

drum, 103
rod, 114
string, 15, 85, 260

vibration microscope, 95
vibrational modes, 15, 106
vibrato, 257, 422, 427, 430, 431, 434
Vicentino, Nicola (1511–1576), 219
vihuela, 401
violin, 42, 83, 95, 98, 417–422, 424–

427, 429–432, 435, 436, 441
intonation, 403, 418
vibrato, 422, 430

virtual pitch, 148
visual illusion, 153
vocoder, phase, 278, 293, 399
Vogel, Harald, 447
voice, 11, 241

DX7, 275
harmonium (Colin Brown), 172

vortices, 102
Vos, J., 12
Vyshnegradsky, Ivan Alexandrovich

(1893–1979), 218, 446

WABOT-2, 255
Wahlberg organ, 446
Walliser, K., 148
Walther, Johann Gottfried (1684–

1748), 189, 450
watts, 11

per square meter, 9
WAV sound file, 238, 278
wave, 1

electromagnetic —, 2
equation, 85, 99, 104, 133, 451

fractal —, 40
longitudinal —, 2, 85
periodic —, 31
random —, 257
sawtooth —, 42, 43, 257
sine —, 6, 13, 257
square —, 34, 40, 43, 63, 257
transverse —, 2, 85
triangular —, 42, 257

waveguide, 400
wavelet transform, 81
wavetable synthesis, 292
Weber, Heinrich F. (1842–1913)

function, 57

Webern, Anton (1883–1945), 325
Webster, Arthur Gordon (1863–1923)

—’s horn equation, 113
Weierstrass, Karl (1815–1897), 40

approximation theorem, 457
Well Tempered

Clavier (J. S. Bach), 181
Synthesizer (Carlos), 198

well tempered scale, 181
Werckmeister, Andreas (1645–1706)

—’s temperaments, 181, 189, 392, 446
whales, song of, 397
Wheatstone, Sir Charles (1802–1875)

concertina, 195
white noise, 18, 71
Wilbraham, Henry, 44
Wilson, Ervin, 203
wind instruments, 99
window

oval —, 3, 5
phase vocoder, 293
round —, 5

windowing, 64
Winkelman, Aldert, 189, 450
wolf interval, 178
wood drum (FM & CSound), 288
woodwind, 276
woolly mammoth, 99

Xenakis, Iannis (1922–2001), xiii
Xentonality (Sethares), 218, 450
xylophone, 83, 114, 427, 428, 436

Yn(z), 57
Yamaha, 275

DX7, 268, 368
four operator synthesizers, 368
six operator synthesizers, 368

Yasser, Joseph (1893–1981), 217
Young, Thomas (1773–1829)

—’s modulus, 116, 125
—’s temperament No. 1, 186

Z (integers), 312
Z/n, 320
Z1, 228
Z2, 228, 325
Z3, 232, 325
z-transform, 246, 248, 263
z = e2πiν∆t, 246
z = x+ iy (complex number), 369
z−1 (delay), 247, 260
Zande, 307
Zapf, Michael, 187
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Zarlino, Gioseffo (1517–1590), 163
—’s 2

7
-comma temperament, 179

zeros of Bessel functions, 105, 365
Zimbabwe, 122
ZIP file, 240
Zwei Konzertstücke (Richard Stein), 218
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