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The Bulletin of Symbolic Logic 
Volume 7. Number 4, Dec. 2001 

SECOND-ORDER LOGIC AND FOUNDATIONS OF MATHEMATICS 

JOUKO VAANANEN 

Abstract. We discuss the differences between first-order set theory and second-order logic 
as a foundation for mathematics. We analyse these languages in terms of two levels of 
formalization. The analysis shows that if second-order logic is understood in its full semantics 
capable of characterizing categorically central mathematical concepts, it relies entirely on 
informal reasoning. On the other hand if it is given a weak semantics, it loses its power 
in expressing concepts categorically. First-order set theory and second-order logic are not 
radically different: the latter is a major fragment ofthe former. 

?1. Introduction. Second-order logic differs from the usual first-order 

predicate calculus in that it has variables and quantifiers not only for in? 

dividuals but also for subsets ofthe universe (sometimes variables for w-ary 
relations as well, but this is not important in this context). The deductive 

calculus DED2 of second-order logic is based on rules and axioms ([2]) 
which guarantee that the quantifiers range at least over definable subsets. As 

to the semantics, there are two versions of models: Suppose 21 is an ordinary 
first-order structure and S is a set of subsets ofthe domain A of 21. The idea 

is that the set-variables range over S: 

(21,5) |= 3X 4>{X) ?=> (3S e S) ((21,5) h <t>(S)). 

We call (21, S) a Henkin model, if (21, S) satisfies the axioms of DED2 and 

truth in (21, S) is preserved by the rules of DED2. We call this semantics 

of second-order logic the Henkin semantics and second-order logic with the 

Henkin semantics the Henkin second-order logic. There is a special class 

of Henkin models, namely those (21, S) where S is the set of all subsets of 

A. We call these full models. We call this semantics of second-order logic 
the full semantics and second-order logic with the full semantics the full 

second-order logic.1. 

Received June 7, 2001; revised July 20, 2001. 
Research partially supported by grant 40734 of the Academy of Finland. 

I am grateful to Juliette Kennedy for many helpful discussions while developing the ideas of 
this paper. 

1 Also other kinds of models have been studied. In weak second-order logic (see, e.g., [10]) 
one considers only models (21,5) where S is the set of a\\ finite subsets of A. One can also 
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SECOND-ORDER LOGIC AND FOUNDATIONS OF MATHEMATICS 505 

The following facts are the main features of second-order logic: 
? The Completeness Theorem: A sentence is provable in DED2 if and 

only if it holds in all Henkin models ([2]). 
? The Lowenheim-Skolem Theorem: A sentence with an infinite Henkin 

model has a countable Henkin model. 
? The Compactness Theorem: A set of sentences, every finite subset of 

which has a Henkin model, has itself a Henkin model. 
? The Incompleteness Theorem: Neither DED2 nor any other effectively 

given deductive calculus is complete for full models, that is, there are 

always sentences which are true in all full models but which are unprov- 
able. 

? Failure ofthe Compactness Theorem for full models. 
? Failure ofthe Lowenheim-Skolem Theorem for full models. 
? There is a finite second-order axiom system Z2 such that the semiring 

N of natural numbers is the only full model (up to isomorphism) of Z2. 
? There is a finite second-order axiom system RCF2 such that the field R 

of real numbers is the only (up to isomorphism) full model of RCF2. 

As the above facts demonstrate, it is highly critical what kind of semantics 

one uses for second-order logic. One semantics gives beautiful categoricity2 
results. Another semantics gives beautiful model-theoretic methods. Math? 

ematical logic has results such as Godel's Incompleteness Theorem that 

analyse the reasons why there seems to be a dichotomy: either categoricity 
or axiomatization. I will argue in this paper that if second-order logic is 

used in formalizing or axiomatizing mathematics, the choice of semantics is 

irrelevant: it cannot meaningfully be asked whether one should use Henkin 

semantics or full semantics. This question arises only if we formalize second- 

order logic after we have formalized basic mathematical concepts needed for 

semantics. A choice between the Henkin second-order logic and the full 

second-order logic as a primary formalization of mathematics cannot be 

made; they both come out the same. 

If one wants to use the full second-order logic for formalizing mathematical 

proofs, the best formalization of it so far is the Henkin second-order logic. 
In other words, I claim, that if two people started using second-order logic 
for formalizing mathematical proofs, person F with the full second-order 

logic and person H with the Henkin second-order logic, we would not 

be able to see any difference. There would be the secondary difference, 
that if mathematicians were unable to decide whether some statement (like 
the Continuum Hypothesis) is true or false, person H could formalize the 

deductive calculus DED2, and show that the statement is independent of 

DED2. This would be a clear message that something new is needed for 

limit S to the set of all countable subsets of A. Finally, one may limit S to the set of all 

first-order definable subsets of A ([7]). 
2 An axiom system is said to be categorical if it has only one model up to isomorphism. 
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506 jouko vAAnanen 

deciding the statement. Person F is a priori not in such a position and 

would be unable to teil why the statement eludes proof or disproof. 
The situation is similar to that regarding the cumulative hierarchy and 

Zermelo-Fraenkel set theory. We can informally define the sets 

i?a+i = the set of all subsets of Ra, 

Rv = 
(J Ra for v limit, 

and regard their union V as the standard model of set theory. We can do 

the same more formally inside ZFC set theory and prove in ZFC that indeed 

every set is in (what ZFC thinks is) V. We cannot meaningfully ask whether 

the V as defined in ZFC is the real V. But if we reformalize ZFC inside 

ZFC, then we can note that the reformalized ZFC, call it ZFC, has countable 

models and hence cannot be categorical. We have the following match: 

ZFC _ Henkin models 

V Full models 

As with second-order logic, we cannot really choose whether we axiomatize 

mathematics using V or ZFC. The result is the same in both cases, as ZFC 

is the best attempt so far to use V as an axiomatization of mathematics. If 

we think of the truth or falsity of the Continuum Hypothesis (CH) in V, 
Cohen's proof ofthe independence of CH from ZFC, with all the information 

about models of set theory that came with the proof, is a huge step toward 

understanding why CH has not yet been settled in V. Likewise, the study 
of Henkin models of second-order artihmetic (see, e.g., [14]) isolate reasons 

why some results of number theory or analysis are hard to prove. 

?2. Preliminary example. Mathematicians argue exactly but informally. 
This has worked well for centuries. However, if we want to understand the 

way mathematicians argue, it is necessary to formalize basic concepts such 

as the concepts of language and criteria of truth. 

We study two metatheories of mathematics: first-order set theory and 

second-order logic. It is often said (e.g., [11]), that second-order logic is bet? 

ter than first-order set theory because it can in its full semantics axiomatize 

categorically N and R, while first-order axiomatization of set theory admits 

non-standard, e.g., countable models. We show below that this difference 

is illusory. If second-order logic is construed as our primitive logic, one 

cannot say whether it has full semantics or Henkin semantics, nor can we 

meaningfully say whether it axiomatizes categorically N and R. So there 

is no difference between the two logics: first-order set theory is merely the 
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SECOND-ORDER LOGIC AND FOUNDATIONS OF MATHEMATICS 507 

result of extending second-order logic to transfinitely high types. Such an 

extension is known to be conservative3 [3, 8]. 
In both first-order set theory and second-order logic we think that there is 

a universe (or many universes) of mathematical objects where the sentences 

of our logic have a meaning. This meaning cannot be defined mathemat- 

ically. Any attempt to do so ends up in a vicious circle. We cannot even 

ask meaningfully whether the universe is unique or a multitude of many 
universes. We simply do not have a language for talking about the universe 

or the universes as objects that could be identical to each other. 

As a concrete example of a mathematical proof and its formalization, let 

us consider the following: 

Bolzano's theorem. Every continuous function on [0,1], which has a neg? 
ative value at 0 and a positive value at 1, has the value 0 at some point on 

(0,1). 

Proof. Let the function be /. Consider the set 

X = {xe(0,\):f(x)<0}. 

This set is bounded from above by 1 and hence has a supremum. Call the 

supremum a. If f(a) < 0, then by continuity there is a neighborhood of 

a on (0,1) in which f(x) < 0. Hence a could not be the supremum of X. 

If f(a) > 0, then there is a neighborhood in which f(x) > 0, so again X 

could not be the supremum. Hence f(a) = 0. H 

A formalization of this in first-order set theory is based on the Complete? 
ness Property 

(1) VwCR((w^0A3zVx(x E u^x < z)) 

?> 3z (Vx (x E u ?> x < z) 

A Vz' (Vx (jc E u -? x < z')) ^z<z') 

ofthe set-theoretic construction ofthe reals (e.g., as Cauchy-sequences or 

Dedekind cuts) and on an instance of the Separation Schema 

3z Vx (x E z <-? (<f>(x) A x E R)), 

where </>(x) is chosen to be the formula f(x) <0A0<x< 1. 

A formalization of the same proof in second-order logic would use the 

following Continuity Axiom ofthe axiomatization ofthe structure of reals in 

3 More exactly, higher order logic can be reduced to second-order logic. To decide how high 
order logic can be reduced depends only on how long well-ordered order-types are definable 
in second-order logic. 
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second-order logic: 

(2) VX((3xX(x)A3zVx(X(x)^x <z)) 

-? 3z (Vx (X(x) ^x<z) 

A Vz' (Vx (X(x) ^x< z')) -? z < z'). 

We instantiate the second-order universal quantifier VA" by substituting the 

set { x e (0,1) : f(x) < 0 } into X. We do not need the full semantics as 

the set {x e (0,1) : f(x) < 0} is definable by </>(x). Thus we can prove 
Bolzano's Theorem in Henkin's complete axiom system ([2]) for second- 

order logic. 
There is not much difference between the two formalizations of the in? 

formal proof of Bolzano's Theorem. The second-order logic proof is like a 

pared down version of the more lavish set-theoretic proof. All we need is 

axioms about definable sets of reals, so there is no need to postulate all of 

set theory. 

?3. Informal reasoning, formalization. Informal mathematical reasoning, 

appealing to intuition, is the only process, if any such exists, which puts us in 

contact with mathematical truth. In the late nineteenth century mathematics 

had reached such elaboration that mere intuition was not a sufiicient guiding 

principle any more. Properties of point-sets and continuous functions such 

as space-filling curves, nowhere differentiable continuous functions, para- 
doxical decompositions ofthe sphere and so forth, seemed to defy intuition. 

It was suggested that the human mind may not be adequate to dealing with 

the subtleties of infinite sets and mathematical reasoning should therefore be 

limited to the area of finite sets and finite operations. Since infinite sets how? 

ever abound in mathematics, everything beyond finite was to be formalized 

and axiomatized into a game on finite strings of symbols. 
One of the developments that exposed conceptual confusions in the early 

twentieth century was the appearance of paradoxes4. These examples center 

around the concepts of definability and large sets, and fail to touch upon 

topics in classical mathematics, such as analysis, algebra and number theory. 
For the foundations of mathematics and attempts to formalize mathematics 

4Richard's paradox: "The smallest natural number not definable by nine words is definable 

by nine words." 
Russell's paradox: "The set ofsets which are not elements of themselves is not an element 

of itself, hence is an element of itself." 
Burali Forti paradox: "The set of all well-ordered sets can be well-ordered under order- 

preserving embeddings. Hence it is isomorphic to an initial segment of itself and therefore 
not well-ordered." 

Cantor's paradox: "The powerset P ofthe set A of all sets has cardinality greater than A, 
although P is a subset of A." 
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they presented a challenge. Formalization does not per se remove para? 
doxes, rather the contrary. It is quite possible that a formalization of a part 
of mathematics involves a formalization of a paradox. However, formal 

methods are now known for the avoidance of particular paradoxes. To avoid 

Richard's paradox one limits the induction axioms to sets definable in a 

certain formal language. The paradox then turns into a proof that the set 

of definable numbers is not itself definable. For the other paradoxes above, 
one distinguishes between a set and a class, and the paradoxes then simply 
demonstrate that certain classes are not sets. 

Another reason for formalization is the need to understand basic princi? 

ples, which, though probably consistent, seem to elude clarity. The axiom of 

choice is a good example. Projective determinacy is a more recent example. 
At the lower end of complexity we have n^-comprehension. I will argue 
below that first-order logic serves us better in this kind of formalization than 

second-order logic. 
A general reason for formalization, related to understanding basic prin? 

ciples, is the need to develop meaning theory for mathematics. The idea 

that mathematics has no meaning at all contradicts the basic experience of 

doing mathematics. It can be argued that the experience of meaning is an 

illusion, which cannot be subjected to exact study. If this were the case, it 

is conceivable that an attempt to study the meaning would manifest this, 

ending in impossibility or incredibility. 
But alas, we cannot formalize the real content of informal reasoning. This 

is a fundamental fact. Wittgenstein ends his Tractatus with the words 

"My propositions serve as elucidations in the following way: any- 
one who understands me eventually recognizes them as nonsensi- 

cal, when he has used them?as steps?to climb up beyond them." 

Formalization always involves a leap of faith?"ladders"?to cross a gaping 
crevice between what is intended and what is achieved. Tarski and Godel 

proved exact results to the same effect. In particular we cannot hope to find 

conclusive security against paradoxes via formalization. 

A lot of effort is put into reducing consistency statements of formal systems 
to a more transparent form, e.g., transfinite induction, where intuition could 

be more reliable. This will always leave open the question whether a lack of 

balance in this reduction is a sign of lack of consistency or a sign of inherent 

limitation of intuition. 

Informal reasoning will remain the guiding line in mathematics; formal 

methods involve always a speculative element to be convincing, as we cannot 

fix the meaning of our formal expressions. This is paradoxical. Surely 
informal reasoning about infinite objects feels more like speculation than 

formal reasoning, where everything is spelled out in axioms. But in the 

latter case we can only speculate whether our formalization captures what 
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we intend. I argue below that this is true whether we use first-order or 

second-order formalization. 

?4. Urlogic. Formalization of mathematics involves defining a formal lan? 

guage with some intended meaning. Let us call this language urlogic.5 The 

idea is that urlogic is the most primitive formal language we use to study the 

process of doing mathematics. 

Urlogic is the aspect of mathematicians' activity that consists of just writ- 

ing down finite strings of symbols?sentences?according to some fixed 

rules. Those sentences are sentences of urlogic. Whether a string of symbols 
is a sentence of urlogic should be totally unproblematic. 

Intuitively these sentences have a meaning in the universe (or universes) 
of mathematical objects. Some sentences are said to be true by virtue of 

expressing a true proposition in this universe. The whole point of mathe? 

matics is the truth of its sentences, not their form. It is also the truth which 

is problematic and calls for formalization. We discuss formalization of truth 

in Section 5. 

If one asks a mathematician why he or she calls a sentence 4> on the 

blackboard "true" the answer is not that <j> is true because its meaning is 

a true proposition of the universe of mathematical objects. The answer 

would be that (f> is true because it can be proved from first principles. These 

first principles are called "first" because they are considered self-evident (and 
their further elucidation is left to logicians). Examples of such first principles 
are (1) and (2) above. Further examples are the Archimedian Axiom for the 

reals,6 and the Induction Axiom for natural numbers.7 

How difficult should it be to teil if some principle is a first principle or 

not? In order to really be on the most primitive level, it should be a non- 

mathematical question whether a statement has actually been listed as a first 

principle or not. That we may disagree as to what should be listed there 

or not is another matter. Thus we call some statements of urlogic axioms 

and regard them as first principles that are accepted true by agreement. No 

mathematics should be involved in checking that a string is indeed in the list 

of axioms, it is merely a question of comparing finite strings of symbols to a 

list of such strings. 
When a mathematician is asked to teil why a sentence is true, he or she 

appeals to what follows from the first principles, the axioms. What does he 

or she mean by "follow"? At its simplest, this means appealing to such basic 

5The word "metatheory" is often used for a similar notion. When we introduce the concept 
of "object language" in Section 5, we could call urlogic a metatheory ofthe object language. 

6Every real number is less than lor 1 + 1 or 1 + 1 + 1 or_ 
7 
Every set of natural numbers, which contains 0, and which contains the successor of each 

of its elements, contains all natural numbers. 
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rules of logic as 

(3) From </> and </> ?? y/ follows y/. 

(4) From Vx <?(x) follows <f>(t) for each term /. 

As the example of the proof of Bolzano's Theorem showed, it is important 
to discuss what is meant by "term" here. In urlogic we are dealing with 

finite strings of symbols. If we want to derive the string <f>(t) from the string 
Vx <t>{x) by substitution of t into x, t must be a string as well. We cannot 

in this context substitute a set t into x. That would not make sense, because 

the result would not be a finite string. Thus t has to be a finite string itself, 
a variable, a constant or a complex term arising from function symbols or 

other operations such as Hilbert's ^-operation or Church's A-notation. 

There may be other rules of derivation than (3) and (4), for example the 

co-rule: 

(5) From <f>{n) for all n = 0, 1, 2,... follows Vx (_V(x) -> <t>(x)), 

where n is a term denoting the natural number n and N is the name for 

the set of natural numbers. The problem with this rule as a rule of urlogic 
is that derivations become infinite. When the co-rule is used repeatedly, a 

whole infinite tree of sentences emerges. We cannot say that this is the most 

primitive level of analyzing the process of doing mathematics. The concept 
of derivation as an infinite tree calls for an analysis too. It is only when 

derivations are finite that we can say that we are at the root of things, where 

we cannot conceive ofa more primitive concept of derivation.8 

In summary, urlogic has the following characteristics: 

? Sentences of urlogic are finite strings of symbols. That a string of 

symbols is a sentence of urlogic, is a non-mathematical judgement. 
? Some sentences are accepted as axioms. That a sentence is an axiom, 

is a non-mathematical judgement. 
? Derivations are made from axioms. The derivations obey certain 

rules of proof. That a derivation obeys the rules of proof, is a non- 

mathematical judgement. 
? Derived sentences can be asserted as facts. 

In classical mathematics the law of excluded middle 

<f> v-?? 

is asserted as a fact, but it is not the case, and it does not follow from this, 
that given any sentence <f>, either <f> or -?<? can be asserted as a fact. It 

may be that neither has been derived yet, and it may be that neither can be 

derived because of some weakness in the axioms. By Godel's Incompleteness 
Theorem it seems unavoidable that there always are such sentences <f>. 

8In fact, a more primitive notion would be a "surveyable" proof, a proof we can understand 
as opposed to a random sequence of sentences which happens to obey the rules of proof. 
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If we take first-order set theory as the urlogic, the sentences of urlogic are 

sentences of first-order predicate logic with identity, with the binary predicate 

symbol e as the only non-logical symbol. The axioms are the usual rules of 

first-order logic augmented with the Zermelo-Fraenkel axioms ZFC of set 

theory. On the informal level we interpret the sentences of this urlogic as 

propositions about mathematical objects construed as sets. As mathematical 

objects are not a priori sets, a certain reinterpretation is called for in our 

mind. This however is in harmony with the general ideology in mathematics 

that only the mutual relationships of mathematical objects really matter, not 

what the objects are made of. 

In the case of second-order logic the sentences of urlogic are the sentences 

of second-order predicate logic. Depending on the context, the non-logical 

vocabulary may consist of symbols for the arithmetic of natural numbers, 
arithmetic of real numbers, and so forth. Montague [9] gives second-order 

Peano axioms Z2 for number theory, and second-order axioms RCF2 for real 

closed fields. For full second-order logic there is a notion of "semantical" 

derivation: 

(6) We can derive 1// from <j> if every model of <f> is a model of 1//. 

However, we cannot accept this rule in urlogic, since scanning through all 

models of <f> is a highly mathematical act. So we have to settle with the rules 

DED2, such as those presented in [2], most notably 

(7) FromVJT <f>(X) follows</>{{x : y/(x,yu. ..yn) }) 

for each formula i//(x,y\,... ,yn), plus perhaps some new ones that we do 

not know yet. There are technical results, e.g., in [2]. to the effect that 

second-order logic with rules like (7) admit non-standard models where the 

second-order variables do not range over all subsets of the domain. These 

are not relevant here, however, as we have not formalized the semantics of 

second-order logic. So on the level of urlogic it does not make sense to ask if 

the models of our sentences are standard or non-standard. The only "model" 

we have is the world of mathematical objects, and we have no langauge for 

making a statement to the effect that the universe is non-standard. It is 

more natural to think that it is standard. So in this sense second-order 

logic as the urlogic has the full semantics. On the other hand, the rules of 

proof of second-order logic as the urlogic give it the appearance of Henkin 

second-order logic or first-order set theory. The truth is, if we only consider 

urlogic, we cannot teil first-order logic and second-order logic, weak and full 

semantics, really apart. We cannot subject urlogic to mathematical scrutiny, 
which would reveal its first-order or second-order nature. 

?5. Object language. Weextracted urlogic asa formalization ofthe act of 

doing mathematics. The semantics of urlogic is totally informal. However, 
semantics can be studied very well with formal methods. We can define 
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in urlogic a mathematical concept of a language and study it using all the 

mathematical methods available in urlogic. In this case we call the language 
thus studied the object language. 

Let us assume our urlogic is capable of talking about sets. For simplicity we 

call it ZFC, although a much weaker urlogic would suffice for the discussion. 

This urlogic could also be some version of second-order logic, for we argued 
above that on the level of urlogic there is no essential difference. Some sets 

code formulas of our intended object language, whatever it happens to be, 
for example second-order logic or first-order logic. Thus the strings of our 

urlogic do not only "talk" about sets but also about objects that are finite 

strings in the sense ofthe system and denote, again in the sense ofthe system, 
first-order or second-order statements. Likewise, some sets code structures. 

In particular, there are the sets N and R that code the structures that result in 

set theory when one constructs the set of natural numbers and the set of real 

numbers in some canonical way. Finally, some sets code the truth-definition 

of the object language, that is, the relation 

{ (21, 0) : 21 satisfies the sentence 0 of the object language }. 

Suppose the object theory is the first-order theory RCF of real closed 

fields. We can argue in the urlogic ZFC that the structure R satisfies a given 
statement 0 of the language of real closed fields. Our argument is totally 
finitist, but we believe that we prove something about infinite objects like 

the set of reals, using some finite information about them. Does this mean 

we could actually dispense with the infinite objects? Does this suggest that 

infinity is but a blurred vision in our head? This is one of the fundamental 

questions of the philosophy of mathematics and we have not answered it 

here one way or another. 

Suppose the object theory is the second-order theory RCF2 of real closed 

fields. We can argue in the urlogic ZFC that the structure R is the only model 

of RCF2. The advantage of RCF over RCF2 is that it can also be used as a 

tool for proving the decidability ofthe first-order theory ofthe arithmetic of 

the reals [15]. 
We can also argue in the urlogic ZFC that the object language satisfies the 

Godel Completeness Theorem, i.e., if a sentence 0 of the object language 
is true in every model of another sentence 1// of the object language, then 

there is (a set that codes) a finite object language proof of 0 from 1//. This 

is the case if the object language is first-order logic, but not the case if it is 

second-order logic. 

Suppose we have an urlogic proof that in the object language there is a 

proof of 0 from 1// obtained perhaps using the Godel Completeness Theorem. 

Can we get out of this a proof of 0 from 1// in the urlogic? In several ways 
this question is meaningless. However, we may think of ZFC itself as the 

object language and 0 and 1// as sentences of urlogic. It is then possible to 
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write definitions of sets that code these sentences. Suppose this is done and 

then we get a proof of <f> from i// in the object language using the Godel 

Completeness Theorem. This still does not give us a proof of <f> from i// 
in urlogic, but we have a strong reason to believe that such a proof can be 

written. This is because the concept of a finite proof is so strongly absolute 

(see Section 6 below). But it still depends on the concept of finiteness, and a 

further elaboration, using a third level of formalization, or alternatively an 

informal model-theoretic argument, shows that a set-theoretical object can 

be a finite proof in the sense of the object theory but infinite in the sense of 

urlogic. 
On the other hand, suppose we prove in the urlogic that there is a model 

of <f) in which y/ is false. Now there cannot be a proof of y/ from <f> in the 

urlogic, since such a proof would be formalizable in the object language. 
Thus studying models of sentences of a first-order object language can give 

important information about proofs in the urlogic. If the object language is 

second-order, this possibility does not exist. 

We can try to understand the urlogic by letting the object language be a 

picture ofthe urlogic. Some mathematical properties of this object language 

give us information about the urlogic. To understand which properties reflect 

between urlogic and object language, we need to formalize the situation and 

study it using methods of urlogic. So we not only have an object language, 
but also a formalization of a language in the object language. 

Let us consider an example. If the urlogic is ZFC, we can define in ZFC 

the axiom system ZFC (as a mathematical object) and study its models. In 

these models of set theory there are also axiomatizations of set theory and 

their models. The picture is clearer if we consider only transitive models. In 

a transitive model there can be elements which are transitive models of set 

theory. We know that it is exactly the ZFC-absolute, i.e., AfFC-properties 
of sets which reflect between transitive (in fact, end-extensions of) models 

of ZFC. If we consider all models, not just the transitive ones, then exactly 

properties that are existential relative to ZFC reflect from submodels to 

supermodels. For example, a set may be infinite in 9Jt |= ZFC but finite in 

a submodel 9t \= ZFC of 9Jt. Likewise, a set may be countable in 9Jt but 

uncountable in 9t. This example shows that we should be careful in reflecting 
our non-absolute observations about the object theory to urlogic. 

It is true that full second-order logic as an object theory has categorical ax? 

iomatizations for important mathematical structures. However, these facts 

are highly non-absolute so we cannot use these facts to motivate the claim 

that our urlogic has full second-order strength. There are some grounds for 

such a leap only when we talk about very absolute properties, like "there is 

a proof of...". So it is rather the features of the Henkin second-order logic 
that can be said to be characteristic ofthe urlogic. 
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?6. The absoluteness of first-order logic. An important feature of first- 

order logic is that it is absolute in a strong sense. Absoluteness has a technical 

meaning in set theory, which first-order logic fulfills in several ways (see [1] 
and [16]). For example, the property ZFC h 0 is an r. e. property of a 

first-order sentence 0. Therefore, if ZFC h 0 is true, its formalized version 

holds inside any model of first-order Peano arithmetic, and the formalized 

version is provable in Peano arithmetic. On the other hand, if the formalized 

version of ZFC h 0 is provable in Peano arithmetic, then ZFC h 0. Thus 

the absoluteness of first-order logic permits us to reduce questions about 

ZFC set theory to questions about first-order number theory. 
A consequence of the absoluteness of first-order logic is the Lowenheim- 

Skolem Theorem: If a first-order sentence has for each finite number n 

a model (perhaps infinite) with at least n elements, then the sentence has 

models in all infinite cardinalities. It is remarkable that by Lindstrdm's 

Theorem [6], first-order logic is the only logic with this property. This 

extreme flexibility of first-order logic with respect to the cardinality of the 

universe is often held against first-order logic. This flexibility does indeed 

mean, that first-order logic cannot really say of the reals, for example, that 

they are uncountably many, without saying it in set theory. Likewise, in 

what is called the Skolem Paradox, first-order set theory cannot say of its 

own universe that it is uncountable. But this is, in fact, as it should be. There 

is nothing wrong in a formal system not being able to talk about its own 

semantics. Meaning is beyond language. 
The great flexibility of first-order logic has made model theory possible. 

During the last fifty years model theory has made great advances in classi? 

fying first-order theories with a nice structure theory for their models. One 

of the surprising results of stability theory is that the mere number of non- 

isomorphic models that a first-order theory has in different cardinalities gives 

deep information about the geometric and algebraic structure of its models 

[13, 12]. 

?7. The expressive power of second-order logic. Second-order formaliza? 

tion has a lot of appeal for the same reason which makes it, in another sense, 

unappealing: it is very close to informal reasoning. Mathematicians are used 

to thinking of natural numbers as a structure categorically defined by the 

(second-order) Peano axioms, and of reals as the unique complete separable 
archimedian completely ordered field, and so forth. Mathematical practice 
is full of categoricity results that can be formalized using second-order logic 

([9]). This is an important feature of the logic. In each case the reasoning 
remains informal. 

Suppose we want to do set theory using second-order logic. Subset ex? 

istence is built into the language, so we do not need the usual set existence 

axioms. We still need axioms for iterating the set construction, i.e., forming 
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sets ofsets, sets ofsets ofsets, etc. It is natural to proceed as in first-order set 

theory with individual variables ranging over sets and second-order variables 

ranging over subsets ofthe universe. Let ZFC2 be the resulting second-order 

version of ZFC (see [9]). The models of ZFC2 are, up to isomorphism, of 

the form RK, where ac is a (strongly) inaccessible cardinal. By adding the 

appropriate second-order axiom, we can get a theory ZFC^, which has as its 

models exactly sets ofthe form RK, where n is a (strongly) Mahlo cardinal, 
and ZFC^C, which has as its models exactly sets of the form RK, where n 

is a weakly compact cardinal. A well-known consequence of properties of 

measurable cardinals is that one cannot go on in the same way to RK with 

n measurable, without at the same time going to third order logic.9 Note 

that ZFC2, ZFC21 and ZFC^0 are not equivalent. If there is an inaccessible 

cardinal, then there is a model of ZFC2, which is not a model of ZFC21, and 

if there is a Mahlo cardinal, then there is a model of ZFC^, which is not a 

model ofZFC^c. 
If we add to ZFC2 the axiom "There are no inaccessible cardinals", the 

resulting system is categorical. Similarly ZFC21 and ZFC^0 can be strength- 
ened to categorical second-order theories. 

What happens to the property ZFC2 \= <f>10 of a second-order sentence 

<f>, when we move to a formalization of second-order logic? Let us first 

consider formalization in ZFC2 itself. The formalized version of ZFC2 \= <t> 
holds in every model of ZFC2 if and only if ZFC2 (= <f>. So the property 
is absolute, but for a (trivial) different reason than in the case of first-order 

logic. In particular, we achieved no reduction at all. In order to achieve some 

reduction, let us try to formalize ZFC2 \= <t>in second-order number theory. 
How are we to talk about structures RK, where k, is inaccessible, using just 
natural numbers and sets of natural numbers? This does not seem possible. 
Let us then consider the predicate P2 \= <t>, where P2 is the full second-order 

number theory ([9]) and <\> is a sentence of second-order number theory. As 

P2 has, up to isomorphism, only one model, P2 f= <t> really means N f= <j>. 
In N there are just natural numbers, so we cannot talk11 about models of 

P2. What would work, is talking about P2 \= <t> in the/w// second-order 

arithmetic A2. Then we get absoluteness. The property P2 f= <j> is absolute 

relative to the model(s) of A2. But this is uninteresting as A2 is stronger than 

P2. In the case of first-order logic we got absoluteness (of ZFC h <f>) relative 

to a weaker theory (viz. number theory), which could genuinely be called a 

reduction. 

9This has been pointed out by Kreisel [5]. 
10I.e., <j> is true in every model of ZFC2. 
nIn a trivial sense then the formalized version of Pi (=0 could be considered true by 

default. But this argument does not work in the other direction, if the formalized version of 
P2 \= </> is true (by default) in N, it does not follow that Pi |= <j). 
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A feature of second-order set theories is that they are categorical. What 

do these theories tell us? They tell us, that if we know what the universe is 

like, we can pick the corresponding second-order categorical axiomatization 

of it. The problem is of course, that we do not know and will never know. 

The most informative use of second-order axiomatizations seems to be in 

the framework of first-order set theory. The categorical second-order theo? 

ries pick certain interesting invariant structures among the many standard 

models of set theory. 
What do the various second-order set theories (i.e., models) tell us about 

the Continuum Hypothesis (CH)? They tell us that if CH is true, then it is 

true in these models. If CH is false, then it is false in these models. The 

difference between this and the first-order ZFC is that we can prove, using 
low level formalization, that whether CH is true or not, ZFC cannot prove 
or disprove it. This is a clear message that new axioms are needed for ZFC. 

In contrast, the categorical second-order theories do not seem to give us any 
clue as to what to do next. 

Let Val2 be the set of Godel numbers r0n of valid second-order sentences 

0 in a vocabulary that contains one binary predicate symbol P. It is known 

that Val2 is a highly complex subset of N. For example, Val2 is not E? for 

any m,n <co ([8], [3]). What exactly is the complexity of this set? 

Theorem 1. Val2 is the complete Tli-definable12 set of integers. 

Proof. Let us first observe that the predicate x = V(y) is ni-definable. 
We can also ni-define the property R(x) of x of being equal to some RK, 
where k is a strong limit cardinal. Let Str(x) be the first-order formula in 

the language of set theory which says that x is a structure ofthe vocabulary 

containing just one binary predicate symbol. If 0 is a second-order sentence, 
let Sat^(x) be the first-order formula in the language of set theory which says 

"Str(x) and 0 is true in the structure x", and let Relsat^(x, >>) be the first- 

order formula in the language of set theory which says "x G y and if Str(x), 
then Sat^(x) is true when relativized to the set y". Thus r0n G Val2 if and 

only if Vx (Str(_:) ?? Sat^(x)). Note that for limit a and a e Ra'. 

Sat0(a) <^> (Ra ^Sat0(tf)). 

Thus a second-order sentence 0 is valid if and only if 

Vx (R(x) -? Vy G x Relsat0(j,x)). 

We have proved that Val2 is ^-definable. Suppose then A is an arbitrary 
n2-definable set of integers. Let Vx 3y y/{n,x,y) be the ^-definition. Let 

0? be the first-order sentence Vx 3y y/{n, x,y), where n is a defined term. 

We claim 

?Gi^ rZFq- -> 0?n G Val2, 

12We mean definability in set theory by a formula of the form Vy 3z <f>(x,y,z), where 
<j){x, y, z) is quantifier-free. 
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where ZFC^~ is a finite second-order axiomatization of the models RK, k 

strong limit. Suppose first n G A, i.e., Vx 3y i//(n,x,y). Suppose RK is a 

given model of ZFC^~. We prove RK \= Vx 3y i//(n,x,y). Suppose a e RK. 

By the Levy Reflection Principle, there is b G RK such that y/(n, a, b). Hence 

rZFC^ -? 0?n G Val2. Conversely, suppose rZFC7 -? 0?n G Val2. To 

prove Vx 3y y/(n, x, y), let a be given. Let k, be a strong limit cardinal such 

that a G RK. Then there is 6 G /?? with RK \= y/(n,a,b). Now i//(n,a,b) 
follows. H 

Corollary 2. Val2 is not ^-definable. 

The fact that Val2 is not E? for any m, n < co follows easily from this. 

Moreover, it follows that we cannot in general express "0 is valid", for 

second-order <\>, even by searching through the whole set-theoretical uni? 

verse for a set x such that a universal quantification over the subsets of x 

would guarantee the validity of <t>. In contrast, to check validity of a first- 

order sentence, one needs only search through all natural numbers and then 

perform a finite polynomial calculation on that number. 

?8. IF-logic. Hintikka has suggested that the so-called IF-logic provides 
a new foundation for mathematics [4]. IF-logic is an extension of first-order 

logic which is semantically equivalent with the ?} -part of second-order logic. 
The second-order theories P2M2 and ZFC2 can all be (finitely) axiomatized 

in the n}-part of second-order logic. Thus, if we want to know whether, 

say, ZFC2 (= <t>, where <\> is first-order, all we have to do is to check whether 

(-1AZFC2) v ^ *s va^d *n IF-l?gic- Now IF-logic has the nice property, 

by virtue of its relation to the Z|-part of second-order logic, that the set of 

Godel numbers of satisfiable sentences is itf. So this is the same as with 

first-order logic. We have a logic with a n^-concept of satisfiability and such 

important questions as whether ZFC2 \= <\>, can be reduced to validity in the 

logic. This seems like an interesting reduction of set theory, and thereby all 

of mathematics, to validity in pure IF logic. 
Hintikka argues that validity in IF-logic is a combinatorial question, rather 

than a set theoretic question; it is the question, whether a certain relational 

structure cannot help being instantiated in every model [4, p. 198]. In the 

case of P2 \= <t>, since P2 has but one model, it is the question whether 0 is 

true in N or not. For ZFC2 |= (f>, it is the question whether <f> is true in every 

RK, n inaccessible, or not. 

The following question arises: Suppose we formalize the inference P2 \= </> 
into something, let us call it rP2 \= <?n. The goal of formalization is to be 

able to say something of the nature of the inference. We are not satisfied 

with the information: rP2 \= <f>n ifand only if P2 \= <t>, but want something 
more. The question is, what more does formalization rP2 \= <t>n in IF-logic 
teil us than just P2 h 0? In comparison, first-order logic gives the analysis: 
rp |= ^~i ifand only if there is a finite proof of ^ from P. 
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It follows from the preceding discussion that if Valu? denotes the set 

of Godel numbers of valid sentences of IF-logic with at least one binary 

predicate symbol, then: 

Theorem 3. Vali? is recursively isomorphic with Val2. 

Corollary 4. Vah? is the complete W^-definable set of integers, hence 

Valyp is not 1% for any m,n < co. 

This shows that also in a technical sense IF-logic is as complicated as the 

full second-order logic. 
It is difficult to see how IF-logic would work as a foundation for mathe? 

matics, apart from the way second-order logic itself works. We have argued 
above that second-order logic as urlogic is indistinguishable from first-order 

logic and the same seems true of IF-logic. 

?9. Conclusion. Whatever is proved from ZFC can be turned into an 

informal argument in second-order logic, e.g., in ZFC2. On the other hand, 
if something can be informally argued in ZFC2, it seems very likely, that 

behind the informal argument is an argument that can be formalized in 

ZFC. In this respect there is very little difference between first-order set 

theory and second-order logic. The same applies to IF-logic. 
On the other hand, if we try to analyse why we are not able to decide, 

e.g., Continuum Hypothesis, on the basis of ZFC2, it seems very plausible 
to develop a theory about what the second-order quantifiers range over. 

The first-order set theory ZFC is exactly such a theory, and it is indeed the 

strongest currently available tool for investigating formalizations of second- 

order logic. But this means we are back in the Henkin semantics of second- 

order logic that full second-order logic was supposed to avoid. 
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