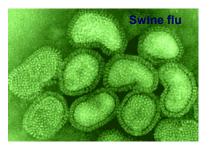
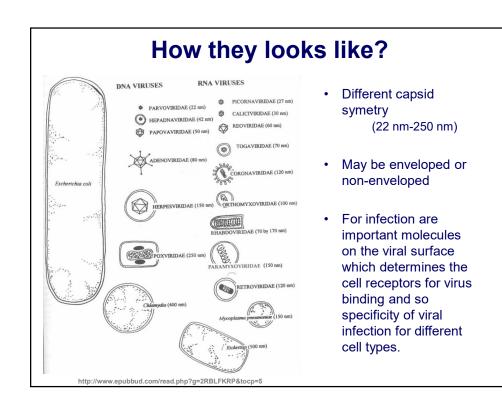
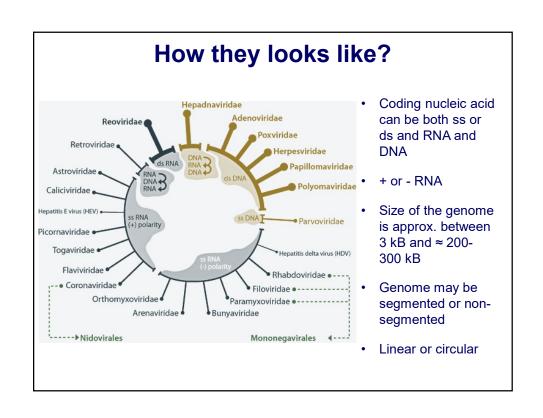
General virology and diagnostic methods in virology

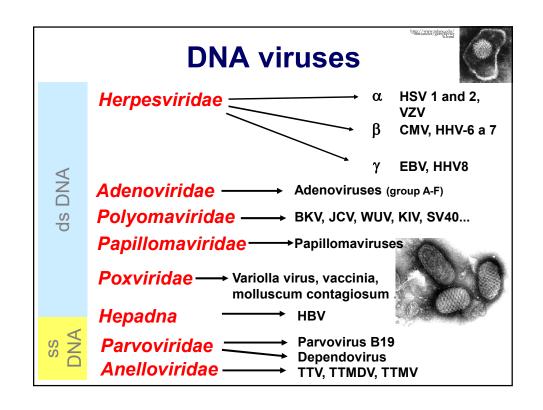
What is virus?

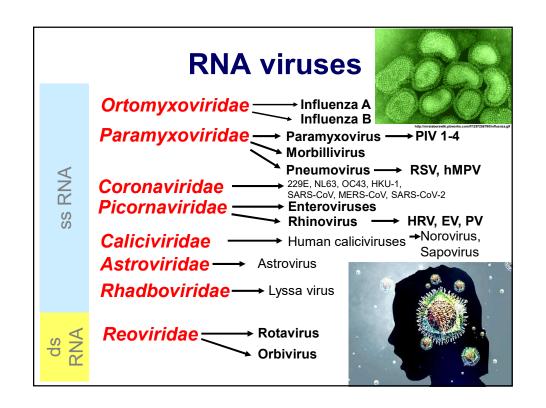

It is a submicroscopical pathogen containing the nucleic acid and proteins, which infects and reproducts in host cells.

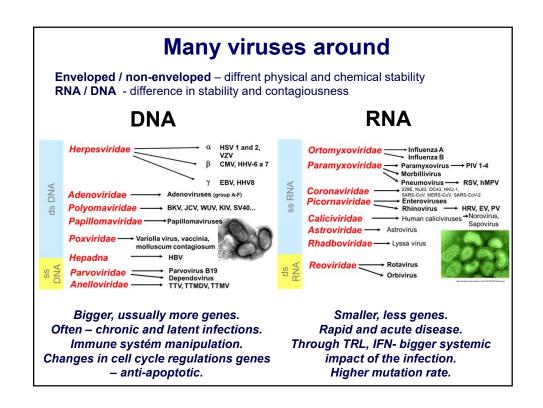
Proliferation and multiplication of the virus is possible only in infected

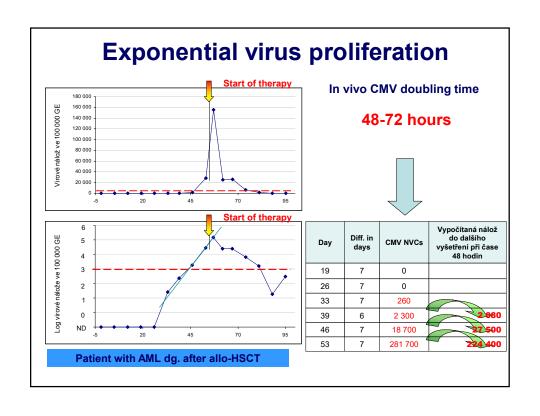

Viruses do not have translation system (ribosomes and transfer RNA) necessary for proteosyntesis. That is the reason why proliferation is possible in host cells only (bacterias, animals and plants).

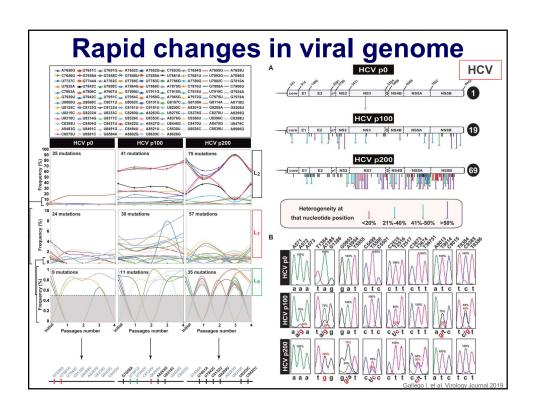

Some viruses (poxviruses, herpesviruses or rhabdoviruses..) contains enzymes important for viral reproduction inside the virions.

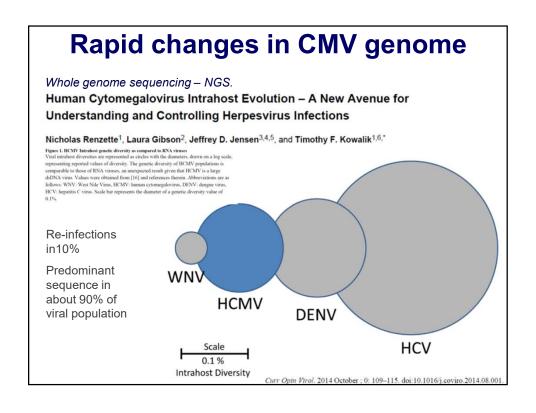

Virion is complete fully matured viral particule able to infect the cell.

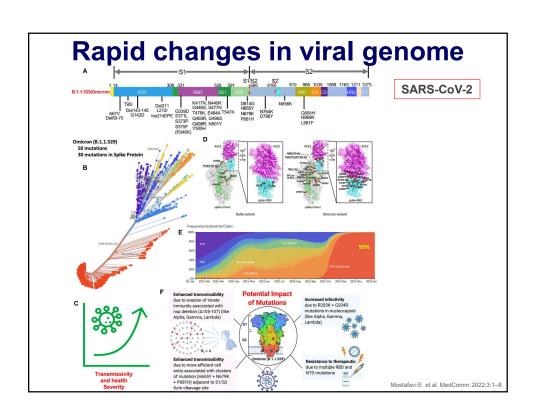


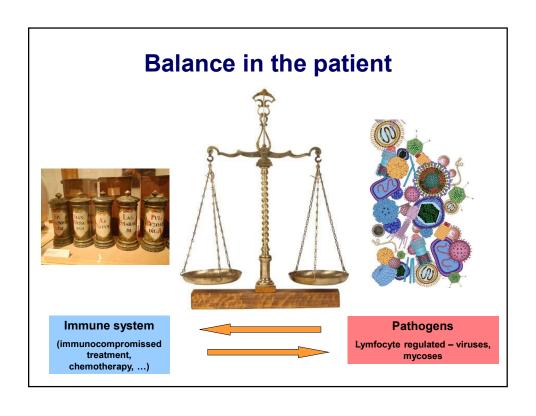


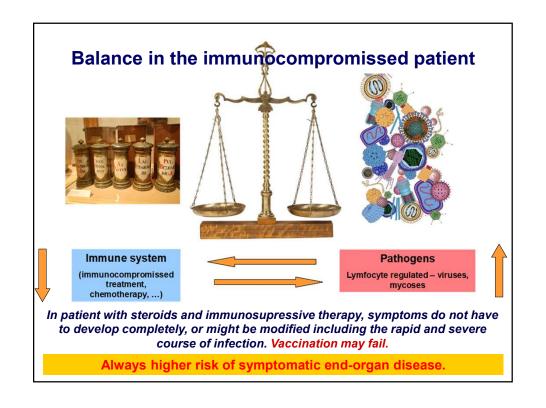


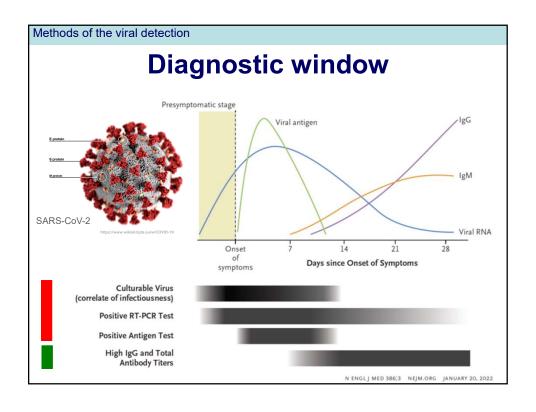




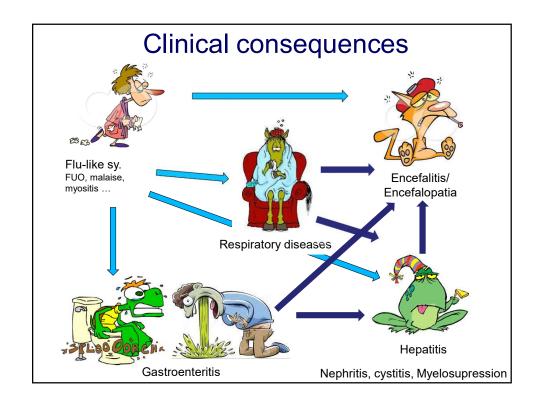







Methods of the viral detection

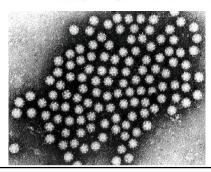
Detection methods in virology


- Microscopic
- **Direct detection**

- Cultivation
- Detection of the antigen
- · Detection of the nucleic acid
- · Detection of the antibodies
- (Signs of disease)

Indirect detection

Signs of the disease Clinical signs of disease leading to suspition of viral infection (poliomyelitis) were described first 3 700 BC in Egypt. Typical signs are e.g. in: - varicella - zoster - fully deleloped IM - papillomaviral infection (wart) - also in HHV-8 and other viral infections

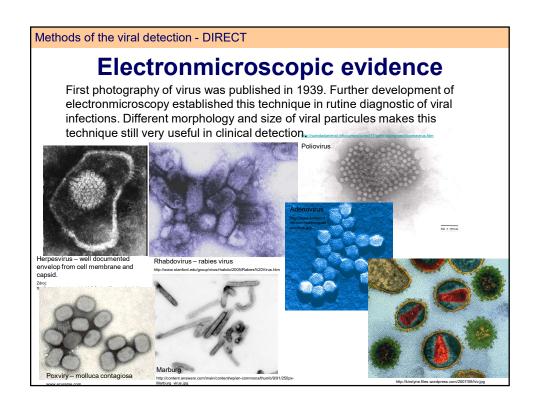

MAJOR ARTICLE

Astrovirus VA1/HMO-C: An Increasingly Recognized Neurotropic Pathogen in Immunocompromised Patients

Julianne R. Brown,^{1,2} Sofia Morfopoulou,³ Jonathan Hubb,⁴ Warren A. Emmett,³ Winnie Ip,⁵ Divya Shah,² Tony Brooks,⁶ Simon M. L. Paine,^{7,9} Glenn Anderson,⁷ Alex Virasami,² C. Y. William Tong,⁴ Duncan A. Clark,⁴ Vincent Plagnol,³ Thomas S. Jacques,^{7,9} Waseem Qasim,⁵ Mike Hubank,⁶ and Judith Breuer^{1,8}

¹Virology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, ²NIHR Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, ²NIHR Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust and University College London, ³UCL Genetics Institute, University College London, ⁴Virology Department, Barts Health NHS Trust, ⁵Molecular and Cellular Immunology, ⁶Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, ⁷Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, ⁸Department of Infection and Immunity, and ⁹Birth Defects Research Centre, Institute of Child Health, University College London, United Kingdom

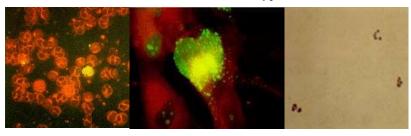
Neurotropic Pathogen HAstV VA1/HMO-C • CID 2015:60 (15 March) • 881



http://www.oardc.ohiostate.edu/lsaiflab/pictures/astro%20virus%204x4.jpj

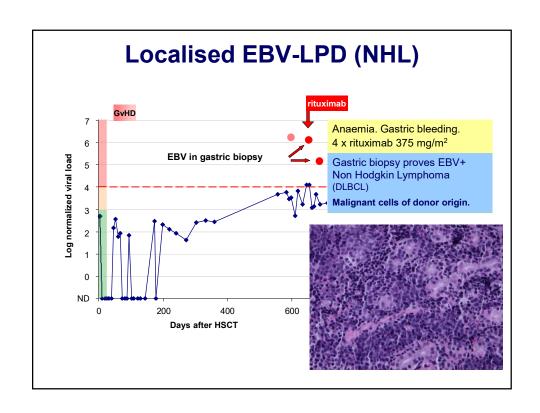
Methods of the viral detection - DIRECT

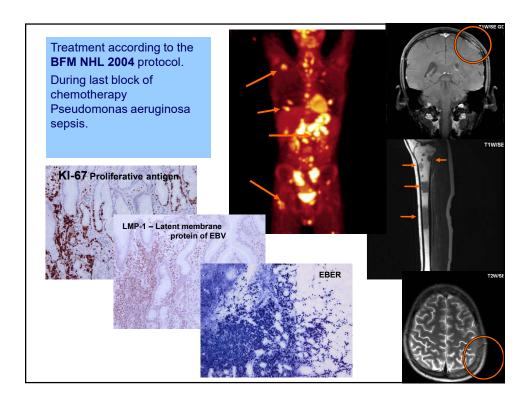
Microscopic techniques


- Electronmicroscopic detection of virus
 - In liquid materials after virus concentration
 - · In the tissues
 - Immunoelectron microscopic detection after signing of virus with specific antibody
- Immunohistochemical detection of virus in the cells
 - · Methods for histology testing of biopsies
 - Cytological technique

proteins

At the present time, detection of viral proteins is based on using of monoclonal antibodies fluorescent microscopy.




Detection of pp65 CMV antigen using fluorescent microscopy. <code>Zdroj:</code> <code>ttp://home.teleport.com/-bobh/InfectiousMononucleosis.htmhttp://www.argene.com/pictures_gallery/zoom_images_ang/CMV_Antigenemia_perox.php</code>

Methods of the viral detection - DIRECT

Using of microscopical techniques

- Histochemical detection
 - Especially during pathological testing
- Electron microscopy
 - For particular types of samples and viruses
 - Lower sensitivity comparing to the cultivation and PCR
- Optical microscopy
 - Might be useful supplemental technique
 - Signs of inflammation without bacterias suggests viral ethiology

Methods of cultivation

- Cultivation on cell (tissue) cultures
 - Classic with cytopathic effect
 - Rapid with immunochemical visualiazation of the virus
- Cultivation on chicken embryos
- Test on the animal

Tissue cultivation

Pros

- Prooving a "living" virus
- Ability to do additional tests
- Detection wider spectrum of viruses

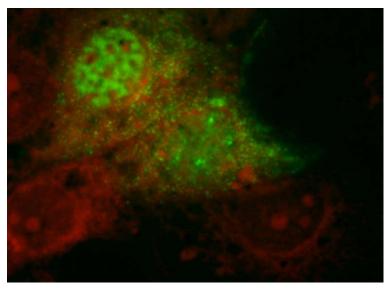
Cons

- Sensitive to transport conditions
- Some viruses are badly cultivated in vitro (longer time to detection)
- Difficulties in work
 with tissue
 monolayers
 (contamination with bacterias
 and mycoses)

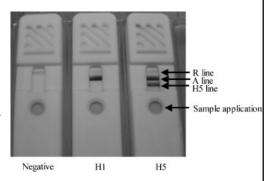
Methods of the viral detection - DIRECT

Viral cultivation

Additional possibility for viral detection is cultivation on tissue monolayers. J. Enders used it for the first time for poliovirus in 1949. Plaque forming assay was first used in 1952 by R. Dulbecco. Subsequently, plaque forming units (PFU) were established. Shell vial cultivation shortened the time.

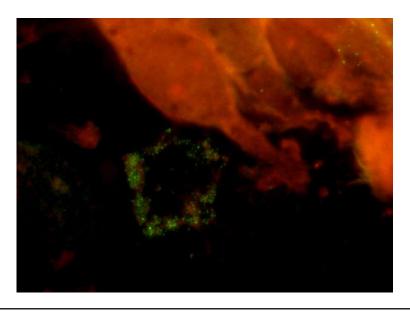


Cytopatic effect - CMV



Influenza A virus on tissue monolayers - monoclonal antibody stained with FITC

Viral antigen detection


- Detection of single or only couple of pathogens
- Detection of presence/absence; sometimes possibility of (semi-) quantification.
- Based on antigenantibody reaction

Sensitivity approx. about 30-40% compared to PCR (real ≈20%).

Price approx. 4-6 €

Antigen detection of Adenovirus in the lung tissue

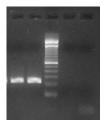
Using of antigen detection

- In case of infection with defined clinical picture and only few possible pathogens (e.g. respiratory tract inf.).
- Infection necessary to be monitored in defined group of patients (e.g. CMV in the immunoxompromissed host).
- Infection, in which is antigen present regularly in huge amounts (hepatitis B).

Methods of the viral detection - DIRECT

Is antigen detection easy?

- Technically is antigen detection easy
- Difficult is interpretation of result
 - There is no "normal range"
 - Sensitivity of methods depend on type of used antigen – no standardisation
 - Difficult is interpretation of result


Nucleic acid detection

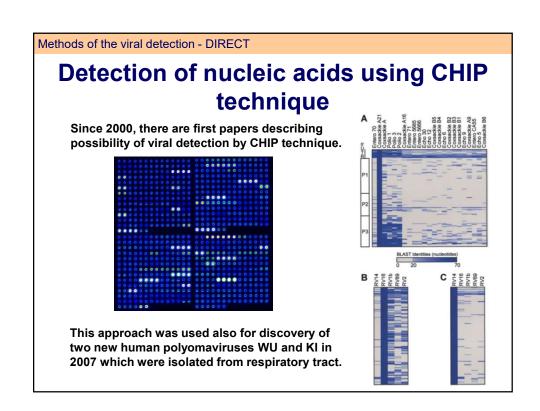
- · Detection of one or couple agens only
 - Amplification (PCR, NASBA) sensitive
 - Without amplification (gene probes) less sensitive
- · Rapid and perspective

Methods of the viral detection - DIRECT

PCR reactions

- Qualitative
 - · Basic diagnostics
 - Detection of presence/absence of single agens only
- Multiplex
 - Detection of more pathogens in a single reaction
 - Important is detection of product
- Quantitative
 - Competitive
 - · Real time PCR

Using of PCR


- Pros
- High sensitivity
- rapid
- Highly specific
- Possibility of quantification

- Cons
- Sensitive for manupulation
- Detection of vial and non-vial agens
- Risk of inhibition and false positivity

Sequencing and detection of agent according to the database

- Detection of nucleotid sequence according to the database
- Less useful in virology
- Quality of database matters
- At the present time more supplementary

Comparing of techniques - sensitivity

- PCR and cultivation amplified samples quantity of the agens - sensitive
 - PCR depends on type of techniques (primers, multiplex...)
- Cultivation is easily influenced by experience and type of agens (growth factors)
- Detection of antigens in sampled quantity only less sensitive
- Microscopy is more or less for orientation only

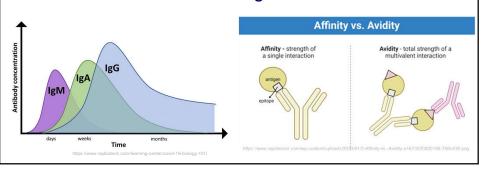
Comparing of techniques - specificity

- Cultivation has minimum of false positive reactions
- PCR depends on quality of detection and primers – detects all not only viable virus
- Antigen detection has lower specificity

Comparing of techniques - necessary time

- Antigen detection results normally within 30 minutes
- PCR result can be generated from dozens of minutes to couple of hours
- Cultivation takes usually days to weeks

Comparing of techniques – possibility of wide detection

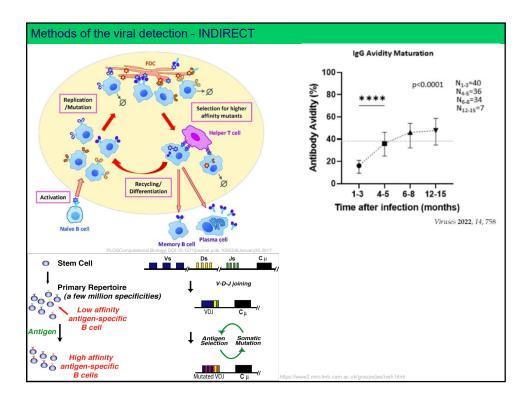

- PCR and antigen detection detects only particular pathogens (with exception of sequencing)
- Cultivation can detect more viruses
- Electron microscopy detect widest spectra of viruses (limited by staff experience)

Detection of antibodies reflects only reaction of part of the immune system against infection.

Methods of the viral detection - INDIRECT

Detection of antibodies

- Can detect immunoglobuline in different classes (IgG, IgM, IgA)
- At the beginning of the infection, there is no specific antibody production
- · Not suitable for monitoring of the treatment


Main usage of the antibody detection

- Viral infections with huge systemic response (influenza, rubella, hepatitis)
- More severe bacterial infections (pertusse, syfilis)
- Systemic infections with single cell parasites (toxoplasmosis)

Methods of the viral detection - INDIRECT

Limited or small impact of antibody detection

- Infections with intracellular bacterias (Mycobacterium tuberculosis)
- Local infections (uncomplicated salmonelosis, tonsilitis, urinary tract infections...)
- Reactivation of persistent infections (herpes)
- Detection of infections in the immunocompromissed host

Classical methods of antibody detection

- Complement fixation
 - Good specificity, reasonable sensitivity, cheap.
 - Application: especially for respiratory tract infection
- Haemagglutinin inhibition
 - specific, reasonable sensitivity, cheap.
- Agglutination and precipitation
 - specific, less sensitive, cheap.

Major disadvantage is necessity of pair serum testing.

Immunochemical methods

EIA (enzyme immunoanalysis)

IF (immunofluorescence)

RIA (radio-immunoanalysis)

ELISA (enzyme-linked immunosorbent assay)

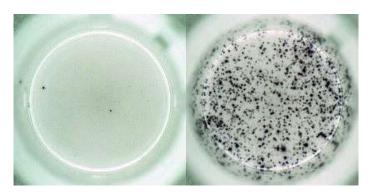
Advantage: very good reproducibility of resul, discrimination of immunoglobulin classes, high sensitivity

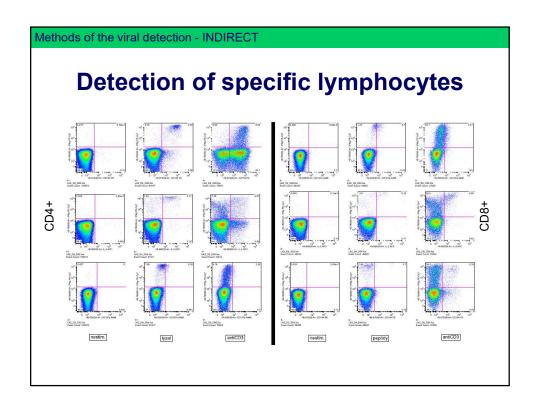
Disadvantage: more expensive, sometime unspecific results

Methods of the viral detection - INDIRECT

Why can antibody detection fail?

- Significant part of infection is destroyed by unspecific immunity
 - (no activation of specific immunity)
- Detection has limited sensitivity, method is inappropriate or blood sample has been drawn too early
- Infection was caused by another than tested pathogen.

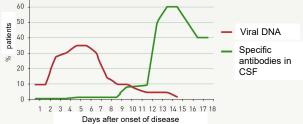

Is antibody detection really easy?


- Technically is antigen detection easy
- Difficult is interpretation of result
 - There is no "normal range"
 - Sensitivity of methods depend on type of used antigen – no standardisation
 - Difficult is interpretation of result
- The immune system of every person works a bit different

Methods of the viral detection - INDIRECT

Detection of specific lymphocytes

Further step in detection of viral infection consequence using molecular biology. Detection of lymphocytes producing IFN-γ after antigen stimulation – by ELISPOT assay or flow cytometry.



Sampling of material for cultivation

- · In an acute phase of infection
 - Smaller viability in latter phases
- Sampling from the place with highest pathogen concentration
 - Important is the knowlegde about pathogenesis of infection

• Vigorous sampling (to obtain enough material for testing)

PCR and antibody response against herpesvirus infection in CSF

Sampling for direct detection

- Antigen detection (and Nucleic Acid) without amplification)
 - Very important is sampling of vigorous volume of material in acute phase
- Nucleic acid detection with amplification
 - Can be used also in situation when number and viability of pathogens decrease (but there are also some limitations!)
 - There is necessary to use special clean sampling and transport sets (due to risk of DNA and especially RNA destruction)

Transport

- Cultivation
 - transport medium according to the suggestion of the lab
 - Maintaining and transport at fridge temperature
 - Important is length of transport (up to 24 hours)
- Antigen detection
 - It is important to avoid sample destruction
- Nucleic acid detection
 - It is important to avoid sample destruction (destruction of NA or adding of inhibitors into the samples)

What is important for communication with the lab

- To know what I need
 - (Ask a proper question differential diagnostics)
- To know what and how quickly can be tested
- To know pathogenesis of infection and test the samples according to the phase of infection
- To be able to communicate with people from lab

What should good lab do

- Standart result in a reasonable time
- Express testing in severe clinical situations
- Consultation of diagnostical possibilities
- Interpretation of the result and advise with further steps in diagnostics and therapy
- Inform clinical staff about diagnostical impact of the result (sensitivity, specificity, negative and positive predictive value)

Before sampling a sample, you have to know what will be impact of the result for management in case of positivity or negativity

If there will be no difference in both cases – test is senseless.

