

Electrical Properties of Cell Resting Membrane Potential, Action Potential, Signal propagation

Lecture from the Medical Physiology

Olga Vajnerová

Department of Physiology, Second Faculty of Medicine, Charles University

Na⁺- K⁺ pump Extrudes 3 Na⁺ ions Brings 2 K⁺ ions in

Unequal distribution of ions Na⁺ and Cl⁻ extracelullary K⁺ and A⁻ intracelullary

Intracellular concentration [mmol/l]		Extracellular concent [mmol/l]		
Na ⁺	12	Na ⁺	145	
K+	155	K+	4	
Ca ²⁺	0,0002	Ca ²⁺	2	
Cl-	4	Cl-	120	
HCO ₃ ⁻	8	HCO ₃ -	27	
proteins (A ⁻)	155	proteins (A ⁻)	0	

Model 1: Membrane is permeable for K⁺ only

Model 1: Membrane is permeable for K⁺ only

Model 1: Membrane is permeable for K⁺ only

K⁺ escapes out of the cell along concetration gradient

A⁻ cannot leave the cell

Greater number of positive charges is on the outer side of the membrane

On the inner more negative charges

electrical driving force emerges,

Model 1: Membrane is permeable for K⁺ only

Electrical Gradient

Inward movement of K⁺

Model 1: Membrane is permeable for K⁺ only

Chemical gradient equals electrical gradient

No net movement of ions

Steady state is balanced

Model 1: Membrane is permeable for K⁺ only

Negative membrane potential

Equilibrium membrane potential for potassium is negative

How to calculate the magnitude of the membrane potential

Osmotic work

The work, which must be done to move 1 mol of the substance from concentration C_e to concentration C_i $A_o = R.T.ln [C_e]/[C_i]$

Electric work

The work, which must be done to move 1 mol of the substance across the potential difference E $A_{a} = E. n. F$

- R universal gas constant
- T absolute temperature
- Ce, Ci ion concentration
- E potential difference
- $n-charge \ of \ ion$
- F Faraday's constant

How to calculate the magnitude of the membrane potential

When the system is in balance then osmotic work equals electric work

 $A_o = A_e$

R.T.In $[C_e] / [C_i] = E. n. F$

E =

Nernst equation

 $E = RT/nF \cdot In [C_e] / [C_i]$

(natural logarithm)

- R universal gas constant T – absolute temperature Ce , Ci – ion concentration E – potential difference n – charge of ion
- F Faraday's constant

How to calculate the magnitude of the membrane potential

The equilibrium membrane potential for K⁺

Nernst equation $E = -62/n \cdot \log [C_i] / [C_e]$ (decimal logarithm)

Count if $K^+e = 4 \text{ mM/l}$ $K^+i = 155 \text{ mM/l}$

Real cell

Membrane permeability

 K^+ : Na^+ : Cl^-

1 : 0,03 : 0,1

OSCILOSKOP POSTUP ELEKTRODY e Every living cell ZESILOVAČ (a) in the organism d¥ AXON niV (b) - 30 60 · 90 0 h C d C POZICE ELEKTRODY

Membrane potential is not a potential. It is a difference of two potentials so it is a voltage, in fact.

The equilibrium membrane potential for other ions

Nernst equation E = $-62/n \cdot \log [C_i] / [C_e]$

Intracellular concentration [mmol/l]		Extracellular concentrace [mmol/l]		
Na ⁺	12	Na ⁺	145	
K ⁺	155	K+	4	
Ca ²⁺	0,0002	Ca ²⁺	2	
Cl⁻	4	Cl-	120	
HCO ₃ -	8	HCO ₃ -	27	
proteins (A ⁻)	155	proteins (A ⁻)	0	

The equilibrium membrane potential for other ions

The equilibrium membrane potential for Na⁺ For Ca²⁺ For Cl⁻

https://create.kahoot.it/

Log in – e mail: ustav.fyziologie@gmail.com

Neuron

.

Passive spread of electrical current along the axon Electrotonic propagation

Equivalent electrical circuit

 R_M transverse or membrane resistance R_L longitudinal resistence (axoplasm) ECF resistance is negligible.

Space constant γ

Potential seen at each compartment will fall in a fixed ratio (at a rate that will dependent on the ratio R_M / R_L)

Exponential decline in voltage

 γ = the distance you have to go before voltage V₀ has dropped to 37% of its original value.

= cca 1 mm

How to ensure long distance signal propagation?!?

Membrane permeability

K +	:		Na ⁺	:	Cl-
1		:	15	•	0.1

Signal propagation - Action potential

Signal propagation - Action potential

The all-or-nothing law

© 2011 Pearson Education, Inc.

Propagation without decrement (no loss)

Saltatory Conduction myelinated axon

Saltatory Conduction myelinated axon

Normal myelinated axon

Multiple sclerosis unmyelinated axon

34

Signal generation

Signal generation

Skeletal Muscle

Smooth Muscle

Multiunit

each smooth-muscle cell receives its synaptic input. This allows for multi-unit smooth muscle to have much finer control. Multi-unit smooth muscle is found in the airways of the lungs, large arteries, and ciliary muscles of the eye.

Multiunit Smooth Muscle

Single-unit Smooth Muscle

Single unit (unitary) – Urinary tract, digestive tract, vessels

Smooth Muscle

Heart

Heart – sinoatrial node

Action potential - comparison

Neurons

Skeletal muscle cells Myocardial contractile cells

Thanks for your attention

The seed was planted $\ensuremath{\textcircled{\odot}}$

Questions ???

Comments ???