## QUANTUM INFORMATION

MFF UK

(0) Find density matrix of the state $|+\rangle$ (the usual uniform combination of $|0\rangle$ and $|1\rangle$ ) and of the mixed state corresponding to picking either $|0\rangle$ or $|1\rangle$ with the same probability.
(1) Prove that positive operators are Hermitian and so are normal, as well.
(2) Verify that equality $\operatorname{tr}(A|\psi\rangle\langle\psi|)=\langle\psi| A|\psi\rangle$ holds, where $|\psi\rangle$ is a unit vector. To prove this, it may be of help to first show that the trace of a matrix $B$ can be computed as $\sum_{i}\left\langle a_{i}\right| B\left|a_{i}\right\rangle$, where $\left|a_{i}\right\rangle$ form an orthonormal basis.
Recall that a mixed state is defined as a convex combination of pure states, where we represent the state $|\psi\rangle$ by its density matrix $|\psi\rangle\langle\psi|$.
(3) Show that a convex combination of mixed states is again a mixed state. Then, verify that given a mixed state $\rho$ and an evolution matrix $U$, the mixed state of the system after applying $U$ is $U \rho U^{\dagger}$.
(4) Recall that a projective measurement is defined as a Hermitian operator $P$, where the measurement values to eigenvectors of $P$. Show that this type of measurement can be viewed as a particular case of a more general measurement defined by a set of operators $\left\{M_{i}\right\}$ satisfying $\sum_{i} M_{i}^{\dagger} M_{i}=I$.
(5) Show that, given a mixed state $\rho$ and measurement $\left\{M_{i}\right\}$, all the relevant statistics regarding the outcome of measurement can be described in terms of $\rho$ only.
(6) Let $\rho^{A B}$ be a density matrix of a mixed state in a combined system. Show that $\rho^{A}$ is a density matrix, i.e. it is positive with eigenvalues summing up to 1 .
(7) * Derive a formula for computing density matrix of a state $|a\rangle \otimes|b\rangle$.
(8) Compute density matrix of a state $\frac{1}{\sqrt{2}}(|0\rangle \otimes|+\rangle)+\frac{1}{\sqrt{2}}(|1\rangle \otimes|-\rangle)$. Then, compute the reduced density matrix onto the first system of the given state.
(9) Let $\rho^{A B}=\sum_{i} c_{i} \rho^{a_{i}} \otimes \rho^{b_{i}}$ be a state of a composite system. Let $\left\{M_{i}\right\}_{i}$ be a measurement operators of $A$. Show that it is the case that the result of measuring $\rho^{A}$ by $\left\{M_{i}\right\}_{i}$ is the same as the result of measuring $\rho^{A B}$ by $\left\{M_{i} \otimes I\right\}_{i}$.
All the random variables considered below are assumed to be discrete and finitely supported.
(10) Prove that $H(X, Y)$ is upper bounded by $H(X)+H(Y)$ and that $H(X)-$ $H(X \mid Y)=H(Y)-H(Y \mid X)$.

