QUANTUM INFORMATION
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Recall the definitions of the IFT and DFT circuits for (Zgom, +):
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where w denotes 27 1r .

The following exercises are designed to derive the Shor’s algorithm as an ap-
plication of the Kitaev’s algorithm for phase estimation. We start by solving the
following problem: given a unitary operator U with an eigenvector |¢), find its
corresponding eigenvalue. Note that the eigenvalue is of the form €27 for some
6 € [0,1] and we will be actually computing this € (also called a phase).

The idea is simple, we apply different powers of U on [¢)) at the same time so as
to get the distribution of the outputs which will be almost periodic (or character-
like). We can then use the DF'T to get the corresponding character which, hopefully,
would help us to compute 6.

Formally, we pick some M = 2™ large enough and design a circuit:
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where |k) € HY".

(1) Implement the above circuit using at most m controlled single-cubit ope-
rators.

To apply all the possible powers of U onto |¢) simultaneously we need to apply
the above circuit onto the (H®™[0)®™)|¢).

(2) Compute the resulting state explicitly.

The resulting state is of the form |p)|1)) and so we can forget about [¢) (or
recycle it for future usage). So, from now on, we concentrate on the given |¢) only.

(3) Assume 0 is of the form % for some natural number p. Show that applying
DFT on |¢) and measuring the result in the computational basis yields the
desired ¢ (actually |p), however 6 can then be easily reconstructed) with

probability 1.
Assume now that 2™§ = a + 2™¢ for some natural number a so that [2™§] < 3.
Since it is not possible, in general, to compute an arbitrary €, from now on we will

be interesting in computing the natural number a which is a good approximation
of 2§,

(4) Apply DFT on the general |p) and compute the result. Show that, assuming
0 is 0, one arrives at the same conclusion as in the previous exercise.
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We now do the measuring in the computational basis and ask about the proba-

bility of seeing |a).
(5) * Give a good (constant) lower bound on seeing |a) after the measurement,
assuming & # 0.

This concludes the Kitaev’s algorithm on phase estimation. We now connect it
to Shor’s algorithm.

Assume we are given a € Z} and U realizing multiplication by a in Zy. Let r
denote the order of a in Zy.

(6) Show that all eigenvectors of U are of the form )\, = w? = 7% for
p=0,1,...,7r—1. ,

(7) Show that the state |u,) = # Z;;é e2™" a7) is an eigenvector corre-
sponding to A,.

So, one can try to pick |u1) and compute the phase of A; which equals to % by
applying the Kitaev’s algorithm. This then clearly reveals the order of a. However,
the problem is that we cannot directly construct |u;) without the knowledge of r.
The corresponding eigenvector is, however, crucial in the application of the Kitaev’s
algorithm.

(8) Assume we use the Kitaev’s algorithm for |¢)) = > ¢plu,). What do we
expect to see?

(9) Show that [1) = # Z;:Ol |up). What do we expect to see after applying
the Kitaev’s algorithm on this state?

This almost finishes the Shor’s algorithm. The problem is that, in fact, we do
not get 2 precisely but rather its binary approximation. To compute 2 one needs
to perform a continuous fractions algorithm. The number theory then tells us that,
assuming m in the application of the Kitaev’s algorithm is big enough, we are
guaranteed to find £ exactly after a small amount of steps. This £ can then be used
to reconstruct r, assuming p and r are coprime.

(10) * Fix r and pick p uniformly at random from the set {0,1, ..., — 1}. Give

a good lower bound on p and r being coprime.



