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Recall the definitions of the IFT and DFT circuits for (Z2m ,+):

IFT : |k⟩ 7→ 1√
2m

2m−1∑
l=0

ωkl
2m |l⟩,

DFT : |k⟩ 7→ 1√
2m

2m−1∑
l=0

ωkl
2m |l⟩,

where ωN
M denotes e2πi

N
M .

The following exercises are designed to derive the Shor’s algorithm as an ap-
plication of the Kitaev’s algorithm for phase estimation. We start by solving the
following problem: given a unitary operator U with an eigenvector |ψ⟩, find its
corresponding eigenvalue. Note that the eigenvalue is of the form e2πiθ for some
θ ∈ [0, 1] and we will be actually computing this θ (also called a phase).

The idea is simple, we apply different powers of U on |ψ⟩ at the same time so as
to get the distribution of the outputs which will be almost periodic (or character-
like). We can then use theDFT to get the corresponding character which, hopefully,
would help us to compute θ.

Formally, we pick some M = 2m large enough and design a circuit:

|k⟩|ψ⟩ 7→ |k⟩Uk|ψ⟩ = e2πikθ|k⟩|ψ⟩,

where |k⟩ ∈ Hm
2 .

(1) Implement the above circuit using at most m controlled single-cubit ope-
rators.

To apply all the possible powers of U onto |ψ⟩ simultaneously we need to apply
the above circuit onto the (H⊗m|0⟩⊗m)|ψ⟩.

(2) Compute the resulting state explicitly.
The resulting state is of the form |φ⟩|ψ⟩ and so we can forget about |ψ⟩ (or

recycle it for future usage). So, from now on, we concentrate on the given |φ⟩ only.
(3) Assume θ is of the form p

2m for some natural number p. Show that applying
DFT on |φ⟩ and measuring the result in the computational basis yields the
desired θ (actually |p⟩, however θ can then be easily reconstructed) with
probability 1.

Assume now that 2mθ = a+ 2mδ for some natural number a so that |2mδ| ≤ 1
2 .

Since it is not possible, in general, to compute an arbitrary θ, from now on we will
be interesting in computing the natural number a which is a good approximation
of 2mθ.

(4) Apply DFT on the general |φ⟩ and compute the result. Show that, assuming
δ is 0, one arrives at the same conclusion as in the previous exercise.
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We now do the measuring in the computational basis and ask about the proba-
bility of seeing |a⟩.

(5) * Give a good (constant) lower bound on seeing |a⟩ after the measurement,
assuming δ ̸= 0.

This concludes the Kitaev’s algorithm on phase estimation. We now connect it
to Shor’s algorithm.

Assume we are given a ∈ Z∗
N and U realizing multiplication by a in ZN . Let r

denote the order of a in ZN .
(6) Show that all eigenvectors of U are of the form λp = ωp

r = e2πi
p
r for

p = 0, 1, ..., r − 1.
(7) Show that the state |up⟩ = 1√

r

∑r−1
j=0 e

−2πi pj
r |aj⟩ is an eigenvector corre-

sponding to λp.
So, one can try to pick |u1⟩ and compute the phase of λ1 which equals to 1

r by
applying the Kitaev’s algorithm. This then clearly reveals the order of a. However,
the problem is that we cannot directly construct |u1⟩ without the knowledge of r.
The corresponding eigenvector is, however, crucial in the application of the Kitaev’s
algorithm.

(8) Assume we use the Kitaev’s algorithm for |ψ⟩ =
∑
cp|up⟩. What do we

expect to see?
(9) Show that |1⟩ = 1√

r

∑r−1
l=0 |up⟩. What do we expect to see after applying

the Kitaev’s algorithm on this state?
This almost finishes the Shor’s algorithm. The problem is that, in fact, we do

not get p
r precisely but rather its binary approximation. To compute p

r one needs
to perform a continuous fractions algorithm. The number theory then tells us that,
assuming m in the application of the Kitaev’s algorithm is big enough, we are
guaranteed to find p

r exactly after a small amount of steps. This p
r can then be used

to reconstruct r, assuming p and r are coprime.
(10) * Fix r and pick p uniformly at random from the set {0, 1, ..., r − 1}. Give

a good lower bound on p and r being coprime.


