QUANTUM INFORMATION

MFF UK

- (0) The Toffoli gate $T:(a,b,c)\mapsto (a,b,c\oplus ab)$ is said to be able to *copy* states, i.e. $T:(a,1,0)\mapsto (a,1,a)$. But we have already seen the no-cloning theorem, stating that no unitary operator U acting on, say 2-cubit system, can clone states, i.e. realize the mapping $|\varphi\rangle\otimes|0\rangle\mapsto|\varphi\rangle\otimes|\varphi\rangle$. Aren't these two statements contradictory?
- (1) The natural analogy for the states $|+\rangle$ and $|-\rangle$ in a 2-cubit system are the so-called *Bell's states* defined as

$$|\beta_{xy}\rangle = \frac{|0y\rangle + (-1)^x |1\overline{y}\rangle}{\sqrt{2}},$$

where x, y are 0, 1 and \overline{y} is defined as 1 - y.

Show that the four vectors $|\beta_{00}\rangle, |\beta_{01}\rangle, |\beta_{10}\rangle, |\beta_{11}\rangle$ form an orthonormal basis of \mathbb{H}^2 . Express the circuit realizing $|xy\rangle \mapsto |\beta_{xy}\rangle$ as a composition of the single-cubit Hadamard operator H and the CNOT gate.

(2) (Quantum teleportation) Contrary to the no-cloning theorem, it is possible to *teleport* quantum states using just some classical communication channel. However, the teleported cubit is destroyed for it's original owner and so the no-cloning theorem is not contradicted.

The process can be described as follows: two parties (Alice and Bob) first create an entangled state $|\beta_{00}\rangle$ (prove that this state is, indeed, entangled) and share it between each other. This formally means that Alice is able to measure $|\beta_{00}\rangle$ (and any other 2-cubit state) on the first cubit (her measurement has the form $m_1P_1 + m_2P_2$, where P_1 is a projection operator onto the space generated by $|00\rangle$ and $|01\rangle$ and P_2 is a projection onto the space generated by $|10\rangle$ and $|11\rangle$). Similarly, Bob is able to measure the second cubit

Alice is then given some arbitrary single-cubit state $|\varphi\rangle$ which she wants to teleport to Bob. For it she performs a CNOT operation on her pair of cubits (formally, she realizes the mapping CNOT $\otimes id$ applied to $|\varphi\rangle\otimes|\beta_{00}\rangle$) followed by the Hadamard operator applied to the first cubit (again, we formally mean the operator $H\otimes id\otimes id$).

Finally, she measures both of her cubits separately and sends the results of her measurements via some classical communication channel to Bob. Depending upon the received data, Bob applies Pauli matrices Z and/or X to his single cubit. Recall that X realizes $|0\rangle \mapsto |1\rangle$ and $|1\rangle \mapsto |0\rangle$ and Z realizes $|0\rangle \mapsto |0\rangle$ and $|1\rangle \mapsto -|1\rangle$.

Finish the description of the protocol, draw it's diagram and verify that $|\varphi\rangle$ is indeed teleported to Bob and destroyed for Alice.

2 MFF UK

(3) Verify that applying

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

to the first cubit in a 2-cubit system is equivalent to the controlled application of

$$\begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

to the second cubit.

Also, verify the correctness of the circuit realizing controlled application of a single-cubit operator U from the lecture notes.

- (4) Compute square roots of Pauli matrices X,Y,Z and the Hadamard matrix H.
- (5) Express the operator acting on a 4-cubit system by applying Hadamard H gate to the fourth cubit controlled by the parity of the first 3 cubits as a combination of Toffoli gates and single-controlled single-cubit operators.
- (6) Express the two-level operator M defined as

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & a & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & c & 0 & d \end{pmatrix}$$

as a composition of controlled single-cubit operators.

Express the two-level operator acting non-identically on $|0000\rangle$ and $|1111\rangle$ as a composition of controlled single-cubit operators.

(7) Decompose the matrix

$$\frac{\sqrt{3}}{3} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$$

into composition of two-level operators.