Gaussian Processe

Active Learning

@ You havee 'easy to get' unlabeled data.
@ The evaluation of data is expensive.
@ The task is to select the next data sample to evaluate.

scikit-activeml

@ Gaussian Processes coupled with Bayesian optimization may be viewed as a
special case for active learning.
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Gaussian Prc

Gaussian Processes

@ An infinite (continuous) number of Gaussian variables
o to any value x a new variable N(u = f(x), Xy|rest)

@ we have only a finite number of observations which means a finite number of
variables
e we can marginalize unobserved variables out (the integral is 1, we multiply by
1, we just remove),

@ we can predict at any x, continuously.

Brownian Motion
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Gaussian Processes

Gaussian Processes

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning,
the MIT Press, 2006

Definition (Gaussian Process)

A Gaussian process is a set of random variables where any finite subset follows
multivariate Gaussian distribution.

We define the mean m(x) and the symmetric positive semidefinite covariance
function k(x,x!):

E[f(x)]
k(x,x) = E[(f(x) = m(x))(f(x]) — m(x))]

a Gaussian process is

3
—
x
~

|

f(x) = gP(m(x),k(x,x‘)).

We assume m(x) = 0 it simplifies the formulas.
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Brownian Motion (Wiener Process)

https://www.coursera.org/lecture /stochasticprocesses,/week-4-6-two-definitions-of-a-brownian-motion-THRqL

Brownian Motion

—— Our trajectory
®  Observations

Definition (Brownian motion 1) 1960,
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Gaussian Processes

Definition (Brownian motion 2)

Definition (Brownian motion 1) Gaussian process with
@ By = 0 almost surely e m=20 and
@ B stationary and o k(x,x") = min(x,x").

independent increments
@ B, — B ~ N(0,s — t)

Positive semidefinite:
@ min(t,s) = f fr(x

0 fi(x)fs(x)=1iff x € [0, t]&x € [0,s]

e K(0,0) = min(0,0) =0
@ The process has variance 0 at t = 0 and m(0) = 0.

@ covariance is linear in both arguments, s > t

cov(Bs — By, Bs — B:) = cov(Bs, Bs) — cov(B:, Bs) — cov(Bs, Bt) + cov(B;.
s—2t+t=s—1t
@ increments, S > t > b > a # independence skipped, from Gaussian vectors
cov(By — B2, Bs — B) = cov(Bs, Bs) — cov(Ba, Bs) — cov(Bs, B:) + cov(Ba, Bt)

— Ik h —n
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Gaussian Processe:

Normal Distribution

Definition (Brownian motion 2) Observations [ ] [ | (o

Gaussian process with Gusion e (1 O O O

/ﬂj/ N /

e m=0 and Tnputs FLI JW HW ] FL

@ k(x,x") = min(x,x").

@ The covariance on y is defined by the covariance on the inputs x.

@ the covariance defines also the distribution on functions f:

£, ~ N0, K(X., X.)).

@ Without noise, we observe y and we want to predict f,:

f, KX, X) K(X., X.)

X=[3,7]
y™=[05, 1.11]
K(xs,X)=[min(xs,a) for a in X]

{y} N N(O, {K(X,X) K(X,X*)D

min(3,3) min(3, 7)}
3,7
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Gaussian Processe:

Prediction

@ noisy-free observations y = f(x)
cov(yp, ¥q) = k(Xp,Xq)
@ noisy observations y = f(x) + ¢, e ~ N(0,02)

COV(yp,yq) = k(xpaxq)-f—O'i(Spq
cov(y) = K(X,X)+oal

@ We observe y and we want to predict f,:

URIACE )

@ Predictive distribution

N(f., cov(f.))

f*|Xay7X* ~
f. 2 E[f|X,y, Xi] = K(Xo, X)[K(X, X) + o2ty
cov(f,) = K(X., X.) = K(Xe, X)[K(Xs, X) + 211K (X, X.)
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cov(f,) =

Gaussian Processes

N(F., cov(f.))
E[f. Xy, X.] = K(X, X)[K(X, X) + o2/ "ty
K(X., X.) — K(Xo, X)[K(X., X) + 0217 LK(X, X.)
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Gaussian

Predictive distribution

@ is a linear function of observations y @ The red vertical bars show
o for a <= (K+o2l) 1ty the variance due to the
° we predict observation noise.

f(x) = 3 aik(xi,x.)

Brownian Motion, Opoise = 25
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Gaussian Processes

Definition (First Set of Kernel Functions)

o Radial Basis Function (RBF) covariance function with the length scale
parameter £ is defined

1|x, — Xq|2
cov(f(xp), f(xq)) = RBF(xp,%q) = exp —e e,

o Constant covariance function with the constant parameter is defined

cov(f(x,), f(xq)) = Constant(x,,xq) = constant.

Squared exponential (SE) covariance function with hyperparameters ¢2
lenghtscale and o2 signal variance

1|x, — x4/?
k(xp,%q) = U%QXP<—2p€2q>

= Constant(xp, Xq)*RBF (xp, Xq)

can be defined as a product kernel of the Constant and RBF kernels.

There is also a sum kernel kernel function +.
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Scikitlearn Examples

@ The red vertical bars show the

@ Noiseless observations. variance due to the observation
2 Gaussian Process sklearn Example NoIse.
----- flx)= XSII:!(X]
s 2 e il 00 = xsin()
B 95% confidence interval —— Prediction

10 W= 95% confidence interval
¢ Observations

fix)

0 2 4 6 8 10

@ The parameters may be fitted by the gradient update.
@ The observation noise alpha may be specific for each observation (right),
identically 0 (left) or constant.

kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (100e-2, 100e2))
gp = GaussianProcessRegressor(kernel=kernel, alpha=dy ** 2)
gp-fit(X, y)
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Gaussian Processe:

Marginal likelihood

@ The parameters may be automatically tuned by gradiently maximize the
marginal likelihood.
@ 'In sample’ prediction f follows: f ~ N(0, K(X, X)).

The marginal log likelihood is
o for noisy-free observations 'y = f:

1 1 N
log p(y|X) = log p(f| X) = —EfTKflf— 5 log |K| — 5 log 27
o For noisy observations y|f ~ N(f,co21), y ~ N(0, K + o21)

1 1 N
log p(y|X) = f§yT(K + 027ty — 5 log |K + o2I| — 5 log 27.

The noise level may be tuned as well by (sum)adding the WhiteKernel.
WhiteKernel= noise_level iff we address the same variable (x,,X,), otherwise
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Hyperparameter Fit

Log-marginal-likelihood

100 -
4.67 x 10
a0 . 4.29x 101
Scikitlearn example: b
3.95x 10!
@ The log-marginal function has two = 363101
. 10 333x 10!
local maxima. 8
2 3.06 x 10
@ The log-marginal maxima 281100
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Gaussian Processes

Definition (Further Kernel Functions)

o ExpSineSquared kernel function with the parameters length scale ¢ and the
periodicity p > 0 (d is the distance) is defined

sin(md(xq, X
cov(f(xq), f(x,)) = exp (2 ( dézq» r)/P)).

Usefull for periodic functions.
o Dot product kernel function with the inhomogenicity parameter oy is
defined
cov(f(xp), f(Xq)) = 00 + Xp - Xgq.
Useful to capture the trend, often combined with exponential kernel.

o Rational Quadratic kernel function with hyperparameters 2 lenghtscale and

mixture «
d(xp, %)%\
o) = (14 S

The mixure of many RBF kernel lengthscales.
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Gaussian Pr

Conditional Covariance

@ Consider the conditional " Brownian Motion, Jnse = 25
covariance, the relation of two

0
unobserved points x and xg. M
-50 T O
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. . . g ~100 WWW#
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Gaussian

Conditional Covariance Rassmussen Example

@ The conditional covariance may be also negative.

@ Most kernels have a continuous first derivative. This makes the conditional
covariance negative with points on the other side of the closest observation.
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(a), posterior (b), posterior covariance
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Gaussian Processes

Matérn

@ Most kernel function have many derivatives.
@ The Matérn kernel v = 1.5 ('nu’) has only the first derivative. It is able to
model less smooth functions.

@ As v — o0, it becomes a RBF kernel.

Definition (Matérn kernel)
The Matérn kernel with parameters v = k + % and / is defined

k(xqu) = Q"%F(l/) (X/Eziyd(xqu)) Ku (V?d(xpvxtﬂ)

The Modified Bessel functions (for « not integer, the limit otherwise) are
defined

0o x\ 2m-+a
° ID&(X) = Zm:O m!F(m1+o¢+1) (E)

o Ky(x) = Zlali=ll)

sina
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Gaussian Processes

Bayesian Optimization

@ Bayesian Optimization is used when
o We are solving: x™ = arg miny f(x)
e f(x) is a black box function
e f is expensive to evaluate
o the evaluations may be noisy.
If any condition is not true, a better algorithm exists.
We search the point x to observe.
scikit-optimize = skopt Python package
we minimize y and search the maximal probability of improvement
"the chance to improve’ is expressed by the Expected improvement (E/)

Bayesian Optimization Algorithm

e Evaluate y on X, let y = y(X) and calculate conditional means and
covariances

@ repeat forever
o x"™ = argmax,El(x) add x into X
o Evaluate y = y(x) and add y to y.
o re—estimate the Gaussian process (the parameters of the covariance).
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Bayesian Optimization Example [Skopt]

Gaussian Process Model Expected Improvement function

== True (unknown)

— 6
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Expected Improvement Aquisition Function

@ we search the point x to observe
@ we minimize y, we already have the training data X,y

@ the search the maximal probability of improvement is expressed by the
Expected improvement (E/)

El(x) = E[(min(Y (X)) = Y(x)"Y(X)=Yy]
= E[(min(y) — Y(x))"|Y(X) =y]

this can be solved analytically (® cummulative df, ¢ pdf Gaussian distribution):

E1(x) = (minfy) — ()0 ( D) (s (D) E))
to maximize y:

El(x) = (u(x)—max(y))® (“(X) - ;’Eix)(” —¢ >+0(X)¢ (u(x> :Eax;m - §> |

o if 'xi" £ > 0 we ignore small improvements.
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Gaussian Processe:

Paralelization: The Constant Liar

El(x) = E[(min(Y(X)) = min(Y (x"D), Y(xD) Y (<m0))F v (X) = y
= E[(min(y) ~ Y(x))*|Y(X) = y]

it does not have direct formula. It is solved by Markov Chain simulation.
@ We estimate the observations y by an estimate (min, max, mean)
@ and run the evaluation in parallel.

That means the covariance is correctly estimated, the mean must be corrected
later.

ParBayesianOptimization R package )

Definition (Other Aquisition Functions)

@ Probability of Improvement: PI(f(x.) < min(y)) = ¢ (%)
o Lower Confidence Bound: LCB(x) = u(x) — & - o(x).
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Gaussian Prc

GP for Classification

@ GP for classification are more complex and 'only an approximation’
still, it is worth to try the
sklearn.gaussian_process.GaussianProcessClassifier .

@ We estimate a latent function f as before
e we link it to (0, 1) interval by the sigmoid function (or ).
@ The log-marginal-likelihood does not have a closed analytical form anymore.
@ can be approximated by Hessian matrix, the algorithm works in O(N?), not
too bad.
1.4 4 — Initial kernel: 1**2 * RBF(length_scale=1)
—— Optimized kernel: 66.3**2 * RBF(length_scale=1.33)
1271 ¢ Traindata
.. 101 @ Test data coen)
:,;%, 0.8
E
a 0.6
8 0.4
o
0.2

0.0 7oCOEEIOG) ODE €@ GO0

0 1 2 3 4 5
Feature
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Gaussian Processes

POMDP Applications

o Karkus, Hsu, Lee: QMDP-Net: Deep Learning for Planning under
Partial
Observability
https://proceedings.neurips.cc/paper/2017 /file/e9412ee564384b987d086df32d4
Paper.pdf

@ Eric Mueller and Mykel J. Kochenderfer :Multi-Rotor Aircraft Collision
Avoidance using Partially Observable Markov Decision Processes,
American Institute of Aeronautics and Astronautics
https://aviationsystemsdivision.arc.nasa.gov/publications/2016/AIAA-2016-
3673.pdf
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Gaussian Processes

POMDP Aircraft Collision Avoid

@ the algorithms designed for
fixed-wing aircraft analyze

e turns
e vertical meneuvers
e multirotor aircraft (drones) and
helicopters can also
o horizontal plane accelerations

e state 2D, (3D)

o relative range states r, ry, (r;)

e velocities for the ownship Vo, Voy,
(Voz)

e velocities for the intruder vi, vjy, y
(viz)

e absolute displacement from the

ance

Voy

desired trajectory dx, dy, (d:) @

o the desired trajectory is @@
normalized to unit velocity in the

xaxis and zero velocity in the y
axis.

/) o

Y
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Gaussian Processe

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds

simple update equation are sufficient

® 6 o o

not a benefit to using more complex dynamic
equations.

(]

ax, a, acceleration by the ownship

@ N, noise to the ownship, intruder, x and y axis
o No(p =0,0.305"2), N;j(z = 0,0.45572),

@ Bellman update

transition from s with acceleration a to s/

Q[s,a] + R(s,a +’yz (s!|s, a)max, Q[s!, al].

sl

Marta Vomlelova Machine Learning

= Vix = Vox
= Viy — Voy
= ax+ Nox
= a,+ Ny
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Gaussian Processe

Reward

@ Minimum reward R,

e collision
o physically impossible states
o keeps the sum finite

we prefer no acceleration

°
@ we prefer long distance to the intruder

o we prefer short distance to the desired trajectory
°

Ks, K, Rmin weights was learned, k weights was = 1.

1
R(s,a) = max | Rmin, —(kax|ax| + kay|ay|) — K

Ky (kagxd? + kg, d?
Serr)%"_kryr)% T( ¢ X+ & y)
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QMDP Approximation

o offline optimization

a few hours for coarse discretization, 1 PC

initially stationary intruders

intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

@ all values normalized

o the coarse set contained a total of 765,625 discrete states
o the finely discretized version contained 9,529,569 states.

State variable State Description Discretization
Tay Ty Intruder range components —-15,(-7,-3],-1,0,1,(3,7],15
, _5

ownship velocity components ,—3,-1,0,1,3,5 s~
intruder velocity components —5, [—3], —1,0,1,[3],5 s!

desired trajectory distance -10,[-3],-1,0,1,(3],10
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Gaussian Pr

Evaluation Function

@ The primary goal is to remain safely

separated from the intruder aircraft.

e rsycpa 'the closest point of
approach’, we allow 5%
trajectories a little bit closer.

o Figure: required 1.5 units, never

closer than 1.1 units.

@ Mean deviation distance from
the desired trajectory fidey .

Lateral Position

original CPA s
separation 7
|
o
s
A actual CPA
o~ scparation
e

| desired
separation

-10 0 10 20 30
Longitudinal Position

T

) R B 6

CPA Separation

Figure 3: Separation metric used to evaluate the collision avoidance algorithm

Tateral Position

‘mean

i e

deviation / /
/

deviation
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Reward Tuning — Bayesian Optimization

o We tune Rp = (K1, Ks, Rnin)

@ 3 weights the two objective
functions

F(Rp) = (Bx(rsvcpa) ' +(1—8) X fidev)-

o Gaussian process models F(Rp).

@ We determine the point at
which the objective function is
expected to have the largest
improvement, E[/(F(Rp))] over
that of the current minimum.

@ This set of Rp is passed to
QMDP to evaluate.

@ until convergence.

g By mamic  |Q(s,a) 7(b)
E[1(F(Re))]
Gaussian
Process

Objective
F(Rp) Function
B

T5%CPAs Hdev

‘ trajectories

Figure 5: Process for tuning POMDP reward parameters
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Bayesian Optimization

2| Gaussian process posterior on the objective function

@ we know QMDP and F values for

one or more X = Rp points i,

@ we search the point x = R} to
observe R

o we minimize y = F(Rp) and search ~_ [swssonfuncn
the maximal probability of
improvement

@ 'the chance to improve’ is ° s m m wm
faxpressed by the Expected Peter I. Frazier: A Tutorial on Bayesian Op-
improvement (E/) timization, rXiv:1807.02811v1 [stat.ML] 8

Jul 2018
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Gaussian Processe

Value lteration, QMDP Policies

| Lateral Position

considerable improvement in

convergence speed by
initializing by the value of
previously evaluated policy

the value of maximum negative ¢

reward influenced the
convergence speed

7 < 0.99 taking hundred
iterations to converge.

smaller + did not ensure the

return to the desired path.

No Action

Figures: Owhship at the origin
different intruder positions

policies indicated by color: black=up,
red=right

left: both own and intruder velocities
are zero, d =0

right: owhship is moving in the positive
y—axis direction at 1 s~1 with zero
trajectory error and nominal trajectory
matches the velocity.

The intruder is stationary.

T aneimdinal Pacitian
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Gaussian Processe

Beliefs

Uncertainty does not increase with time

State uncertainty is incorporated only when actions are selected

(]

a set of potential states is calculated from the observations received at each
step.

@ the potential states become the beliefs used to select an action.

7w(b) = max, Z Q(s™, a)p¥)
K

The value Q(s(), a)b(K) approximated from QMDP solutions

e rectangular interpolation between 2" nearest neighbor
e simplex interpolation between n + 1 nearest neighbor
e prior work has found little benefit to using more sophisticated approaches.
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Gaussian Prc

Pareto Optimal frontier

@ 194 parameter sets evaluated
@ 3 between 0.01 and 0.99 .
@ resulting in nine non-dominated, Pareto—optimal designs.

3 T T T T T
z @ —— QMDP optimal front
8 & QMDP designs
S 2f N
]
=
<
=
o
= 1) |
o
2
2 3
| ‘e

| | | |
0 1

el

Mean Deviation
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Gaussian Prc

Human Expert Check

o Left: intruder starts at (0,0), @ Right: The goal is hovering
@ random heading, fixed velocity of @ the intruder comes from the

the intruder right with the unknown
@ the ownship starts at the blue cross behaviour.

T + CPA locations

3 T~ x Ownship start points
£ 9
£ R ——

o/ Ownship stops o\

§ // ‘ allow inlrud::r‘ln pass X ‘

20 10 0 10 20 B m—

Longitudinal Position

Longitudinal Position
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State Discretization

The fine discretization improves the results.

1 1 T T T i
0.8 1
0.6 1
041 B
021

0 0 2 4 6 8 10 12 14 UO ;‘ lb 1‘5 20 25

CPA Separation Maximum Trajectory Deviation

(a) CPA separations

Figure 10: Cumulative distributions of encounter model metrics as a

(b) Maximum trajectory deviations

function of state discretization

Machine Learning

May 17, 2024

35 /57



Table of Contens

@ Overview of Supervised Learning

@ Kernel Methods, Basis Expansion and regularization
© Linear Methods for Classification

© Model Assessment and Selection

e Additive Models, Trees, and Related Methods
@ Ensamble Methods

@ Bayesian learning, EM algorithm

@ Clustering

e Association Rules, Apriori

@ Inductive Logic Programming

@ Undirected Graphical Models

@ Gaussian Processes

@ PCA Extensions, Independent CA

@ Support Vector Machines

Machine Learning May 17, 2024 57 /57



	Overview of Supervised Learning
	Kernel Methods, Basis Expansion and regularization
	Linear Methods for Classification
	Model Assessment and Selection
	Additive Models, Trees, and Related Methods
	Ensamble Methods
	Bayesian learning, EM algorithm
	Clustering
	Association Rules, Apriori
	Inductive Logic Programming
	Undirected Graphical Models
	Gaussian Processes
	PCA Extensions, Independent CA
	Support Vector Machines
	Summary

