QUANTUM INFORMATION

MFF UK

- (0) Compute the norm of the complex vector (0) in the one-dimensional arithmetic vector space over \mathbb{C} . Compute the norm of the complex vector $|0\rangle \in \mathbb{H}_2$.
- Let

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 $|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

- (1) Show that $\{|+\rangle, |-\rangle\}$ forms an orthonormal basis of \mathbb{H}_2 .
- (2) Express $|0\rangle$ and $|1\rangle$ as linear combinations of $|+\rangle$ and $|-\rangle$. Then, compute the corresponding transition matrix.

Pauli matrices are defined as

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and the Hadamard matrix as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \,.$$

- (3) Which of the above four matrices is normal?
- (4) Compute $X^{-1}, Y^{-1}, Z^{-1}, H^{-1}$.
- (5) Do the Pauli matrices commute with each other?
- (6) Find eigenvalues, eigenvectors, diagonal form, and spectral decompositions of X, Y, Z, and H.
- (7) * Let U, V be complex vector spaces endowed with scalar product \cdot_U, \cdot_V . Let φ be a linear operator from U to V. Recall that the adjoint operator φ^{\dagger} is defined as a linear map from V to U satisfying $\varphi^{\dagger}(u) \cdot_V v = u \cdot_U \varphi(v)$.

Let U be \mathbb{C}^n and V be \mathbb{C}^m both with the standard dot product. Let φ be given by the matrix A. Show that A^{\dagger} is the matrix representation of φ^{\dagger} .