QUANTUM INFORMATION

MFF UK

(0) Compute norm of the complex vector (0) in the one-dimensional arithmetic vector space. Compute norm of the complex vector $|0\rangle \in \mathbb{H}_{2}$.
Let
(1) Show that $|+\rangle,|-\rangle$ is an orthonormal basis of \mathbb{H}_{2}.
(2) Express $|0\rangle$ and $|1\rangle$ in terms of $|+\rangle$ and $|-\rangle$ and compute their transition matrix.
Pauli matrices are defined as

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and the Hadamard matrix as

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

(3) Verify whether the above matrices are normal.
(4) Find inverses of X, Y, Z and H.
(5) Verify whether Pauli matrices commute.
(6) Find eigen-values, eigen-vectors, diagonal form, and spectral decomposition of X, Y, Z and H.
(7) * Prove that A^{\dagger} really equals φ_{A}^{\dagger} when scalar product is the standard one. How would φ_{A}^{\dagger} look like for general scalar product?

