Undirected (Pairwise, Continuous) Graphical Models

@ The generative model represents the full probability distribution P(X).

@ Missing edges represent conditional independence of the variables.

Raf

Meg/O Jnlé

o Cytometry dataset (ESLII) m
o N = 7466 cells Pleg

@ p = 11 proteins \E
@ We ame to model protein PIPZ KE

co-occurence probability.
PIP3 A
Erk
[¢] o]

sklearn.covariance.GraphicallLasso # basics J

gRbase # the recommended R package
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Other Application

Yin, Jianxin & Li, Hongzhe. (2011). A sparse conditional Gaussian graphical model for analysis

of genetical genomics data. The annals of applied statistics. 5. 2630-2650.

o Cytometry dataset (ESLII) . v el TL T
@ py = 54 gene level expressions I . T _7;: :'.l
@ px = 188 markers (discrete) - - _-”g_-_ :_
o YPY|XPX ~ L el %
N (MPY*Px XPx 3 PYXPy) i Y - - .___'* !'lrr;: =
conditional Gaussian distribution I S T

@ Top: Black color indicates
significant association
p — value < 0.01 in the linear
regression.

@ Bottom: The undirected graph of
43 genes constructed on the
cGGM.
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Data: carcass

Data: carcass #Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen:
Graphical Models with R, Springer.

mean.
Fatll 16.00
Meatll 52.00
Fat1l2 14.00
Meatl2 52.00
Fat1l3 13.00
Meat1l3 56.00
LeanMeat  59.00
2  Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat
Fatll 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08
Meatll 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fatl2 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95
Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fat13 7.66 2.01 6.84 2.18 7.62 0.38 -6.93
Meatl3 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23
LeanMeat  -9.08 533 -7.95 6.03 -6.93 7.23 12.90
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Gaussian Graphical Models (Undirected Graphs)

e Multivariate Gaussian Distribution on variables X = (Xi,..., X))
=1 —3(x=p) T (x—p1)
° Px) = e
o |.| is the determinant. we denote p the number of components in x. Then
[27X| = (2m)P|x].

e If X is not invertible it has dependent columns. It means that the variables x;
are lineary dependent.
o If the rank of ¥ is £ then there exists a matrix A and a vector v so:
e x = Az + v for new coordinates z with ¢ dimensions
o We just consider the new coordinates and assume X has a full rank.
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Concentration matrix

e Concentration (Precision, koncentracni) matrix

K=3x"1

For u # v, k,, = 0 if and only if y, and y, are conditionally independent given all
other variables.

k*¥100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll 44 3 -20 -7 -16 4 10
Meatl1l 3 16 -3 -6 -6 -6 -3
Fatl2 -20 -3 54 6 -21 -5 9
Meat12 -6 6 14 -1 -9 -0
Fat13 -16 -6 -21 -1 56 3 7
Meat13 4 -6 -5 -9 3 16 -1
LeanMeat -3 9 -0 7 -1 26
@ If looking for small values better to 'scale’ the entries into Partial Correlation
matrix.
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Partial correlation matrix

Definition (Partial correlation matrix)

Partial correlation matrix is defined from K by

_kuv
Puv|V\{uwv} = /7/(”” kvv .

Lemma

In contrast to concentrations, the partial correlations are invariant under a change
of scale and origin in the sense that if X;" = a;X; + b;, j=1,...,p then
avauk;jv = kyy and PT,\,W\{W} = Puv|V\{uv}-

p*100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll - -11 41 30 32 -16 -29
Meatll -11 - 9 41 19 35 16
Fatl2 41 9 - -24 38 18 -24
Meat12 41 -24 - 2 61 2
Fat13 32 19 38 2 - -9 -18
Meatl3 -16 35 18 61 -9 - 7
LeanMeat 16 -24 2 -18 7 -
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Models

@ The simplest model just removes edges with small [p,, |\ (|- Penalized
criteria will be introduced later.

eanMeal
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Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)

An undirected Gaussian graphical model is represented by an undirected graph
G =(X,E), X ={Xq,..., Xy} represent the set of variables and E is a set of
undirected edges.

When a random vector x follows a Gaussian distribution N,(u,X), the graph G
represents the model where K = Y1 is a positive definite matrix with k,, =0
whenever there is no edge between vertices u, v in G.

This graph is called the dependence graph of the model.

For any non adjacent vertices u,v € G it holds: ullv|X\ {u, v}.

Definition (Generating class)

Let C = {C,..., Cc} be the set of cliques of the dependence graph G. A set of
functions g1(), (), - . ., gk() defined on gj(xc,) is called a generating class for
the distribution

fx)= ]I ailxc).

i k
DEEED!
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Marginalization

o We have\/ﬁe_%(x—u)zfl(x—ﬂ)

@ We want the distribution over variables
{X33X57X7} - {Xla cee 7Xp}

Marginal of a Gaussian Distribution

The marginal of a Gaussian distribution is
calculated by removing appropriate dimen-
sions from the mean and covariance matrix.

o p357 = (13, /15, f17) and

Y33 Y35 X7
Y357 = |¥53 Xs5 Xs7
Y73 X75 X7
® Dy x50 =
1 e*%(X3,5,7*Ma,s,?)zg_,ég(xs,SJ*H3,5,7)

A/ |27TZ3,5,7|
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Conditioning

o We ame for ¢(A|B) where

o AC {x,...,%} having g elements,
o the rest B={x1,...,%x} \ A has (p — q) elements.

@ We rearrange the rows and columns to have A together. Then we get

XA HA
X = one column), u = one column),
K =[] )

s _ [ZAA > B
YA 2B

qgxq gx(p—q)
p—q)xq (pP—q)x(p—q)|

Conditional Gaussian

The parameters of the conditional Gaussian distribution ¢(A|B = b) =
N(pag=b, Zag=b) are:

] with dimensions {(

fap=s = pa+ZasTps(b—ps)

ZA|B=b = ZAA — ZABZEéZBA-

Covariance matrix differs but does not depend on the observation b. It depends

on the fact B was observed.
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Conditional Gaussian Example

o’ =(1,2,3,4)

10 1 5 4 5.yl [0418 0275
oy _ |1 10 2 6 AB%BB = 10,0220 0.593
“ |5 2 10 3 -
4 6 3 10 ® fiaig=b = pia + T gz(b — pg)
. 0418 0.275] [(2.8 —3)
° \(/\2/eSOZSf)rved (X3, Xs) tobe @ pap= [2} + [0.0220 0.593} {(4.1 - 4)]
@ We ask for ¢(A|B) = o jap = [ﬂ i [—000(!)3556} _ [gggﬂ
d({ X1, X2 }{ X3, Xa}) : e
5 (5 4 ® YaB=b = Xaa — LaBX ggLpA
EE: 6} oy, - [10 1] _[253 226
10 3 AlB=b = 11 10 226 4.13
° s =3 10] - . [7.47 —1.26}
- A|B=b =
g1 [ 011 0033 | ~126  3.65
BB~ |-0.033  0.11
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Partition Matrix Inverse Properties

@ The concentration matrix K = ¥ ~1 is the inverse of the correlation matrix,

therefore:
Kaa Kag\ (Xaa Xag) _ (laa 0
Kea Kgs) \XBa XgB 0 Igs
@ From the top right part we get:
KaaXas + KagXps=0
~KaaZagTps = Kas(l) (5)
Yas¥psy = —KuiiKas(2). (6)

@ Take the top left part and substitute (1):

KaaXaa + KapXpa = laa
KaaZan + (—KaaZagZpsZea) = laa
Kia = Zaa—XagZpalsa.
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Regression Coefficients

pag—p = fa+XasTps(b— pis)
Yas=b = Xaa— Laslppisa

o Consider x; to be a linear function of others with the noise e; ~ N(0,0?):

X1)2..p = P14+ Pr2xo+ P1zxz+ ...+ BipXp + €1

@ Set A the first dimension, B the remaining (p — 1) x (p — 1) matrix:

X2
X1|B=(x,....%)T = HMABT ZABZELI; | —HB | Te€
Xp
o Recall (2): YA pp = —KuaKas
o then o7 = ;- with coefficients /3
(klg, ey klp)

(Br2y -+, P1p) = —

ki1
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Fit Linear Gaussian CPD

@ To fit ML model of a linear gaussian CPD,

e you fit the linear regression.

= Bo+Bixi+ Boxo+ ...+ Ppxp+ €1
(XTX)"1XTy
Gy = Cov(Y,Y) ZZﬁBJCOV[X,,X]

= <
|

Cov(Xii X)) = E[X--X-l—E[x,J-E[X,-]

E[X] = Z Xij

rows i€rows

from pgmpy.factors.continuous import LinearGaussianCPD
ml=maximum_likelihood_estimator(data, states)
cpdY fit(data, states, estimator=ml, complete_samples_only=True)

https://cedar.buffalo.edu/~srihari/CSE674/Chap7/7.2-GaussBNs.pdf
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Parameter Learning for a Gaussian Graphical Model

o Let us have the data x{ ,...,xJ over variables x ~ N,(u, X).

°eS=1% Z,{V:l(x,- —X)(x; — X)T is the empirical covariance matrix.

@ Our model is represented by the concentration matrix © = ¥~ and mean p.
o Log-likelihood of the data is

) N N N, _ -
loglik(©, 1) = > log |©] — Etr(@S) - E(X —uw)TO(x — p).

o for a fixed © is the maximum for p: p = x and the last term is 0. We get

o loglik(©, 1) x log|®| — tr(©S)

o where tr(©S) =3, %", uvSu, therefore only s,, corresponding to non-zero
0., are considered by the sum.

@ We replace the equality conditions by Lagrange multiplyers:
Lc(©) = log|®| — tr(©S) — E(j,k)gyf YikOj

@ We maximize. The derivative © should be zero (I is a matrix with non-zero
for missing edges):

@ '-5-T=0
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Towards the Algorithm

o We iterate one row/column after another.
@ We start with the sample covariance matrix
WO «~ S
@ We derive the formula for the last row/column: the derivative
Wi wio . Su s . M1 72 —0
w,  wx sh o S» 2 22
@ The upper right block can be written as wys — s10 — 712 = 0.

e W is inverse of ©

Wi wi) (On b2\ _ (1 0
le W22 917; 922 OT 1
@ therefore the last column without last row is:

wip = —Wi1012 /00 = Wi 8

@ Substitute into the derivative Wi1 6 — s1p — 12 =0
@ we solve for the rows with zero v: 3* = (W)~ tsf,.
@ The diagonal 6y, is (1 bottom right): é = Wy — whf.
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Estimation of an Undirected Graphical Model Parameters

1: procedure GRAPHICAL REGRESSION:( S sample covariance )
2 W <« S initialize

3 repeat

4 for j=1,2,...,pdo

5: Partition W; jth row and column, Wi; the rest
6 solve Wy 5" — si, = 0 for reduced system

7 ,BA’ — B* by padding with zeros

8 update wyp < Wllﬁ

9 end for

10: until convergence

11: for j=1,2,...,pdo

12: lines 5:-8: above and set

13: O < m

14: 912 < 76 . 922

15: end for

16: end procedure
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Example (ESLII

10.00 1.00 5.00 4.00
_¢_|100 1000 200 6.00
5.00 2.00 10.00 3.00
400 6.00 3.00 10.00
[10.00 2.00 6.00 [10.00 1.16  4.00
Wiy 2.00 10.00 3.00 Wa, = |1.16 10.00 3.00
| 6.00 3.00 10.00 | 400 3.00 10.00
. [10.00  6.00 . _ [10,00 1.16
Wi 6.00 10.00} oo = 1116 10.00}
Wl [0.156  —0.094 wel o [0.101  —0.012
1 |—0.094 0.156 27 |-0.012 0.101
B* [-0.22,0.53]" f2* = [0.08,0.19]"
8 [-0.22,0,0.53]" f2 = [0.08,0.19,0]"
Wiz [1.00,1.16,4.00] " wa, <+ [1.00,2,0.88]7
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Structure Learning

@ We add a lasso penalty ||©||; which denotes the L; norm
o the sum of the absolute values of the elements of © and we ignore the
diagonal.
e The negative penalized log-likelihood is a convex function of ©.

@ we maximize penalized log-likelihood
log|©| — tr(©5) — A[|©]]y
@ the gradient equation is now

O - S—\Sign(®) =0

e sub-gradient notation
o Sign(0j) = sign(6jx) for O # 0
o Sign(0) € [-1,1] for 0jx =0
@ the update for the first row and column will be

W11 — s12 + ASign(3) = 0

e since 3 and 612 have opposite signs.
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1: procedure GRAPHICAL LASSO:( S sample covariance, A penalty )
2 W « S + Al initialize

3 repeat

4 for j=1,2,...,pdo

5: Partition W; jth row and column, Wi; the rest

6 solve W18 — s12 + ASign(B) = 0 using the cyclical

7 ... coordinate-descent algorithm for the modified lasso
8 update wys by WnﬁA

9 end for

10: until convergence

11: forj:lA,2,...,pdo

12: solve 6 o

13: solve 912 < —B : 922

14: end for

15: end procedure
16: procedure COORDINATEDESCENT:( V « Wiy )
17: repeat j=1,2,....p—1

18: By = S(s12 — Xy ViiBis N/ Vi
19: until convergence
20: end procedure #5(x, t) = sign(x)(|x| — t)+
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Example (glasso)

11.00 1.00 5.00 4.00
o N1 B ~ [ 1.00 11.00 2.00 6.00
Wo=5+A=1500 200 1100 3.00

400 6.00 3.00 11.00

11.00  2.00 6.007 . 2.4 6-21
W = |200 1100 300| % =S1-7 - 5 /11~ 016
6.00 3.00 11.00 3.21
. §2):5(5+032—Tl)/11~035
sh = [1.00 5.00 4.00] ,
ﬂT,(O) — [0 0 O] 64 = ...
V o« W11 R e
0 11.00 0.05 4.03 3.01
30 = S(6-01/11 =2 W~ | 005 1100 200  6.00
1 ~

4.03 2.00 11.00 3.00
3-4 21
Vo= se-Tr

11="=
11 1)/ 51 3.01  6.00 3.00 11.00
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Graphical Lasso Properties

o Computational speed

The graphical lasso algorithm is extremely fast

can solve a moderately sparse problem with 1000 nodes in less than a minute.
It can be modified to have edge—specific penalty parameters Aj

setting A\jx = oo will force @ to be zero

graphical lasso subsumes the parameter learning algorithm.

@ Missing data
e some missing observations may be imputed by EM algorithm from the model
o latent — fully unobserved variables — do not bring more power in Gaussian
graphical model
o latent variables are very important in discrete distributions.

sklearn.covariance.graphical_lasso J
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Model Quality (Model Selection)

Definition (Saturated model, GGM Deviance, iDeviance, Likelihood Ratio Test)

o saturated model - full model with all edges, it has maximal loglikelihood

@ Deviance

o A s-1 N
D =dev=2-(ls — ) = Nlog | Rll = —Nlog|SK|

o independent model - no edges, it has minimal likelihood

@ iDeviance

P
iD = idev =2 - (@—@;nd) =N <I0g|f(| —l—ZIogs,-,-)

i=1

o Irt likelihood ratio test for models M; C M,

2 | Kol
Irt=2-(lp — 1) = Nlog —.
K
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Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)

An Undirected Graphical Model (Markov graph, Markov network) is a graph

G = (V, E), where nodes V represent random variables and the absence of an
edge (A, B) denoted A 1L g B implies that the corresponding random variables are
conditionally independent given the rest in the probability distribution P(V).

AllgB=sAlpB|V\{A B} (10)

is known as the pairwise Markov independencies of G.

Definition (Separators)

e If A, B and C are subgraphs, then C is said to separate A and B if every
path between A and B intersects a node in C.

o C is called a separator.

@ Separators break the graph into conditionally independent pieces.

Machine Learning Undirected (Pairwise Continuous) Graphical Models 2 38 - 120 February 22, 2023 60 / 361



Markov Properties

Definition (Global Markov Property)

A probability measure P over V is (globally) Markov with respect to an
undirected graph G iff for any subgraphs A, B and C holds:

@ if C separates A and B then the conditional independence A 1L p B|C holds,
that is

A lLg B|C = P(A|C) - P(B|C) = P(A, B|C). (11)

vy

Theorem

The pairwise and global Markov properties of a graph are equivalent for graphs
with strictly positive distributions.

o Gaussian distribution is always positive.
@ We may infer global independence relations from simple pairwise properties.

@ The global Markov property allows us to decompose graphs into smaller more
manageable pieces.
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Markov Random Fields (Markovska nahodna pole)

@ A probability density function f over a Markov graph G with the set of
maximal cliques {Cy, ..., Cx} can be represented as

f(x) = . I ¢itxe) =vilxa) - vulxc) (12)

@ where ); are positive functions called clique potentials.

@ they capture the dependence in X, by scoring certain instances xc, higher
than others.

e with the normalizing constant (partition function) Z

Z= / exp| Y loggi(xc)
X

i=1,....k

@ For Markov networks with positive distributions the probability density
function (12) implies a graph with independence properties defined by the
cliques in the product.
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Pairwise Markov Graphs

@ A graphical model does not always uniquely
specify the higher—order dependence structure of
ta joint probability distribution.

FO(xy,2) = Zaleyalx,2)ds(r,2)

FO(x,y.2) = %w(wv ?) @7@

@ For Gaussian distribution, parwise interactions
fully specify the model.
@ We focus on pairwise Markov Graphs

e where at most second order interactions are represented (like f(z)).
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Undirected models with discrete variables

e Boltzmann machine (=Ising models; a special case of Markov random
field)
o visible and hidden nodes
e only pairwise interactions
e binary valued nodes
e constant node Xp = 1.

p(X,0) = exp| > 0yXXc—d(O)
(,k)€EE

®(©) = log > |exp( Y 0uXiXe)

xeX (j,k)EE

@ Issing model implies a logistic form for each node conditional on the others
1

L+ exp(—bjo — > ek Okxk)

PG = 11Xy = x) =

@ Restricted Boltzmann machines

o two layers, the visible and the hidden layer, no edges inside a layer - it is easier
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Boltzmann machine learning

@ Parameter learning

o iteratively
o for example Iterative proportional fitting IPF Jirousek and Pfeudil.

@ Structure learning

o for example Hoefling and Tibshirany: glasso extension to discrete Markov
Networks.
o still slow and not very precise.

@ Restricted Boltzmann machine

o fitting the model is faster due to the conditional independence.
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Restricted Boltzmann Machine Example (ESLII)

Two layers:

V a visible layer

‘H a hidden layer X Hidden
X

no links inside a layer. 0,1
Example:
Xj

@ V) binary pixels of an image of a

handwritten digit Visible V; Visible V),
@ )V, 10 units for observed class ool N (/A2
labels 0-9

i3 i}
2232 25>%7

hidden | in the | 4
o;wgo::ae.l en layers in the lower 2699475655
. . . ] L2\ T T4
o Fitted by contrastive divergence 2% s/ 7
(not part of this lecture) b8373540997

@ or Gibbs sampling, but it is slow.
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Markov Properties (Zeros are dangerous)

Definition (Markov properties: Global, Local, Pairwise)
Let G be an undirected graph over V, let P be a probability measure P over V.

(GM) P is (globally) Markov with respect to G iff

V(A,Be V,CC V) AlgBIC=AlpB|CinP.

(LM) A probability measure has the local Markov property iff
(VA € V) c Aldlp V\FaA|NA

(PM) P has the pairwise Markov property iff VA, B € V, A # B not connected by
an edge holds A 1L p B|V \ {A, B}.

These properties are equivalent for strictly positive measures.

Counterexamples for measures with zero probability everywhere except (0, 0, 0)

and (1,1,1).
See [Milan Studeny:Struktury podminéné nezévislosti, Matfyzpress 2014].
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Examples

Example (P has the pairvise but not the local

property)

V ={AB,C},E={(b,c)}. Let us have a
binary probability measure V' nonzero at points
(0,0,0) and (1,1,1) [Studeny p.101].

Al B|{C} :
Al C|{B}& does not imply A 1L BC|{}.

Example (P has the local but not the global
property)
V={AB,C,D},E={(a,b)(c,d)} Let
P(V) be nonzero only at points (0,0,0,0) and
(1,1,1,1) [Studeny p.101].

Al CD|{B}
- o
C 1 AB|{D}& does not imply A 1L C|{}.

D 1L AB|{C}

v
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Linear Gaussian CPD

Definition (Linear Gaussian CPD)

For a variable Y with parents X = Xi,..., Xx the Linear Gaussian model is
defined by the mean of Y and a linear function of X and the variance of Y does
not depend on X.

from pgmpy.factors.continuous import LinearGaussianCPD
cpdY = LinearGaussianCPD('Y’, [0.2, -2, 3, 7], 9.6, ['X1', X2, "X3'])
cpdX1 = LinearGaussianCPD('X1’, [0.2], 1, [])

@ We may define Gaussian Bayesian Networks.
o Usually, undirected models are used.

@ Mixed interactions models Bayesian network with discrete and conditional
Gaussian nodes; no descrete child of a gaussian parent

o (generally, not a clear semantics).
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Canonical Form of a Gaussian Distribution

Definition (Canonical Form of a Gaussian Distribution)

For a Gaussian Distribution ¢(x) = \/lzlﬂiﬂe’%(x’“)zfl(x’”) we define its
canonical form C(X; K, h, g) where

@ concentration matrix K = ¥ 1

e h=Ku

o g =—5log(2rm) + Llog(|K|) — 2uT Kp.

@ We can rewrite the join probability density to
el 1
o0 = @0 Kl e {5 x- k(- 0}
—81p0d L 7 T 1 r
= (2m)72|K|2 exp 5 Kp+h X = 5% Kx
T 1 7
= expyg+h x—Ex Kx

1
= €&xp {g + X hyxy — zzu,vKu,vxuxv}

Machine Learning Undirected (Pairwise Continuous) Graphical Models 2 38 - 120 February 22, 2023

70 / 361



Gaussian Distribution Decomposition

If the concentration matrix of a multivariate Gaussian distribution fulfills condition
of a graph model then the distribution can be written as a product of distributions
on cliques of the graph.

° ¢(X) = exp {g + Xucvhuxy — %zu,vKu,vXuxv}
@ Let us have two sets of vertices A, B separated by the set C. Then
Yue A, veBk, =0.
o We split the summation in the formula: ¢(x) =
exp { 1 4 + ZuEALJChuxu + ZveBuCthv - zVECthv }
_E(Zu,vEAUCKu,vxuxv + ZU7VEBUCKU,VXUXV - Zu,vECI{u,vXuXV)
o therefore ¢(x) = g(A, C)h(C, B).

A C B
A | Kaa  Kac |
C Kac Kcc Kces
B | Kec  Kss |
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