
Undirected (Pairwise, Continuous) Graphical Models

The generative model represents the full probability distribution P(X ).
Missing edges represent conditional independence of the variables.

Cytometry dataset (ESLII)
N = 7466 cells
p = 11 proteins
We ame to model protein
co-occurence probability.

626 17. Undirected Graphical Models
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FIGURE 17.1. Example of a sparse undirected graph, estimated from a flow
cytometry dataset, with p = 11 proteins measured on N = 7466 cells. The net-
work structure was estimated using the graphical lasso procedure discussed in this
chapter.

As we will see, the edges in a graph are parametrized by values or po-
tentials that encode the strength of the conditional dependence between
the random variables at the corresponding vertices. The main challenges in
working with graphical models are model selection (choosing the structure
of the graph), estimation of the edge parameters from data, and compu-
tation of marginal vertex probabilities and expectations, from their joint
distribution. The last two tasks are sometimes called learning and inference
in the computer science literature.

We do not attempt a comprehensive treatment of this interesting area.
Instead, we introduce some basic concepts, and then discuss a few sim-
ple methods for estimation of the parameters and structure of undirected
graphical models; methods that relate to the techniques already discussed
in this book. The estimation approaches that we present for continuous
and discrete-valued vertices are different, so we treat them separately. Sec-
tions 17.3.1 and 17.3.2 may be of particular interest, as they describe new,
regression-based procedures for estimating graphical models.

There is a large and active literature on directed graphical models or
Bayesian networks; these are graphical models in which the edges have
directional arrows (but no directed cycles). Directed graphical models rep-
resent probability distributions that can be factored into products of condi-
tional distributions, and have the potential for causal interpretations. We
refer the reader to Wasserman (2004) for a brief overview of both undi-
rected and directed graphs; the next section follows closely his Chapter 18.

sklearn.covariance.GraphicalLasso # basics

gRbase # the recommended R package
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Other Application

Yin, Jianxin & Li, Hongzhe. (2011). A sparse conditional Gaussian graphical model for analysis
of genetical genomics data. The annals of applied statistics. 5. 2630-2650.

Cytometry dataset (ESLII)
pY = 54 gene level expressions
pX = 188 markers (discrete)
Y pY |X pX ∼
N (MpY×pXX pX ,ΣpY×pY )
conditional Gaussian distribution
Top: Black color indicates
significant association
p − value < 0.01 in the linear
regression.
Bottom: The undirected graph of
43 genes constructed on the
cGGM.

A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL 15

(a)

(b)

Fig. 2. Analysis of yeast MAPK pathway. (a) Association between 188 markers and 54
genes in the MAPK pathway based on simple regression analysis. Black color indicates
significant association at p-value< 0.01. (b) The undirected graph of 43 genes constructed
based on the cGGM.Machine Learning Undirected (Pairwise Continuous) Graphical Models 2 38 - 120 February 22, 2023 38 / 361



Data: carcass

Data: carcass #Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen:
Graphical Models with R, Springer.

mean.
Fat11 16.00

Meat11 52.00
Fat12 14.00

Meat12 52.00
Fat13 13.00

Meat13 56.00
LeanMeat 59.00

Σ Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08

Meat11 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95

Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fat13 7.66 2.01 6.84 2.18 7.62 0.38 -6.93

Meat13 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23
LeanMeat -9.08 5.33 -7.95 6.03 -6.93 7.23 12.90
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Gaussian Graphical Models (Undirected Graphs)

Multivariate Gaussian Distribution on variables X = (X1, . . . ,Xp)
φ(x) = 1√

|2πΣ|
e− 1

2 (x−µ)Σ−1(x−µ)

|.| is the determinant. we denote p the number of components in x. Then
|2πΣ| = (2π)p|Σ|.

If Σ is not invertible it has dependent columns. It means that the variables xj
are lineary dependent.

If the rank of Σ is ` then there exists a matrix A and a vector ν so:
x = Az + ν for new coordinates z with ` dimensions
We just consider the new coordinates and assume Σ has a full rank.

+

+

+

+

+

+

++ ++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

++

+
+

+

+ +
+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+
+

++

+

+

+ +

+

+

+

++

+

+ ++

+

+

++

+

+

+

+

+ +

+
+

+

+
+

+
+ +

+

++

+

+ +

+

+

+
+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+
+

+

+ ++
+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+ +

+ +

+

+
+

+

+
+

+
+

+

+

+

+

+

++

+

+
++

+

+

+
+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

++
+

+

+

+

+
+

+

+

+

+

+
+

+
+

+
+

+

++

+
+

+

+

+

+
+

+

+
+ +

+
+

+
+

+

+ +

+

+

+
+ +

+

+

++

+

+

+

+

+

+

+

+

+

+

++
+

+

+ +

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

++

+
+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+ +

+

+ ++ +

+

+

+

+
+

+

+

+

+
++

+

+

+

+

+

+ ++ +

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

+
+

+
+

++

+

+

+

+

+

+

+
++

+
+

+

+

+

+

+

+

+

+
+

+

++

+

+

+ +

+

+

+

++

+

+

+

+

+

+

+ +

+

++

+

+

+

+

+

+

+
+

+

++

+
++ +

+

+

+

+

+

++

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+ +

+

+

+

+

+

+

+ +
+

+

+
++

+

++

+

+
+

++ +

+

+

+ +
+

+
+

+
+

+

+

+

+

+
+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+

+ +

+

+
+

+

+

+

+

+
+

+
+

+

+ +

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+ +

+
+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+
+

++
+

+

+

+

+

++
+

+

+

+ +
+

+

+

+

+

+
+

+ +

+

+

+

+

+

+

+

+

+
++

+

+
+

+

+

+

+

+
+

+

+

+

+
+

+

+

++ ++

+

+

+

+

+

+

+

+

+
+

+ + +

+

+

+
+

+

+

+

+
+

+

+

+

+ +

+

+

+
+

+

+

+ +

+

+

+ +

+
+

+
+

+ +

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

++
++

+ +

+

+

+
+

+
+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

++

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+
+ +

+

+

+

+

+ +

+

+

+

+

+

+
+

+

++
+

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

++ +

+

+

+

+

+

++ +
+ +

+
+

+
+

+

++

++

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+ +

+

+
+ +

+

+

+

+

+

+

+

+

+
+

+

++

+ +

++
++

+ +

+

+
+

+

+
+

+
++

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+
+

++ +

+
+

+

++
+

+

+
+ +

++

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+
+

+

−30 −20 −10 0 10 20 30

−
30

−
20

−
10

0
10

20
30

Margin No. 1

M
ar

gi
n 

N
o.

 2

bivn.kde1

Y

Z

Machine Learning Undirected (Pairwise Continuous) Graphical Models 2 38 - 120 February 22, 2023 40 / 361



Concentration matrix

Concentration (Precision, koncentrační) matrix
K = Σ−1

Lemma
For u 6= v, kuv = 0 if and only if yu and yv are conditionally independent given all
other variables.

k*100 Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 44 3 -20 -7 -16 4 10

Meat11 3 16 -3 -6 -6 -6 -3
Fat12 -20 -3 54 6 -21 -5 9

Meat12 -7 -6 6 14 -1 -9 -0
Fat13 -16 -6 -21 -1 56 3 7

Meat13 4 -6 -5 -9 3 16 -1
LeanMeat 10 -3 9 -0 7 -1 26

If looking for small values better to ’scale’ the entries into Partial Correlation
matrix.
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Partial correlation matrix

Definition (Partial correlation matrix)
Partial correlation matrix is defined from K by

ρuv |V\{uv} = −kuv√
kuukvv

.

Lemma
In contrast to concentrations, the partial correlations are invariant under a change
of scale and origin in the sense that if X∗j = ajXj + bj , j = 1, . . . , p then
avauk∗uv = kuv and ρ∗uv |V\{uv} = ρuv |V\{uv}.

ρ ∗ 100 Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 - -11 41 30 32 -16 -29

Meat11 -11 - 9 41 19 35 16
Fat12 41 9 - -24 38 18 -24

Meat12 30 41 -24 - 2 61 2
Fat13 32 19 38 2 - -9 -18

Meat13 -16 35 18 61 -9 - 7
LeanMeat -29 16 -24 2 -18 7 -
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Models

The simplest model just removes edges with small |ρuv |V\{uv}|. Penalized
criteria will be introduced later.

AIC

Fat11

Meat11

Fat12

Meat13

LeanMeat

Fat13

Meat12

BIC

Fat11

Meat11

Fat12

Meat13

Meat12

Fat13

LeanMeat
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Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)
An undirected Gaussian graphical model is represented by an undirected graph
G = (X ,E ), X = {X1, . . . ,Xp} represent the set of variables and E is a set of
undirected edges.
When a random vector x follows a Gaussian distribution Np(µ,Σ), the graph G
represents the model where K = Σ−1 is a positive definite matrix with ku,v = 0
whenever there is no edge between vertices u, v in G .
This graph is called the dependence graph of the model.

Lemma
For any non adjacent vertices u, v ∈ G it holds: u⊥⊥v |X \ {u, v}.

Definition (Generating class)
Let C = {C1, . . . ,Ck} be the set of cliques of the dependence graph G. A set of
functions g1(), g2(), . . . , gk() defined on gi (xCi ) is called a generating class for
the distribution

f (x) =
∏

i=1,...,k
gi (xCi ).
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Marginalization

We have 1√
|2πΣ|

e− 1
2 (x−µ)Σ−1(x−µ)

We want the distribution over variables
{x3, x5, x7} ⊂ {x1, . . . , xp}

Marginal of a Gaussian Distribution

The marginal of a Gaussian distribution is
calculated by removing appropriate dimen-
sions from the mean and covariance matrix.

µ3,5,7 = (µ3, µ5, µ7) and

Σ3,5,7 =

Σ33 Σ35 Σ37
Σ53 Σ55 Σ57
Σ73 Σ75 Σ77


φx3,x5,x7 =

1√
|2πΣ3,5,7|

e−
1
2 (x3,5,7−µ3,5,7)Σ−1

3,5,7(x3,5,7−µ3,5,7)

Histogram of s1[, 2]

s1[, 2]
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Conditioning

We ame for φ(A|B) where
A ⊂ {x1, . . . , xp} having q elements,
the rest B = {x1, . . . , xp} \ A has (p − q) elements.

We rearrange the rows and columns to have A together. Then we get

x =
[
xA
xB

]
(one column), µ =

[
µA
µB

]
(one column),

Σ =
[

ΣAA ΣAB
ΣBA ΣBB

]
with dimensions

[
q × q q × (p − q)

(p − q)× q (p − q)× (p − q)

]
.

Conditional Gaussian

The parameters of the conditional Gaussian distribution φ(A|B = b) =
N(µA|B=b,ΣA|B=b) are:

µA|B=b = µA + ΣABΣ−1BB(b − µB)
ΣA|B=b = ΣAA − ΣABΣ−1BBΣBA.

Covariance matrix differs but does not depend on the observation b. It depends
on the fact B was observed.
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Conditional Gaussian Example

µT = (1, 2, 3, 4)

Σ =


10 1 5 4
1 10 2 6
5 2 10 3
4 6 3 10


We observed (X3,X4) to be
(2.8, 4.1)
We ask for φ(A|B) =
φ({X1,X2}|{X3,X4})

ΣAB =
[
5 4
2 6

]
ΣBB =

[
10 3
3 10

]
Σ−1BB

.=
[

0.11 −0.033
−0.033 0.11

]

ΣABΣ−1BB
.=
[
0.418 0.275
0.0220 0.593

]
µA|B=b = µA + ΣABΣ−1BB(b − µB)

µA|B
.=
[
1
2

]
+
[
0.418 0.275
0.0220 0.593

] [
(2.8− 3)
(4.1− 4)

]
µA|B

.=
[
1
2

]
+
[
−0.056
0.055

]
=
[
0.944
2.055

]
ΣA|B=b = ΣAA − ΣABΣ−1BBΣBA

ΣA|B=b
.=
[
10 1
1 10

]
−
[
2.53 2.26
2.26 4.13

]
ΣA|B=b

.=
[
7.47 −1.26
−1.26 3.65

]
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Partition Matrix Inverse Properties

The concentration matrix K = Σ−1 is the inverse of the correlation matrix,
therefore: (

KAA KAB
KBA KBB

)(
ΣAA ΣAB
ΣBA ΣBB

)
=
(
IAA 0
0 IBB

)

From the top right part we get:

KAAΣAB + KABΣBB = 0
−KAAΣABΣ−1BB = KAB(1) (5)

ΣABΣ−1BB = −K−1AAKAB(2). (6)

Take the top left part and substitute (1):

KAAΣAA + KABΣBA = IAA

KAAΣAA + (−KAAΣABΣ−1BBΣBA) = IAA

K−1AA = ΣAA − ΣABΣ−1BBΣBA.
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Regression Coefficients

µA|B=b = µA + ΣABΣ−1BB(b − µB)
ΣA|B=b = ΣAA − ΣABΣ−1BBΣBA

Consider x1 to be a linear function of others with the noise ε1 ∼ N(0, σ21):
x1|2...p = β1 + β12x2 + β13x3 + . . .+ β1pxp + ε1

Set A the first dimension, B the remaining (p − 1)× (p − 1) matrix:

x1|B=(x2,...,xp)T = µA|B + ΣABΣ−1BB

 x2. . .
xp

− µB

+ ε

Recall (2): ΣABΣ−1BB = −K−1AAKAB
then σ21 = 1

k11 with coefficients β

(β12, . . . , β1p) = − (k12, . . . , k1p)
k11

.
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Fit Linear Gaussian CPD

To fit ML model of a linear gaussian CPD,
you fit the linear regression.

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε1

β̂ = (XTX)−1XTy
σ̂Y = Cov(Y ,Y )−

∑
i

∑
j
βiβjCov [Xi ;Xj ]

Cov(Xi ;Xj) = E[Xi · Xj ]− E[Xi ] · E[Xj ]

E[Xj ] = 1
Nrows

∑
i∈rows

xij

from pgmpy.factors.continuous import LinearGaussianCPD
ml=maximum_likelihood_estimator(data, states)
cpdY.fit(data, states, estimator=ml, complete_samples_only=True)
https://cedar.buffalo.edu/~srihari/CSE674/Chap7/7.2-GaussBNs.pdf
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Parameter Learning for a Gaussian Graphical Model

Let us have the data xT
1 , . . . , xT

N over variables x ∼ Np(µ,Σ).
S = 1

N
∑N

i=1(xi − x̄)(xi − x̄)T is the empirical covariance matrix.
Our model is represented by the concentration matrix Θ = Σ−1 and mean µ.
Log-likelihood of the data is

loglik(Θ, µ) = N
2 log |Θ| − N

2 tr(ΘS)− N
2 (x̄ − µ)T Θ(x̄ − µ).

for a fixed Θ is the maximum for µ: µ = x̄ and the last term is 0. We get
loglik(Θ, µ) ∝ log |Θ| − tr(ΘS)
where tr(ΘS) =

∑
u
∑

v θuv suv , therefore only suv corresponding to non-zero
θuv are considered by the sum.
We replace the equality conditions by Lagrange multiplyers:
`C (Θ) = log |Θ| − tr(ΘS)−

∑
(j,k)/∈E γjkθjk

We maximize. The derivative Θ should be zero (Γ is a matrix with non-zero
for missing edges):

Θ−1 − S − Γ = 0
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Towards the Algorithm
We iterate one row/column after another.
We start with the sample covariance matrix

W0 ← S

We derive the formula for the last row/column: the derivative(
W11 w12
wT
12 w22

)
−
(
S11 s12
sT
12 s22

)
−
(

Γ11 γ12
γT
12 γ22

)
= 0

The upper right block can be written as w12 − s12 − γ12 = 0.
W is inverse of Θ (

W11 w12
wT
12 w22

)(
Θ11 θ12
θT
12 θ22

)
=
(

I 0
0T 1

)
therefore the last column without last row is:

w12 = −W11θ12/θ22 = W11β

Substitute into the derivative W11β − s12 − γ12 = 0
we solve for the rows with zero γ: β̂∗ = (W ∗11)−1s∗12.
The diagonal θ22 is (1 bottom right): 1

θ22
= w22 − wT

12β.
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Estimation of an Undirected Graphical Model Parameters

1: procedure Graphical Regression:( S sample covariance )
2: W ← S initialize
3: repeat
4: for j = 1, 2, . . . , p do
5: Partition W ; jth row and column, W11 the rest
6: solve W ∗11β∗ − s∗12 = 0 for reduced system
7: β̂ ← β̂∗ by padding with zeros
8: update w12 ←W11β̂
9: end for
10: until convergence
11: for j = 1, 2, . . . , p do
12: lines 5:-8: above and set
13: θ̂22 ← 1

w22−wT
12β̂

14: θ̂12 ← −β̂ · θ̂22
15: end for
16: end procedure
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Example (ESLII)

X1

X2 X3

X4

W0 = S =


10.00 1.00 5.00 4.00
1.00 10.00 2.00 6.00
5.00 2.00 10.00 3.00
4.00 6.00 3.00 10.00



W11 =

10.00 2.00 6.00
2.00 10.00 3.00
6.00 3.00 10.00


W ∗11 =

[
10.00 6.00
6.00 10.00

]
W ∗,−111 =

[
0.156 −0.094
−0.094 0.156

]
β∗ = [−0.22, 0.53]T

β = [−0.22, 0, 0.53]T

w12 ← [1.00, 1.16, 4.00]T

W22 =

10.00 1.16 4.00
1.16 10.00 3.00
4.00 3.00 10.00


W ∗22 =

[
10.00 1.16
1.16 10.00

]
W ∗,−122 =

[
0.101 −0.012
−0.012 0.101

]
β2∗ = [0.08, 0.19]T

β2 = [0.08, 0.19, 0]T

w2r ← [1.00, 2, 0.88]T
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Structure Learning
We add a lasso penalty ||Θ||1 which denotes the L1 norm

the sum of the absolute values of the elements of Θ and we ignore the
diagonal.
The negative penalized log-likelihood is a convex function of Θ.

we maximize penalized log-likelihood

log |Θ| − tr(ΘS)− λ||Θ||1 (7)

the gradient equation is now

Θ−1 − S − λSign(Θ) = 0 (8)

sub-gradient notation
Sign(θjk ) = sign(θjk ) for θjk 6= 0
Sign(θjk ) ∈ [−1, 1] for θjk = 0

the update for the first row and column will be

W11β − s12 + λSign(β) = 0 (9)

since β and θ12 have opposite signs.
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1: procedure Graphical Lasso:( S sample covariance,λ penalty )
2: W ← S + λI initialize
3: repeat
4: for j = 1, 2, . . . , p do
5: Partition W ; jth row and column, W11 the rest
6: solve W11β − s12 + λSign(β) = 0 using the cyclical
7: . . . coordinate-descent algorithm for the modified lasso
8: update w12 by W11β̂
9: end for
10: until convergence
11: for j = 1, 2, . . . , p do
12: solve θ̂22 ← 1

s22−wT
12β̂

13: solve θ̂12 ← −β̂ · θ̂22
14: end for
15: end procedure
16: procedure CoordinateDescent:( V ←W11 )
17: repeat j = 1, 2, . . . , p − 1
18: β̂j ← S(s12j −

∑
k 6=j Vkj β̂k , λ)/Vjj

19: until convergence
20: end procedure #S(x , t) = sign(x)(|x | − t)+
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Example (glasso)

λ← 1 W0 = S+λI =


11.00 1.00 5.00 4.00
1.00 11.00 2.00 6.00
5.00 2.00 11.00 3.00
4.00 6.00 3.00 11.00



W11 =

11.00 2.00 6.00
2.00 11.00 3.00
6.00 3.00 11.00


sT
12 =

[
1.00 5.00 4.00

]
βT ,(0) =

[
0 0 0

]
V ← W11

β
(1)
2 = S(1− 0, 1)/11 = 0

β
(1)
3 = S(5− 0, 1)/11 = 4

11
β

(1)
4 = S(4− 3 · 4

11 , 1)/11 = 21
121

β
(2)
2 = S(1− 2 · 4

11 −
6 · 21
121 , 1)/11 ≈ −0.16

β
(2)
3 = S(5 + 0.32− 3 · 21

121 , 1)/11 ≈ 0.35

β
(2)
4 = . . .

. . .

β̂1 ≈ [−0.22; 0.32; 0.30]

W1 ≈


11.00 0.05 4.03 3.01
0.05 11.00 2.00 6.00
4.03 2.00 11.00 3.00
3.01 6.00 3.00 11.00
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Graphical Lasso Properties

Computational speed
The graphical lasso algorithm is extremely fast
can solve a moderately sparse problem with 1000 nodes in less than a minute.
It can be modified to have edge–specific penalty parameters λjk
setting λjk =∞ will force θ̂jk to be zero
graphical lasso subsumes the parameter learning algorithm.

Missing data
some missing observations may be imputed by EM algorithm from the model
latent – fully unobserved variables – do not bring more power in Gaussian
graphical model
latent variables are very important in discrete distributions.

sklearn.covariance.graphical_lasso
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Model Quality (Model Selection)

Definition (Saturated model, GGM Deviance, iDeviance, Likelihood Ratio Test)
saturated model - full model with all edges, it has maximal loglikelihood
Deviance

D = dev = 2 · (ˆ̀sat − ˆ̀) = N log |S
−1|
|K̂ |

= −N log |SK̂ |

independent model - no edges, it has minimal likelihood
iDeviance

iD = idev = 2 · (ˆ̀− ˆ̀ind ) = N
(
log |K̂ |+

p∑
i=1

log sii

)

lrt likelihood ratio test for modelsM1 ⊆M0

lrt = 2 · (ˆ̀0 − ˆ̀1) = N log |K̂0|
|K̂1|

.
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Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)
An Undirected Graphical Model (Markov graph, Markov network) is a graph
G = (V ,E ), where nodes V represent random variables and the absence of an
edge (A,B) denoted A ⊥⊥G B implies that the corresponding random variables are
conditionally independent given the rest in the probability distribution P(V ).

A ⊥⊥G B =⇒ A ⊥⊥P B|V \ {A,B}. (10)

is known as the pairwise Markov independencies of G.

Definition (Separators)
If A, B and C are subgraphs, then C is said to separate A and B if every
path between A and B intersects a node in C .
C is called a separator.

Separators break the graph into conditionally independent pieces.
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Markov Properties

Definition (Global Markov Property)
A probability measure P over V is (globally) Markov with respect to an
undirected graph G iff for any subgraphs A, B and C holds:

if C separates A and B then the conditional independence A ⊥⊥P B|C holds,
that is

A ⊥⊥G B|C =⇒ P(A|C) · P(B|C) = P(A,B|C). (11)

Theorem
The pairwise and global Markov properties of a graph are equivalent for graphs
with strictly positive distributions.

Gaussian distribution is always positive.
We may infer global independence relations from simple pairwise properties.
The global Markov property allows us to decompose graphs into smaller more
manageable pieces.
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Markov Random Fields (Markovská náhodná pole)

A probability density function f over a Markov graph G with the set of
maximal cliques {C1, . . . ,Ck} can be represented as

f (x) =
∏

i=1,...,k
ψi (xCi ) = ψ1(xC1) · . . . · ψk(xCk ) (12)

where ψi are positive functions called clique potentials.
they capture the dependence in XCi by scoring certain instances xCi higher
than others.
with the normalizing constant (partition function) Z

Z =
∫

X
exp

 ∑
i=1,...,k

log gi (xCi )

 .

For Markov networks with positive distributions the probability density
function (12) implies a graph with independence properties defined by the
cliques in the product.
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Pairwise Markov Graphs

A graphical model does not always uniquely
specify the higher–order dependence structure of
ta joint probability distribution.

f (2)(x , y , z) = 1
Z ψ1(x , y)ψ2(x , z)ψ3(y , z)

f (3)(x , y , z) = 1
Z ψ(x , y , z)

For Gaussian distribution, parwise interactions
fully specify the model.

X

Y Z

We focus on pairwise Markov Graphs
where at most second order interactions are represented (like f (2)).
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Undirected models with discrete variables
Boltzmann machine (=Ising models; a special case of Markov random
field)

visible and hidden nodes
only pairwise interactions
binary valued nodes
constant node X0 ≡ 1.

p(X ,Θ) = exp

 ∑
(j,k)∈E

θjkXjXk − Φ(Θ)


Φ(Θ) = log

∑
x∈X

exp(
∑

(j,k)∈E

θjkXjXk)


Issing model implies a logistic form for each node conditional on the others

P(Xj = 1|X−j = x−j) = 1
1 + exp(−θj0 −

∑
(j,k)∈E θjkxk)

Restricted Boltzmann machines
two layers, the visible and the hidden layer, no edges inside a layer - it is easier
to fit.Machine Learning Undirected (Pairwise Continuous) Graphical Models 2 38 - 120 February 22, 2023 64 / 361



Boltzmann machine learning

Parameter learning
iteratively
for example Iterative proportional fitting IPF Jiroušek and Přeučil.

Structure learning
for example Hoefling and Tibshirany: glasso extension to discrete Markov
Networks.
still slow and not very precise.

Restricted Boltzmann machine
fitting the model is faster due to the conditional independence.
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Restricted Boltzmann Machine Example (ESLII)

Two layers:
V a visible layer
H a hidden layer
no links inside a layer.
Example:
V1 binary pixels of an image of a
handwritten digit
V2 10 units for observed class
labels 0-9
more hidden layers in the lower
figure.
Fitted by contrastive divergence
(not part of this lecture)
or Gibbs sampling, but it is slow.

17.4 Undirected Graphical Models for Discrete Variables 643

Xj

Xk

Xℓ

Visible V1 Visible V2

Hidden H

θjk

FIGURE 17.6. A restricted Boltzmann machine (RBM) in which there are no
connections between nodes in the same layer. The visible units are subdivided to
allow the RBM to model the joint density of feature V1 and their labels V2.

approximation for the binary case, only yields an estimate of Σ−1. In con-
trast, in the Markov model for binary data, Θ is the object of interest, and
its inverse is not of interest. The approximate method of Wainwright et al.
(2007) estimates Θ efficiently and hence is an attractive solution for the
binary problem.

17.4.4 Restricted Boltzmann Machines

In this section we consider a particular architecture for graphical models
inspired by neural networks, where the units are organized in layers. A
restricted Boltzmann machine (RBM) consists of one layer of visible units
and one layer of hidden units with no connections within each layer. It
is much simpler to compute the conditional expectations (as in 17.37 and
17.38) if the connections between hidden units are removed 5. Figure 17.6
shows an example; the visible layer is divided into input variables V1 and
output variables V2, and there is a hidden layer H. We denote such a
network by

V1 ↔ H↔ V2. (17.39)

For example, V1 could be the binary pixels of an image of a handwritten
digit, and V2 could have 10 units, one for each of the observed class labels
0-9.
The restricted form of this model simplifies the Gibbs sampling for es-

timating the expectations in (17.37), since the variables in each layer are
independent of one another, given the variables in the other layers. Hence
they can be sampled together, using the conditional probabilities given by
expression (17.30).
The resulting model is less general than a Boltzmann machine, but is still

useful; for example it can learn to extract interesting features from images.

5We thank Geoffrey Hinton for assistance in the preparation of the material on RBMs.

Exercises 645

FIGURE 17.7. Example of a restricted Boltzmann machine for handwritten
digit classification. The network is depicted in the schematic on the left. Displayed
on the right are some difficult test images that the model classifies correctly.

second RBM that has 500 visible units and 500 hidden units. Finally, the
hidden states of the second RBM are used as the features for training an
RBM with 2000 hidden units as a joint density model. The details and
justification for learning features in this greedy, layer-by-layer way are de-
scribed in Hinton et al. (2006). Figure 17.7 gives a representation of the
composite model that is learned in this way and also shows some examples
of the types of distortion that it can cope with.

Bibliographic Notes

Much work has been done in defining and understanding the structure of
graphical models. Comprehensive treatments of graphical models can be
found in Whittaker (1990), Lauritzen (1996), Cox and Wermuth (1996),
Edwards (2000), Pearl (2000), Anderson (2003), Jordan (2004), and Koller
and Friedman (2007). Wasserman (2004) gives a brief introduction, and
Chapter 8 of Bishop (2006) gives a more detailed overview. Boltzmann
machines were proposed in Ackley et al. (1985). Ripley (1996) has a detailed
chapter on topics in graphical models that relate to machine learning. We
found this particularly useful for its discussion of Boltzmann machines.

Exercises

Ex. 17.1 For the Markov graph of Figure 17.8, list all of the implied condi-
tional independence relations and find the maximal cliques.
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Markov Properties (Zeros are dangerous)

Definition (Markov properties: Global, Local, Pairwise)
Let G be an undirected graph over V , let P be a probability measure P over V .

(GM) P is (globally) Markov with respect to G iff

∀(A,B ∈ V , C ⊆ V ) A ⊥⊥G B|C ⇒ A ⊥⊥P B|C in P.

(LM) A probability measure has the local Markov property iff
(∀A ∈ V ) : A ⊥⊥P V \ FaA|NA

(PM) P has the pairwise Markov property iff ∀A,B ∈ V ,A 6= B not connected by
an edge holds A ⊥⊥P B|V \ {A,B}.

Theorem
These properties are equivalent for strictly positive measures.

Counterexamples for measures with zero probability everywhere except (0, 0, 0)
and (1, 1, 1).
See [Milan Studený:Struktury podmíněné nezávislosti, Matfyzpress 2014].
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Examples

Example (P has the pairvise but not the local
property)
V = {A,B,C},E = {(b, c)}. Let us have a
binary probability measure V nonzero at points
(0, 0, 0) and (1, 1, 1) [Studený p.101].
A ⊥⊥ B|{C}
A ⊥⊥ C |{B}& does not imply A ⊥⊥ BC |{}.

A B C

Example (P has the local but not the global
property)
V = {A,B,C ,D},E = {(a, b), (c, d)}. Let
P(V ) be nonzero only at points (0, 0, 0, 0) and
(1, 1, 1, 1) [Studený p.101].
A ⊥⊥ CD|{B}
B ⊥⊥ CD|{A}
C ⊥⊥ AB|{D}
D ⊥⊥ AB|{C}

& does not imply A ⊥⊥ C |{}.

A

B

C

D
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Linear Gaussian CPD

Definition (Linear Gaussian CPD)
For a variable Y with parents X = X1, . . . ,Xk the Linear Gaussian model is
defined by the mean of Y and a linear function of X and the variance of Y does
not depend on X .

from pgmpy.factors.continuous import LinearGaussianCPD
cpdY = LinearGaussianCPD(’Y’, [0.2, -2, 3, 7], 9.6, [’X1’, ’X2’, ’X3’])
cpdX1 = LinearGaussianCPD(’X1’, [0.2], 1, [])

We may define Gaussian Bayesian Networks.
Usually, undirected models are used.

Mixed interactions models Bayesian network with discrete and conditional
Gaussian nodes; no descrete child of a gaussian parent

(generally, not a clear semantics).
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Canonical Form of a Gaussian Distribution

Definition (Canonical Form of a Gaussian Distribution)

For a Gaussian Distribution φ(x) = 1√
|2πΣ|

e− 1
2 (x−µ)Σ−1(x−µ) we define its

canonical form C(X;K , h, g) where
concentration matrix K = Σ−1

h = Kµ
g = − p

2 log(2π) + 1
2 log(|K |)− 1

2µ
TKµ.

We can rewrite the join probability density to

φ(x) = (2π)−
p
2 |K | 12 exp

{
−1
2 (x− µ)K (x− µ)

}
= (2π)−

p
2 |K | 12 exp

{
−1
2µ

TKµ+ hT x− 1
2xTKx

}
= exp

{
g + hT x− 1

2xTKx
}

= exp
{
g + Σuhuxu −

1
2Σu,vKu,v xuxv

}
.
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Gaussian Distribution Decomposition

Lemma
If the concentration matrix of a multivariate Gaussian distribution fulfills condition
of a graph model then the distribution can be written as a product of distributions
on cliques of the graph.

φ(x) = exp
{
g + Σu∈Uhuxu − 1

2Σu,vKu,v xuxv
}

Let us have two sets of vertices A,B separated by the set C . Then
∀u ∈ A, v ∈ B kuv = 0.
We split the summation in the formula: φ(x) =

exp
{

g + Σu∈A∪Chuxu + Σv∈B∪Chv xv − Σv∈Chv xv
− 1

2 (Σu,v∈A∪CKu,v xuxv + Σu,v∈B∪CKu,v xuxv − Σu,v∈CKu,v xuxv )

}
therefore φ(x) = g(A,C)h(C ,B).

A C B
A KAA KAC
C KAC KCC KCB
B KBC KBB
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