Undirected (Pairwise, Continuous) Graphical Models

- The generative model represents the full probability distribution $P(X)$.
- Missing edges represent conditional independence of the variables.
- Cytometry dataset (ESLII)
- $N=7466$ cells
- $p=11$ proteins
- We ame to model protein co-occurence probability.

sklearn.covariance. GraphicalLasso \# basics
gRbase \# the recommended R package

Other Application

Yin, Jianxin \& Li, Hongzhe. (2011). A sparse conditional Gaussian graphical model for analysis of genetical genomics data. The annals of applied statistics. 5. 2630-2650.

- Cytometry dataset (ESLII)
- $p_{Y}=54$ gene level expressions
- $p_{X}=188$ markers (discrete)
- $Y^{p_{Y}} \mid X^{p_{X}} \sim$
$\mathcal{N}\left(M^{p_{\gamma} \times p_{X}} X^{p_{X}}, \Sigma^{p_{Y} \times p_{Y}}\right)$
conditional Gaussian distribution
- Top: Black color indicates significant association p-value <0.01 in the linear regression.
- Bottom: The undirected graph of 43 genes constructed on the cGGM.

Data: carcass

Data: carcass \#Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen: Graphical Models with R, Springer.

> mean.

Fat11	16.00
Meat11	52.00
Fat12	14.00
Meat12	52.00
Fat13	13.00
Meat13	56.00
LeanMeat	59.00

Σ	Fat11	Meat11	Fat12	Meat12	Fat13	Meat13	LeanMeat
Fat11	11.34	0.74	8.42	2.06	7.66	-0.76	-9.08
Meat11	0.74	32.97	0.67	35.94	2.01	31.97	5.33
Fat12	8.42	0.67	8.91	0.31	6.84	-0.60	-7.95
Meat12	2.06	35.94	0.31	51.79	2.18	41.47	6.03
Fat13	7.66	2.01	6.84	2.18	7.62	0.38	-6.93
Meat13	-0.76	31.97	-0.60	41.47	0.38	41.44	7.23
LeanMeat	-9.08	5.33	-7.95	6.03	-6.93	7.23	12.90

Gaussian Graphical Models (Undirected Graphs)

- Multivariate Gaussian Distribution on variables $X=\left(X_{1}, \ldots, X_{p}\right)$
- $\phi(\mathbf{x})=\frac{1}{\sqrt{|2 \pi \Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu) \Sigma^{-1}(\mathbf{x}-\mu)}$
- |.| is the determinant. we denote p the number of components in \mathbf{x}. Then $|2 \pi \Sigma|=(2 \pi)^{p}|\Sigma|$.
- If Σ is not invertible it has dependent columns. It means that the variables \mathbf{x}_{j} are lineary dependent.
- If the rank of Σ is ℓ then there exists a matrix A and a vector ν so:
- $x=A z+\nu$ for new coordinates z with ℓ dimensions
- We just consider the new coordinates and assume Σ has a full rank.

Concentration matrix

- Concentration (Precision, koncentrační) matrix

$$
K=\Sigma^{-1}
$$

Lemma

For $u \neq v, k_{u v}=0$ if and only if y_{u} and y_{v} are conditionally independent given all other variables.

k*100	Fat11	Meat11	Fat12	Meat12	Fat13	Meat13	LeanMeat
Fat11	44	3	-20	-7	-16	4	10
Meat11	3	16	-3	-6	-6	-6	-3
Fat12	-20	-3	54	6	-21	-5	9
Meat12	-7	-6	6	14	-1	-9	-0
Fat13	-16	-6	-21	-1	56	3	7
Meat13	4	-6	-5	-9	3	16	-1
LeanMeat	10	-3	9	-0	7	-1	26

- If looking for small values better to 'scale' the entries into Partial Correlation matrix.

Partial correlation matrix

Definition (Partial correlation matrix)

Partial correlation matrix is defined from K by

$$
\rho_{u v \mid V \backslash\{u v\}}=\frac{-k_{u v}}{\sqrt{k_{u u} k_{v v}}} .
$$

Lemma

In contrast to concentrations, the partial correlations are invariant under a change of scale and origin in the sense that if $X_{j}^{*}=a_{j} X_{j}+b_{j}, j=1, \ldots, p$ then $a_{v} a_{u} k_{u v}^{*}=k_{u v}$ and $\rho_{u v \mid V \backslash\{u v\}}^{*}=\rho_{u v \mid V \backslash\{u v\}}$.

$\rho * 100$	Fat11	Meat11	Fat12	Meat12	Fat13	Meat13	LeanMeat
Fat11	-	-11	41	30	32	-16	-29
Meat11	-11	-	9	41	19	35	16
Fat12	41	9	-	-24	38	18	-24
Meat12	30	41	-24	-	2	61	2
Fat13	32	19	38	2	-	-9	-18
Meat13	-16	35	18	61	-9	-	7
LeanMeat	-29	16	-24	2	-18	7	-

Models

- The simplest model just removes edges with small $\left|\rho_{u v \mid V \backslash\{u v\}}\right|$. Penalized criteria will be introduced later.

Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)

An undirected Gaussian graphical model is represented by an undirected graph $\mathcal{G}=(X, E), X=\left\{X_{1}, \ldots, X_{p}\right\}$ represent the set of variables and E is a set of undirected edges.
When a random vector \mathbf{x} follows a Gaussian distribution $N_{p}(\mu, \Sigma)$, the graph G represents the model where $K=\Sigma^{-1}$ is a positive definite matrix with $k_{u, v}=0$ whenever there is no edge between vertices u, v in G.
This graph is called the dependence graph of the model.

Lemma

For any non adjacent vertices $u, v \in \mathcal{G}$ it holds: $u \Perp v \mid \mathbf{X} \backslash\{u, v\}$.

Definition (Generating class)

Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ be the set of cliques of the dependence graph \mathcal{G}. A set of functions $g_{1}(), g_{2}(), \ldots, g_{k}()$ defined on $g_{i}\left(\mathbf{x}_{c_{i}}\right)$ is called a generating class for the distribution

$$
f(\mathbf{x})=\prod_{i=1, \ldots, k} g_{i}\left(\mathbf{x}_{c_{i}}\right)
$$

Marginalization

- We have $\frac{1}{\sqrt{|2 \pi \Sigma|}} e^{-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)}$
- We want the distribution over variables $\left\{x_{3}, x_{5}, x_{7}\right\} \subset\left\{x_{1}, \ldots, x_{p}\right\}$

Marginal of a Gaussian Distribution

The marginal of a Gaussian distribution is calculated by removing appropriate dimensions from the mean and covariance matrix.

- $\mu_{3,5,7}=\left(\mu_{3}, \mu_{5}, \mu_{7}\right)$ and

$$
\Sigma_{3,5,7}=\left[\begin{array}{lll}
\Sigma_{33} & \Sigma_{35} & \Sigma_{37} \\
\Sigma_{53} & \Sigma_{55} & \Sigma_{57} \\
\Sigma_{73} & \Sigma_{75} & \Sigma_{77}
\end{array}\right]
$$

- $\phi_{x_{3}, x_{5}, x_{7}}=$
$\frac{1}{\sqrt{\left|2 \pi \Sigma_{3,5,7}\right|}} e^{-\frac{1}{2}\left(x_{3,5,7}-\mu_{3,5,7}\right) \sum_{3,5,7}^{-1}\left(x_{3,5,7}-\mu_{3,5,7}\right)}$

Conditioning

- We ame for $\phi(A \mid B)$ where
- $A \subset\left\{x_{1}, \ldots, x_{p}\right\}$ having q elements,
- the rest $B=\left\{x_{1}, \ldots, x_{p}\right\} \backslash A$ has $(p-q)$ elements.
- We rearrange the rows and columns to have A together. Then we get

$$
x=\left[\begin{array}{l}
x_{A} \\
x_{B}
\end{array}\right] \text { (one column), } \mu=\left[\begin{array}{l}
\mu_{A} \\
\mu_{B}
\end{array}\right] \text { (one column), }
$$

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{A A} & \Sigma_{A B} \\
\Sigma_{B A} & \Sigma_{B B}
\end{array}\right] \text { with dimensions }\left[\begin{array}{cc}
q \times q & q \times(p-q) \\
(p-q) \times q & (p-q) \times(p-q)
\end{array}\right] .
$$

Conditional Gaussian

The parameters of the conditional Gaussian distribution $\phi(A \mid B=b)=$ $N\left(\mu_{A \mid B=b}, \Sigma_{A \mid B=b}\right)$ are:

$$
\begin{aligned}
\mu_{A \mid B=b} & =\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(b-\mu_{B}\right) \\
\Sigma_{A \mid B=b} & =\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A} .
\end{aligned}
$$

Covariance matrix differs but does not depend on the observation b. It depends on the fact B was observed.

Conditional Gaussian Example

- $\mu^{T}=(1,2,3,4)$
- $\Sigma=\left[\begin{array}{cccc}10 & 1 & 5 & 4 \\ 1 & 10 & 2 & 6 \\ 5 & 2 & 10 & 3 \\ 4 & 6 & 3 & 10\end{array}\right]$
- $\Sigma_{A B} \Sigma_{B B}^{-1} \doteq\left[\begin{array}{cc}0.418 & 0.275 \\ 0.0220 & 0.593\end{array}\right]$
- $\mu_{A \mid B=b}=\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(b-\mu_{B}\right)$
- We observed $\left(X_{3}, X_{4}\right)$ to be $(2.8,4.1)$
- We ask for $\phi(A \mid B)=$
$\phi\left(\left\{X_{1}, X_{2}\right\} \mid\left\{X_{3}, X_{4}\right\}\right)$
- We ask for $\phi(A \mid B)=$
$\phi\left(\left\{X_{1}, X_{2}\right\} \mid\left\{X_{3}, X_{4}\right\}\right)$
- $\mu_{A \mid B} \doteq\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{cc}0.418 & 0.275 \\ 0.0220 & 0.593\end{array}\right]\left[\begin{array}{l}(2.8-3) \\ (4.1-4)\end{array}\right]$
- $\mu_{A \mid B} \doteq\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{c}-0.056 \\ 0.055\end{array}\right]=\left[\begin{array}{l}0.944 \\ 2.055\end{array}\right]$
- $\Sigma_{A B}=\left[\begin{array}{ll}5 & 4 \\ 2 & 6\end{array}\right]$
- $\Sigma_{B B}=\left[\begin{array}{cc}10 & 3 \\ 3 & 10\end{array}\right]$
- $\Sigma_{A \mid B=b}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}$
- $\Sigma_{A \mid B=b} \doteq\left[\begin{array}{cc}10 & 1 \\ 1 & 10\end{array}\right]-\left[\begin{array}{ll}2.53 & 2.26 \\ 2.26 & 4.13\end{array}\right]$
- $\Sigma_{A \mid B=b} \doteq\left[\begin{array}{cc}7.47 & -1.26 \\ -1.26 & 3.65\end{array}\right]$

Partition Matrix Inverse Properties

- The concentration matrix $K=\Sigma^{-1}$ is the inverse of the correlation matrix, therefore:

$$
\left(\begin{array}{ll}
K_{A A} & K_{A B} \\
K_{B A} & K_{B B}
\end{array}\right)\left(\begin{array}{ll}
\Sigma_{A A} & \Sigma_{A B} \\
\Sigma_{B A} & \Sigma_{B B}
\end{array}\right)=\left(\begin{array}{cc}
I_{A A} & 0 \\
0 & I_{B B}
\end{array}\right)
$$

- From the top right part we get:

$$
\begin{align*}
K_{A A} \Sigma_{A B} & +K_{A B} \Sigma_{B B}=\mathbf{0} \\
-K_{A A} \Sigma_{A B} \Sigma_{B B}^{-1} & =K_{A B}(1) \tag{5}\\
\Sigma_{A B} \Sigma_{B B}^{-1} & =-K_{A A}^{-1} K_{A B}(2) . \tag{6}
\end{align*}
$$

- Take the top left part and substitute (1):

$$
\begin{aligned}
K_{A A} \Sigma_{A A} & +K_{A B} \Sigma_{B A}=I_{A A} \\
K_{A A} \Sigma_{A A} & +\left(-K_{A A} \Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}\right)=I_{A A} \\
K_{A A}^{-1} & =\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A} .
\end{aligned}
$$

Regression Coefficients

$$
\begin{aligned}
\mu_{A \mid B=b} & =\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(b-\mu_{B}\right) \\
\Sigma_{A \mid B=b} & =\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
\end{aligned}
$$

- Consider x_{1} to be a linear function of others with the noise $\epsilon_{1} \sim N\left(0, \sigma_{1}^{2}\right)$:

$$
x_{1 \mid 2 \ldots p}=\beta_{1}+\beta_{12} x_{2}+\beta_{13} x_{3}+\ldots+\beta_{1 p} x_{p}+\epsilon_{1}
$$

- Set A the first dimension, B the remaining $(p-1) \times(p-1)$ matrix:

$$
x_{1 \mid B=\left(x_{2}, \ldots, x_{p}\right)^{T}}=\mu_{A \mid B}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(\left[\begin{array}{c}
x_{2} \\
\ldots \\
x_{p}
\end{array}\right]-\mu_{B}\right)+\epsilon
$$

- Recall (2): $\quad \Sigma_{A B} \Sigma_{B B}^{-1}=-K_{A A}^{-1} K_{A B}$
- then $\sigma_{1}^{2}=\frac{1}{k_{11}}$ with coefficients β

$$
\left(\beta_{12}, \ldots, \beta_{1 p}\right)=-\frac{\left(k_{12}, \ldots, k_{1 p}\right)}{k_{11}}
$$

Fit Linear Gaussian CPD

- To fit ML model of a linear gaussian CPD,
- you fit the linear regression.

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}+\epsilon_{1} \\
\hat{\beta} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} \\
\hat{\sigma}_{Y} & =\operatorname{Cov}(Y, Y)-\sum_{i} \sum_{j} \beta_{i} \beta_{j} \operatorname{Cov}\left[X_{i} ; X_{j}\right] \\
\operatorname{Cov}\left(X_{i} ; X_{j}\right) & =\mathbb{E}\left[X_{i} \cdot X_{j}\right]-\mathbb{E}\left[X_{i}\right] \cdot \mathbb{E}\left[X_{j}\right] \\
\mathbb{E}\left[X_{j}\right] & =\frac{1}{N_{\text {rows }}} \sum_{i \in \text { rows }} x_{i j}
\end{aligned}
$$

from pgmpy.factors.continuous import LinearGaussianCPD $\mathrm{ml}=$ maximum_likelihood_estimator(data, states) cpdY.fit(data, states, estimator=ml, complete_samples_only=True)
https://cedar.buffalo.edu/~srihari/CSE674/Chap7/7.2-GaussBNs.pdf

Parameter Learning for a Gaussian Graphical Model

- Let us have the data $\mathbf{x}_{1}^{T}, \ldots, \mathbf{x}_{N}^{T}$ over variables $\mathbf{x} \sim N_{p}(\mu, \Sigma)$.
- $S=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\bar{x}\right)\left(\mathbf{x}_{i}-\bar{x}\right)^{T}$ is the empirical covariance matrix.
- Our model is represented by the concentration matrix $\Theta=\Sigma^{-1}$ and mean μ.
- Log-likelihood of the data is

$$
\log \operatorname{lik}(\Theta, \mu)=\frac{N}{2} \log |\Theta|-\frac{N}{2} \operatorname{tr}(\Theta S)-\frac{N}{2}(\bar{x}-\mu)^{T} \Theta(\bar{x}-\mu) .
$$

- for a fixed Θ is the maximum for $\mu: \mu=\bar{x}$ and the last term is 0 . We get
- $\log \operatorname{lik}(\Theta, \mu) \propto \log |\Theta|-\operatorname{tr}(\Theta S)$
- where $\operatorname{tr}(\Theta S)=\sum_{u} \sum_{v} \theta_{u v} s_{u v}$, therefore only $s_{u v}$ corresponding to non-zero $\theta_{u v}$ are considered by the sum.
- We replace the equality conditions by Lagrange multiplyers:
$\ell_{c}(\Theta)=\log |\Theta|-\operatorname{tr}(\Theta S)-\sum_{(j, k) \notin E} \gamma_{j k} \theta_{j k}$
- We maximize. The derivative Θ should be zero (Γ is a matrix with non-zero for missing edges):

$$
\Theta^{-1}-S-\Gamma=0
$$

Towards the Algorithm

- We iterate one row/column after another.
- We start with the sample covariance matrix

$$
W_{0} \leftarrow S
$$

- We derive the formula for the last row/column: the derivative

$$
\left(\begin{array}{ll}
W_{11} & w_{12} \\
w_{12}^{T} & w_{22}
\end{array}\right)-\left(\begin{array}{cc}
s_{11} & s_{12} \\
s_{12}^{T} & s_{22}
\end{array}\right)-\left(\begin{array}{ll}
\Gamma_{11} & \gamma_{12} \\
\gamma_{12}^{T} & \gamma_{22}
\end{array}\right)=0
$$

- The upper right block can be written as $w_{12}-s_{12}-\gamma_{12}=0$.
- W is inverse of Θ

$$
\left(\begin{array}{ll}
W_{11} & w_{12} \\
w_{12}^{T} & w_{22}
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11} & \theta_{12} \\
\theta_{12}^{T} & \theta_{22}
\end{array}\right)=\left(\begin{array}{cc}
l & 0 \\
0^{T} & 1
\end{array}\right)
$$

- therefore the last column without last row is:

$$
w_{12}=-W_{11} \theta_{12} / \theta_{22}=W_{11} \beta
$$

- Substitute into the derivative $W_{11} \beta-s_{12}-\gamma_{12}=0$
- we solve for the rows with zero $\gamma: \hat{\beta}^{*}=\left(W_{11}^{*}\right)^{-1} s_{12}^{*}$.
- The diagonal θ_{22} is (1 bottom right): $\frac{1}{\theta_{22}}=w_{22}-w_{12}^{\top} \beta$.

Estimation of an Undirected Graphical Model Parameters

1: procedure Graphical Regression:(S sample covariance)
2: $\quad W \leftarrow S$ initialize
3: repeat
4: \quad for $j=1,2, \ldots, p$ do
5:
6:
7:
8:
9:
10
11: \quad for $j=1,2, \ldots, p$ do
12: lines 5:-8: above and set
13:
14:

$$
\begin{aligned}
& \hat{\theta}_{22} \leftarrow \frac{1}{w_{22}-w_{12}^{T} \hat{\beta}} \\
& \hat{\theta}_{12} \leftarrow-\hat{\beta} \cdot{ }_{22}
\end{aligned}
$$

end for
16: end procedure

Example (ESLII)

$$
W_{0}=S=\left[\begin{array}{cccc}
10.00 & 1.00 & 5.00 & 4.00 \\
1.00 & 10.00 & 2.00 & 6.00 \\
5.00 & 2.00 & 10.00 & 3.00 \\
4.00 & 6.00 & 3.00 & 10.00
\end{array}\right]
$$

$$
\begin{array}{rlrl}
W_{11} & =\left[\begin{array}{ccc}
10.00 & 2.00 & 6.00 \\
2.00 & 10.00 & 3.00 \\
6.00 & 3.00 & 10.00
\end{array}\right] & & \\
& W_{22} & =\left[\begin{array}{ccc}
10.00 & 1.16 & 4.00 \\
1.16 & 10.00 & 3.00 \\
4.00 & 3.00 & 10.00
\end{array}\right] \\
W_{11}^{*} & =\left[\begin{array}{cc}
10.00 & 6.00 \\
6.00 & 10.00
\end{array}\right] & W_{22}^{*} & =\left[\begin{array}{cc}
10.00 & 1.16 \\
1.16 & 10.00
\end{array}\right] \\
W_{11}^{*,-1} & =\left[\begin{array}{cc}
0.156 & -0.094 \\
-0.094 & 0.156
\end{array}\right] & W_{22}^{*,-1} & =\left[\begin{array}{cc}
0.101 & -0.012 \\
-0.012 & 0.101
\end{array}\right] \\
\beta^{*} & =[-0.22,0.53]^{T} & \beta 2^{*} & =[0.08,0.19]^{T} \\
\beta & =[-0.22,0,0.53]^{T} & \beta 2 & =[0.08,0.19,0]^{T} \\
W_{12} & \leftarrow[1.00,1.16,4.00]^{T} & W_{2 r} & \leftarrow[1.00,2,0.88]^{T}
\end{array}
$$

Structure Learning

- We add a lasso penalty $\|\Theta\|_{1}$ which denotes the L_{1} norm
- the sum of the absolute values of the elements of Θ and we ignore the diagonal.
- The negative penalized log-likelihood is a convex function of Θ.
- we maximize penalized log-likelihood

$$
\begin{equation*}
\log |\Theta|-\operatorname{tr}(\Theta S)-\lambda\|\Theta\|_{1} \tag{7}
\end{equation*}
$$

- the gradient equation is now

$$
\begin{equation*}
\Theta^{-1}-S-\lambda \operatorname{Sign}(\Theta)=0 \tag{8}
\end{equation*}
$$

- sub-gradient notation
- $\operatorname{Sign}\left(\theta_{j k}\right)=\operatorname{sign}\left(\theta_{j k}\right)$ for $\theta_{j k} \neq 0$
- $\operatorname{Sign}\left(\theta_{j k}\right) \in[-1,1]$ for $\theta_{j k}=0$
- the update for the first row and column will be

$$
\begin{equation*}
W_{11} \beta-s_{12}+\lambda \operatorname{Sign}(\beta)=0 \tag{9}
\end{equation*}
$$

- since β and θ_{12} have opposite signs.
procedure Graphical Lasso: S sample covariance, λ penalty) $W \leftarrow S+\lambda /$ initialize
3: repeat
4: \quad for $j=1,2, \ldots, p$ do
5 :
6:
7:
8:
9 :
10: until convergence
11: \quad for $j=1,2, \ldots, p$ do
12: \quad solve $\hat{\theta}_{22} \leftarrow \frac{1}{s_{22}-w_{12}^{T} \hat{\beta}}$
solve $\hat{\theta}_{12} \leftarrow-\hat{\beta} \cdot \hat{\theta}_{22}$
end for
15: end procedure
16: procedure CoordinateDescent: $\left(V \leftarrow W_{11}\right)$
17: \quad repeat $j=1,2, \ldots, p-1$
18: $\quad \hat{\beta}_{j} \leftarrow S\left(s_{12 j}-\sum_{k \neq j} V_{k j} \hat{\beta}_{k}, \lambda\right) / V_{j j}$
19: until convergence
20: end procedure $\quad \# S(x, t)=\operatorname{sign}(x)(|x|-t)_{+}$

Example (glasso)

$$
\begin{aligned}
& \text { - } \lambda \leftarrow 1 \quad W_{0}=S+\lambda I=\left[\begin{array}{cccc}
11.00 & 1.00 & 5.00 & 4.00 \\
1.00 & 11.00 & 2.00 & 6.00 \\
5.00 & 2.00 & 11.00 & 3.00 \\
4.00 & 6.00 & 3.00 & 11.00
\end{array}\right] \\
& \begin{aligned}
& W_{11}=\left[\begin{array}{ccc}
11.00 & 2.00 & 6.00 \\
2.00 & 11.00 & 3.00 \\
6.00 & 3.00 & 11.00
\end{array}\right] \\
& s_{2}^{(2)}=S\left(1-\frac{2 \cdot 4}{11}-\frac{6 \cdot 21}{121}, 1\right) / 11 \approx-0.16 \\
& s_{3}^{(2)}=S\left(5+0.32-\frac{3 \cdot 21}{121}, 1\right) / 11 \approx 0.35
\end{aligned} \\
& \beta^{T,(0)}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \\
& \beta_{4}^{(2)}=\ldots \\
& V \leftarrow W_{11} \\
& \beta_{2}^{(1)}=S(1-0,1) / 11=0 \quad \hat{\beta}_{1} \approx[-0.22 ; 0.32 ; 0.30] \\
& \beta_{3}^{(1)}=S(5-0,1) / 11=\frac{4}{11} \\
& W_{1} \approx\left[\begin{array}{cccc}
11.00 & 0.05 & 4.03 & 3.01 \\
0.05 & 11.00 & 2.00 & 6.00 \\
4.03 & 2.00 & 11.00 & 3.00 \\
3.01 & 6.00 & 3.00 & 11.00
\end{array}\right]
\end{aligned}
$$

Graphical Lasso Properties

- Computational speed
- The graphical lasso algorithm is extremely fast
- can solve a moderately sparse problem with 1000 nodes in less than a minute.
- It can be modified to have edge-specific penalty parameters $\lambda_{j k}$
- setting $\lambda_{j k}=\infty$ will force $\hat{\theta}_{j k}$ to be zero
- graphical lasso subsumes the parameter learning algorithm.
- Missing data
- some missing observations may be imputed by EM algorithm from the model
- latent - fully unobserved variables - do not bring more power in Gaussian graphical model
- latent variables are very important in discrete distributions.
sklearn.covariance.graphical_lasso

Model Quality (Model Selection)

Definition (Saturated model, GGM Deviance, iDeviance, Likelihood Ratio Test)

- saturated model - full model with all edges, it has maximal loglikelihood
- Deviance

$$
D=\operatorname{dev}=2 \cdot\left(\hat{\ell}_{\text {sat }}-\hat{\ell}\right)=N \log \frac{\left|S^{-1}\right|}{|\hat{K}|}=-N \log |S \hat{K}|
$$

- independent model - no edges, it has minimal likelihood
- iDeviance

$$
i D=i \operatorname{dev}=2 \cdot\left(\hat{\ell}-\hat{\ell}_{\text {ind }}\right)=N\left(\log |\hat{K}|+\sum_{i=1}^{p} \log s_{i i}\right)
$$

- Irt likelihood ratio test for models $\mathcal{M}_{1} \subseteq \mathcal{M}_{0}$

$$
\operatorname{Irt}=2 \cdot\left(\hat{\ell}_{0}-\hat{\ell}_{1}\right)=N \log \frac{\left|\hat{K}_{0}\right|}{\left|\hat{K}_{1}\right|} .
$$

Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)

An Undirected Graphical Model (Markov graph, Markov network) is a graph $\mathcal{G}=(V, E)$, where nodes V represent random variables and the absence of an edge (A, B) denoted $A \Perp_{\mathcal{G}} B$ implies that the corresponding random variables are conditionally independent given the rest in the probability distribution $P(V)$.

$$
\begin{equation*}
A \Perp_{\mathcal{G}} B \Longrightarrow A \Perp_{P} B \mid V \backslash\{A, B\} . \tag{10}
\end{equation*}
$$

is known as the pairwise Markov independencies of \mathcal{G}.

Definition (Separators)

- If A, B and C are subgraphs, then C is said to separate A and B if every path between A and B intersects a node in C.
- C is called a separator.
- Separators break the graph into conditionally independent pieces.

Markov Properties

Definition (Global Markov Property)

A probability measure P over V is (globally) Markov with respect to an undirected graph \mathcal{G} iff for any subgraphs A, B and C holds:

- if C separates A and B then the conditional independence $A \Perp_{P} B \mid C$ holds, that is

$$
\begin{equation*}
A \Perp_{\mathcal{G}} B \mid C \Longrightarrow P(A \mid C) \cdot P(B \mid C)=P(A, B \mid C) \tag{11}
\end{equation*}
$$

Theorem

The pairwise and global Markov properties of a graph are equivalent for graphs with strictly positive distributions.

- Gaussian distribution is always positive.
- We may infer global independence relations from simple pairwise properties.
- The global Markov property allows us to decompose graphs into smaller more manageable pieces.

Markov Random Fields (Markovská náhodná pole)

- A probability density function f over a Markov graph \mathcal{G} with the set of maximal cliques $\left\{C_{1}, \ldots, C_{k}\right\}$ can be represented as

$$
\begin{equation*}
f(x)=\prod_{i=1, \ldots, k} \psi_{i}\left(x_{C_{i}}\right)=\psi_{1}\left(x_{C_{1}}\right) \cdot \ldots \cdot \psi_{k}\left(x_{C_{k}}\right) \tag{12}
\end{equation*}
$$

- where ψ_{i} are positive functions called clique potentials.
- they capture the dependence in $X_{C_{i}}$ by scoring certain instances $X_{C_{i}}$ higher than others.
- with the normalizing constant (partition function) Z

$$
Z=\int_{X} \exp \left(\sum_{i=1, \ldots, k} \log g_{i}\left(x_{c_{i}}\right)\right) .
$$

- For Markov networks with positive distributions the probability density function (12) implies a graph with independence properties defined by the cliques in the product.

Pairwise Markov Graphs

- A graphical model does not always uniquely specify the higher-order dependence structure of ta joint probability distribution.

$$
\begin{aligned}
f^{(2)}(x, y, z) & =\frac{1}{Z} \psi_{1}(x, y) \psi_{2}(x, z) \psi_{3}(y, z) \\
f^{(3)}(x, y, z) & =\frac{1}{Z} \psi(x, y, z)
\end{aligned}
$$

- For Gaussian distribution, parwise interactions fully specify the model.
- We focus on pairwise Markov Graphs
- where at most second order interactions are represented (like $f^{(2)}$).

Undirected models with discrete variables

- Boltzmann machine (=Ising models; a special case of Markov random field)
- visible and hidden nodes
- only pairwise interactions
- binary valued nodes
- constant node $X_{0} \equiv 1$.

$$
\begin{aligned}
p(X, \Theta) & =\exp \left[\sum_{(j, k) \in E} \theta_{j k} X_{j} X_{k}-\Phi(\Theta)\right] \\
\Phi(\Theta) & =\log \sum_{x \in \mathcal{X}}\left[\exp \left(\sum_{(j, k) \in E} \theta_{j k} X_{j} X_{k}\right)\right]
\end{aligned}
$$

- Issing model implies a logistic form for each node conditional on the others

$$
P\left(X_{j}=1 \mid X_{-j}=x_{-j}\right)=\frac{1}{1+\exp \left(-\theta_{j 0}-\sum_{(j, k) \in E} \theta_{j k} x_{k}\right)}
$$

- Restricted Boltzmann machines
- two layers, the visible and the hidden layer, no edges inside a layer - it is easier

Boltzmann machine learning

- Parameter learning
- iteratively
- for example Iterative proportional fitting IPF Jiroušek and Přeučil.
- Structure learning
- for example Hoefling and Tibshirany: glasso extension to discrete Markov Networks.
- still slow and not very precise.
- Restricted Boltzmann machine
- fitting the model is faster due to the conditional independence.

Restricted Boltzmann Machine Example (ESLII)

- Two layers:
- \mathcal{V} a visible layer
- \mathcal{H} a hidden layer
- no links inside a layer.

Example:

- \mathcal{V}_{1} binary pixels of an image of a handwritten digit
- $\mathcal{V}_{2} 10$ units for observed class labels 0-9
- more hidden layers in the lower figure.
- Fitted by contrastive divergence (not part of this lecture)

- or Gibbs sampling, but it is slow.

Markov Properties (Zeros are dangerous)

Definition (Markov properties: Global, Local, Pairwise)

Let G be an undirected graph over V, let P be a probability measure P over V. (GM) P is (globally) Markov with respect to \mathcal{G} iff

$$
\forall(\mathcal{A}, \mathcal{B} \in V, \mathcal{C} \subseteq V) \mathcal{A} \Perp_{\mathcal{G}} \mathcal{B}\left|\mathcal{C} \Rightarrow \mathcal{A} \Perp_{P} \mathcal{B}\right| \mathcal{C} \text { in } \mathrm{P} .
$$

(LM) A probability measure has the local Markov property iff $(\forall A \in V): A \Perp_{P} V \backslash F a_{A} \mid N_{A}$
(PM) P has the pairwise Markov property iff $\forall A, B \in V, A \neq B$ not connected by an edge holds $A \Perp_{P} B \mid V \backslash\{A, B\}$.

Theorem

These properties are equivalent for strictly positive measures.
Counterexamples for measures with zero probability everywhere except $(0,0,0)$ and $(1,1,1)$.
See [Milan Studený:Struktury podmíněné nezávislosti, Matfyzpress 2014].

Examples

Example (P has the pairvise but not the local property)

$V=\{A, B, C\}, E=\{(b, c)\}$. Let us have a binary probability measure V nonzero at points $(0,0,0)$ and $(1,1,1)$ [Studený p.101].
$A \Perp B \mid\{C\}$
$A \Perp C \mid\{B\}$$\&$ does not imply $A \Perp B C \mid\{ \}$.
Example (P has the local but not the global property)
$V=\{A, B, C, D\}, E=\{(a, b),(c, d)\}$. Let $P(V)$ be nonzero only at points $(0,0,0,0)$ and ($1,1,1,1$) [Studený p.101].
$A \Perp C D \mid\{B\}$
$B \Perp C D \mid\{A\}$
$C \Perp A B \mid\{D\}$$\&$ does not imply $A \Perp C \mid\{ \}$.

$D \Perp A B \mid\{C\}$

Linear Gaussian CPD

Definition (Linear Gaussian CPD)

For a variable Y with parents $X=X_{1}, \ldots, X_{k}$ the Linear Gaussian model is defined by the mean of Y and a linear function of X and the variance of Y does not depend on X.
from pgmpy.factors.continuous import LinearGaussianCPD cpdY $=$ LinearGaussianCPD('Y', [0.2, -2, 3, 7], 9.6, ['X1', 'X2', 'X3']) cpdX1 = LinearGaussianCPD('X1', [0.2], 1, [])

- We may define Gaussian Bayesian Networks.
- Usually, undirected models are used.
- Mixed interactions models Bayesian network with discrete and conditional Gaussian nodes; no descrete child of a gaussian parent
- (generally, not a clear semantics).

Canonical Form of a Gaussian Distribution

Definition (Canonical Form of a Gaussian Distribution)

For a Gaussian Distribution $\phi(\mathbf{x})=\frac{1}{\sqrt{|2 \pi \Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu) \Sigma^{-1}(\mathbf{x}-\mu)}$ we define its
canonical form $C(\mathbf{X} ; K, h, g)$ where

- concentration matrix $K=\Sigma^{-1}$
- $h=K \mu$
- $g=-\frac{p}{2} \log (2 \pi)+\frac{1}{2} \log (|K|)-\frac{1}{2} \mu^{\top} K \mu$.
- We can rewrite the join probability density to

$$
\begin{aligned}
\phi(\mathbf{x}) & =(2 \pi)^{-\frac{p}{2}}|K|^{\frac{1}{2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu) K(\mathbf{x}-\mu)\right\} \\
& =(2 \pi)^{-\frac{p}{2}}|K|^{\frac{1}{2}} \exp \left\{-\frac{1}{2} \mu^{T} K \mu+h^{T} \mathbf{x}-\frac{1}{2} \mathbf{x}^{T} K \mathbf{x}\right\} \\
& =\exp \left\{g+h^{T} \mathbf{x}-\frac{1}{2} \mathbf{x}^{T} K \mathbf{x}\right\} \\
& =\exp \left\{g+\Sigma_{u} h_{u} \mathbf{x}_{u}-\frac{1}{2} \Sigma_{u, v} K_{u, v} \mathbf{x}_{u} \mathbf{x}_{v}\right\} .
\end{aligned}
$$

Gaussian Distribution Decomposition

Lemma

If the concentration matrix of a multivariate Gaussian distribution fulfills condition of a graph model then the distribution can be written as a product of distributions on cliques of the graph.

- $\phi(x)=\exp \left\{g+\Sigma_{u \in U} h_{u} \mathbf{x}_{u}-\frac{1}{2} \Sigma_{u, v} K_{u, v} \mathbf{x}_{u} \mathbf{x}_{v}\right\}$
- Let us have two sets of vertices A, B separated by the set C. Then $\forall u \in A, v \in B k_{u v}=0$.
- We split the summation in the formula: $\phi(x)=$
- therefore $\phi(x)=g(A, C) h(C, B)$.

A C B
$\mathrm{A}\left|K_{A A} \quad K_{A C}\right|$
C $K_{A C} \quad K_{C C} \quad K_{C B}$
$\mathrm{B} \mid K_{B C} \quad K_{B B}$

Table of Contens

(1) Overview of Supervised Learning
(2) Undirected (Pairwise Continuous) Graphical Models
(3) Gaussian Processes, Kernel Methods
(4) Kernel Methods, Basis Expansion and regularization
(5) Linear methods for classification
(6) Model Assessment and Selection
(7) Decision trees, MARS, PRIM
(8) Ensamble Methods
(9) Clustering
(10) Bayesian learning, EM algorithm
(11) Association Rules, Apriori
(12) Inductive Logic Programming
(13) PCA Extensions, Independent CA
(14) Support Vector Machines

