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Abstract An ever-growing body of evidence regarding observed changes in the cli-
mate system has been gathered over the last three decades, and large modeling efforts
have been carried to explore how climate may evolve during the present century. The
impacts from both observed weather and climate endured during the twentieth century
and the magnitude of the potential future impacts of climate change have made this
phenomenon of high interest for the policy-makers and the society at large. Two funda-
mental questions arise for understanding the nature of this problem and the appropriate
strategies to address it: Is there a long-term warming signal in the observed climate,
or is it the product of natural variability alone? If so, how much of this warming signal
can be attributed to anthropogenic activities? As discussed in this review, these ques-
tions are intrinsically related to the study of the time-series properties of climate and
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radiative forcing variables and of the existence of common features such as secular
co-movements. This paper presents a brief summary of how detection and attribution
studies have evolved in the climate change literature and an overview of the time-series
and econometric methods that have been applied for these purposes.

Mathematics Subject Classification 62P12 · 91G70 · 62M10

1 A brief review of time-series-based detection and attribution of climate change

We first review work related to the detection and attribution of climate change based
on time-series techniques. We start with early studies related to the statistical proper-
ties of temperatures. We then review the work using cointegration techniques assum-
ing temperatures and forcing variables to be unit root processes. Finally, we cover
recent work arguing that the series of interest are better described as stationary fluc-
tuations around a trend function with changes in slope. In such cases, attribution
consists in establishing the existence of a common nonlinear trend between tem-
peratures and radiative forcings. All technical concepts are presented in subsequent
sections.

1.1 Early studies on the detection and attribution of climate change

Since the late 1970, different research groups have published different estimates
of global and hemispheric temperatures based on the available observational data.
Large improvements in information recovery and processing/analysis techniques have
occurred in the last decades, leading to longer temperature records based on more accu-
rate estimates and to a better assessment of their uncertainties (e.g., [36,40,41,58]).
These efforts have permitted the analysis of observed global warming through econo-
metric methods that is reviewed here. Two main types of stochastic processes have
been proposed to represent global temperature series: difference stationary and trend
stationary. In earlier studies of the time-series properties of observed global temper-
atures, the presence of a deterministic trend was interpreted as evidence for a long-
term, human-induced, global warming process. In contrast, under a stochastic trend,
the recent warming trend was interpreted as a manifestation of the low-frequency
variability and high persistence of climate, indicating that it is temporal and should
not be expected to continue in the long term. In this case, no human interference with
the climate system had occurred and no mitigation strategies to avoid further changes
are justified. Some recent publications continue to propose this interpretation [56,57].
For instance, based on standard Augmented Dickey–Fuller (ADF) test, Galbraith and
Green [26] found evidence in favor of global temperature series being a trend sta-
tionary process with a positive slope. Their main conclusions supported the idea of
a lasting global warming process. In the same vein, Bloomfield [10] concluded that
statistical models consisting of a trend plus serially correlated noise may be fitted to
temperature data and estimated a constant growth rate ranging from .2 to .8 ◦C per
century, providing evidence for the presence of global warming during the last century.
Zheng and Basher [93] reported evidence reinforcing the view that global tempera-
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tures are affected by a long-term warming that is not of natural origin or at least that
the existence of a linear trend cannot be ruled out.

In contrast, some argued that temperature data are better described by ARIMA
(integrated autoregressive model average) models, e.g., Woodward and Gray [90].
Their conclusions gave support to the hypothesis that the upward trend in temperature
was the product of random fluctuations and that no global warming was in effect.
Moreover, Woodward and Gray [91] fitted an ARIMA model to three different recon-
structions of global temperature series, concluding that the series are better modeled as
integrated processes, although a deterministic trend could also be present. Further evi-
dence was provided by Kärner [44] who argued that a unit root process could explain
the trends and the variability of temperatures over the last century. Short-term trends
are inevitable and may have little in common with increasing CO2 concentrations.
Such findings increased the support in favor of the unpredictability and randomness
of temperature patterns.

To a lesser extent, fractionally integration has also been advanced as a possible
representation of the data generating process of global and hemispheric temperature
series [29,30,55,74,75]. Nevertheless, it is important to note that the use of fractionally
integrated models has been limited to the detection of climate change, and the notion
of fractional cointegration has not yet been applied to investigate the attribution of
climate change.

1.2 Cointegration approach: testing for a common stochastic trend

In light of such results, the Intergovernmental Panel on Climate Change (IPCC; [25])
concluded that present statistical tests were not able to resolve the question of sta-
tistically significant relationships given the differences in the time-series properties
of possibly trend stationary temperature series and the concentrations of greenhouse
gases series assumed to be integrated processes. This gave rise to a second stage in the
time-series analysis of global and hemispheric temperatures, in which efforts concen-
trated on the issue of the attribution of climate change. The application of cointegration
techniques to global and hemispheric temperature series and to radiative forcing vari-
ables provided a breakthrough on this issue [76,82,83,87,88]. These papers changed
the view of how a stochastic trend in temperature series should be interpreted. The
presence of a unit root was no longer seen as evidence against anthropogenic global
warming, but rather as confirmation that mean global temperatures were driven by
anthropogenic forcing. According to Stern and Kaufmann [83], the evidence of coin-
tegration provided statistically rigorous and direct attribution of climate change to
anthropogenic activity. Furthermore, it provided an alternative method for estimat-
ing the climate sensitivity (i.e., the amount of warming expected as a result of a
doubling of the atmospheric carbon dioxide concentrations; see [81]) from observed
data.

The use of cointegration techniques seemed to have ended the debate on the data
generating process of global and hemispheric temperatures and on the statistical
approach to estimate their relationship with forcing variables. Therefore, this repre-
sentation became widely accepted in the climate change literature and has been used
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also to model the long-run relationships of different climate variables, e.g., global
temperatures and sea level [79]. Nevertheless, the problem of identifying the order of
integration of temperature and radiative forcing variables was not solved. This leads
to publications arguing different orders of integration without following adequate pro-
cedures: (1) According to unit root tests, temperatures were trend stationary processes
[I(0)], but it was concluded that they must be integrated of order one [I(1)] because a
cointegration relationship between them and radiative forcing (identified as I(1)) could
be found [82]; (2) temperatures are I(1) based on evidence of a standard ADF unit root
test applied to a longer sample which includes more recent records of global temper-
ature values [45,46]; (3) temperatures are integrated of order two [I(2)], meaning that
they are characterized by having two independent stochastic trends [83]. Some authors
have applied the concept of polynomial cointegration1, leading to opposing conclu-
sions regarding the role of anthropogenic forcing in the observed warming [8,53] and
questioning the validity of previous results found within the cointegration framework
assuming I(1) processes. Not being able to identify the order of integration of a time
series has strong implications for cointegration analysis. In this case, cointegration
techniques are not reliable (e.g., [17,32,52]). It has been shown in the econometric lit-
erature that cointegration methods tend to find spurious cointegration, with probability
approaching one asymptotically, when the correct order of integration is uncertain and
when there are structural breaks in the trend function [32].

As discussed in Estrada et al. [22], the lack of a proper analysis of the time-series
properties of climate variables is a fundamental problem that bedevils the application
of cointegration techniques for the attribution of climate change studies, as also is the
lack of physical mechanisms that would support the existence of a unit root process in
temperature series. Although cointegration offered a formal way to study the attribution
of climate change, results reported in the literature pointed to the need of revising
the assumptions regarding the univariate time-series properties of temperature and
radiative forcing variables. This is a necessary first step for the multivariate modeling
that could be employed to investigate the attribution of observed climate change.

1.3 Trend stationarity and co-trending: testing for common nonlinear secular trends

The presence of breaks in global and hemispheric temperatures has been discussed
extensively (e.g., [40,80]). The rate of warming of the twentieth century can hardly
be considered constant, and therefore, a linear trend provides an inadequate repre-
sentation to describe the secular movement of global and hemispheric temperatures.
Consequently, research on the properties of temperature series extended the deter-
ministic linear trend plus stationary noise to more realistic specifications of the trend
function that allow the presence of nonlinearities.

Using recent time-series techniques and unit root tests that allow for the presence
of a structural break [49,64], Gay et al. [28] showed that global and hemispheric
annual temperature series are better represented as trend stationary processes with an

1 Multicointegration extends the cointegration methodology to integrated variables of higher order than
one and to variables integrated of different order.
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“exogenous and permanent” change in the rate of growth that cannot be interpreted
as a part of the natural variability occurring during the twentieth century. Their main
results can be summarized as follows: (1) There is strong statistical evidence against
the existence of a stochastic trend in global and hemispheric temperatures: Their data
generating process can adequately be described as trend stationary with a single change
in slope occurring at different dates and with different magnitudes for the various
series. In general, the results show evidence for a “two stages” warming trend, the first
a moderate one and the other rapid and of much larger magnitude; (2) the time-series
properties of annual global and hemispheric temperatures suggest that, at least for these
spatial scales and data frequency, climate change has manifested itself as a “change-
in-the-mean phenomenon,” and variability has not changed with climate change; (3)
in terms of Article 2 of the Framework Convention on Climate Change, significant
anthropogenic interference with the climate system has already occurred; and (4)
inference methods, such as cointegration, that assume that temperatures are integrated
processes should be revised. This mean that a new approach to relate temperature and
radiative forcing series was needed to investigate the anthropogenic contribution to
the warming.

Other authors also offered evidence supporting trend stationarity around nonlinear
trends as a better representation of the data generating process of temperature series.
Harvey and Mills [37,38] showed that global and hemispheric temperatures can be
better represented as stationary processes around one or two smooth transitions in
the linear trend. Holt and Teräsvirta [39] provided further evidence in favor of trend
stationarity by applying a unit root test that uses Fourier series to approximate any
unspecified shifts in the trend [7].

Based on the work of Perron [62] and Gay et al. [28] provided an explanation
for the inability of standard unit root tests to determine the order of integration of
temperature series. Using proper tests for structural breaks [69], they provided strong
evidence for the existence of a break in the slope of the trend function irrespective
of the order of integration of temperature series. The recursive ADF tests shown in
Gay et al. ([28]; Fig. 1) suggest that the existence of a break can explain why standard
unit root tests find temperatures either integrated or trend stationary depending on
whether the sample includes observations from the last two to three decades of the
twentieth century. The effects of breaks in the trend function on the behavior of unit root
tests were established by Perron [62] who showed that the sum of the autoregressive
coefficients is highly biased toward unity if there is a shift in the trend function. In
this case, the unit root null is hardly rejected even if the series is composed of white
noise disturbances around the trend. If the break occurs in the slope of the trend, unit
root tests are not consistent, i.e., the null hypothesis of a unit root cannot be rejected
even asymptotically.

Gay et al. [28] generated a new phase in the debate of identifying the type of data
generating process for temperature series. Shortly after its publication, Kaufmann et
al. [47] argued in favor of the cointegration approach mainly based on the potential
usefulness of this technique for attribution studies as, if this representation was indeed
adequate, it would offer “the possibility of greater insights regarding the potential
causes of climate change and efforts to slow its progression.” By means of structural
time-series models, Mills [56,57] supports the unit root hypothesis, but reaches very
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different results from those in Stern and Kaufmann [45,46], Kaufmann and Stern [47],
Kaufmann et al. [48,82,83] regarding the detection and attribution of climate change.
According to this author, global temperature is better represented as a simple random
walk, where the lack of a drift indicates that there is no long-term warming trend
and that what was observed during the twentieth century were realizations of natural
variability.

In the light of the results of Gay et al. [28], Harvey and Mills [37,38], Holt and
Teräsvirta [39], the difference in the order of integration between temperatures (trend
stationary) and radiative forcing variables, commonly assumed as integrated, seemed
to preclude the possibility of establishing empirical evidence on attribution through
current statistical methods.

Estrada et al. [23] investigated the time-series properties of radiative forcing vari-
ables and found that like temperature series they are trend stationary processes with
time-ordered breaks in the slope of their trend function. A new approach to con-
duct detection and attribution studies was introduced, and it was shown that global
temperatures and radiative forcing share a common nonlinear secular movement.
This approach is based on “common features” concepts such as co-trending and
co-breaking [20] and uses the nonparametric nonlinear co-trending test of Bierens
[9]. Cointegration analysis is the only one possibility for relating trends of non-
stationary variables: Relationships between nonstationary variables can be estab-
lished when linear combinations of different time series cancel out common features
such as trends and co-breaks in trend. It was shown that climate models’ simula-
tions and observed global temperature series share a common nonlinear trend that
is imparted mainly by the radiative forcing of well-mixed greenhouse gases. This
paper provided an approach that is both adequate for the time-series properties of
temperature and radiative forcing variables and consistent with the physics of cli-
mate.

Holt and Teräsvirta [39] found northern and southern hemispheres temperature
series to be trend stationary processes, and they use a shifting mean vector autoregres-
sion (SM-VAR) to provide evidence in favor of a deterministic co-shifting between
northern and southern temperature series. This modeling allows the possibility that
shifts in the underlying data occurred gradually and that one or more of these shifts are
common to both series. They argue that for hemispheric temperatures, the evidence
of co-shifting is particularly strong since the early 1980s.

Recent advances in the understanding of low-frequency variability modes have
shown that the 60- to 90-year natural oscillations produced by the Multidecadal
Atlantic Oscillation (AMO) can mask or exaggerate the warming trend depending
its phase [86,92]. Estrada et al. [24] showed that after filtering out the effects of
AMO, the secular movement of global, northern, and southern hemisphere temper-
atures is characterized by a common warming trend with a break in its slope near
1960, marking the onset of sustained global warming. Using co-trending analysis,
they show that the nonlinear warming trend is of anthropogenic origin mostly driven
by the radiative forcing of well-mixed greenhouse gases. Also, the analysis of the
common warming trend imparted by the radiative forcing indicates that human inter-
ventions contributed to slowing down global warming in two occasions: The first is
related to the large socioeconomic disruptions caused by the two World Wars and
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the Great Crash which contributed to the cooling in the mid-twentieth century, and
the second is associated with the Montreal Protocol and the technological change in
agricultural production in Asia. Both of these changes in greenhouse emissions are
major drivers of the slowdown in the warming that has been experienced since the late
1990s.

2 Stationary, difference stationary, trend stationary, and fractionally integrated
processes

A time series is considered strictly stationary if its joint distribution remains unchanged
when shifted in time by an arbitrary value. Strict stationarity is difficult to verify in
practice, and in general, stationarity is defined in terms of moments, being second-
order, weak, or covariance stationarity commonly used for this purpose. In this case, the
mean and variance of the process are constant and the covariances of the process depend
only in the interval separating two points in the time index (see [54]). Consider a time
series yt with the following decomposition: yt = τt + zt , where τt is the deterministic
trend function and zt is the noise component. A process is said to be integrated of
order d or I (d) if the dth difference of the noise zt , �

d zt = (1 − L)d zt , is stationary.
To illustrate this concept, consider an ARIMA process such that A(L)zt = B(L)et

with et ∼ i.i.d. (0, σ 2
e ), where A(L) and B(L) are polynomials in the lag operator

L (defined as Lzt = zt−1). It is assumed that the roots of B(L) = 0 are outside the
unit circle so that the process is identified, stationary, and invertible. If a time series
is stationary around an appropriately defined trend τt , its order of integration is zero
or I (0). This occurs when all the roots of A(L) = 0 are outside the unit circle. The
process is said to be I (1) if the deviations from the trend have to be differenced once
to achieve stationarity, in which case one of the roots of A(L) is one. Similarly, it is
said to be I (2) if the deviations have to be differenced twice to achieve stationarity,
in which case A(L) has two unit roots.

2.1 Unit roots

Consider the first-order autoregressive model

zt = αzt−1 + et , et ∼ i.i.d.(0, σ 2). (1)

An example of a unit root process is when α = 1. Then, �zt = zt − zt−1 = et .
The first difference of the process is i.i.d. This model has the following implications.
First, each shock et has a long-term effect on the level of zt . To see this, write (1)
with α = 1 as (by recursive substitution) zt = z0 + ∑t

j=1 e j . Since each shock has a
permanent effect on future levels of zt , a 1 % unexpected increase in zt today increases
our predicted value of future zt ’s by 1 % for all future periods. In this simple example,
with et ∼ i.i.d., zt is called a random walk, the best predictor of zt tomorrow being zt

today, i.e., E
[
zt+1|Ft

] = E [zt |Ft ] + E
[
et+1|Ft

] = zt , where Ft is all information
known at time t , given that zt ∈ Ft and et+1 is white noise. The most important
implication of a unit root is the permanent effect of shocks. Assuming this type of
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process as a representation of global and hemispheric temperatures implies that the
secular movement of the series is determined by the sum of random shocks: All shocks
have permanent effects on temperature series, and even shocks in the distant past are as
important as present variations to determine the current trend. The long-term forecast
is always influenced by historical events, and temperature predictability is limited,
even if forcing factors are held constant [23,27,28]. The second implication is that the
variance of zt increases with t since Var(zt ) = Var(

∑t
j=1 e j ) = tσ 2 if z0 is fixed.

This is a nonstationary process since its second moment depends on t . Hence, a unit
root process is nonstationary in variance. The process can cross any line within a long
enough period.

2.2 Difference versus trend stationary models

The random walk model is quite restrictive. Most of the time, allowing for additional
short-run correlation is needed; that is, having �zt = vt , where vt is a stationary
process exhibiting some correlation (without a unit root itself). For example, if vt

is a MA(1), a moving average of order one, vt = et + θet−1. Then, zt = zt−1 +
et + θet−1. Suppose that there is a unit shock et = 1 today and none thereafter,
then at time t , zt increases by 1 and by θ at time t + 1 and stays like that thereafter.
So, the overall effect in the long run is to increase zt by (1 + θ). In general, we can
specify vt as a stationary and invertible ARMA model (autoregressive moving average
model) A (L) vt = B (L) et with et ∼ i.i.d.(0, σ 2). Since vt is a stationary and
invertible process, it can be represented as an MA(∞), i.e., vt = A (L)−1 B (L) et ≡
ψ (L) et . Then, in analogy with the MA(1) case, the long-run effect of a unit shock
et on the level of zt is given by the sum of the MA coefficients, i.e.,

∑∞
i=0 ψi =

ψ (1).

2.3 Random walk with drift or DS process

A wide variety of time series have a tendency to show secular movements over time.
Hence, it is common to specify the trend function as τt = μ + βt . Here, β is the
slope of the trend function, sometimes called the drift. Then, �yt = β + vt with
A (L) vt = B (L) et , and yt = μ + βt + ∑t

j=1 v j . The trend function of yt is then
composed of two parts: i) a deterministic part given by the drift term, and ii) a sto-
chastic part given by the permanent effect of each shock et on the level of yt . Since
shocks have a permanent effect, they change our long-term forecast of the level of the
series which is a plausible definition of the trend of a series. In this case, the trend
function shifts every period and is, hence, stochastic. For this reason, such models
are called stochastic trend models (also called difference stationary models, DS). The
trend function can be obtained using the so-called Beveridge–Nelson decomposition.
Consider the moving average representation of �yt given by �yt = β + ψ (L) et .
Now decompose ψ (L) as ψ (L) = ψ (1) + (1 − L)ψ∗ (L), where ψ∗ (L) =
−∑∞

i=0 ψ
∗
i Li with ψ∗

i = ∑∞
j=i+1 ψ j . Then, �yt = β + [ψ (1)+ (1 − L)ψ∗ (L)]et
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or

yt = μ+ βt + ψ (1)
t∑

j=1

e j + wt (2)

wherewt = ψ∗(L)et is a stationary random variable. A plausible definition of a trend
function is the long-term conditional forecast, E(yt+k |ys; s ≤ t) for k large. Using
(2), we have

E(yt+k |ys; s ≤ t) = μ+ β(t + k)+ ψ (1)
t∑

j=1

e j . (3)

since wt is stationary. Hence, we can view the component μ + βt + ψ (1)
∑t

j=1 et

as the trend with μ + βt the deterministic part and ψ (1)
∑t

j=1 et , a scaled random
walk, the stochastic part.

2.4 The trend stationary model (TS)

An alternative to model variables that increase over time is with a purely deterministic
trend, i.e., yt = c + βt +wt , where C (L) wt = D (L) et with et ∼ i.i.d.

(
0, σ 2

)
and

all the roots of C(L) and D(L) outside the unit circle. This is called the TS model
because the deviations from the trend function are transitory, i.e., the shocks et have
no permanent long-run effects. Note that in this case, ψ (1) in (3) is 0 so that the
trend has no stochastic component. Distinguishing between a TS and DS process is
the so-called unit root testing problem.

2.5 Trend function with breaks

A particular case of the trend stationary process that has been discussed in the climate
change literature is when breaks in the trend function are present. In general, the trend
parameters and their structural changes need not to be assumed deterministic [62,68],
for a survey see [65]). In order to illustrate the class of models that applies in such
cases, consider the framework offered in Perron and Wada [68]:

yt = μt + βt t + zt

where μt = μt−1 + vt and βt = βt−1 + ut . The intercept and slope of the trend
function are time-varying stochastic processes. The noise components are modeled as
mixtures of normal distributions where the realizations from the variables are drawn
from one of two normal distributions, one with high and the other with small or
zero variance. These processes can be described as: ut = λtγ1t + (1 − λt )γ2t and
vt = κtδ1t + (1 − κt )δ2t , where γi t ∼ i.i.d. N (0, σ 2

γ i ), δi t ∼ i.i.d. N (0, σ 2
δi ) while

λt and κt are Bernoulli variables that take value one with probability αλ and ακ , and
value zero with probability (1 − αλ) and (1 − ακ), respectively. One can then obtain
a model with infrequent changes in the slope and intercept parameters when αλ and
ακ are close to one and σ 2

γ 1 and σ 2
δ1 are zero. If σ 2

γ 1 > 0, there will be occasional

123



116 F. Estrada, P. Perron

changes in the slope, and correspondingly if σ 2
δ2 > 0, there will be infrequent changes

in the intercept. When only one break occurs, it becomes difficult to model the change
with a stochastic structure. Hence, the common approach in the literature has been to
consider the change as being “exogenous” in the sense of intervention analysis [12],
and they are not explicitly modeled via a parametric stochastic structure. Under this
parameterization, there are only some shocks that can change the long-term behavior
of the time series, as opposed to the case of a unit root process where all shocks have
long-term changes. In the climate context, long-term changes are not frequent in the
scale of the sample under analysis and are produced by important changes in key
external forcing factors such as Earth orbit changes, solar irradiance, and greenhouse
gases concentrations [23,28].

2.6 Fractionally integrated processes

Fractionally integrated processes occur when the order of difference d needed to
achieve stationarity is not necessarily an integer but can be any real value [33]. The
most commonly used fractionally integrated models are ARFIMA processes, which
are a generalization of ARIMA models when d is not an integer. In this case, the
fractional differencing term can be written as an infinite order moving average (MA)
process using the binomial expansion:

(1 − L)d = 1 − d L + d(d − 1)

2! + d(d − 1)(d − 2)

3! + · · · =
∞∑

k=0

(k − d)Lk

(−d)(k + 1)

where (g) = ∫ ∞
0 yg−1e−ydy is the gamma function. The autocorrelation function

of this process is given by ρτ = [(1 − d)(τ + d)]/[(d)(τ + 1 − d)] ≈ cτ 2d−1

for some c. Hence, the autocorrelation function decays at a slow hyperbolic rate when
0 < d < 0.5. For such processes, yt is stationary and invertible if the roots of
A(L) and B(L) lie outside the unit circle and |d| < 0.5. If the integration order is
0 < d < 0.5, the process displays long memory (much longer persistence than that
of an I (0) process with similar ARMA parameters). When the integration order is
0.5 < d < 1, the process is nonstationary. Although its variance does not have a finite
sum, the effect of a unit shock on the level of the series does decay to zero implying
that the memory of the process is not infinite, as in the case of a I (1) process, and that
it exhibits mean reversion. In the case d ≥ 1, the process is not mean reverting and
nonstationary (see [3,54]).

2.7 Examples

Figure 1 shows the global mean surface temperature (G) with the effects of the
AMO filtered out (see [24]), the total radiative forcing (TRF), and three simu-
lated temperature series representing: 1) a TS process with a break in its slope
(Temp_TSB), calibrated from unfiltered G from the NASA dataset, and gener-
ated by Temp_TSBt = −0.3200 + 0.0039t + 0.0129DT ∗

t + ut with ut =
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Global temperatures (filtered; a), TRF (b), AMO (c), Temp_TSB (TS plus break in slope; d),
Temp_DS (e), and Temp_S (f)

0.3987ut−1 + et and et ∼ i.i.d. N (0, 0.0083) , where DT ∗
t = t − Tb if t >

Tb and Tb = 1978; 2) a DS process (Temp_DS) generated by T emp_DSt =
0.01 + T emp_DSt−1 + ut with ut ∼ i.i.d. N (0, 0.01), and 3) a stationary process
(Temp_S) generated by T emp_St = 0.7T emp_St−1+ut with ut ∼ i.i.d. N (0, 0.01).
The filtered version of G is used since, as shown in the literature [24,86,92],
the AMO can mask or exaggerate the warming trend depending its phase. The
unfiltered G as well as TRF are available from http://data.giss.nasa.gov/, while
AMO is available from http://www.esrl.noaa.gov/. With the exception of AMO
and Temp_S, all series show a trending behavior and visual inspection suggests
the existence of a break in the slope of their trend functions, including Temp_DS
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and Temp_S even though by construction they do not include one. This illus-
trates the potential pitfalls of relying on visual inspection or curve fitting to iden-
tify breaks. As will be shown, formal statistical tests reliably provide the correct
results.

3 Testing for a unit root

The most commonly used unit root test is the ADF test [16,78]. Leaving aside the
deterministic components for a moment, suppose that the data generating process is
an AR(p) process of known order p, i.e.,

yt =
p∑

i=1

ai yt−i + et

or A(L)yt = et with A(L) = 1−a1L−...−ap L p. If the process has an autoregressive
unit root, then A(L) = (1−L)A∗(L)where A∗(L) is a polynomial of order p−1 with
all roots outside the unit circle. Hence, A(1) = 0, which implies that

∑p
i=1 ai = 1.

Now reparameterize the model as:

yt = αyt−1 +
p−1∑

i=1

di � yt−i + et (4)

with α = ∑p
i=1 ai and di = −∑p

j=i+1 ai . The test is based on estimating (4) and
using the t-statistic for testing the null hypothesis that α = 1. More generally, in the
presence of deterministic components denoted now by xt , the regression is

yt = βxt + αyt−1 +
p−1∑

i=1

di � yt−i + et .

Which deterministic components to include depends on the series analyzed. If the data
are not trending (e.g., stratospheric aerosols, North Atlantic Oscillation, etc.), only a
constant is included. If the data are trending (e.g., temperatures, greenhouse gases,
etc.), a constant and a time trend need to be included. The importance of the correct
specification of the deterministic components is discussed in Campbell and Perron [13]
and Perron [61]. The limit distribution of the t-statistic is nonstandard and depends
on the nature of the deterministic components included (see [16]). The tests remain
valid under more general processes such as ARMA or linear processes. The idea is
to approximate the process by a AR(k) for k suitably chosen so that the residuals are
approximately uncorrelated. The validity of the t-statistic was analyzed by Said and
Dickey [78] when the noise is an ARMA(p, q) process of unknown order with i.i.d.
innovations. Their conditions were relaxed by Ng and Perron [15] and Chang and Park
[59].
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Several extensions have been proposed to reduce size distortions and improve
the power of standard unit root tests such at the ADF and Phillips and Perron
[73] tests. Some relevant variants include the development of efficient unit root
tests that use quasi-differentiation and detrending via a generalized least squares
(GLS) method to improve power against persistent local alternatives [18,60] and the
modification of information criteria (e.g., AIC, BIC) used to determine the appro-
priate lag length to correct for serial correlation in the residuals [60]. Here, we
shall discuss the widely used tests of Ng and Perron [60], which adopt the GLS-
detrending approach of Elliott et al. [18]. Suppose that yt = γ xt + vt , where
vt = αvt−1 + ut . If the errors {ut } are i.i.d. N (0, σ 2

u ), then the most powerful
test of the null hypothesis α = 1 versus the alternative hypothesis that α = ᾱ is
given by the likelihood ratio test which reduces to L(ᾱ, 1) = S(ᾱ) − S(1), where
S(α) = infγ

∑T
t=1(y

α
t − γ xαt )

2 = ∑T
t=1(y

α
t − γ̂GLSxαt )

2 with yαt = yt − αyt−1
and xαt = xt − αxt−1 for t = 2, . . . , T and yα1 = y1, xα1 = x1. The estimate
γ̂GLS is the GLS estimate of γ from the model yt = γ xt + vt assuming that vt is
an AR(1) with parameter α. Hence, the likelihood ratio test compares the sum of
squared residuals from two GLS regressions with autoregressive parameters 1 and
ᾱ. Assuming that the true value α = ᾱ, and using the local to unity parameteri-
zation ᾱ = 1 + c̄/T , the local asymptotic power function of the LR test gives a
local asymptotic power envelop, i.e., the maximum that can be achieved under nor-
mal errors. In practice, the true value of α is unknown. A sensible recommendation
by Elliott et al. [18] is to choose ᾱ such that the asymptotic power is 50 % evalu-
ated at c̄. This implies c̄ = −7.0 when xt = 1 and c̄ = −13.5 when xt = (1, t).
In the presence of serial correlation, a feasible point optimal test with the same
asymptotic properties is PT = [S(ᾱ)− ᾱS(1)]/s2

AR, with s2
AR defined below. Denote

the GLS detrended data by ỹt = yt − γ̂GLSxt . Consider the ADF test constructed
with GLS-detrended data, i.e., the t-statistic for testing that α = 1 in the regres-
sion

ỹt = α ỹt−1 +
k∑

i=1

bi�ỹt−i + etk (5)

Elliott et al. [18] found that it has an asymptotic power function very close to
the maximum power possible under normal errors. Ng and Perron [60] consid-
ered modified versions of the Phillips and Perron [73] unit root tests and oth-
ers suggested by Stock [84]. The MZα test constructed with GLS-detrended data
is MZGLS

α = [T −1 ỹ2
T − s2

AR]/[2T −2 ∑T
t=1 ỹ2

t−1] where s2
AR is an autoregressive

spectral density estimator given by s2
AR = σ̂ 2

ek/(1 − ∑k
i=1 b̂i )

2 where σ̂ 2
ek =

T −1 ∑T
t=k+1 ê2

tk with b̂i and êtk obtained from (5). They also considered the alter-

native tests MSBGLS = (T −2 ∑T
t=1 ỹ2

t−1/s
2
AR)

1/2 and MZGLS
t = MSBGLS ∗ MZGLS

α .
These tests are collectively referred to as the MGLS tests. The limit distributions of
the tests are nonstandard, but critical values are presented in Ng and Perron [60].
To have tests with good properties, they proposed selecting the lag order k using a
modified information criterion given by MIC(k) = ln(σ̂ 2

ek) + CT (τT (k) + k)/T ,

where τT (k) = (σ̂ 2
ek)

−1b̂2
0T −2 ∑T

t=1 ỹ2
t−1. We have the MAIC when CT = 2

and the MBIC when CT = ln(T ). They recommend using the MAIC. Perron
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and Qu [66] further refined the procedure by suggesting to select k using OLS-
detrended data but constructing s2

AR with GLS-detrended data once the order is
selected.

Many tests were also proposed to test the null hypothesis of stationarity versus the
alternative of a unit root (e.g., [51]). But since the unit root tests described above are
nearly optimal, they offer no added advantages to discriminate between I (0) and I (1)
processes.

The results of applying a battery of standard unit root tests indicate that the unit
root hypothesis cannot be rejected for G, TRF, Temp_TSB, and Temp_DS (Table 1).
However, the existence of breaks in the trend functions of some series could lead to
incorrectly classify them as DS processes. As discussed in the next sections, structural
break tests and unit root tests that allow for a break in the trend function are required
to investigate the data generating process of this type of series.

4 Unit root tests that allow for the presence of structural changes in the trend

The standard unit root tests for the existence of stochastic trends provided a first step
to investigate the time-series properties of global and hemispheric temperatures and
radiative forcing series. Nevertheless, it is important to note that they can be severely
affected when the trend function is subject to changes in level and/or slope. Perron
[62] showed that the sum of the autoregressive coefficients is highly biased toward
unity if there is a shift in the trend function. In this case, the unit root null hypothesis is
hardly rejected even if the series is composed of white noise disturbances around the
trend. Also, if the break occurs in the slope of the trend, standard unit root tests are not
consistent, i.e., the null hypothesis of a unit root cannot be rejected even asymptotically.
As a consequence, standard unit root tests are not adequate to investigate the data
generating process of series which exhibit such behavior. Several tests have been
devised to allow for structural breaks, and we shall focus on the Kim-Perron test [49]
and briefly mention other methods that have been applied when investigating global
and hemispheric temperatures.

To motivate the problem addressed, it is useful to look at some basic properties of
unit root and trend stationary processes. As discussed earlier, a DS process is such
that the trend function changes every period (i.e., all shocks have a permanent effect
on the future level of the series). On the other hand, for a TS process, the trend never
changes. Hence, one can view the unit root versus trend stationary problem as address-
ing the following question: Do the data support the view that the trend is changing
every period or never? The question is then why restrict the comparison to “never”
or “always”? Would it not be preferable to make a comparison between “always” and
“sometimes”? Ideally, the proper question to ask would be “what is the frequency of
permanent shocks?” This is a question for which no satisfactory framework has been
provided.

The basic motivation for the work initiated by Perron [62,63] is to take a stand
on what is “sometimes.” The specific number chosen then becomes case-specific.
His argument was that in many cases of interest, the relevant number of changes is
relatively small and often only one. These changes are then associated with important
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historical events. As far as statistical modeling is concerned, the main conceptual issue
is to view such changes as possibly stochastic but of a different nature than shocks that
occur every period, i.e., drawn from a different distribution. However, since such large
changes are infrequent, it is difficult to specify and estimate a probability distribution
for them. The approach is then to model these infrequent large changes in the trend
as structural changes. The question asked by unit root tests is then: “do the data favor
a view that the trend is ‘always’ changing or is changing at most occasionally?” or
“if allowance is made for the possibility of some few large permanent changes in the
trend function is a unit root present in the stochastic component?” Note two important
qualifications. First, the setup allows but does not impose such large changes. Second,
by “permanent” what should be understood is not that it will last forever but that, given
a sample of data, the change is still in effect.

Perron [62] proposed an extension of the ADF test that allows for a one-time break
in the trend function of a univariate time series. Three different model specifications
were considered: the “crash” model that allows for a change in the level of the series;
the “changing growth” model that permits a change in the rate of growth; a third model
that allows both changes. When analyzing global and hemispheric temperatures and
radiative forcing variables, the “changing growth” model is of interest, which can be
briefly described as follows. In this case, the model is:

yt = μ1 + β1t + (β2 − β1) DT ∗
t + ut

where DT ∗
t = t − T1 if t > T1 and 0 otherwise. The null hypothesis is that ut is I (1)

and the alternative hypothesis is that ut is I (0). The “changing growth” model takes
an “additive outlier” approach in which the change is assumed to occur rapidly, and
the regression strategy consists in first detrending the series according the following
regression:

yt = μ+ βt + γ DT ∗
t + ỹt (6)

where γ = β2 − β1 and ỹt is accordingly defined as the detrended series. The test is
based on the value of the t-statistic for testing that α = 1 in the following autoregres-
sion:

ỹt = α ỹt−1 +
k∑

i=1

ai�ỹt−i + et (7)

In the original Perron [62] test, the break is assumed to occur at a known date. Later,
this test was generalized to allow the break to occur at an unknown date to be deter-
mined endogenously from the data [64,94]. The break date was originally proposed
to be selected by 1) minimizing the t-statistic to test for a unit root; 2) minimiz-
ing/maximizing the t-statistic of the parameter associated with γ in regression (6); or
3) maximizing the absolute value of the t-statistic for γ in regression (6). The resulting
unit root test is then the t-statistic for testing that α = 1 in regression (7) estimated
by OLS using ỹt defined according to the estimate of the break date. Note that proce-
dures (2) and (3) yield the same estimate of the break date and, hence, the same unit
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root test (it is also equivalent to select the estimate by minimizing the sum of squared
residuals from regression (6)). However, (2) allows one to impose a prior on the sign
of the change. This affects the limit distributions and leads to tests with higher power.
The critical values of the tests have been tabulated in Perron [64], see also Zivot and
Andrews [94].

A problem with most procedures for testing for unit roots in the presence of a one-
time break occurring at an unknown date is that the change in the trend is allowed
only under the alternative hypothesis of a stationary noise component [64,89,94].
Consequently, it is possible that a rejection occurs when the noise is I (1), and there is
a large change in the slope of the trend function. A method that avoids this problem is
that of Kim and Perron [49]. Their procedure is based on a pretest for a change in the
trend function, namely the Perron and Yabu [69] test described below. If this pretest
rejects, the limit distribution of the unit root test is then the same as when the break
date is known [49,62,67]. This is very advantageous since when a break is present,
the test then has much greater power. It was also shown in simulations to maintain
good size in finite samples and that it offers improvements over other commonly used
methods.

As mentioned above, the presence of structural changes can have considerable
implications when investigating time-series properties by means of unit root tests
[62], and at the same time, most tests for structural breaks require to correctly identify
whether the data generating process is stationary or integrated. This creates a circular
problem: Depending on whether the process is I (0) or I (1), the limit distributions
of these tests are different, and if the process is misidentified, the unit root tests will
have poor properties. The Perron–Yabu test [69] was designed explicitly to address
the problem of testing for structural changes in the trend function of a univariate time
series without any prior knowledge as to whether the noise component is stationary or
contains an autoregressive unit root. Their approach builds on previous work which
analyzed the problem of hypothesis testing on the slope coefficient of a linear trend
model when no information about the nature, I (0) or I (1), of the noise component is
available [70].

4.1 Perron–Yabu testing procedure for structural changes in the trend function

We present the case of a model with a one-time structural break in the slope of the
trend function with an autoregressive noise component of order one (AR(1)). A more
detailed presentation of this case and of other structural change models and exten-
sions can be found in Perron and Yabu [69]. Consider the following data generating
process:

yt = x ′
t� + ut , ut = αut−1 + et ,

for t = 1, . . . , T , et ∼ i.i.d.(0, σ 2), xt is a (r × 1) vector of deterministic compo-
nents, and� is a (r × 1) vector of unknown parameters which are model specific and
described in the next paragraphs. The initial condition u0 is assumed to be bounded
in probability. The autoregressive coefficient is such that |α| ≤ 1, and therefore, both
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integrated and stationary errors are allowed. The interest resides in testing the null
hypothesis R� = γ where R is a (q × r) full rank matrix and γ is a (q × 1) vector,
where q is the number of restrictions. The restrictions are used to test for the presence
of a structural change in the trend function. For this purpose, Perron and Yabu [69]
consider three models where a change in intercept and/or slope in the trend function
occurs. In what follows, the break date is denoted T1 = [λT ] for some λ ∈ (0, 1),
where [·] denotes the largest integer that is less than or equal to the argument and 1 (·)
is the indicator function.

The model to test for a one-time change in the slope of the trend function is specified
with xt = (1, t, DT ∗

t )
′ and � = (μ0, β0, β1)

′ where DT ∗
t = 1 (t > T1) (t − T1) so

that the trend function is joined at the time of the break. The hypothesis of interest
is β1 = 0. The testing procedure is based on a Quasi Feasible GLS approach with
a superefficient estimate of α when α = 1. The estimate of α is the OLS estimate
obtained from an autoregression applied to detrended data and is truncated to take a
value 1 when the estimate is in a T −δ neighborhood of 1. This makes the estimate
“super-efficient” when α = 1 and implies that in the case of a known break date,
inference on the slope parameter can be performed using the standard normal or chi-
square distribution whether α = 1 or |α| < 1. Theoretical arguments and simulation
evidence show that δ = 1/2 is the appropriate choice. When the break date is unknown,
the limit distribution is nearly the same in the I (0) and I (1) cases when considering
the Exp functional of the Wald test across all permissible dates, see Andrews and
Ploberger [2]. Hence, it is possible to have a test with nearly the same size in both
cases. To improve the finite sample properties of the test, they also use a bias-corrected
version of the OLS estimate of α as suggested by Roy and Fuller [77]. The testing
procedure suggested is: 1) for any given break date, detrend the data by OLS to obtain
the residuals ût ; 2) estimate an AR(1) model for ût yielding the estimate α̂; 3) use α̂
to get the Roy and Fuller [77] biased corrected estimate α̂M ; 4) apply the truncation
α̂M S = α̂M if

∣
∣α̂M − 1

∣
∣ > T −1/2 and α̂M S = 1 if

∣
∣α̂M − 1

∣
∣ ≤ T −1/2; 5) apply a GLS

procedure with α̂M S to obtain the estimates of the coefficients of the trend and the
long-run variance of the residuals and construct the standard Wald-statistic WF M S ; 6)
since the break date is assumed to be unknown, these 5 steps must be repeated for all
permissible break dates to construct the Exp functional of the Wald test denoted by
Exp − WF S = log[T −1 ∑

� exp(WF M S (λ) /2)] where � = {λ; ε ≤ λ ≤ 1 − ε} for
some ε > 0. A commonly used value is ε = 0.15.

The results of applying the Perron–Yabu test to the series in Fig. 1 confirm the
existence of a break in the slope of the trend function for G, TRF, and Temp_TSB,
while no evidence for a break is found for AMO, Temp_DS, and Temp_S (Table
2). The Perron–Yabu test correctly indicates that the breaks suggested by the visual
inspection of Temp_DS and Temp_S are not part of their data generating process. The
results in Tables 1 and 2 allow to conclude without further testing that Temp_DS has
a unit root and that Temp_S and AMO are stationary, since when no break in trend
is present, the standard unit root tests reported in Table 1 are reliable. In contrast,
the results strongly suggest that the analysis of the order of integration of G, TRF,
Temp_TSB needs to be extended using unit root tests that allow for a break in their
trend function.
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Table 2 Perron–Yabu test
applied to G, TRF, AMO and to
the simulated temperature series
Temp_TSB, Temp_DS and
Temp_S

Bold figures denote statistical
significance at the 1 % level

Series Exp-Wald statistic value

G 12.34

TRF 7.92

AMO 0.28

Temp_TSB 19.50

Temp_DS 0.15

Temp_S −0.31

4.2 Kim–Perron unit root tests with a one-time break in the trend function

As mentioned, a problem with most tests for unit roots in the presence of a one-time
break occurring at an unknown date is that the change in the trend function is allowed
only under the alternative hypothesis of a stationary noise component. Hence, it is
possible that a rejection occurs when the noise is I (1), and there is a large change
in the slope of the trend. A procedure that avoids this problem is that of Kim and
Perron [49]. It is based on a pre-test for a change in the trend function, namely the
Perron and Yabu [69] test. If this pre-test rejects, the limit distribution of the unit root
test is then the same as if the break date was known [67]. This is very advantageous
since when a break is present the test has much greater power. The testing procedure
under the additive outlier approach for the changing growth model consists of the
following steps: 1) obtain an estimate of the break date T̂1 = λ̂T by minimizing the
sum of squared residuals using regression (6) and then construct a window around
that estimate defined by a lower bound Tl and an upper bound Th . A window of 6
observations is common. Note that, as shown by Kim and Perron [49], the results are
not sensitive to this choice; 2) create a new data set

{
yn

t

}
by removing the data from

to Tl + 1 to Th , and shifting down the data after the window by S (T ) = yTh − yTl ;
hence, yn

t = yt if t ≤ Tl and yn
t = yt+th−tl − S (T ) if t > Tl ; 3) perform the unit

root test using the break date Tl . This is the t-test statistic for testing that α̃ = 1 in the
following regression estimated by OLS, denoted by tα(λ̂AO

tr ):

ỹn
t = α̃ ỹn

t +
k∑

i=1

ci�ỹn
t−i + ẽt (8)

where λ̂tr = Tl/Tr , Tr = T − (Th − Tl) and ỹn
t is the detrended value of yn

t . The
number of lags in (8) can be chosen by means of different information criteria for
model selection such as the BIC and AIC. Extensions of this test are presented in
Carrion-i-Silvestre et al. [14].

Other unit root tests that allow for nonlinear trends that can accommodate structural
changes have been applied to global and hemispheric temperatures. Becker et al. [7]
proposed a stationarity test that allows for an unknown number of intercept shifts
by using a selection of terms from a Fourier approximation. Harvey and Mills [38]
proposed a unit root test that allows for double smooth transitions to accommodate
noninstantaneous breaks.
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Table 3 Tests for a unit root allowing for a one-time break in the trend function applied to filtered G, TRF
and simulated temperature series Temp_TSB

Series Tb k μ̂ β̂ γ̂ α̂ t̂α tα
(
λAO

tr

)

G 1956 0 −0.27 (−15.94) 0.0031 (9.01) 0.0063 (8.28) 0.34 −7.98a −7.30a

TRF 1960 1 −0.09 (−5.34) 0.0064 (20.82) 0.0221 (28.98) 0.84 −4.58a −4.11b

Temp_TSB 1978 0 −0.34 (−18.61) 0.0040 (13.20) 0.0129 (9.51) 0.31 −8.17a −7.79a

The regression model for the unit root tests is defined in regression (6). The symbols used are defined as
follows: Tb is the estimate of the break date; k is the number of lagged differences added to correct for serial
autocorrelation; μ̂, β̂ and γ̂ are the regression coefficients of the trend function, and the corresponding
t-statistic values are shown in parenthesis. Bold numbers denote statistical significance at the 5 % levels.
α̂ is the estimate of the sum of the autoregressive coefficients and t̂α is the [64] unit root test statistic.

tα
(
λAO

tr

)
is the Kim–Perron [49] unit root test statistic. a, b denote statistical significance at the 1 and 5 %

levels, respectively

Table 3 shows the results of applying the Kim–Perron test to the series in Fig. 1
for which evidence of a break in the slope of their trend function was found (i.e., G,
TRF, Temp_TSB). In all cases, once a better description of the deterministic trend is
allowed, the unit root null is strongly rejected, reversing the results of the standard
unit root tests in Table 1.

5 Perron–Zhu methodology for estimating a confidence interval for the break
date

Perron and Zhu [71] analyzed the consistency, rate of convergence, and limiting dis-
tributions of parameter estimates in models where the trend exhibits a slope change
at some unknown date, and the noise component can be either stationary or have an
autoregressive unit root. Their results are of particular relevance when considering
the problem of selecting the break date when testing for structural changes and for
deriving the limiting distributions of unit root tests that allow for a one-time structural
change that occurs at an unknown date, such as in the [49] test. Another important
practical application of deriving the limiting distribution of the estimate of the break
date is that it permits forming a confidence interval for the break date.

Perron and Zhu [71] considered a total of six models with deterministic and stochas-
tic trends. The random component was assumed to be either stationary or to contain
a unit root, while for the deterministic component, three cases were considered: 1) a
first-order linear trend with a one-time change in the slope such that the trend function
is joined at the time of the break; 2) a local disjoint broken trend; and 3) a global disjoint
broken trend. The case of interest here is the first specification with a stationary noise
component. The interested reader is referred to Perron and Zhu [71] for the specifica-
tions and limiting distributions for the other models considered. The deterministic part
is specified as τt = μ+ βt + γ DT ∗

t , where DT ∗
t = t − T1 if t > T1 and 0 otherwise

with T1 = λT the break date and λ the break fraction. Note that at the time of the
break, the slope coefficient changes from β to β + γ , but that the trend function is
continuous at T1. This specification is therefore referred to as the “joint broken trend.”
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The estimation method is simply to select the break date that minimizes the sum of
squared residuals from a regression of the series of interest yt (t = 1, . . . , T ) on the
regressors {1, t, DT ∗

t }, i.e., applying OLS to the model

yt = μ+ βt + γ DT ∗
t + ut (9)

Denote the estimate by T̂1 and the associated estimate of the break fraction
by λ̂ = T̂1/T . They showed the limit distribution to be T 3/2(λ̂ − λ) →d

N (0, 4σ 2/[λ0 (1 − λ0)
(
γ 0

)2]) where γ 0 is the true value of the change in the slope

parameter and σ 2 = limT →∞ E(
∑T

t=1 ut )
2 is the so-called long-run variance of ut .

Hence, it is easy to construct a confidence interval using the estimates of σ 2, γ 0,
and λ0. A common estimate of σ 2 is based on a weighted sum of the autocovari-
ance function of ut of the form Ŝw,T = R̂u(0) + 2

∑T −1
j=1 w( j,m)R̂u( j), where

R̂u( j) = T −1 ∑T
t= j+1 ût ût− j with ût the OLS residuals from regression (9). Here,

w( j,m) is some weight function. A popular choice is the Bartlett triangular weight
with w( j,m) = 1 − j/(m + 1) if j ≤ m and 0 otherwise. Other choices are available
such as the Parzen or Quadratic Spectral. The parameter m is a bandwidth or truncation
parameter. A popular method to select this parameter is due to Andrews [1].

To illustrate the use of this procedure with observed climate variables, the 95 %
confidence intervals for the estimated break dates of G and TRF were constructed.
The confidence interval for G is (1946, 1966) and for TRF is (1956, 1964), which
overlap considerably suggesting that the break in the slope of their trend functions is a
common feature shared by both variables. The long-run variance was estimated using
the Bartlett kernel with Andrews’ bandwidth selection method.

6 Cointegration

A set of integrated variables is said to be cointegrated if there exists a linear combination
of them that is stationary [19]. Cointegration implies that there is a long-run equilibrium
relationship between two or more variables because they share a common stochastic
trend [85]. To illustrate this concept consider the following integrated processes: xt =
μxt + εxt and zt = μzt + εzt where μxt and μzt are unit root processes which contain
a stochastic trend and εxt , εzt are stationary noise processes. For these two variables
to be cointegrated, there must exist a linear combination α1xt + α2zt (with α1 and
α2 different from zero) such that μxt − (α2/α1)μzt is stationary, indicating that the
stochastic trends μxt and μzt are identical up to a scalar. Consequently, xt and zt

share a common secular movement and a regression between these two variables will
produce stationary residuals.

In general, the n variables yt = (y1t , . . . , ynt ) are said to be cointegrated of order
d, b, or yt ∼ C I (d, b), if all of the variables are integrated of order d and there exists
a cointegrating vector β such that the linear combination β ′yt is integrated of order
(d − b), with b > 0. Granger and Lee [34] showed that multi-cointegration can also
occur where an equilibrium relationships among sets of variables that have different
orders of integration can occur. For example, if two of the variables in yt are I (2) and
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the others are I (1), an equilibrium relationship can hold if the two I (2) variables are
C I (2, 1) and this linear combination cointegrates with the other I (1) variables.

The tests that have been devised to analyze the existence of cointegration relation-
ships can be classified in three types: single equation residual based, single equation
error correction, and multiple equations based. These three types of tests have been
used to investigate the existence of a common secular stochastic trend in global and
hemispheric temperatures and radiative forcing data. The most widely used resid-
ual based test is the Engle and Granger [19] two-steps procedure. Consider the OLS
regression partitioning yt into y1t and y∗

t = (y2t , . . . , ynt ):

y1t = c + β ′y∗
t + et (10)

where (1,−β ′) is the cointegration vector normalized to have value of 1 for the variable
y1t , which assumes that y1t is a part of the set of variables that are cointegrated. Note
also that usually only a constant is included, which implies that the cointegrating vector
that eliminates the stochastic non-stationarity also eliminates the nonstationarity due
to the deterministic trends in the variables (see [13]). The second step is to test if et is
I (0) by means of a unit root test such as the ADF or the Phillips–Perron tests applied
to the OLS residuals from (10). The critical values of the cointegration test follow a
nonstandard distribution and are different from those of the original unit root tests.
The critical values depend on the number of I (1) regressors included in (10) and on
whether a constant and/or a linear trend is included and, if only a constant is included,
on whether the data are trending. Note also that this test is valid only if the vector of
variables y∗

t is not cointegrated (see, Phillips and Ouliaris [72]; [35]).
To illustrate other tests and features of cointegrated systems, it is useful to adopt

a Vector Autoregressive (VAR) model yt = μ + ∑p
i=1 Ai yt−i + et , with et ∼ i.i.d.

(0, �). It can be written as

� yt = c +�yt−1 +
p−1∑

i=1

i � yt−i + et (11)

where � = −(I − ∑p
i=1 Ai ) and i = −∑p

j=i+1 A j . The set of variables yt is
cointegrated if rank(�) = r for some 0 < r < n. We then have the decomposition
� = αβ ′ where α and β are n×r matrices and β is the matrix of cointegrating vectors.
We can then write (11) as

� yt = c + αβ ′yt−1 +
p−1∑

i=1

i � yt−i + et = c + αzt−1 +
p−1∑

i=1

i � yt−i + et

(12)

where zt−1 = β ′yt−1 is the disequilibrium error at time t − 1. The representation (12)
is called an error correction model (ECM), and the matrix α consists of the vectors
of adjustment coefficients. For simplicity, suppose that there is a single cointegrating
vector so that r = 1 and α and β are vectors of dimension n . Now, suppose that
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α = (α1, 0, . . . , 0). Then, y∗
t = (y2t , . . . , ynt ) is said to be weakly exogenous. While

this appears to be a special case, it is highly relevant in the context of climate change.
Suppose we have two series with y1t temperatures and y2t some forcing variable (e.g.,
well-mixed greenhouse gases). Then, from standard physics of climate change, y2t is
weakly exogenous. A test for cointegration can then be based on the first equation of
the ECM (12):

�y1t = c + α′
1�y∗

t + γ0 ẑt−1 + γ ′
1 y∗

t−1 +
k∑

i=1

(π ′
i�y∗

t−i + φi�y1t−i )+ εt . (13)

where ẑt−1 = β̂ ′yt−1 with β̂ the estimate of the cointegrating vector. Using the
representation (13), there is cointegration if γ0 �= 0. Hence, a test of no-cointegration
amounts to testing H0 : γ0 = 0, using a standard t-statistic; see, Kremmers et al. [50],
Banerjee et al. [4–6], and Ericsson and Mackinnon [21]. It is also possible to do a
joint test H0 : (γ0, γ

′
1)

′ = 0 using a Wald test (see [11]). These tests were shown
to have much higher power when the condition of weakly exogenous regressors is
satisfied.

The most popular system-based tests for cointegration were proposed by Johansen
[42] and Johansen and Juselius [43] and are based on the VAR model (11). To
describe them as well as the method to obtain the maximum likelihood esti-
mates (MLE) of the cointegrating vectors, define the following: R0t (resp., R1t )
as the residuals from a regression of �yt (resp., yt−1) on a constant and the
lags of �yt ; Si j = T −1 ∑T

t=1 Rit R′
j t . Then, the model (11) can be written as

R0t = �R1t + et . Suppose that β is known, then R0t = α(β ′ R1t ) + et and
the MLE (assuming normal errors) of α and � conditional on β are α̂(β) =
S01β(β

′S00β)
−1 and �̂(β) = S00 − S01β(β

′S11β)
−1β ′S01. The MLE of β is then

obtained by minimizing |�̂(β)|. This is achieved by solving the eigenvalue sys-
tem ∣

∣
∣λS11 − S10S−1

00 S01

∣
∣
∣ = 0 (14)

subject to the restrictions β ′S11β = Ir . Note that these impose r(r + 1)/2 restrictions
on β, which are needed since only the space spanned by the cointegrating vectors
is identified. The system (14) has n eigenvalues, represented in decreasing orders as
λ̂1 � λ̂2 � · · · � λ̂r � λ̂r+1 � · · · � λ̂n . The estimates of the cointegrating vectors
are then the eigenvectors corresponding to the r largest eigenvalues. For testing, note
that if the rank of� is r , then the population values of the n−r smallest eigenvalues are
zero. Hence, this leads to two testing procedures. The first is H0 : rank(�) = r versus
H1 : rank(�) > r , and the test statistic, called the trace test, is T

∑n
i=r+1 ln(1 − λ̂i ).

The second test had a different alternative hypothesis so that H0 : rank(�) = r and
H1 : rank(�) = r + 1, and the test statistic, called the maximum eigenvalue test,
is T ln(1 − λ̂r+1). This test is especially useful to devise a strategy to estimate the
number of cointegrating vectors r . Both tests have nonstandard distributions, which,
however, depend only on n and r .

In the application of cointegration techniques to climate variables, the common
stochastic trend has been interpreted as the fingerprint of anthropogenic activities in
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(a) (b)

Fig. 2 Cointegrated (a) and not cointegrated (b) simulated difference stationary series

Table 4 Cointegration tests applied to simulated variables DS_1 and DS_2, and DS_3 and DS_4

Series Trace statistic Max-eigenvalue statistic Engle–Granger ADF test statistic

DS_1, DS_2 27.91 27.11 −11.61
DS_3, DS_4 4.25 3.77 −1.70

Bold numbers denote statistical significance at the 1 % level

global and hemispheric temperatures. It should be noted, however, that a require-
ment for this concept is the existence of stochastic trends with data having a linear
deterministic time trend.

Figure 2a illustrates the concept of cointegrated series. DS_1 and DS_2 are simu-
lated DS series that share a common stochastic trend which determines their secular
movement, and although DS_1 and DS_2 can show deviations from this trend, these
are only temporary. These were generated by DS_1t = T emp_DSt + e1t with e1t ∼
i.i.d. N (0, 0.09) and DS_2t = T emp_DSt + e2t with e2t ∼ i.i.d. N (0, 0.0025)
where T emp_DSt is as defined in Section 2.7. In contrast, Fig. 2b shows two sim-
ulated DS series with independent stochastic trends (DS_3 and DS_4). These were
generated by DS_3t = 0.01 + DS_3t−1 + e3t with e3t ∼ i.i.d. N (0, 0.01) and
DS_4t = 0.01 + DS_4t−1 + e4t with e4t ∼ i.i.d. N (0, 0.01) (e1t through e4t are
mutually independent). These series deviate persistently from each other, precluding
the existence of any linear combination that could be stationary. Two of the most
widely used cointegration tests were applied to DS_1 and DS_2 and DS_3 and DS_4.
The results (Table 4) correctly reflect the true data generating process used to con-
struct the simulations: Both the Johansen (trace and max-eigenvalue statistics) and
the Engle–Granger tests indicate the existence of a cointegrating relationship between
DS_1 and DS_2, while clearly rejecting it for DS_3 and DS_4.

7 Co-trending

We now discuss various procedures to test for the presence of a common nonlinear
trend. We start with Bierens’ nonparametric nonlinear co-trending test. Nonlinear co-

123



Detection and attribution of climate change through econometric methods 131

trending is special case of the more general “common features” concept described by
Engle and Kozicki [20]. As mentioned, cointegration analysis is only one possibility
for investigating secular co-movements of nonstationary variables. A long-run equi-
librium relationship can be established when linear combinations of different time
series cancel out “common features” such as trends and co-breaks in trend. Nonlinear
co-trending aims to formally establish the existence of a secular co-movement between
time series that are stationary processes around nonlinear deterministic trends.

The advantage of the test proposed by Bierens [9] is that the nonlinear trend does
not have to be parameterized. The nonlinear trend stationarity model considered can
be expressed by zt = g (t)+ ut with g (t) = β0 + β1t + f (t), where zt is a k-variate
time series, ut is a k-variate zero-mean stationary process, and f (t) is a deterministic
k-variate general nonlinear trend function that allow, in particular, structural changes.
Nonlinear co-trending occurs when there exists a non-zero vector θ such that θ ′ f (t) =
0. Hence, the null hypothesis is that the multivariate time series zt is nonlinear co-
trending, implying that there is one or more linear combinations of the time series that
are stationary around a constant or a linear trend. Note that this test is a cointegration test
in the case when it is applied to series that contain unit roots. The nonparametric test for
nonlinear co-trending is based on the eigenvalues of the matrices M1 and M2 defined
by M1 = T −1 ∑T

t=1 F̂(t/T )F̂ ((t/T ))′ where F̂ (x) = T −1 ∑[T x]
t=1 (zt − β̂0 − β̂1t) if

x ∈ [
T −1, 1

]
, F̂ (x) = 0 if x ∈ [

0, T −1
)

with β̂0 and β̂1 being the estimates of the
vectors of intercepts and slope parameters in a regression of zt on a constant and a
time trend; also

M2 = T −1
T∑

t=m

⎡

⎣m−1
m−1∑

j=0

(zt− j − β̂0 − β̂1 (t − j))

⎤

⎦

×
⎡

⎣m−1
m−1∑

j=0

(zt− j − β̂0 − β̂1 (t − j))

⎤

⎦

′

where m = T α with T is the number of observations and α = 0.5 as suggested by [9].
Solving |M̂1 − λM̂2| = 0 and denoting the rth largest eigenvalue λ̂r , the test statistic
is T 1−αλ̂r . The null hypothesis is r co-trending vectors against the alternative of r −1
co-trending vectors. This test has a nonstandard distribution, and the critical values
have been tabulated by [9]. The existence of r co-trending vectors in r + 1 series
indicates the presence of r linear combinations of the series that are stationary and
that these series share a single common nonlinear deterministic trend. Such a result
indicate a strong secular co-movement in the r + 1 series.

Another procedure used to investigate long-term co-movements of hemispheric
temperatures is that of co-shifting [39], based on the shifting mean vector autore-
gression, a generalization of the shifting mean autoregressive model of González and
Teräsvirta [31].

A simple approach can also be used to test for a common long-run path in the
bivariate context. Assume two trend stationary variables of the form: yt = dt + ut

and xt = wt + vt , where dt and wt are nonstationary components which may be
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Table 5 Test for nonlinear co-trending between filtered G and TRF

r Test statistic 10 % critical region 5 % critical region

1 0.07 >0.12 >0.15
2 0.32 >0.17 >0.20

Bold numbers denote statistical significance at the 10 % level

composed of a wide class of linear and nonlinear trends, with changes in slopes or
intercepts, and ut and vt are stationary noise components. The procedure is based
on testing for remaining nonstationarities in the residuals of the following regression
estimated by OLS: yt = α + βxt + εt . If the individual nonstationary components
dt and wt are not present in εt , that is, the residuals are found to be stationary, then
it is said that yt and xt share the same long-run path. The existence of remaining
noncommon nonstationarities can be evaluated by applying standard unit root tests.
This procedure is similar to the Engle and Granger [19] two-steps cointegration test,
but it does not require the assumption of unit roots in radiative forcing and temperature
variables. Also, since all series are trend stationary, the relevant critical values are those
tabulated for standard unit root tests with no deterministic terms included.

G and TRF can be used to illustrate the concepts of co-trending and common
long-run path described above. The results of the Bierens nonparametric nonlinear
co-trending test indicate the existence of one co-trending vector and the existence of a
common secular trend between G and TRF, as expected by climate physics (Table 5).
This finding is also supported by the results of the simple common long-run path test
based on applying an ADF test to the residuals of a regression of G on TRF (test
statistic value equal to −7.36, significant at the 1 % level).

8 Conclusions

As evidenced in this review, the time-series-based study of the detection and attri-
bution of climate change has been an active area of research and the application of
econometric methods had a prominent role. With few exceptions, recent publications
have shown compelling evidence based on both observations and climate models’ sim-
ulations supporting the existence of a warming trend. Furthermore, although strong
methodological differences have characterized these studies and a wide variety of tests
and models have been applied, the results are remarkably in agreement regarding the
dominant role of human intervention with the climate system. Whatever the evolution
of climate change during this century turns out to be, the time-series and econometric
approach will be of importance in understanding the changes in the climate system as
they occur as well as their linkage to human and natural drivers. Global warming will
continue to provide a fertile field for the development and application of new statistical
models, tests, and methods.
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