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Abstract In the paper we develop a two stage scenario-based stochastic programming
model for water management in the Indus Basin Irrigation System (IBIS). We present a
comparison between the deterministic and scenario-based stochastic programming model.
Our model takes stochastic inputs on hydrologic data i.e. inflow and rainfall. We divide the
basin into three rainfall zones which overlap on 44 canal commands. Data on crop character-
istics are taken on canal command levels. We then use ten-daily and monthly time intervals
to analyze the policies. This system has two major reservoirs and a complex network of
rivers, canal head works, canals, sub canals and distributaries. All the decisions on hydro-
logic aspects are governed by irrigation and agricultural development policies. Storage levels
are maintained within the minimum and maximum bounds for every time interval according
to a power generation policy. The objective function is to maximize the expected revenue
from crops production. We discuss the flexibility of two stochastic optimization models with
varying time horizon.

Keywords Indus Basin Irrigation System · Stochastic modeling in water systems · Water
resources management · Stochastic vs deterministic programming

1 Introduction

The Indus Basin Irrigation System (IBIS) is the largest contiguous irrigation system in the
world and has been developed over the last 140 years. The Indus river basin stretches from
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the Himalayan Mountains in the north to the dry alluvial plains of Sind, in the south, with
an area of 944,574 km2 (see World Commission on Dams 2000). The vast irrigation system
in Pakistan is comprised of two major storage reservoirs, 19 barrages (canal head work), 44
main canals (or command areas) with a conveyance length of 57,000 kilometers, and 89,000
water courses with a running length of more than 1.65 million kilometers. This vast irrigation
system covers more than 18 million hectares of irrigated land in Pakistan, a country with the
highest irrigated to rain-fed land ratio in the world (4:1).

Pakistan depends on irrigation and water resources for 90 percent of its food and crop
production (see World Bank 1992).

Agriculture is the back bone of its economy.
This system has been developed at a significant financial cost. Therefore, it necessitates

sophisticated scientific water management policies. Many advanced countries have devel-
oped the methods based on system sciences, operation research and mathematical modeling
for decision making, in order to provide successful water resource management.

Decision-making of reservoir release for irrigation, when it is being operated under a
power generation policy, involves subtle considerations regarding the nature of the crops
being irrigated and timing related to decision for these. Determining the amount of water
released from a reservoir as complex as the Indus networks must be supported by a com-
prehensive mathematical decision-making mechanism. It is necessary to consider the crop
water requirement along with the competition with other crops, especially when water re-
sources are scarce.

1.1 Stochastic programming in water systems

The process of determining the best allocation and utilization of available scarce resources,
is as old as man himself. The uncertainty of future water resources adds additional com-
plexity to the problem of optimum allocation. This allocation problem has been studied
by economists, engineers and mathematicians for centuries. However, over the last four
decades, it is being studied in the context of stochastic optimization.

In deterministic LP, all components are considered to be known. In practice, this rarely
happens. Consider the transition of reservoir storage from one volume in one period to a
different volume in the next. The transition results partially from the release of water for
various uses, which can be controlled, and partially from inflow into the reservoir and reser-
voir losses such as evaporation and seepage, which can not be controlled. Therefore, the first
component can be made deterministic, but the last two components cannot because they are
random acts of nature. Inclusion of such random components defines the LP formulation as
stochastic linear programming (SLP).

The stochastic dynamic programming (SDP) has proved to be a potential tool in de-
veloping reservoir operation models in the past (see Butcher 1971; Torabi and Mobasheri
1973; Dudley and Burt 1973; Mawar and Thorn 1974; Roefs and Guitron 1975; Bogle and
O’Sullivan 1979; Oven-Thompson et al. 1982; Stedinger et al. 1984; Karamouz and Houck
1982; Kelman et al. 1982). Yeh (1985) presents a comprehensive state-of-the-art review of
the various reservoir operation models. Most of the approaches in reservoir management
for irrigation treated seasonal crop water demand for irrigation as deterministic, variability
in reservoir inflow was taken into account (see Hall et al. 1969; Schweig and Cole 1968).
Some exceptions to this generalized approach (see Sanford 1969; Dudley 1970 and Burt and
Stauber 1971) incorporate stochastic water demand but assume a deterministic water supply.
More citations toward both stochastic water demand and stochastic inflow are considered in
Dudley et al. (1971, 1976), Dudley (1970, 1972) and Dudley and Burt (1973).
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Due to uncertainty in the random behavior of hydrologic variables, single decision- mak-
ing mechanisms for reservoir operation and crop water allocation are addressed by using
SDP (see Houghtalen and Loftis 1988; Dudley 1988; Dudley and Scott 1993; Vedula and
Mujumdar 1992; Vedula and Kumar 1996; Ravikumar and Venugopal 1998). LP, Deter-
ministic Programming (DP) and SDP are used in seasonal and intra-seasonal allocation of
deficit water, competing crops and crop yield optimization (see Paudyal and Gupta 1990;
Rao et al. 1990; Azar et al. 1992; Mannocchi and Mecarelli 1994; Sunantara and Ramirez
1997; Paul et al. 2000; Anwar and Clarke 2001). LP, DP and simulation are effective tools
in adaptive operations, such as real time forecasts of hydrologic variables (see Dariane and
Hughes 1991; Rao et al. 1992; Mujumdar and Ramesh 1997; Wardlaw and Barnes 1999).

Many studies address uncertainty due to randomness of hydrologic variables and sin-
gle decision-making mechanisms for reservoir operation and crop water allocation by using
stochastic dynamic programming (see Houghtalen and Loftis 1988; Dudley 1988; Dudley
and Scott 1993; Vedula and Mujumdar 1992; Vedula and Kumar 1996; Ravikumar and Venu-
gopal 1998). A two-phase Stochastic Dynamic Programming (SDP) model was developed
by Umamhesh and Sreenivasulu (1997) for optimal operation of irrigation reservoirs under
a multi-crop environment. In the first phase they maximized the release from the reservoir
and in the second phase they minimized the deficit of water when different crops were com-
peting for scarce water resources. A (state of the art) review of SDP is presented in Labadie
(2004) and references herein specially for reservoir operations. A stochastic formulation is
presented in Ganji et al. (2006) for crop water demand when there is a deficit in irrigation
water.

1.2 A two-stage stochastic program for IBIS

A classical two-stage SLP model with fixed recourse (see Dantzig 1955; Beale 1955) is
defined as

min c�x + Eξ

[
q(ξ)�y(ξ)

]
, (1)

s.t. Ax = b, (2)

T(ξ)x + Wy(ξ) = h(ξ), (3)

x ≥ 0, y(ξ) ≥ 0, (4)

where c and b are known vectors, A is a known matrix and W is assumed as a fixed recourse
matrix. ξ denotes randomness, which represents the possible scenarios. T is a stochastic
matrix and h is random right hand side. Eξ represents the mathematical expectation with
respect to ξ .

In our IBIS scenario-based stochastic model, the first-stage decision variable x is the
vector of crop area to be sown in every canal command. The random variable ξ represents
the rainfall and water inflow. The realization of ξ is unknown at the time when x is to be
determined, but becomes known when the recourse decision y is to be made. The recourse
decision variable y(ξ) is the vector of crop area cultivated within each canal command
when actual scenario ξ becomes known. Notice that the first-stage decisions x are, however,
chosen by taking their future effects into account on the recourse decisions in the second
stage.

The above formulation for the IBIS scenario-based stochastic model can be presented
as to maximize the expected revenue from crop sales after subtracting the initial fixed cost
and the cost of labor. Other expenditures are ignored such as water cost (a public property,
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farmers get their share for free in proportional to their land holdings), farm rent (farmers are
the owners of their land) and initial cost (includes seed cost, fertilizer, etc.).

In comparison to the general model above, our model is characterized by the fact that
constraint (3) of the recourse model is very simple: The right hand side is zero and the
matrices T and W are identity matrices.

To be more precise, the second stage constraint is

x − y(ξ) − z(ξ) = 0, (5)

x, y(ξ), z(ξ) ≥ 0, (6)

where z(ξ) is a slack variable, represents the area dropped from cultivation. In different
notations, the constraint is

0 ≤ y(ξ) ≤ x, (7)

i.e. we can cultivate only what we have sown.
This paper is organized as follows. Section 1 explains the model construction for the

Indus Basin Irrigation System (IBIS). In Sect. 2, we discuss how the scenarios for the model
were generated. Section 3 explains the power generation process under a working policy.
The results and discussions are given in Sect. 4, and summary in Sect. 5.

2 Model description

IBMR (Indus Basin Model Revised) is a mathematical model developed by Water And
Power Development Authority (WAPDA) (2007) in collaboration with the World Bank. It is
a mathematical model for irrigation water management implemented in the Indus Basin Ir-
rigation System (IBIS), which deals with all decisions regarding reservoir operations, down
stream cropping, import/export policies. The inputs into the model are deterministic and in-
corporate a yearly decision-making mechanism which refreshes its decision on a monthly
basis. In reality, the inputs including stream flow (inflow), rainfall, evaporation, crop re-
sponse and yield, etc. are random processes. One month time interval is too large when
rapid changes in agro-climatic conditions and inflow into the system are expected.

Earlier models developed for optimal reservoir operation for irrigation deal with different
aspects of this problem with varying degrees of complexity. The Stochastic Optimization ap-
proach explicitly incorporates uncertainties due to the randomness of hydrologic variables.
Developing a stochastic model for this system, which samples stochastic inputs over shorter
time intervals, may enhance the system’s efficiency.

We present a ten-daily and a monthly time interval model, based on scenarios for this
basin. The present model addresses policy related issues and considers the following fea-
tures.

• Complex network involved: As discussed earlier, this system involves a very big rivers
(7 in all), several nodes (34 in all), node-to-node links and multiple demand sites (44 in
all). Figure 1 shows the Indus River System in the study area.

A hydrologic agro-economic model was studied by Ximing et al. (2003). The model
extends integration of a management water supply system and irrigation farming system
to a spatially large and complex system. This, however is not a stochastic model. The
model was developed for a river basin network, including multiple nodes and demand
locations (6 demand sites).
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Fig. 1 Indus Irrigation System (Source: WCD, Terbela Dam a Scoping Report)

• Stochastic inflow and rainfall: As discussed earlier, irrigation water management in-
volves several stochastic parameters. In this study, we restrict ourselves to stochastic in-
puts for inflow and rainfall only. For the sake of computational difficulties, the remaining
parameters are adjusted to their average values.

• Two-stage stochastic model: We developed a two-stage stochastic programming model
for IBIS. The first-stage decision variables (here and now) include the vectors (crops area)
that are sown in different canal commands. These decisions must consider the uncertainty
in future realization of the scenarios. The second stage decision variables (wait and see)
are the vectors (crops area) that are cultivated within different canal commands when the
actual scenarios become known.

The model is developed in order to determine the optimal cropping patterns and irrigation
scheduling for the described system. In the formulation of the model, the following factors
are considered.

– It is a 1-year planning model.
– Operating policy for hydrologic scheduling and cropping occurs on ten-daily (i.e. every

month is divided into 3 ten-daily intervals) and monthly intervals.
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– Canal l belong to exactly one zone, say z(l). Zone-wise canals are as follow

Zone Canals (l)

Zone1 2a,03,04,05

Zone2 11,12,13,14,18,22,23,24,25,26,27

Zone3 01,2b,06,07,08,09,10,15,16,17,19,20,21,28,29,30 to 43

– Land occupation (cropping calender) is available for each crop and each canal command
(e.g. for canal command 5 in Fig. 3).

– The year is further divided into two seasons, the wet season (April to September) and the
dry season (October to March). Scenarios are generated within each season from their
distribution of total inflow as well as for each rainfall zone (see next section).

– Crop water requirements within each canal command are computed by using the results
of a study in the basin (see KaleemUllah et al. 2001).

– Other information on crop inputs such as labor, fertilizer, seed cost, crop yield etc. is ex-
tracted from documents of the WAPDA of Pakistan, Statistical Bureau of Pakistan (2005)
and Economic Survey of Pakistan (2005).

– Data on ground water, system inflow, evaporation from storage and canals, data about
system networks, and area for each canal command, are available from WAPDA Pakistan
and IRSA Pakistan.

– Reservoirs are operated under a power generation policy (i.e., maintaining the storages
volume within minimum and maximum bounds over time steps), see Eq. (16) and Fig. 6.
The water scheduling policy for the reservoirs aims at optimizing the agriculture produc-
tion. Power generation is not an objective, but the technical complications for the power
generation enter into the optimization model as constraints.

– The indexes and index sets are in Table 1.

Table 1 Index and Cardinality

Index Name Index set Cardinality

c crop C 13

i storage NS 2

k state K 4

l canal command L 44

n node N 35

r river R 7

s scenario S 200

t time-step T month = 12, ten-daily = 36

z rainfall zone Z 3

Note: the node set consists of three types of nodes i.e. storage nodes or reservoirs (NS ), rim station nodes
(NR ) and ordinary nodes (NO ). The node set is N = NS ∪ NO ∪ NR
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– Deterministic data

�i,min minimum water volume at storage i (km3)

�i,max maximum water volume at storage i (km3)

H risk free upper bound capacity (volume) of system infrastructure (km3)

pc price of crop c (dollars/103 kg)

Sharek percentage share of state k in aggregate surface water
Laborz labor force available in zone z (hours)
CropAreazc maximum area suitable for crop c in zone z (106 hectares)
Landl land resources of canal l (106 hectors)
εit evaporation from storage i during time t (km3)

λcl average production of crop c in canal l (103 kg/hectare)
ϑcl initial (sowing) cost for a unit land on crop c in canal l(dollars/hectare)
δl carrying to field efficiency of canal l

νclt water needed for crop c in zone z during time t (millimeter)
βclt labor hours for crop c incanal l during time t (hours/hectare)
θcl total labor cost for a unit land of crop c in canal l (dollars/hectare)
aclt indicator for crop c in zone z during time t (present = 1, absent = 0)

τlt ground water available in canal l during time t (km3)

LinkCap(n,n′′) capacity of link (n,n′′) ∈N (km3)

CanalCapl capacity of canal l (km3)

– Stochastic data and scenarios probability

σ̃ s
zt rainfall in zone z duringtime t under scenario s (millimeter)

α̃s
rt inflow in river r during time t under scenario s (km3)

πs probability of scenario s

ωs
int outflow from storage i to node n during time t under scenario s (km3)

ηs
n′nt

release of water towards node n from node n′ during time t under scenario s (km3)

– Decision variables

Xlc area sown for crop c in zone z canal l (hectares)
Y s

lc area cultivated for crop c inzone z canal l underscenario s (hectares)
Ws

lt water released in canal l zone z duringtime t underscenario s (km3)

�s
it water level at storage i during time t under scenario s (km3)

– Objective function is to maximize the revenue from crops in the basin.

2.1 Objective function

The objective function seeks to maximize the expected revenue from all crops. Every crop
c ∈ C is possible in all canal commands l ∈ L but has different yields, say λcl . The sale price
of crop c is pc with θcl representing the total labor cost of cultivation for a unit (hectare)
of land for crop c in canal command l. First-stage decision variable Xlc is the area in
hectares, sown for crop c ∈ C in canal command l ∈ L. The second stage decision vari-
able is a scenario-based variable Y s

lc , which is the area cultivated under scenario s ∈ S. The
objective is to maximize the expected total return

max

[∑

s∈S

πs

{∑

l∈L

∑

c∈C

(pcλcl − θcl)Y
s
lc

}
−

∑

l∈L

∑

c∈C

ϑclXlc

]
. (8)
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Fig. 2 Land occupation aclt

2.2 Constraints area balance

The total utilization of area within every canal should never be greater than the area available
over time horizon t . Different crops have different time schedules for occupying the field,
and sowing, cultivation and harvesting follow one after the other. The parameter aclt is an
indicator which signifies the occupation of a field for crop c in canal l over time horizon
t ∈ T . aclt = 1 when a crop is present in the fields (at any stage: sowing, cultivation or
harvesting) and 0 otherwise. The sum of the area being utilized (sown or cultivated) for all
crops should not be more than the area Landl in a particular canal command.

∑

c∈C

acltXlc ≤ Landl; ∀ l ∈ L, t ∈ T (9)

The following variable upper bound ensures that the area cultivated is less then the area
sown in all possible scenarios.

Xlc − Y s
lc ≥ 0 ∀ l ∈ L, c ∈ C, s ∈ S (10)

There is an upper bound on cropwise area used within each zone. Every crop is not sown
more than the area designated within all zones. Farmers grow some crops within their land
holding such as fodder for cattle rather than buying it from the local market. Moreover, it
is difficult to transport such crops from one zone to another due to transportation costs and
loss in quality during transport. Due to soil types and characteristics, the whole area in a
canal command, is not suitable for every crop, but only a particular size area can be used for
a certain crop. If CropAreazc is the upper limit on the area to be sown in zone z crop c (see
Paudyal and Gupta 1990), then

∑

l:z(l)=z

Xlc ≤ CropAreazc ∀ z ∈ Z, c ∈ C (11)
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Data about Landl and CropAreazc were taken from WAPDA, Pakistan.

2.3 System network

The Indus river system involves a complex system network. There are several nodes, node-
to-node links and canals. The set of nodes is N = NS ∪ NO ∪ NR and the set of links in the
system is N⊆ N × N .

Let ηs
n′nt

represent the trafficking of water towards node n from node n′ (where n′ ∈ NO )
during time t under scenario s. The total water trafficking towards node n, from other nodes
n′ is

∑
n′:(n′,n)∈N ηs

n′nt
. And the divergence of water to other nodes n′′ (where n′′ ∈ NO ) from

any node n is
∑

n′′ :(n,n′′)∈N ηs
nn′′t .

Rim station nodes (i.e. nodes where some river joins the system) also receive direct in-
flow from uninterruptible rivers. Every node n ∈ NR receive inflow from river r(n). Direct
uninterruptible inflow at node n ∈ NR during time t under scenario s is denoted by α̃s

r(n)t .
The other source of trafficking-in of water at any node is outflow from a storage. Let ωs

int

denote the outflow from storage i (where i ∈ NS ) to node n during time t under scenario s.
Then, the total trafficking of outflow towards any node n can be expressed as

∑
i:(i,n)∈N ωs

int .
The important function at canal head work (node) of this system, is to regulate canal

diversions, in an optimal way. Each canal l diverts water exactly from one node n(l). If Ws
lt

is the amount of water release into canal l during time t under scenario s, then the total water
diverted into canals from node n can be expressed as

∑
l:n(l)=n Ws

lt .
The water balance at node n can be shown as

��
��

α̃s
rt

ηs
n′nt

�
��

ωs
int

��

��

n
�

��� �
Ws

ltηs
nn′′t

Combining all the trafficking of water at a node, we have

∑

n′ :(n′,n)∈N
ηs

n′nt +
∑

i:(i,n)∈N
ωs

int + α̃s
r(n)t

−
∑

n′′ :(n,n′′)∈N
ηs

nn′′t −
∑

l:n(l)=n

Ws
lt ≥ 0; ∀ n ∈ N, t ∈ T , s ∈ S (12)

Water in the links and in the canals should not exceed by their capacities. LinkCap(n,n′′)
is the capacity of link (n,n′′) ∈ N and CanalCapl is the capacity of canal l. Then

0 ≤ ηs
nn′′t ≤ LinkCap

(
n,n′′); ∀ t ∈ T , s ∈ S,

(
n,n′′) ∈N (13)

0 ≤ Ws
lt ≤ CanalCapl; ∀ l ∈ L, t ∈ T , s ∈ S (14)

2.4 Water linkage

Let �s
it denote the water volume stored in reservoir i at the end of time t under scenario s.

Let εit denote the fixed evaporation from storage i during time t . Storages are rim stations as
well. Each storage i receives some inflow from exactly one river, say r(i). The water linkage
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constraint can be expressed

�s
i(t−1) + α̃s

r(i)t − �s
it −

∑

n:(i,n)∈N
ωs

int − εit = 0; ∀ i ∈ NS, t ∈ T , s ∈ S (15)

where ωs
int is the outflow from storage i towards node n at time t under scenario s. α̃s

r(i)t is
the inflow of river r at time t under scenario s that falls into the prescribed storage i.

Storage volume is maintained according to the system infrastructure (and storage/power
generation policy). If �it,min denotes the minimum volume at time t in storage i and �it,max

denotes the maximum volume at time t in storage i, then

�it,min ≤ �s
it ≤ �it,max; ∀ i ∈ NS, t ∈ T , s ∈ S (16)

2.5 Water balance

We follow a deterministic crop demand policy from Schweig and Cole (1968) and Hall et al.
(1969). The amount of water required for a unit of land of crop c in canal l during the time
t is denoted by vclt and σ̃ s

zt denotes the rainfall in the zone z during the same time t under
scenario s. The difference (vclt − σ̃ s

zt ) is provided by the irrigation source. If Ws
lt is the

amount of water put into the irrigation canal l with carrying-to-field efficiency δl , and τlt is
the ground water available in canal command l during time t , then the water consumption
balance can be expressed as

δlW
s
lt + τlt −

∑

c∈C

max
(
vclt − σ̃ s

z(l)t ,0
)
Y s

lt ≥ 0; ∀ l ∈ L, t ∈ T , s ∈ S (17)

Let ωs
int denotes the outflow from the storage node i ∈ NS ⊆ N to node n during the time t

under scenario s, and α̃s
r(n)t is the inflow (or sum of all rivers inflow that fall in node n) in

river r(n) ∈ R during time t under scenario s. The water consumption should be bounded
below the water available in the system, i.e. the aggregate water diversion in the canals
should not be greater than the water available from direct inflow and outflow from storages.

∑

r:n∈NR

α̃s
r(n)t +

∑

i:(i,n)∈N

∑

n:(i,n)∈N
ωs

int −
∑

l∈ L

Ws
lt ≥ 0; ∀ t ∈ T , s ∈ S (18)

2.6 Flood aversion constraint

Seasonal and annual river inflows in the Indus river system are highly variable (see Warsi
1991; Kijine and Van der Velde 1992; Ahmad 1993). Sixty percent of inflow may occur in
only July and August. This river system has the potential to generate floods. We incorporate
a flood aversion constraint in the present model to avoid loss of lives and property in down
stream areas due to flooding. We kept the total surplus amount of water in the system below
a risk free upper bound (H km3) according to the system infrastructure. Moreover optimal
storage operations are necessary as we do not have control over uninterruptible inflow. So,
the constraint can be expressed

∑

r:n∈NR

α̃s
r(n)t +

∑

i:(i,n)∈N

∑

n:(i,n)∈N
ωs

int −
∑

l∈L

Ws
lt ≤ H ; ∀ t ∈ T , s ∈ S (19)
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2.7 Political constraint

The system serves several states which have a political accord among them, stating “No state
can use more than a stipulated percentage of the aggregate of total surface water available
in a year”. If every canal l belongs to exactly one state k(l) and Sharek is the percentage
share of state k, then

∑

l:k(l)=k

∑

t∈T

Ws
lt = Sharek

∑

l∈L

∑

t∈T

Ws
lt ; ∀ k, s ∈ S (20)

2.8 Labor constraint

Labor constraint ensures the availability of labor within a zone for an optimal cropping
pattern. If Laborz is the labor available in zone z and βclt is the labor required for crop c in
canal l over time horizon t , then

∑

l:z(l)=z

∑

c∈C

βcltY
s
lc ≤ Laborz; ∀ z ∈ Z, t ∈ T , s ∈ S (21)

2.9 Non negativity of the decision variables

Xlc, Y
s
lc,�

s
it , Ws

lt ≥ 0 (22)

3 Scenario generation in IBIS

In the present model, the inflows as well as the rainfall are treated as stochastic parameters,
so that quantities which are unknown at the first decision stage, can be observed prior to the
second decision stage.

In particular, we considered five random parameters: inflow for season 1, inflow for sea-
son 2, rainfall in zone 1, rainfall in zone 2 and rainfall in zone 3. Historical data have been
used to calibrate the scenario model. Inflow data for season 1 and season 2 for the period of
1922–1923 to 2003–2004 were used to calibrate a normal distribution for the inflow data for
each season. Figure 3 shows historic inflow and Gaussian fit. In a similar manner, a normal
model for the rainfall per zone was estimated from historical data. Inflow in season 1 and
season 2, shows an insignificant correlation with rainfall in the three zones and a marginal
significant correlation between the two seasons. For simplicity, we ignored this correlation.

In contrast, monthly evaporation rates are considered deterministic and set to their aver-
age values.

Since the complexity of the optimization model increases with the number of scenarios,
we used a backward scenario reduction technique to bring the number of scenarios down
to 200.

To represent the stochastic inflows, we consider a discrete distribution sitting on just five
points. The scenario generation technique is adopted from Pflug (2001) and Hochreiter and
Pflug (2007), which aims at minimizing the approximation error.

If G is some continuous distribution function on R, we replace this by a discrete distri-
bution G̃ in such a way that the Wasserstein-distance d1 between G and G̃ is minimal. Here
the Wasserstein distance is defined as

d1(G, G̃) = sup

{∫
f (u)dG(u) −

∫
f (u)dG̃(u) : L1(f ) ≤ 1

}
(23)
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Fig. 3 Aggregative seasonal inflow (km3) along with Gaussian model comparison

Fig. 4 Discrete estimate for
inflow distribution along with
historic inflow

where L1(f ) is the Lipschitz-constant of f .
It is well known that this distance is related to the mass transportation problem (see

Monge 1781; Rachev 1991). If G is the standard normal N(0,1) distribution, the optimal
location of approximating mass points are −3.4, −1.029, 0, 1.029, 3.4 with masses 0.0446,
0.2589, 0.3930, 0.2589, 0.0446 respectively. Figure 4 shows the location of five points and
their masses in the standard normal distribution. If G̃ sits on two points, the optimal z val-
ues are −0.7979, 0.7979 with masses that are 0.5, 0.5 respectively. If the distribution is
N(μ,σ 2), these points have to be transformed by μ + σz (see Pflug 2001). The total set
of scenarios is generated by taking all possible independent combinations using the product
probabilities (Table 2).

One might argue that 200 scenarios may not reflect the total variability of the stochastic
parameters. However, the mere introduction of a scenario model, makes the solutions much
more robust, compared to the deterministic case (see the comparison below). Moreover, the
scenarios were chosen in such a manner that they represent the probability distribution quite
well despite the small number of scenarios.



Ann Oper Res (2014) 223:309–328 321

Table 2 Set of Scenarios

Variable Number of scenarios

inflow season 1 5

inflow season 2 5

rainfall zone 1 2

rainfall zone 2 2

rainfall zone 3 2

total number of scenarios 5 × 5 × 2 × 2 × 2 = 200

Fig. 5 Storage level upper and lower limits according to power generation policy i.e. the system will store
water into these two storages (Terbela and Mangla) to generate a minimum required power from the system

4 Power generation policy in IBIS

Power generation is not an optimization objective here, but is a side benefit of water man-
agement. It is, however, interesting to analyze how optimal water management policies will
influence the power generation (see Fig. 7).

Reservoirs in the network are operated according to a power generation policy i.e. stored
water volume is maintained within the minimum and maximum bounds on each reservoir
(see Eq. (16)):

�it,min ≤ �s
it ≤ �it,max; ∀ i ∈ NS, t ∈ T , s ∈ S

In IBMR, target storage levels are set for each month. In the present model, we are also
taking decisions on ten-daily time horizons. Accordingly, we linearly interpolate the target
storage levels for all ten-daily periods. This storage policy is shown in Fig. 5.

4.1 Modelling conditions

We solve the model under three different modelling conditions (see Table 3).

1. A monthly time horizon with a single stage deterministic model, setting inflow and rain-
fall to their average values.
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Table 3 Model dimensions

Model Rows Columns Non zeros Memory used Time (sec)

Monthly deterministic 2773 2437 20405 <1 MB 4

Monthly stochastic 572,374 487,861 3,080,807 253 MB 2,280

Ten-daily stochastic 767,830 1,191,061 7,751,040 611 MB 20,429

Table 4 Cropping policy and revenue (Area 1000 hectares)

Area Sown-> Deterministic Stochastic (monthly) Stochastic (ten-daily) Actual (2003–2004)

Crop
∑

l Xlc

∑
l Xlc

∑
l Xlc –

Basmatti 577 697 519 –

Irri 758 758 838 2503

Maize 81 81 87 896

Mustard 310 310 331 244

Sugarcane 924 924 1026 947

Fodder-kharif 1313 1313 1403 Not available

Fodder-rabi 1352 1352 1445 Not available

Cotton 2881 2881 3028 3221

Gram 880 880 468 1038

Wheat 2296 3624 4403 8330

Potato 32 32 77 111

Onion 56 56 60 122

Chilies 78 69 85 39

Total 11538 12977 13770 –

Exp. Rev. (bn USD) 5.318 6.130 7.175 Not available

2. A monthly time horizon two-stage stochastic model with 200 scenarios.
3. A ten-daily time horizon two-stage stochastic model with 200 scenarios.

The elapsed time, number of constraints and number of variables are given below. We solve
all these models with the dual-simplex algorithm. We use CPLEX 9.1.2 as solver. CPU
resources used to get all these solutions are Intel T-2300 1.66 GHz Core Duo Processor with
2 GB RAM.

5 Results and discussion

5.1 Cropping pattern

Model uses only 14.87 million hectares (mha) of land resources. This is the area under canal
commands. In “Actual” column of the Table 4, reported area includes cultivated area from
all resources i.e. 14.87 mha canal irrigated, 3.91 mha of other irrigated resources and about
13.06 mha of rain fed area (Economic Survey, Pakistan 2004–2005). In comparison, the
actual area and results of the model indicate the difference in rice, wheat, maize and gram
areas.
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Rice represents the total of two varieties (Basmatti and Irri). Maize is a major crop in
rainfed areas along with wheat and gram. Premature maize is used as fodder for cattle. It
is also considered as fodder crop throughout the year, and farmers cultivate it two to three
times each year. All the rainfed areas are used for wheat cultivation which are not the part
of our land resources. That is why, the wheat area is almost twice in ‘actual 2003–2004’
comparing with all solutions. In rainfed areas, average wheat yield, is two to three times
lesser than the irrigated areas. Gram is the most suitable crop for rainfed areas due to its low
water requirement across the cultivation calender.

Some of the land might have been used twice or even more times. It is according to
the optimal strategy the model might have adopted, strictly according to cropping calender
(Fig. 2) as you see land can be used twice, wheat-maiz, wheat-fooder and wheat-cotton etc.
More over, solutions given above threw light how they change land resources utilization
from deterministic to stochastic models and than shows increase in flexibility by increasing
area in ten-daily horizon model comparing with monthly horizon model as both models
are two-stage models. This is because of flexibility created by shorter time horizon land
occupation strategy. We tried this computation strategy by increasing more scenarios, but
results were not much improved. This might be due to insufficient crepitation in the region
and insufficient but volatile inflow in the system. Deterministic vs Stochastic Solutions.

5.2 The value of stochastic solution (VSS)

The scenario-based Stochastic Linear Programming model produces better results for both
the monthly and ten-daily time horizons and shows a significant improvement, in land uti-
lization. This improvement is further enhanced with the ten-daily time horizon, as shown in
the Table 4. This increase is because of flexibility of field allocation to different crops with
shorter time horizon In terms of revenue earned, the results indicate:

• EV (expected value or mean value) solution is obtained by replacing the random variables
by their expected values. EEV is then obtained, which is defined as the expected result
of using the EV solution. The parameter EEV, measures how the mean value solution
perform, allowing second stage decisions to be chosen optimally as a function of using
the EV solution and randomness (see Birge and Louveaux 1997). EEV is 5.473 billion
USD.

• The expected revenue (agriculture + power) with the monthly two-stage stochastic model
corresponding to the recourse problem (RP) is 6.130 billion dollars.

• The value of stochastic solution is: VSS = RP − EEV = 6.130 − 5.473 = 0.657 bn USD
We discussed the results for only one stochastic model i.e. monthly time horizon

model. Results may be more intrusting for ten-daily time horizon model.

This comparison gives a measure of value when using the decision mechanism from deter-
ministic programming to stochastic programming with monthly time horizon models. The
value of stochastic solution is quite significant standing at 657 million dollars. It represents
the cost of ignoring uncertainty when comparing all benefits.

5.3 Expected value of perfect information (EVPI)

The expected value of perfect information (EVPI), is the difference between the expected
solution with Perfect Information about future scenario say (PI) and the here-and-now so-
lution. We calculate the EVPI for the monthly time horizon model only. This exercise is
also possible and may more interesting with the ten-daily time horizon model. We substitute
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Fig. 6 Power generation and storage at Terbela in extreme scenarios

Xlc = Y s
lc in the model to get the Perfect Information (PI) solution. The perfect informa-

tion (PI) solution, which considers benefits and losses, is the expected value of optimal
solutions. It is 6.241 billion US dollars. The here-and-now solution corresponding to the re-
course problem (RP) is 6.130 billion US dollars. The expected value of perfect information
is given as:

EVPI = PI − RP = 6.241 − 6.130 = 0.111 bn USD

This shows a difference of 111 million USD. This is the amount we are ready to pay to
obtain perfect information about random parameters.

5.4 Storage and power generation

Pakistan consumed 57,491 GWH (giga watt hours) electric power in 2003–2004. The aver-
age production for the last five years (1999–2000 to 2003–2004) from hydro power genera-
tion was 21,085 GWH, which was 37 % of the total consumption (Source: Economic Survey,
Pakistan 2004–2005). The power demand is projected to grow at an annual average rate of
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Fig. 7 Revenue plot (expected
value and lowest 10 % are
shown)

7.9 percent during next five years. With the available hydropower production capability, the
ratio of hydro power production will continue to decrease unless the new water storages
are established. With a ten-daily scenario based model, hydro power generation varies from
10,316 GWH to 29,352 GWH from a very low to very high inflow scenario. These results
are consistent with the present power generation policy in the system. We run this model pri-
marily for optimal cropping policy. Storage levels were not maintained to maximize power
generation from the reservoirs, even then the model results regarding power generation per-
formed well. Figure 7 shows inflow, outflow, storage level and power generated in extreme
scenarios.

5.5 Revenue generation: the value of flexibility

Agriculture serves in Pakistan as the backbone of country’s economy. 68 percent of the
population directly or indirectly depend upon agriculture and (26 %) of the population lives
below poverty line (Economic Survey, Pakistan 2004–2005). Most of this group are farmers
living in rural areas where agriculture is their sole source of income. Any crisis in agriculture
production, will hit this section of the population directly, and they will be more vulnerable
in an adverse scenario. This alarming situation demands an appropriate implementation of
hydrologic decision policies which will support this section of the population.



326 Ann Oper Res (2014) 223:309–328

We solved the model under different modelling conditions. We focused on revenue gener-
ation by agriculture production. Here we observed that the ten-daily time horizon stochastic
model gives a maximum expected revenue of 7.175 billion dollars compare to 6.130 and
5.318 with monthly stochastic and monthly deterministic models, respectively. If we look at
the 10th decile of the revenue distribution over these scenarios, the ten-daily time horizon
stochastic model has a higher 10th decile compared to the others. The revenue plot of the
stochastic models is shown in Fig. 7. The 10th decile is the lower tail of the revenue distri-
bution, representing extremely unlikely scenarios. This difference between results is due to
the flexibility created by the ten-daily stochastic model in the land utilization over shorter
time intervals (time horizon). The decision mechanism for shorter time intervals enhances
the model’s capability on managerial grounds. Moreover, managing hydrologic decisions
for reservoir operations, subsequently, increase system’s efficiency.

6 Summary

A stochastic programming model for the Indus Basin Irrigation System has been presented
in this paper. It has been calibrated considering the complete network of rivers and canal
system. This results in a huge model, specially, when it is operated under a ten-daily time
horizon. In the stochastic model, we consider randomness in hydrologic variables, inflow
and rainfall in the basin. The whole basin is divided into three rainfall zones. It can be
used as an administrative tool for decision-making, formulating the cropping policies and
scheduling the reservoirs release. We presented a comparison between stochastic and de-
terministic solutions. We also showed the flexibility a stochastic approach can have over
a deterministic one. This flexibility increases, when we manage decisions over shorter pe-
riods of time. This gives a two fold comparison of different approaches. The value of a
stochastic solution (VSS) and the expected value of perfect information (EVPI) illustrate
the advantages of a stochastic approach over a deterministic one. Two hundred scenarios
were generated for the hydrologic parameters. Although this is a small number of scenarios,
the stochastic model leads to a significant improvement over deterministic one (see VSS).
We incorporate a constraint avoiding flood over the maximum amount of surplus water. It
restricts the surplus water below a certain level during all time periods according to system
infrastructure. We provide a reconciliation among the provinces of Pakistan over surface
water usage by incorporating a political constraint.
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