
European Journal of Operational Research 197 (2009) 415–421
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Short Communication

Pooling is not the answer

Nico van Dijk, Erik van der Sluis *

University of Amsterdam, Faculty of Economics and Business, Roetersstraat 11, 1018 WB Amsterdam, Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 July 2006
Accepted 16 June 2008
Available online 25 June 2008

Keywords:
Pooling
Queueing
Overflow
Priority rule
Threshold rule
0377-2217/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.ejor.2008.06.014

* Corresponding author. Tel.: +31 20 5254318.
E-mail address: h.j.vandersluis@uva.nl (E. van der
This note studies practical and theoretical scenarios to improve a completely pooled or unpooled scenario
for two server groups (e.g. call center groups) with short and long jobs (e.g. calls). First, simple overflow
(reported earlier) scenarios and priority rules are compared. Next, threshold rules are investigated for fur-
ther practical improvement. Finally, a threshold rule is sought for a strict improvement over pooling for
both short and long jobs. The practical value is illustrated numerically and appears to be consistent also
for larger server numbers. The results show:

(i) An overall average improvement by prioritizing short jobs.
(ii) A slight but strict improvement over pooling by prioritizing long jobs.

The first result is of practical interest; the second one is more theoretical. A practical scheme is provided
for an ordering of scenarios, up to realistically large numbers of servers as in call centers.
� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In service environments, such as call centers, the general per-
ception seems to exist that it is advantageous to pool service
capacities, at least from a performance and capacity point of
view.

For a single type of service, this perception is supported by
simple M/M/s queueing results as can already be found in
early introductory OR-textbooks. When different services are
involved, the general validity of this perception remains to
be questioned. In this case, ‘counter-intuitive’ examples can
be found in Smith and Whitt (1981) and Wolff (1989) for
two single servers. (Also see INFORMS Transactions on Educa-
tion by Cattani and Schmidt, 2005.) These single server exam-
ples illustrate an opposite effect of pooling for the average
waiting time.

More recently, this phenomenon of pooling (or splitting) service
capacity has been elaborated upon, both analytically and numeri-
cal by Whitt (1999) and purely numerical in Van Dijk and Van
der Sluis (2008). Extensive lists of references related to pooling call
centers capacities can be found in these references. Most notably,
in most of these references much attention has been paid to the
computation of agent numbers as based upon the square root prin-
ciple, see Borst et al. (2004), Gans et al. (2003) and Wallace and
ll rights reserved.

Sluis).
Whitt (2005). For another recent related reference on pooling see
Remark 2.

The numerical results in Van Dijk and Van der Sluis (2008) also
include simple overflow scenarios which indicate that the question
of pooling is not as simple as it may seem and of interest for
improvement. More precisely, questions of both practical and the-
oretical interest remained open as:

� Does there exist other simple and practical rules, which lead to
further improvement?

� To which extent can these simple rules be regarded as ‘optimal’?
� Can we strictly improve the pooled scenario?

This note aims to respond to these questions for average wait-
ing times. First, to be self-contained and for some insights an
instructive example and numerical results in line with Van Dijk
and Van der Sluis (2008) are briefly reviewed. In Section 3, the
first question is addressed by the comparison of simple scenarios,
which also includes two prioritizing scenarios (a preemptive and
non-preemptive one). Section 4 addresses the second question
by a comparison with optimizing threshold rules. It roughly turns
out that only a single threshold will be required and only for
small number of servers. For larger server numbers a simple
non-preemptive priority rule will be nearly optimal. In Section
5, a threshold rule is presented that strictly improves the pooled
scenario. A schematic ordering of scenarios and some global con-
clusions completes the paper.

mailto:h.j.vandersluis@uva.nl
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

Table 1
Results for the three scenarios (k = 10; q = 0.9)

s Pooled Unpooled One-way overflow (type 1)

WP W1 WA W1 WA % overflow

1 11.53 4.49 8.18 3.40 7.20 5.1
5 1.76 0.78 1.41 0.53 1.20 4.9

20 0.26 0.15 0.26 0.08 0.21 4.0
30 0.13 0.08 0.15 0.04 0.12 3.6
50 0.05 0.04 0.07 0.02 0.05 2.9
60 0.03 0.03 0.05 0.01 0.04 2.6

416 N. van Dijk, E. van der Sluis / European Journal of Operational Research 197 (2009) 415–421
2. Simple scenarios

2.1. Basic case and notation

This note exclusively considers the situation of two arrival
streams of service (e.g. call) requests, referred to as of types 1
and 2, with arrival rates k1 and k2, and mean service times s1 and
s2, with equal workloads q = k1s1 = k2s2, and two groups of servers
each with s (identical) servers (hence 2s servers in total) which can
handle either type of service. Let

k = k1/k2 = s2/s1,
s = [k1/(k1 + k2)]s1 + [k2/(k1 + k2)]s2, and
WA: Average waiting time for all jobs,
W1: Average waiting time for type 1 jobs,
W2: Average waiting time for type 2 jobs.

2.2. Pool-or-not-or-overflow (earlier results)

In service operations, pooling service capacities is generally
perceived to be advantageous. Indeed, when one type of service
is involved this is shown directly by standard M/M/s expressions.
(In Van Dijk and Van der Sluis, 2008, an approximate expression is
provided for the effect of pooling two identical M/M/s systems,
which shows a reduction factor of always at least q/(1 + q) for
the mean waiting time.) However, when services are pooled with
different service means, the effect is less beneficial as due to the
mix variability then introduced. The observation is also in line
with the famous Pollaczek–Khintchine (PK) formula, though only
exact for a single server, which expresses the effect of service var-
iability. An extensive and elegant analytic treatment of the PK-for-
mula in relation to the question of pooling can be found in Whitt
(1999).

As a consequence, both a pooled or unpooled scenario might be
preferable depending on the mix ratio k and server number s. Also
other scenarios can now be thought of to combine the advantage of
both scenarios, i.e.

� No (or minimum) idleness as for the pooled case.
� No (or minimum) service variability as for the unpooled

case.

An overflow system therefore might lead to further improve-
ment for the overall mean waiting time. As illustrated in Fig. 1, this
turns out to be the case for the instructive example of s = 1 (two
parallel servers) and k = 10 (hence with 10 times more short jobs
Fig. 1. Scenario comparis
which are 10 times shorter) (k1 = 50, s1 = 1; k2 = 5, s2 = 10) by com-
paring the four basic scenarios of the pooled (P), the unpooled (U),
a two-way overflow (2WO) and a one-way (1WO-1) scenario as
specified by:
on (k = 10; q =
Scenario
0.83).
Specification
2WO
 Two-way
overflow
A separate queue for each type. An idle
server, when there are no jobs of its
own type waiting, will take a job waiting
of the other type, if any.
1WO-1 One-way A separate queue for each type. Only an

overflow
type 1
idle server of type 2 and if there are no
jobs waiting of type 2 will take a job
from the other queue, if any.
Remark 1 (Service time distribution). Throughout deterministic
service times are used to illustrate the effect of a mix ratio most
distinctively. As shown in Van Dijk and Van der Sluis (2008) by
both (approximate) analytic expressions (for the pooled and
unpooled scenarios) and by simulation, similar results can be
obtained for arbitrary service (call) distributions.
2.3. Larger server numbers

The results for the two-server example might be thought of as
of merely theoretical interest. But similar results also apply to lar-
ger server numbers such as with up to over 100 (for the pooled
case) servers, as of realistic call center size. This is illustrated by
Table 1 and Fig. 2. The results are only shown for the one-way
overflow scenario for type 1 calls (the short calls) to server 2.

0%

20%

40%

60%

80%

100%

120%

P U OWO NP1 PP1

 Pooled

Unpooled

One-way

NP1

 PP1

 5 0.71

 4 0.63

 3 0.52

 2 0.38

 1 0.20

 Rank Scenario WA

Fig. 3. Average waiting times for different scenarios.

25%

50%

75%

100%

125%

150%

0 5 10 15 20 25 30 35 40 45 50 55 60

Number of servers s

Overflow / Unpooled
Pooled / Unpooled
Overflow / Pooled

Fig. 2. Comparison of scenarios (k = 10).

N. van Dijk, E. van der Sluis / European Journal of Operational Research 197 (2009) 415–421 417
(These results have not been reported explicitly in Van Dijk and
Van der Sluis.)

Here, we can observe that the one-way overflow scenario is
superior up to s = 60 (hence 120 servers in total) for the mean
waiting time W1 of type 1 jobs, which in the example consti-
tutes over 90% of all jobs. In addition, despite the significant
positive effect of the type 1 overflow, the overflow percentage
appears to remain rather small (say less than 5%). Though in a
different setting of skilled based routing and with an objective
of costs, a similar intriguing observation has been made in
Wallace and Whitt (2005): ‘‘a little flexibility may go a long
way”.

For the overall average waiting time the pooled scenario only
appears to become preferable for a sufficient large number of serv-
ers, in the example of say more than 40 servers, as illustrated by
Fig. 2.
3. Simple priority rules

As is turned out, among the four simple scenarios (P, U, 2WO,
1WO-1) the one-way overflow scenario for the short jobs ap-
peared to be superior up to some reasonably large number of
servers. Only beyond this number, the pooled scenario will
win. Nevertheless, the results and insights do not guarantee at
all that this is the end. Can we still do better? And if so, is it still
practical to implement? Here two general queueing insights can
be thought of

� Handling idleness. Waiting times are essentially dealt with by
idleness (e.g. think of the relation W � 1/(1 � q) for the M/M/
1-queue). Pooling is not so much about ‘pooling capacity’ but
about‘pooling idleness’ when a server becomes available.

� Majority of short jobs. Waiting times are generally reduced all-
over by handling shortest jobs first; in the present setting that
is, type 1 jobs.

Consequently, two simple scenarios to improve the overall
average waiting time are to prioritize type 1 jobs, either without
preemption (service interruption) or with preemption of type 2
jobs when a type 1 arrives. In either way, service for a type 2
job only starts (or is resumed) when no more type 1 jobs are
waiting.
Scenario
 Specification
NP1
 Non-prmp-
Priority-1
As in the pooled case and with priority for
type 1 jobs when a server idles. Type 2 jobs
are served only if there is no type 1 job waiting
PP1
 Preemptive-
Priority-1
As scenario NP1. In addition: when a type 1
job arrives, a type 2 job is preempted. When
no more type 1 jobs are waiting, type 2 jobs
are resumed
The possible improvement is illustrated in Fig. 3 for the situ-
ation with k = 10, q = 0.9 and s = 10 (20 servers in total). (To fo-
cus on type 1 jobs the two-way scenario, which would rank in
between the unpooled and one-way scenario for the all-over
average, is left out.) The results for this specific case (as well
as the corresponding specific results for W1 and W2) lead to
the following:

3.1. Conclusions

� The 1WO-1 scenario can still be improved substantially.
� ‘Prioritization’ of type 1 jobs when a server idles is therefore

required.
� ‘Prioritization’ of type 1 jobs by preemption upon arrival leads to

further improvement.
� Under the preemptive rule waiting times seem to have completely

vanished.
� Both the NP1 and PP1 rule still improve the completely unpooled

(U) or one-way overflow (1WO-1) scenario for type 2 jobs.

The same pattern also applies for other values of q, like 70% or
80%, and similar results for varying number of servers as illus-
trated by Fig. 4, thus seem to justify the following main
conclusions:

0
0

m1

m2

2
2θ

1
2θ

2Ω

2
1θ1

1θ1Ω

type 2

type 1type 1/2

0
0

m
→

→

1

m2

2
2θ

1
2θ

2Ω

2
1θ1

1θ1Ω

type 2

type 1type 1/2

2
2θ

1
2θ

2Ω

2
1θ 1

1θ1Ω

type 2

type 1

type 1/2

0
0

1

m2

2
2θ

1
2θ

2Ω

2
1θ 1

1θ1Ω

type 2

type 1

type 1/2

0
0

m1

m2 ↑

↑

Fig. 5. Queue length dependent priorities, with h1
1 < h2

1 (top), h1
1 > h2

1 (bottom).

-40%

-20%

0%

20%

40%

60%

80%

1 10 20 30 40 50

 PP1

 NP1

 One-way

 Unpooled

 Pooled

Fig. 4. Reduction in average waiting time compared to pooling for different
scenarios and number of servers s.

418 N. van Dijk, E. van der Sluis / European Journal of Operational Research 197 (2009) 415–421
1. The improvement patterns seem rather robust for the number of
servers except that the unpooled scenario and one-way scenario
are eventually outperformed by pooling.

2. The type 1 priority rules appear to provide a consistent
improvement.

4. Threshold rules

As shown in Section 3, a simple priority rule, particularly the
preemption scenario, for short (type 1) jobs generally, seems to
perform quite well and to be ‘optimal’ among simple scenarios.
Unfortunately, preemption (interruption) of service will generally
be unacceptable or impractical. For practical interest, therefore,
in this section we aim to investigate whether an improvement over
a simple overflow or non-preemptive rule can be obtained by more
sophisticated non-preemptive rules using threshold values on the
queue lengths.

The length of both queues determines whether an idling server
takes a job from its own queue or instead takes a job from the other
queue (even though there are jobs in it own queue). With mi the
number of type i jobs waiting, i = 1, 2, the threshold rule is

Thrðh1
1; h

1
2; h2

1; h
2
2; X1;X2Þ

:

A server of type 1 serves jobs from queue 2 if either
ðiÞ m2 P h1

2 ^m1 < h2
1 or ðiiÞ m1 ¼ 0 ^m2 P X2;

otherwise; it serves jobs from queue 1
A server of type 2 serves jobs from queue 1 if either
ðiÞ m1 P h1

1 ^m2 < h2
2 or ðiiÞ m2 ¼ 0 ^m1 P X1;

otherwise; it serves jobs from queue 2

8>>>>>>>><
>>>>>>>>:

By thehi-values, calls are thus given priority in case their queue length
becomes too large. In case a queue becomes empty, overflow to an id-
ling server is limited for both types. The threshold rule is illustrated in
Fig. 5. The red (blue) area consists of states where type 1 (2) jobs are
given priority. In states covered by the dashed areas, an idling server
takes a job from its own queue. Note that

Pooled ¼ Thrð1;1;�;�;1;1Þ;
1WO� 1 ¼ Thrð1;1;�;�;1;1Þ;

2WO ¼ Thrð�;�;1;1;1;1Þ ¼ Thrð1;1;1;1;�;�Þ
NP1 ¼ Thrð1;1;�;1;1;1Þ
with � indicating that any arbitrary number can be chosen. In order
to find a Thr-rule with minimal overall average waiting time, a
search has to be executed to find optimal threshold numbers. As
can be concluded from Table 2, for the optimal values it often holds
that h2

1 ¼ 1; h1
2 ¼ h2

2 ¼ 1 and X1 = X2 = 1. In these cases, the rule
than reduces to the single threshold rule:

Tðh1Þ :

server of either type serves jobs from queue 1 if either
ðiÞ m1 P h1 or ðiiÞ m2 ¼ 0 ^m1 P 1;

otherwise; it serves jobs from queue 2

8><
>:
4.1. Conclusions

� Tðh1Þ� � Thrðh1
1; h

1
2; h2

1; h
2
2; X1;X2Þ� for small s. For larger s (s > 10)

the simple NP1 rule, which is easy to implement in practice,
generally performs quite well.

� For all s, a simple single threshold rule T(h1)* will be nearly
optimal.

� T(h1)* = NP1. For k and s sufficient large (e.g. k = 10 and s > 10).
Remark 2 (References). A recent reference that may seem highly
related is Gans and Zhou (2007). The model in this reference is
quite different in that a pooled/dedicated service group is consid-
ered with the possibility of outsourcing for one job type. The
objective is a cost minimization, rather than a performance
optimization. As major difference, however, the effect of a mix
ratio and its role for ‘optimization’, as essential in the present note,
is not considered at all. In addition, the optimal threshold policy
mentioned in this reference is different in that it specifies a value
(for only one job type) at which a randomization for outsourcing
takes place.

Table 2
Optimal threshold values

s NP1 Thrðh1
1; h

1
2; h2

1; h
2
2; X1;X2Þ T(h1)

WA WA ðh1
1; h

1
2; h2

1; h
2
2; X1;X2Þ* WA h�1

1 4.58 4.36 3, 1, 3, 1, 1, 5 4.37 3
2 2.44 2.24 3, 1, 3, 1, 1, 2 2.27 4
3 1.63 1.49 4, 1, 4, 1, 1, 2 1.51 4
4 1.19 1.10 4, 1, 4, 1, 1, 3 1.12 4
5 0.93 0.86 4, 1, 4, 1, 1, 3 0.88 5

10 0.38 0.37 4, 1, 4, 1, 1, 2 0.38 1
15 0.21 0.21 1, 1, 1, 1, 1, 1 0.21 1
20 0.14 0.14 1, 1, 1, 1, 1, 1 0.14 1
30 0.07 0.07 1, 1, 1, 1, 1, 1 0.07 1

N. van Dijk, E. van der Sluis / European Journal of Operational Research 197 (2009) 415–421 419
Clearly, a variety of threshold policies will have been used in the
literature for specific cases and purposes (e.g. Bell and Williams,
2001; Squillante et al., 2001; Osogami et al., 2004). However, for
the ‘simple’ situation as considered in this note, no general conclu-
sion or extensive numerical support for threshold policies has been
found.

The paper by Osogami et al. (2004) is the most related one to
our note. However, in this paper a donor-beneficiary model was
studied with a T1T2 policy for one a single overflow server. (The
Thrðh1

1; h
1
2; h2

1; h
2
2; X1;X2Þ-rule can be regarded as a mixture of T1T2

policies, one for each server groups, combined with limitations
on overflow in case of an empty queue.) Moreover, only preemp-
tion priority is considered.
5. A strict improvement

In the previous sections, improvements of the overall average
waiting time were obtained by particularly improving the mean
waiting time for type 1 jobs. However, in these scenarios so far also
a price had to be paid by type 2 jobs (even though small and for
just a small percentage of the jobs).
0%

2%

4%

6%

8%

1 2 3 4 5 6 7 8 9 10

Type 1

Type 2

Fig. 6. Relative improvements

20

40

60

80

100

0.0 1.0 2.0 3.0 4.0 5.0
Waiting time type 1 jobs

P
er

ce
n

ta
g

e

Pooled Wp = 1.78

Unpooled W1 = 0.78

Fig. 7. Cumulative waiting time distributions for type 1 jobs. Pooled scenario and
As another objective, this section addresses the question
whether a scenario can be found that strictly improves the pooled
scenario, that is, in mean waiting time, for both types 1 and 2
jobs. As shown in Section 3, for the overall average mean waiting
time, an optimization by threshold values basically boiled down
to just one threshold value h1 (to prioritize type 1 jobs). For the
present purpose of a strict improvement, in contrast, also a prior-
itization of type 2 jobs might thus be expected and be required.
Instead of one threshold value h1, we will therefore consider
threshold rules with one threshold value h1 and h2 for either type
of jobs. More precisely, let the threshold rule S(h1, h2) = Thr(h1, h2,
h1, h2, 1, 1), i.e. as specified by:

Sðh1; h2Þ :

A server of type 1 serves jobs from queue 2 if either
ðiÞ m2 P h2 ^m1 < h1 or ðiiÞ m1 ¼ 0 ^m2 P 1;

otherwise; it serves jobs from queue 1
A server of type 2 serves jobs from queue 1 if either
ðiÞ m1 P h1 ^m2 < h2 or ðiiÞ m2 ¼ 0 ^m1 P 1;

otherwise; it serves jobs from queue 2:

8>>>>>>>><
>>>>>>>>:

Among these dynamic (or queue length dependent) rules S(h1, h2) a
rule is sought which strictly improves the pooled scenario. An
S(Opt)-rule is determined that takes into account the waiting times
of both job types by:

Step 1 :min
h1 ;h2

max W1½Sðh1;h2Þ�;W2½Sðh1;h2Þ�f g

This leads to an optimal threshold combination ðh1;h2Þ�

and overall average waiting time under ðh1;h2Þ� : WA½Sðh1;h2Þ��:
ð2:1Þ

Step 2 : WA½Sðh1;h2Þ��� ¼min
h1 ;h2

WA½Sðh1;h2Þ�

s:t: maxfW1½Sðh1;h2Þ�;W2½Sðh1;h2Þ�g<WPooled:

ð2:2Þ
11 12 13 14 15 16 17 18 19 20

over the pooled scenario.

20

40

60

80

100

0.0 2.0 4.0 6.0 8.0
Waiting time type 1 jobs

10.0

P
er

ce
n

ta
g

e

Pooled Wp = 1.78

 StrictOpt W1 = 1.69

S(Opt) rule (right) pooled and unpooled scenario (left) (s = 5; k = 10; q = 0.9).

420 N. van Dijk, E. van der Sluis / European Journal of Operational Research 197 (2009) 415–421
Step 3 :If ðh1; h2Þ�� exists then WA½SðOptÞ� ¼WA½Sðh1; h2Þ���;
otherwise WA½SðOptÞ� ¼WA½Sðh1; h2Þ��:

The improvements are only in the order of a few % but consistently
outside 95% confidence intervals with a range of 1/2%. Fig. 6 shows
the relative improvements (mean waiting time reduction) that can
so be obtained for both types 1 and 2 jobs over the pooling scenario
for k = 10 and s = 1 to 20.

Table 3 lists optimal threshold combinations (h1, h2)** (if
existing), for which the pooled scenario is improved allover,
and optimal threshold combinations (h1, h2)* otherwise, for dif-
ferent values of s, mix ratios k and q = 0.9. It shows that (h1,
h2)** does not always exist. For example, for k = 10 and s = 2, at
least one of the two job types will always be worse than for
the pooled case. However, for most s, k-values (h1, h2)** appears
to exist.

Some noteworthy observations from Table 3 are:

(1) To optimize the pooled scenario for both types 1 and 2 jobs some
more ‘‘preference” or ‘‘prioritization” appears to be required as
indicated by the ‘‘optimal” levels (h1, h2). These optimal thresh-
olds seem to prioritize type 2 (long) jobs. (h2 = 1 or 2).

(2) A strict improvement over the pooled scenario for both job types
does not only apply to large (k = 10) but also to small mix ratios
(k = 2, 3).

(3) The optimal strategy appears to be rather robust for mix ratio k
and number of agents s.
Remark 3 (Stochastic dominance). One might question whether
a strictly improving scenario (h1, h2)** also stochastically
dominates (reduces) the pooled scenario instead of just by its
means W1 and W2. However, there is no rationale for such a
strong ordering. In fact, such stochastic ordering results might
just as well not be valid for the other scenarios as in Sections
2 and 3 for which an improvement over the pooled scenario
seems intuitively obvious. For example, even for a situation in
which the unpooled scenario improves the pooled scenario on
average, as purely due to the dominance of short (type 1) jobs,
the type 1 performance in the unpooled case does not
stochastically dominates that for the pooled case. This is
illustrated in Fig. 7. (A similar observation can also be made
by the waiting probability as reported in Whitt, 1999.) For the
one-way scenario, a similar non-ordering result can be pro-
vided. And indeed also for a (h1, h2)** scenario that strictly
dominates the pooled scenario in average waiting times,
stochastic dominance does not generally applies, as shown in
Fig. 7.
Table 3
Optimal threshold combinations (h1, h2)** or (h1, h2)*
Nevertheless, similarly to the mean waiting time also for per-
centiles and service levels (as standardly used for call centers),
strict improvements over the pooled scenario might be found.
For example, for s = 5, k = 10, and (h1, h2)** = (7, 1) with w1, and
w2 the corresponding waiting times for types 1 and 2 jobs and
wp the waiting for the pooled case, we have

Pfw1 < 3:8g ¼ 83:74% > Pfwp < 3:8g ¼ 83:44%;

Pfw2 < 3:8g ¼ 83:77% > Pfwp < 3:8g ¼ 83:44%:

In fact, for the different performance criteria and values, different
values (h1, h2)** might be found to strictly improve the pooled
scenario.
6. Summary

Let us summarize the observations by a schematic ordering of
scenarios and rules and some global conclusions.

6.1. A schematic overview

So far, the results have been restricted to the illustrative case of
q = 0.9 and k = 10. But while q = 0.7, 0.8 or 0.9 seem quite realistic,
k = 10 might be considered as rather extreme. For small k, one may
expect less distinctive if not opposite results. Table 4, therefore,
provides a rough schematic overview for different agent numbers
s and mix ratios k. The inequality symbol < indicates a smaller
average waiting time. Table 4 illustrates that pooling is ‘optimal’
only in the situation of identical services (k = 1) and otherwise
not. Here, the single threshold rule is only included as computed
for k = 10.

6.2. Global conclusions

For situations with mix ratio k > 1, some global conclusions are

1. Pooling can be substantially improved by a number of simple
and ‘practical’ scenarios as
� A strictly separated scenario (for sufficiently small number

of agents),
� A one-way or two-way overflow scenario with improve-

ments up to some sufficiently large number of servers,
� A priority rule (pre-emptive or non-preemptive) for short

(type 1) jobs for arbitrary number of servers and with a more
or less constant improvement order.
2. From a practical point of view the NP1 scenario is ‘nearly’ opti-
mal. It can only be improved slightly by more sophisticated
threshold priority policies for short jobs.

Table 4
Ordering of scenarios

N. van Dijk, E. van der Sluis / European Journal of Operational Research 197 (2009) 415–421 421
3. Pooling can also be improved slightly but strictly for both short
and long jobs by optimal threshold rules. These optimal scenar-
ios generally tend to prioritize long (type 2) jobs.

4. Simulation is necessarily required to evaluate scenarios.
5. Particularly for more complex pooling questions, such as for

multiple types, skills and preferences, a combination of queue-
ing (for insights) and of simulation (for evaluation and optimi-
zation) is required.

Acknowledgement

The authors are grateful for the comments of an anonymous ref-
eree, which led to a substantial restructuring of the presentation,
as well as to Remarks 2 and 3.

References

Bell, S.L., Williams, R.J., 2001. Dynamic scheduling of a system with two parallel
servers in heavy traffic with resource pooling: Asymptotic optimality of a
threshold policy. Annals of Applied Probability 11, 608–649.
Borst, S.C., Mandelbaum, A., Reiman, M.I., 2004. Dimensioning large call centers.
Operations Research 52, 17–34.

Cattani, K., Schmidt, G.M., 2005. The pooling principle. INFORMS Transactions on
Education 5. <http://ite.pubs.informs.org/Vol5No2/CattaniSchmidt/>.

Gans, N., Koole, G., Mandelbaum, A., 2003. Telephone call centers: Tutorial, review
and research prospects. Manufacturing and Service Operations Management 5,
79–141.

Gans, N., Zhou, Y.-P., 2007. Call routing schemes for call-center outsourcing.
Manufacturing & Service Operations Management 9, 33–50.

Osogami, T. Harchol-Balter, M., Scheller-Wolf, A., Zhang, L., 2004. Exploring
threshold-based policies for load sharing. In: 42nd Annual Allerton
Conference on Communication, Control, and Computing, University of Illinois,
Urbana-Champaign, pp. 1012–1021.

Smith, D.R., Whitt, W., 1981. Resource sharing for efficiency in traffic systems bell
system. Tech Journal 60, 39–55.

Squillante, M.S., Xia, C.H., Yao, D.D., Zhang, L., 2001. Threshold-based priority
policies for parallel-server systems with affinity scheduling. Proceedings of the
American Control Conference 4, 2992–2999.

Van Dijk, N.M., Van der Sluis, E., 2008. To pool or not to pool in call centers.
Production and Operations Management 17, 1–10.

Wallace, R.B., Whitt, W., 2005. Resource pooling and staffing in call centers with
skill-based routing. Manufacturing and Service Operations Management 7,
276–294.

Whitt, W., 1999. Partitioning customers into service groups. Management Science
45, 1579–1592.

Wolff, R.W., 1989. Stochastic Modelling and the Theory of Queues. Prentice-Hall,
Englewood Cliffs, NJ.

http://ite.pubs.informs.org/Vol5No2/CattaniSchmidt/

	Pooling is not the answer
	Introduction
	Simple scenarios
	Basic case and notation
	Pool-or-not-or-overflow (earlier results)
	Larger server numbers

	Simple priority rules
	Conclusions

	Threshold rules
	Conclusions

	A strict improvement
	Summary
	A schematic overview
	Global conclusions

	Acknowledgement
	References

