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Abstract 

We consider the problem of cost optimal railway line allocation for passenger trains for the Dutch railway system. At 
present, the allocation of passenger lines by Dutch Railways is based on maximizing the number of direct travelers. This 
paper develops an alternative approach that takes operating costs into account. A mathematical programming model is 
developed which minimizes the operating costs subject to service constraints and capacity requirements. The model op- 
timizes on lines, line types, routes, frequencies and train lengths. First, the line allocation model is formulated as an 
integer nonlinear programming model. This model is transformed into an integer linear programming model with bi- 
nary decision variables. An algorithm is presented which solves the problem to optimality. The algorithm is based upon 
constraint satisfaction and a Branch and Bound procedure. The algorithm is applied to a subnetwork of the Dutch rail- 
way system for which it shows a substantial cost reduction. Further application and extension seem promising. © 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The Dutch railway network is one of  the most 
intensively used railway networks in the world. 
The railway network has 2800 km of track and 
372 stations. Almost 1,000,000 travelers and 
60,000 tonnes of  cargo are transported each day. 
The most  important  characteristic of  the Dutch 
railway system is the use of  a cyclical timetable. 

* Corresponding author. TNO INRO, P.O. Box 6041, 2600 
JA Delft, The Netherlands. Fax: +31-15 269 7782; e-mail: 
pzw@inro.tno.nl 

This means that the timetable is more or less id- 
entical during all hours of  the day over a year. 

In this paper we consider the problem of cost 
optimal railway line allocation for passenger 
trains. A line is a direct railway connection be- 
tween two stations. A line is characterized by its 
origin and destination station, its frequency per 
hour, the route between these two stations and 
the intermediate stops at passing railway stations. 
The line system is the collection of all lines. The 
developed method for obtaining a cost optimal 
line system is designed to be used by Railned 
and Netherlands Railway Travelers within the 
process of  generating timetables. For  more details 
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about the overall process of generating timetables, 
we refer to Odijk et al. [1]. 

1.1. Motivation 

Currently, Dutch Railways use a line allocation 
model to determine a line system which aims to 
maximize the total number of travelers on direct 
connections. This objective is also used in other 
countries (e.g. [2]). The underlying motivation of 
this approach is to minimize the inconvenience 
for a passenger of  changing from one train to an- 
other. Hence, the objective is to transport as many 
travelers as possible directly from their origin to 
their destination station. This approach often re- 
sults in long routes for the lines, where the notion 
of long refers to the (geographical) distance be- 
tween its origin and its destination station. The di- 
rect travelers approach not only results in long 
routes, but also in long trains. The length of  a 
train, determined by the number of cars, has to 
be adjusted to the number of  passengers that the 
train has to transport at each segment (track) of 
its route. The train length and train capacity of a 
passenger line are roughly determined by the max- 
imum number of  passengers along the route of  the 
train. This may result in long trains. Long lines of- 
ten have considerable differences between the num- 
ber of passengers on each track. Therefore, long 
lines may lead to a substantial amount of  unused 
train capacity at less busy tracks and can thus be 
rather expensive. Conversely, a cost approach 
may increase the number of passenger transfers, 
but it may decrease operating costs. This decrease 
in operating costs could translate into lower prices 
for customers. 

1.2. Objective and results 

The objective of  this study is to investigate the 
effects on line allocation when using a cost ap- 
proach, as opposed to the current direct travelers 
approach. We specify our cost approach and com- 
pare this approach to the classical direct travelers 
approach. We present two new model formula- 
tions for the line allocation problem. We present 
an algorithm to solve the problem to optimality. 
This algorithm is based upon constraint satisfac- 

tion and a Branch and Bound procedure. We 
compare the results of  our approach with the 
results of  the direct travelers approach for a 
subnetwork of  the Dutch railway system. This 
comparison indicates a possible, substantial cost 
improvement. 

1.3. Outline 

In Section 2 we describe the problem in more 
detail and we introduce the new approach based 
on operating costs. This new approach is discussed 
in relation with the existing direct travelers ap- 
proach. In addition, the complexity of  the problem 
is discussed. The mathematical programming 
models are discussed in Section 3. In Section 4 
the algorithm is described to obtain an optimal so- 
lution. To show the practical use of the model as 
well as the performance of  the solution procedure, 
an empirical study is carried out. This is presented 
in Section 5. The paper concludes with a discus- 
sion of possible extensions of  the model and im- 
provement of the solution procedures. 

2. Problem description, complexity and notation 

The problem of determining a line system in 
this paper can be stated as follows: 

Given the railway infrastructure between sta- 
tions, the traveler flows on each track, the 
operating costs associated with the exploita- 
tion of trains, and service and capacity con- 
straints, determine a cost optimal allocation 
of lines to passenger flows. The allocation 
of lines involves the determination of  the or- 
igin and destination stations of the lines with 
their frequencies per hour and the length of  
the trains on each line. 

The allocation of lines results in a line system. A 
line type may be Intercity (IC), Inter Regional 
(IR), or Agglo Regional (AR). The line type deter- 
mines the stations at which the line halts: the IC 
lines halt at just the IC stations, the IR lines halt 
at both IC and IR stations, and the AR lines halt 
at all stations. The length of a train is determined 
by its number of  cars. The line systems we consid- 
er, cover 1 h. 
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We consider the allocation of passenger flows to 
tracks as given. This allocation is determined by a 
procedure called System Split (see [3]). This proce- 
dure is widely used by many authors (see [4,5,2]). 

System Split assigns the passengers to the differ- 
ent train types (IC, IR, and AR). The assumption 
of  this passenger-split procedure is that the passen- 
gers would travel via the shortest route. Consider, 
for example, the passengers at AR station x who 
want to travel to IC station z. Between these sta- 
tions there is an IC station y. The passengers at x 
have two possibilities to travel from x to z. They 
can take an AR line directly from x to z, or they 
can take an AR line from x to y, and change at y 
to an IC line from y to z. Depending on the as- 
sumptions on the behavior of the passengers, the 
passengers from x to z are split between these 
two possibilities. This is done for each pair of  sta- 
tions. After this assignment, the passenger flows 
on each track can easily be derived. 

In the remainder of  this section we make the 
problem description more specific. In Section 2.1 
we formally introduce our cost approach. In Sec- 
tion 2.2 we discuss the computational complexity 
of  the problem. 

2.1. The cost approach 

Our cost approach differs from the existing ap- 
proach as described in [4,5,2] with respect to the 
following aspects: 
1. We focus on the minimization of operating 

costs of  a line system instead of  the maximiza- 
tion of the number of  direct travelers. 

2. We do not consider the length of the trains be- 
longing to a certain line as fixed. The length of  
the trains is therefore determined by optimiza- 
tion. For  example, a choice will be made be- 
tween a long train once per hour or a short 
train twice per hour. Since the number of  cars 
can be balanced with the number of  passengers, 
the number of  'empty' cars during a ride can be 
reduced. 

3. We do not fix the number of trains per hour on 
each railway track. However, the number of  
trains per hour  on each railway track has to be 
between certain upper and lower bounds. The 
upper bound is included for robustness at the 

operational level, since the railway track must 
not be used too intensively. The lower bound 
is included for service considerations, namely 
to provide a regular connection between the sta- 
tions at both ends of  the railway track. 

4. The subdivision in IC, IR and AR passenger 
flows generated by System Split is considered 
to be not absolutely fixed. When the travelers 
on a track can be transported by more line 
types, a cross optimization is performed over 
all these line types simultaneously. 

5. We take the circulation of rolling stock into ac- 
count. The circulation of stock is typically con- 
sidered after the timetable is determined. Since 
the line system determines to a large extent 
the best possible circulation of rolling stock, 
we want to take the circulation of stock into ac- 
count in the determination of the line system. 
Based on some realistic assumptions, our model 
determines an optimal circulation plan, and 
thus, the costs for the circulation of rolling 
stock are taken into account. 
Our cost optimal approach is not only deter- 

mined by the above-mentioned aspects. We also 
had to adopt the following basic assumptions 
which are commonly accepted by Dutch Railways 
and other European railway companies. 

Firstly, all passenger flows between pairs of sta- 
tions are symmetric and each line is always operat- 
ed in both directions, due to the policy of Dutch 
Railways. The former assumption is a consequence 
of the data provided by the Dutch Government [6]. 
The latter is set to provide maximum service to the 
passengers. As a result of both assumptions, we can 
restrict our attention to lines in one direction only. 

Secondly, we only consider a maximum of three 
connecting routes of each line between a given pair 
of  origin and destination stations. This maximum 
is an assumption of Dutch Railways and of  System 
Split. It should be noted that more connected 
routes can easily be incorporated into our model 
without changing the mathematical structure. 
The selected routes have the smallest traveling 
times, and, in addition, the longest traveling time 
of these routes has to be less than two times the 
shortest traveling time. This criterion is tested 
(see [7]) and found appropriate for the Dutch rail- 
way network. 
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Finally, we only consider the line types as used 
by Dutch Railways (i.e. IC, IR, and AR). How- 
ever, other lines types for passenger trains can be 
implemented easily in our approach. Freight lines 
and international passenger lines are not consid- 
ered in this paper, since they are determined by 
other organizations than Dutch Railways. 

All operating costs are taken into account in the 
cost optimization model. These costs are divided 
into the following three categories after ample dis- 
cussions with financial experts of  Dutch Railways. 
The categories presented are identical to the cate- 
gories used by Dutch Railways. The categories are: 
• Fixed costs per car of  type t per hour in one di- 

rection (cfixt). These costs include depreciation 
of  stock, cost of  capital, fixed maintenance 
costs, and the costs of overnight parking. 

• Variable costs per car of  type t per kilometer 
(ckmt). These costs include ticket collectors 
costs, cleaning costs, variable maintenance 
costs, energy costs, infrastructure costs, and me- 
chanics costs. 

• Variable costs per train of type t per kilometer 
(trkmt). These costs include the driver, the fixed 
part for ticket collectors, and energy costs. 

2.2. Complexity 

Bussieck et al. [2] prove that the problem of 
finding a feasible line system is NP-complete, if 
the number of  trains on each track is fixed. We will 
prove that the problem of  finding a cost optimal 
allocation of  trains without these fixed amount  
of  trains is NP-hard. For  that reason, we consider 
a simplified, abstract version of  the line allocation 
problem. 

The simplified cost optimal line problem: Consid- 
er a railway network consisting of  stations s C S 
and tracks k E K between some pair of  stations. 
The number of passengers on track k is given by 
nk. A line l c L is characterized by its origin and 
destination station and by the sequence of  tracks 
it passes. The maximum frequency of  line l is de- 
noted by f]nj ax and the capacity of  line l per fre- 
quency is ccapl. The cost of  line l per frequency 
is denoted by et. A feasible line system is a set of 
lines M C L such that all passengers can be trans- 
ported. The problem of  finding a cost optimal line 

system is to find a feasible line system with mini- 
mal cost. 

T h e o r e m  2.1 The simplified line problem & NP- 
hard. 

Proof. We will prove the theorem by a reduction 
from the vertex cover problem [8], which is known 
to be NP-hard. The vertex cover problem can be 
described as follows: Consider a graph G = ( V, E). 
A vertex cover is a subset W c V such that en 
W # ~ for each edge e of  G. The vertex cover prob- 
lem is to find a vertex cover of  minimal cardinality. 

Let G = (V, E) be an instance of  the vertex cov- 
er problem. Number the edges of G consecutively. 
For  each edge ei introduce two stations s2i-i and 
szi. Introduce tracks between all pairs of  stations. 
The number of  passengers on a track between sta- 
tions s2i-1 and s2i is equal to 1. The number of  pas- 
sengers on all other tracks is equal to 0. For  each 
vertex vj introduce a line lj. Line lj passes the track 
between railway stations s2i-l and s2i if and only if 
ei n vj # (~. The capacity and the maximum fre- 
quency of  all lines are equal to I. The cost of  op- 
erating a line is equal to 1. This instance of  the 
simplified cost optimal line problem can be con- 
structed in polynomial time. It is easy to see that 
a feasible vertex cover of  minimal cardinality is 
equivalent to a cost optimal line system. [] 

The reduction is illustrated in Fig. 1. 

3 .  M o d e l  f o r m u l a t i o n  

In this section we present two mathematical 
programming models for the cost efficient alloca- 
tion of  passenger trains. In Section 3.1 the nota- 
tion is introduced that is used throughout this 
paper. An integer nonlinear programming model 

"02 82 - _ 
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Fig. 1. A graph and its reduced lines and railway stations. 
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is presented in Section 3.2 as a natural model to 
capture the various cost components involved. In 
Section 3.3 this model is transformed into an inte- 
ger linear programming model. 

3.1. Notation 

In this paper the following notation for the in- 
put data is used: 

Indices 
c number of cars 
f frequency of  a line 0 c = 1 , . . . , fmax) ;  
i , j  station ( i , j  --- 1 , . . . ,  s max) 
k track (k = 1 , . . . ,  k max) 
r connecting route (r = 1 , . . . ,  r max) 

t line type (t E T ----- {IC, IR, AR}) 

Parameters 
c~ ax the maximum number of  cars per train 

of  line type t 
c rain the minimum number of  cars per train 

of  line type t 
ccaPt the car capacity (number of  passengers) 

for line type t 
cfixt the fixed costs per hour of  one car in 

one direction of  line type t 
ckmt the costs of  one car kilometer with line 

type t 
c ~  factor that multiplied with the frequen- 

cy and rounded up gives the number of  
compositions used on a line 

a~ the distance between stations i and j 
over connecting route r with line type t 

f~k ax the maximum train frequency on track k 
f~gi~ the minimum train frequency on track k 
iijrt k takes the value 1 if the line from station 

i to station j with line type t passes track 
k on connecting route r, 0 otherwise 

nk the number of travelers on track k of  
the right type 

t "max the maximum number of  connecting 
routes between two stations. This num- 
ber equals three by an assumption of  
System Split 

trkm/ the costs of  one train kilometer with line 
type t; 

The above described input data are determined 
by three aspects: the railway infrastructure, the 

costs of  operating trains, and the process of  generat- 
ing timetables. 

The railway infrastructure determines the index 
sets of  i , j ,r , t ,  and k. These index sets express 
among others the fact that not every station can 
be used as origin and/or destination station of  a 
line. An actual track between two railway stations 
may be part of  several tracks k. Consider for exam- 
ple two railway stations of  type IC with one IR 
station in between. A line of type IC runs directly 
between the two IC stations, it does not halt at the 
IR station in between. An artificial track kl is de- 
fined for IC lines between these two IC stations 
and this track consists of two physical tracks, 
namely the track between the first IC station and 
the IR station and the track between the IR station 
and the final IC station. Tracks, k2 and k3, are also 
defined for these two physical tracks separately, 
since both the IR and AR trains may use the IR 
station as origin and destination station. Track 
kl can only be used by lines of type IC, not by lines 
of the types IR and AR. Thus, i~k, = 0  for 
t E {IR, AR} for all i , j ,  r. Each track k in the 
model has a corresponding line type. The number 
nk of travelers on track k represents the number of 
travelers of  the same type. 

The infrastructure further determines the possi- 
ble routes r between each pair of origin and destina- 
tion stations, the distance between two stations a~, 
the maximum frequency on each track fkmk ax due 
to limited track capacity, and the maximum num- 
ber of  cars of a line c~t ax. The latter is determined 
by the platform length and the locomotive power. 

Costs and other financial aspects do not only 
determine the variable and fixed costs (cfixt, 
ckmt and trkmt), but also the minimum length 
c~t in of  a train. 

The hierarchical approach of  generating timeta- 
bles also has a large impact on several parameters. 
Since the actual number of  passengers is deter- 
mined by the combination of a line system and 
the timetable, and the latter is not yet known, an 
estimation is required. The estimated number n~ 
of  travelers on each track is determined by the pro- 
cedure System Split, which was explained earlier in 
this paper. Based on nk, the minimum frequency of 
a track j~min is determined by criteria of  Dutch 
Railways. 



M. 72 Claessens et al. / European Journal o f  Operational Research 110 (1998) 474-489 479 

The circulation of rolling stock affects the num- 
ber of compositions (i.e. identical trains) needed to 
operate the lines. A composition is the name for a 
train as a whole. If a train consists of three cars, 
then three cars are called one composition. We as- 
sume that compositions are only used on one line 
and that the timetable, yet to be determined, will 
put no extra restrictions on the stock circulation. 
The number of compositions needed to operate a 
particular line can be determined based on these 
assumptions. The assumptions guarantee that the 
proposed circulation plan is feasible and easy to 
implement in practice. The proposed circulation 
plan fits very well with the present circulation plan 
of Dutch Railways. At present, many lines are op- 
erated in this way. For a line the number of com- 
positions depends on the travel time between its 
origin and its destination station, its frequency 
and its minimum turn-around time. The number 
of compositions can be determined from the circu- 
lation time. The circulation time is the time needed 
for a train to travel from its origin to its destina- 
tion station and back, including the turning time 
at both its destination station and its origin sta- 
tion. This turning time is needed for the unloading 
and loading of passengers, the cleaning of the 
train, maintenance and changing the crew. The 
turn-around time can be increased by a penalty 

number of compositions needed for operating a 
line once per hour, which is denoted by c/¢j. The 
total number of compositions needed per day for 
operating a line is given by cp~0. multiplied by the 
frequency of the line and rounded up. 

3.2. The integer nonlinear programming formulation 

The planners at Dutch Railways apply the fol- 
lowing strategy when determining a line system 
manually. They first decide which lines are included 
in the line system. Then they decide about the fre- 
quency of the lines. Finally, they determine the 
capacity or length of the trains on each line. To pre- 
serve this strategy in our cost approach, the prob- 
lem can be formulated with the following decision 

rt the frequency of a line from station variables: Fij, 
i to station j via route r and of type t. These deci- 
sion variables represent the first two stages of the 
described strategy. If a line is not included in the 
line system, its frequency must be set to zero. C~, 
the number of cars per train on the line from sta- 
tion i to j via route r and of type t. These decision 
variables represent the third stage of the strategy. 
When taking costs into account, these decision 
variables lead to the following mathematical pro- 
gramming model: 

minimize 

subject to 

rmax smax smax 

Z Z ~-~ Z cfixt" r rtr,rtqf,rt rt rt crt 4_ d n t r k m t  rt ICPijr'ijl t.~ij --~ d~ ckmt Fi j  --iy --  ~ij F i j  
r=l tET i=1 j=i+l 

/*max smax smax 

Z ~  Z i q  tk ccaPt F~j C~j >1 nk Vk, 
r=l tET i=1 j=i+l 

rmax smax smax 

f ~ m i n ~ ' ~ Z Z k  Zi~tk fr j<<' f~  ax VN, 

r=l tET i=1 j=i+l 

ctinF~ <~F~C~ <<.ctaXF~j Vi , j>i , r , t ,  

0 ~< F~ ~< fma× and integer Vi, j > i, r, t, 

C~ k ~> 0 and integer Vi,j > i, r, t. 

(1) 

(2) 

(3) 

(4) 
(5) 
(6) 

for the possible extra turn-around time forced by 
the timetable. The minimum circulation time is di- 
vided by 60 (min) to obtain a lower bound on the 

The objective function (1) represents the costs 
of a line system. Hence, the sum is taken over all 
cost components. The objective function 
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considers: the costs of the number of cars being 
used, the costs of car kilometers and the costs of 
train kilometers. Constraints (2) ensure that on ev- 
ery track all travelers can be transported. Con- 
straints (3) guarantee that on every track the 
frequency is between a certain lower (due to ser- 
vice constraints) and upper bound (due to capacity 
restrictions). Constraints (4) limit the minimum 
and maximum number of cars per train if the fre- 
quency of the line is positive. Constraints (5) en- 
sure a limited positive integer line frequency and 
constraints (6) state that the length of a train is a 
positive integer. If  the frequency of a line is zero, 
its train length will be set to zero during optimiza- 
tion. The actual number of operating trains on a 
line per day is determined in this model by 
Fc/¢i~ F~]. This discontinuous term is a result of 
the assumed circulation plan for railway stock. 

The mathematical model has discontinuous 
terms in the objective function, quadratic terms 
in both the objective function and the constraints 
and integer decision variables. For this kind of 
models, no general solution procedures are avail- 
able [9]. 

programming model. Tests showed that the results 
are too unstable for practical use. For more details 
about this heuristic and the mathematical pro- 
gramming model we refer to Claessens [10]. 

3.3. The integer linear programming formulation 

In order to overcome the computational diffi- 
culties mentioned above, we transform the integer 
nonlinear programming model into an integer lin- 
ear programming model. This transformation is 
done by introducing the following binary decision 
variable for each unique combination of line fre- 
quency and train length of a line. 

xnfc i j  

1 if the line from station i to station j 
via route r and of type t is 

= included in the line system with 
frequency f and c cars, 

0 otherwise. 

This decision variable leads to the following math- 
ematical programming model: 

minimize 

subject to 

rmax fmax ctmax smaX srnax / k 

efixt [cpi j j |  cA ij + aq t ckmt jeA ij + d~ trkmt fX~j 
J r=l  tcT f = l  c=c min i=1 j= i+ l  

(7) 

rmax fmax cmaX smaX ,sanax 

~ ~ Z ~ Z Z i~Jk ccapt f -vnJ~ t~Aij ~ nk V k, (8) 
r=l  tET f=l c=c~ nin i=1 j= i+ l  

rmax fmax cmax smax smax 

fjmin k ~ Z ~  ~ Z ~ .r, :.,,.,-rtfc /~nax ~ijkjaij ~< V k, (9) 
r=l  trT f = l  c=c rain i=l j= i+ l  

fm,x c?,X 
Z Z Xrtj~ --ij <~ ! V i,j > i,r,t, (10) 
f = l  c=c~in 

xrt!~ ,j E {0,1} V i , j  > i,r,t , f ,c.  (11) 

Classical relaxation methods for obtaining a 
lower bound, such as the Lagrange relaxation, 
are difficult because of the nonlinear terms in the 
model. We have studied the possibility of using 
a heuristic based on a relaxation, and using 
GAMS/MINOS to solve the relaxed mathematical 

The objective function (7) represents the costs 
of a line system. Constraints (8) ensure that on 
every track all travelers can be transported and 
constraints (9) guarantee that on every track the 
frequency is between certain upper and lower 
bounds. Constraints (10) state that each line 
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must obtain a unique frequency and train length. 
Finally, constraints (11) state the binary restriction 
for the decision variable xrt. fc - - I ]  " 

Clearly, Eqs. (7)-(9) resemble Eqs. (1)-(3) of 
the integer nonlinear programming model, respec- 
tively. A multiplication with f c is included if in the 
nonlinear model F~ C~ is used. For terms in the 
nonlinear model with only Fi~, a multiplication 
with f is included in the integer linear model. 

ables. Technique 4 aims at the overall improvement 
of the problem formulation by adjusting the coef- 
ficients of the integer linear programming model 
and by identifying superfluous constraints and 
variables. The first three techniques are especially 
developed for this problem and are based on con- 
straint satisfaction: if the stated constraints are sat- 
isfied, then the problem can be reduced. Technique 4 
is a well known technique applicable to all integer 
linear programming models. 

4. The algorithm 

Our first attempt was to solve the integer linear 
programming model of Section 3.3 by the 
CPLEX 3.0 MIP solver. Unfortunately, CPLEX 
was unable to find a good, feasible solution. There- 
fore, we have developed a specially designed algo- 
rithm. The algorithm has the following major 
components: 
• Model reformulation to reduce the problem 

size. The derived model reformulation tech- 
niques, which are described in Section 4.1, are 
highly effective for the initial problem formula- 
tion of Section 3.3. We were unable to solve 
the problem to optimality without these tech- 
niques. 

• Lower bounding. A good lower bound reduces 
the size of the Branch and Bound tree. Without 
the techniques of Section 4.2, we were unable to 
prove optimality for the obtained solutions. 

• Selecting a subproblem. This is an important as- 
pect of the search process. The selection proce- 
dure, see Section 4.3, makes it possible to 
obtain a good (or optimal) solution quickly, 
thereby accelerate the search process. 

4.1. Model rejbrmulation: Reducing the problem 
size 

By using model reformulation techniques based 
on the special structure of our problem, the prob- 
lem size can be reduced. This is a necessity, since, 
even for small railway networks, the size of the 
model stated in Section 3.3 is large. Four model re- 
formulation techniques are presented. Technique 1 
aims at reducing the number of constraints. Tech- 
niques 2 and 3 aim at reducing the number of vari- 

4.1.1. Technique 1." Redundant tracks 
This technique aims at reducing the number of 

tracks, represented by k max. If the number of 
tracks is reduced, the number of constraints will 
also be reduced, since for each track a constraint 
like (8) and a constraint like (9) must be included 
in the model. The number of tracks can be reduced 
by combining connected tracks. No further reduc- 
tions can be obtained, if each end-point of each re- 
sulting track has at least one of the following 
properties: 
1. The end-point represents a railway station that 

can be used as origin and/or destination station 
of a line. 

2. The track is adjacent to at least two other tracks 
at the end-point. 

Originally, each railway station is represented by 
one or more end-points of tracks. Since many rail- 
way stations do not satisfy one of the above require- 
ments, many tracks can be combined. The 
minimum required frequency of a composed track 
is the maximum of the minimum required frequen- 
cies of the tracks of which it consists. The maximum 
required frequency of a composed track is the min- 
imum of the maximum required frequencies of the 
tracks of which it consists. The number of travelers 
on a composed track is the maximum of the number 
of travelers of the tracks of which it consists. 

Example: Consider the network in Fig. 2. All 
tracks can only be used by lines of type AR. Point 
y represents a railway station that cannot be used 
as origin and/or destination station. Therefore, 
all lines traveling over the track between the 
points x and y must also travel over the track be- 
tween the points y and z and vice versa. Thus, 
a composed track xyz can be introduced with 
nx~ max{n~,, n~,}, jx~ n min rain = =max{f~,. ,f~ } and 
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Fig. 2. T h e  original ne twork  and  the cont rac ted  network.  

f~ax = min{~xyaX,f~ax}. The resulting network is 
also shown in Fig. 2. 

4.1.2. Technique 2: Superfluous variables 
The idea behind this technique is that there is a 

certain upper bound for the train capacity re- 
quired. Some variables represent a train capacity 
which is sufficient to transport all passengers at 
the passed tracks. As a consequence, more train 
capacity is superfluous and should not be consid- 
ered, since it will only lead to higher costs. Based 
upon any of  the following conditions, certain deci- 
sion variables can be removed from a problem. 
The first requirement gives a sufficient condition 
to exclude variables with a certain fixed frequency. 
The second requirement gives a sufficient condi- 
tion to exclude variables with certain train lengths. 
The third requirement excludes infeasible frequen- 
cies for lines. The conditions are: 
1. If  3i , j , r , t , f ,c  such that Vk with .rt tij k =_ 1: 

(nk - ( f  c ccap, + max(0, (j~mk i" - f ) )  min ccaPt, 
t c~lin . i t  - -  • • • [ ti,j,k = 1 , z ¢ t  v j ¢ f V r T ~ i V t s ~ t ' } )  ) 

rtJc" • C* ~<0, then all variables X? w~th > c are 
superfluous and can be removed from the 
problem. 

• rtfi: Explanation: if the line corresponding to Xi) 
is selected, then at least (fx m'~ - f )  other trains 
have to pass track k, since j~k in is the required 
minimal number of  trains on track k. If  these 
other trains are in all cases able to transport 
the remaining passengers on all relevant tracks, 

rt]~ then the line corresponding to Xij should not 
have more than c cars. Thus variables corre- 
sponding to this line with a number of  cars 
exceeding c can be removed from the prob- 
lem. min " min .r'¢ max 0, mln cca , c,  3 l , ,  ( ( (J'] - f ) )  { Pt ' ,  I ijk---1, 
i : ~ i ' v j C f V r ¢ l " V t ¢ t ' } )  represents the 
minimum capacity offered by other trains that 
have to pass track k because of the frequency 
requirements. 

2. If 3i , j ,r , t , f ,c  such that Vk with i~ k _= 1: 
f c c c a p t  ~> nk and f~>f ,  rain, then all variables 

, - tr*, ,*  • f > ,  (f, X U , with ~>f, *>- c ~-e, and C f or 
c * ¢  e) are superfluous and can be removed 
from the problem. 

Explanation: if the line corresponding to X~ t~" 
is selected, then all passengers can be transport- 
ed by this line on all the visited tracks. This line 
also satisfies the minimal frequency require- 
ments on all visited tracks. Thus, variables for 
this line corresponding to higher frequencies 
and/or more cars can be removed from the 
problem. 

3. If 3i , j , r , t , f ,c  such that f > min{f] nax ] i ~  
- 1 }, then all variables X~ r-e• with f* >~ f A c* 
>/0 are superfluous and can be removed from 
the problem, 

Explanation: if the line corresponding to Xr~ t~ 
is selected, then at least one of the maximal fre- 
quency requirements on the visited tracks is vi- 
olated. Thus, variables corresponding to the 
line with the observed and higher frequencies 
can be removed from the problem. 

4.1.3. Technique 3: Dominated variables 
The third technique relies on the idea that some 

variables can always be replaced by another vari- 
able in any feasible line system and this replace- 
ment will result in a line system which is feasible 
and at least as cheap as the original. A variable 
can be replaced by another variable if, for exam- 
ple, the other variable is able to transport more 
passengers against lower costs and if the frequency 
requirements are also satisfied by the resulting line 
system. This dominance rule is formally defined as 
follows; Variable X r t f l c '  c a n  be replaced, or is 

- - i j  x r t [ . 2 c  2 F 1 "~ dominated by, variable ~ f2  V c I ~ c-, - - l J  ~ Y 
if the following three requirements are met: 
1.  " rt 1 1 rt 1 1 rt efixtIcp?f~c +d[j c k m t / c  +d~  trkmtfl>~ 

c fix, Icpy.; f21c2 + d~' ckmt/2c 2 + d~)' trkm, f2.  
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Explanation: this condition states that the costs 
• . rtf lc I 

associated with Xi; have to be greater than 
J , . rtf2c 2 

or equal to the costs associated with X~i . 
2../.1 c I ccap t ~< f 2  c 2 ccap t 

o r  

Vk with ii~ k - 1" f2c2ccapt  + max(0, (j)min _ f J )  
• r't ~ i t r t min{ccap,,c~i"lti,j,k--_ 1 , i ¢  V j C j ' V r  ¢ 

Vt ¢ t'})~>nk. 
Explanation: this condition states that the ca- 

of  X,:  ~s less than the capacity of  pacit3 ( ~t[ ' c' • 
IJ . rt..| I . 

,-a-c- or that the extra capacity of X,:~ j c is of X~y 
n o  use. 

3. j . l  >~f2 
and 
t 2 +  

( [  (n~-min{f'c'ccap"f~-cZCCap'}) ] ~  
m a x  0, (max{CCap,,cm,,xl3iJi: =l,i~i, vjCj, VrCr, Vt~t,}) [ j 

.rl ~>./~minvk :t,y k ~ 1. 

Explanation: this condition states that the fre- 
quency requirements are always satisfied when- 

rtf lcr . rtf2 c_ 
ever X~j is replaced by X a . 

Thus, if all three requirements are fulfilled, then 
x r t l l c  I ~r t [qc  2 ~j is dominated by __~) and the former can 
be removed from the problem. 

4.1.4. Technique 4." C P L E X  preprocessor 
The technique tries to improve the overall prob- 

lem formulation by sharpening the coefficients of 
the integer linear programming model, by identify- 
ing superfluous constraints and variables and by 
substituting variables. We used the MIP prepro- 
cessing of  CPLEX 3.0. More details can be found 
in [11-13]. This technique is well known [11-13] 
and implemented in many optimization packages. 

4.2. Lower  bounding 

A lower bound for the integer linear program- 
ming model is obtained by removing the integral- 

rt/~" F r ity restrictions (11) for variables X 6 . o 
calculating the corresponding LP relaxation we 
used the primal simplex method at the root of 
the Branch and Bound tree and the dual simplex 
method in all other nodes. 

We applied two techniques for improving the 
value of the LP relaxation. Technique 5 results 
from the observation that only an integer number 
of  cars can be used in any feasible solution, and 
must be executed before the Branch and Bound 

procedure is started• Technique 6 involves the ad- 
dition of valid inequalities, namely cover inequali- 
ties, during the Branch and Bound procedure. 

4.2.1. Technique 5." Right -hand side 
This technique is based upon the fact that only 

an integer number of  cars can be used on each 
track. Hence, we can increase the right-hand sides 
of constraints (8). If  the passengers on track k can 
only be transported by a single line type t, nk can 
be increased to [nk/ccap,~ccaPt. If several line 
types, suppose T t C_ T, can be used, n k can only 
be increased to the lowest reachable value greater 
than or equal to n k for an integer combination of 
the available car capacities ccapt , t E T t. This tech- 
nique is applied after Techniques 1 3, but before 
Technique 4. This is a consequence of the fact that 
the effect of Technique 4 depends on the effect of 
Technique 5. 

4.2.2. Technique 6." Cover inequalities 
The value of the LP relaxation can be further 

improved by the use of cover inequalities. A cover 
is a set S of variables that has the property that if 
all variables of  the set are set to one, then the re- 
maining problem becomes infeasible. A cover in- 
equality states that the sum of  the variables in an 
associated cover must be less than or equal to 
the cardinality of the cover minus one, e.g. 
~.~csX~<<.lS [ - 1 .  The cover inequalities are de- 
rived from minimal covers. A minimal cover is a 
cover (i.e. it satisfies the above-mentioned proper- 
ty), but the resulting set would no longer be a cov- 
er if any of  the variables would be removed from 
the cover. For a further discussion of cover in- 
equalities, we refer to Hoffman and Padberg [14]. 

We search for violated cover inequalities after 
having solved the LP relaxation at a node in the 
Branch and Bound tree. Violated cover inequalities 
may exist because of the maximum frequency con- 
straints. If violated cover inequalities are found, 
they are added to the problem description and the 
LP relaxation is solved again. This process is repeat- 
ed until no more violated cover inequalities exist. 

4,3. Select ing a subproblem 

The subdivision of a problem into subproblems 
and deciding which subproblem is considered next 
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from the available list of subproblems are major 
aspects of a Branch and Bound procedure. Our 
branching rule is to force a variable with a frac- 
tional value to integrality. This is done in the reg- 
ular fashion of setting the variable to one in one 
subproblem and to zero in the other. The selection 
of the fractional variable is based upon the auto- 
matically selection of CPLEX 3.0, see [11]. The se- 
lection of the next subproblem is based upon an 
estimate of the best obtainable integer feasible so- 
lution for the subproblem. This estimate of the 
best obtainable integer objective value of the con- 
sidered subproblem is obtained by removing all 
variables with a fractional value from the objective 
function value of the LP relaxation. Heuristically 
speaking, this selection procedure selects the best 
partial solution. This selection rule is able to find 
a good solution quickly, and thus accelerates the 
search process in the Branch and Bound tree. Se- 
lecting the subproblem based upon the best objec- 
tive value of the associated LP relaxation turned 
out to be unsuccessful since the gap between the 
value of the LP relaxation and the value of the re- 
sulting integer solution was too large. 

Finally, all variables can be subdivided into sev- 
eral mutually exclusive sets, which are useful in the 
Branch and Bound procedure. These sets belong to 
the so called Special Ordered Sets (SOSs) of type 1, 
see [15,3,16]. An SOS of type 1 has the property 
that at most one of the variables in the set has a 
nonzero value in any feasible integer solution. 
These sets are defined by the variables occurring 
in the same constraint (10). Thus, each SOS of 
type 1 has the interpretation that each line must 
obtain a single frequency and train length. 

5. Application to a Dutch railway subnetwork 

We carried out an empirical study on real world 
data to illustrate the application of our model as 
well as the performance of our algorithm. The ba- 
sic variant used for our computations is described 
in Section 5.1. In Section 5.2 the performance of 
the model reformulation techniques and the 
Branch and Bound procedure are presented. In 
Section 5.3 we compare the line system obtained 
by our cost approach with the line system obtained 

by the direct travelers approach. We end this sec- 
tion with a sensitivity analysis. 

5.1. Introduction 

We use the north west part of The Netherlands 
as the basic variant for our computational experi- 
ments. The infrastructural lay-out of this subnet- 
work of the Dutch railway network is shown in 
Fig. 3. This subnetwork contains 28 railway sta- 
tions, of which one is an IC station, nine are IR 
stations and 18 are AR stations. The subnetwork 
has 10 railway stations that can be used as origin 
and/or destination station. 

The software system PROLOP is used to assign 
the passenger flows to the railway tracks by the de- 
scribed procedure System Split and to obtain a line 
system determined by the direct travelers ap- 
proach. 

We have used CPLEX 3.0 [11] as the basis for 
our Branch and Bound procedure. GAMS [9] is 
used for modeling the problem as an integer linear 
programming model and for implementing our 
model reformulation (Techniques 1-3) and lower 
bounding (Technique 5) techniques. 

5.2. Performance of the algorithm 

The obtained initial integer linear programming 
model has 5629 variables, 194 constraints, about 
110,000 nonzero coefficients (nonzeros) and an 
LP lower bound of about 6920. Before actually 
starting the Branch and Bound part of our algo- 
rithm, the problem is reduced to 1547 variables, 
139 constraints, and about 18,000 nonzeros. The 
LP lower bound is increased to about 7577. Thus, 
a substantial improvement of the initial problem 
formulation is obtained. The cumulative effect of 
the model reformulation and lower bounding tech- 
niques is described in Table 1. The percentages in- 
dicate the total effect in comparison with the initial 
problem size. 

Techniques 2 and 3 were able to identify many 
redundant decision variables and thus to decrease 
the problem size significantly. The use of the lower 
bounding Technique 5 was crucial, since the 
stronger lower bound prevented that the size of 
the Branch and Bound tree exceeded the available 
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Fig. 3. Dutch railway network in the north west of The Netherlands. 

Table 1 
Problem size and LP lower bound after each of the model reformulation and lower bounding techniques. 

Initial Tech 1 Tech 2 Tech 3 Tech 5 Tech 4 Total('/,, 

# Variables 5629 5629 1708 1548 1548 1547 - 73 
# Constraints 194 143 143 143 143 139 -28 
# Nonzeros 111,733 64,591 21,313 19,913 19,913 18,192 -84 
Lower bound 6920 6920 6975 6975 7255 7577 + 10 

computer  memory  space. The M I P  preprocessor of  
CPLEX 3.0, that we used as Technique 4, eliminat- 
ed four constraints and one variable and modified 
3860 coefficients. Especially the improvement  of  
the objective value of the LP relaxation is notice- 
able for this technique. For  this problem no violat- 
ed cover inequalities existed during the search of 
the Branch and Bound tree. However, many  cover 
inequalities were found for only slightly changed 
problems. Thus, cover inequalities can be useful 
for other problems. 

The computing times (in CPU seconds on an 
SUN LX workstation 50 MHz)  are described in 

Table 2. The CPU times represent the Branch 
and Bound part  of  the algorithm, including 
Technique 4. Techniques 1-3 and 5 were per- 
formed on an MS-DOS operated 486DX2-66 
computer.  The total computat ion times of  these 
techniques accumulated to about  l0 s. The con- 
clusion can be drawn from the table that reason- 
able solutions are found rather quickly. Most 
time was spent on proving optimality for the 
found solution, since the optimal solution itself 
was found already after 850 CPU seconds. The 
total computing time of  3989 CPU seconds is 
not significant in practice, since the determina- 
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Fig. 5. Line system obtained by the direct travelers approach. 
Each line in the figure represents one train per hour in both 
directions. 

tion of  a line system occurs only a few times per 
year. 

5.3. Comparison o f  cost versus direct travelers 

approach 

The line system obtained by the cost approach 
is displayed graphically in Fig. 4. A line system 
was also determined for the described problem 
based on the direct travelers approach of  PRO- 
LOP. The obtained line system for this approach 
is displayed graphically in Fig. 5. The line system 
was determined using the same allocation of the 
travelers to the tracks and the same maximum 

Table 2 
CPU time of the Branch and Bound procedure 

CPU time (s) 

Solving LP 0.82 
10% MIP gap 29 
5% MIP gap 77 
0% MIP gap 3989 

and minimum frequencies on each track. A line in 
these figures corresponds to one line in the line sys- 
tem, operated once per hour in both directions. 
The IC and IR stations, which are displayed as a 
solid box, are Alkmaar (Amr), Amsterdam CS 
(Asd), Castricum (Cas), Den Helder (Hdr), En- 
khuizen (Ekz), Hoorn (Hn), Schagen (Sgn), and 
Zaandam (Zd). The AR stations, displayed as a 
dashed box, are Heerhugowaard (Hwd), Hoorn 
Kersenboogerd (Hnk), and Uitgeest (Utg). 

Both line systems are compared on their operat- 
ing costs (Table 3) and on their numbers of  direct 
travelers (Table 4). Table 3 clearly indicates a sub- 
stantial cost reduction. The total operating costs 
are reduced by 1627 Dutch guilders per hour 
(17.2%), which amounts to nearly 18 million 
Dutch guilders per year for this part of  the railway 
network only. Dutch Railways assume to operate 
their trains 17 h per day for 320 days per year in 
both directions. The cost reduction is obtained 
by reducing the unused capacity as well as the nec- 
essary railway stock. The total number of unused 
car seats is decreased by 4435 (43 % ). The decrease 
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Table 3 
One-direction operating costs and other solution characteristics 
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Line system Direct travelers Cost optimal Difference 

Costs/hour 9473.3 7845.9 - 1627.4 
Unused seats 10,335 5900 -4435 
Empty seat kilometers 66,391 33,606 -32,785 
Car kilometers 1970 1573 -397 
Train kilometers 619 670 +51 
Cars needed per day 100 77 -23 
Av. train length (in cars) 3.2 2.7 -0.5 
Av. route length (in kin) 51.6 37.2 -14.4 

( -  17.2%) 
(-42%) 
(-49%) 
(-20%1 
(+8%) 
(-23%) 
(-15%) 
(-27%) 

Table 4 
Number of direct travelers and other solution characteristics 

Line system Direct travelers Cost optimal Difference 

Direct travelers 65,996 62,051 -3945 (-6%1 
(max = 68200) 
Direct links 210 154 -56 (-26.6%) 
(max = 351 ) 
Average number of 314 398 +84 (+26.8%) 
travelers on a direct link 

in the total number of kilometers covered by these 
unused car seats is even slightly higher, namely 
49 %. The reduction of required railway stock is 
measured by the number of cars needed per day 
to operate the designed line system. This number 
is based upon our assumptions on the circulation 
plan for railway stock. Clearly, the lines are select- 
ed for which a much more efficient circulation plan 
can be constructed. 

The difference in the total number of travelers 
that can travel directly from their origin station 
to their destination station is given in Table 4. 1 
All figures correspond to travelers in only one di- 
rection per day. A conclusion from the table is that 
the less busy connections are no longer offered a 
direct link, because of cost implications. Since 
the decrease in operating costs is much higher than 
the decrease in the total number of direct travelers, 
the overall conclusion is that the line system of the 
cost approach is highly competitive with the line 
system obtained by the direct travelers approach. 

~Based on data offered by NS Travelers, Marketing 
Research and Advice. 

5.4. Sensitivity analysis 

In this section, the influence of several con- 
straints and assumptions of our approach are in- 
vestigated. We investigate the influence of the 
removal of the minimum frequency constraints 
and the influence of determining a cost optimal 
line system for the IR and AR network separately. 

First, the influence of the minimum frequency 
requirements is analyzed by removing them. These 
minimum frequency requirements are included in 
our model to provide a regular connection be- 
tween the railway stations adjacent to the railway 
track. The costs of the resulting line system are 
7274 Dutch guilders per hour, which is a reduction 
of 7.3 % in comparison with the cost approach of 
Section 5.3 and a reduction of 23 % in comparison 
with the direct travelers approach. The total num- 
ber of direct travelers for this problem is 62022. 
This is a 0.05 % reduction with respect to the orig- 
inal cost approach and a 6 % reduction with res- 
pect to the direct travelers approach. 

Secondly, we determined a line system indepen- 
dently for each subnetwork, i.e. the subdivision in 
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IR and AR passenger flows generated by System 
Split is considered absolutely fixed. The costs of 
the resulting line systems are 3033.5 Dutch guil- 
ders per hour for the IR subnetwork and 5220 
Dutch guilders for the AR subnetwork. Therefore, 
the costs per hour for the combined line system are 
8253.5 Dutch guilders which is an increase of 5.2 °/o 
in comparison with the cost approach of Section 
5.3 and a reduction of 12.9 % in comparison with 
the direct travelers approach. The total number 
of direct travelers for this problem is 62,262. This 
is a 0.3 % increase with respect to the original cost 
approach and a 5.7 % reduction with respect to the 
direct travelers approach. The computing time for 
the IR line system is 4 CPU seconds and 205 CPU 
seconds for the AR line system. So the total com- 
puting time is reduced with almost 95 % in com- 
parision with the computing time of the cost 
approach of Section 5.3. 

6. Summary and conclusion 

In this paper we considered the problem of the 
allocation of lines to passenger flows. We present- 
ed a new approach that takes operating costs into 
account. This approach introduces cost elements 
early in the overall timetable generation process. 
This approach was translated into a mathematical 
programming model that optimizes on lines, line 
types, routes, frequencies and train lengths. A 
Branch and Bound procedure was outlined and 
implemented to solve the problem to optimality. 
We applied the solution procedure to a part of 
the Dutch railway network. The test results show 
that for this particular study the decrease in costs 
is significant. 

The usefulness of our model lies not only in the 
fact that it can be used to obtain a cost optimal 
line system but also be used to determine the costs 
of an existing line system. The model can therefore 
serve as an aid when choosing the best line system 
from several alternatives. 

Future research can be directed towards com- 
bining our cost approach with the direct travelers 
approach. One possibility is to implement in our 
model the manual planning method of Railned 
[17] for optimizing the number of direct travelers. 

This method requires an estimation of the number 
of direct travelers on each possible line in advance. 
This can be done by adjusting the coefficients of 
our objective function. 
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