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A Markov Chain Model for Unskilled 
Workers and the Highly Mobile 

MICHAEL SAMPSON* 

A parametric class of Markov chains that can be used to model such phenomena as job transitions for unskilled workers is 
presented in this article. Maximum likelihood estimation for the Markov chain model and the mover-stayer model is discussed 
and is shown to be easy to carry out. An empirical example, using industry-of-occupation data, is presented at the end of the 
article. 

KEY WORDS: Maximum likelihood estimation; Mover-stayer model. 

1. INTRODUCTION 

Markov chains, or mixtures of Markov chains such as 
the mover-stayer model, are commonly used in the social 
sciences to model various forms of dynamic behavior such 
as occupational mobility, consumers' brand preferences, 
geographic migration, and income dynamics (for examples 
and references, see Frydman 1984; Geweke, Marshall, and 
Zarkin 1986; Singer and Spilerman 1976, 1977). 

Consider a discrete time finite-state Markov chain with 
an s x s transition matrix Q = [pij], where pij is the 
probability that the stochastic process is in state j this 
period, given that it was in state i in the previous period. 
Let i be an s x 1 vector of ones, p* = [pj*] be a 1 x s 
vector of probabilities (so that p*1 = 1), and 0 = diag[0i] 
be an s x s diagonal matrix with 0 Oi < 1. The class of 
transition matrices I examine is 

Q = 0 + (I - 0)ip* or pij = i + ( -O)P, (1) 

where I is the identity matrix and 3ij is the Kronecker delta. 
To get some idea where such transistion probabilities 

could occur, consider the case where the states are job 
categories and workers are unskilled. By unskilled I mean 
that if such a worker were to go on the labor market, then 
he would have no characteristics (i.e., skills) that would 
distinguish him from other unskilled workers (alterna- 
tively, what skills he has are specific to his current job). 
Suppose that such a worker who is in job i has a probability 
0i of keeping his job and a probability (1 - O0) of being 
laid off. Since the worker is unskilled, if he is laid off his 
previous job category plays no role in determining his next 
job category. Therefore, a laid-off worker will have prob- 
ability p, (which is independent of i) of being in job cat- 
egory j, and pij takes the form in (1). 

This kind of interpretation can be extended to other 
situations where Markov chains are used, and as such it 
can form a meaningful hypothesis about the nature of the 
underlying behavior. For example, 1 - 0i could represent 
the probability that a consumer would decide to look for 
a new product, or that a son would look for a different 
job from his father, or that an individual would look for 
another geographic area to live in; once this decision is 
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made, the previous product, or the father's job, or the old 
area, would play no role in determining where the agent 
will be in the future. In other words, the past history of 
individuals who have decided to (or are forced to) move 
has no influence on where they will end up in the next 
period. 

If all of the Oi's are identical, one then obtains the per- 
sistence class of Markov chains considered by Barton, David, 
and Fix (1962) and Goodman (1964). (If they are all equal 
to 0 the process exhibits intertemporal independence.) The 
parameter Oi determines the extent to which being in state 
i influences the next period's state. If Oi = 0, then state i 
has no influence, whereas if 0, = 1, then pii = 1, and i is 
an absorbing state (thus an agent in that state remains 
there forever). 

Let the 1 x s probability vector p = [pj] be the equi- 
librium distribution of Q so that pQ = p (p determines 
the proportion of visits to each state over the long run). 
In general, p* #4 p, except when the 0i's are identical. 
Nevertheless, premultiplying (1) by p, one finds 

p* = p(I - 0)/p(I - 0)1 

or p, = pM(l - 0) Pk(l - Ok), (2) 
k 

so 

(I- O)ip(l- 0) 

or pij =1joj + E(1 
- O1 (- ) (3) 

or p~1 =~0~ ? k Pk(1 -Ok) 

Therefore, from p and 0 one can determine p*. [The rep- 
resentation in (3) may be useful if one requires a para- 
metric form that includes the equilibrium distribution as 
a direct argument.] From p* and 0 one can determine p 
to be 

p = p*(I - 0)l/lp*(I - 0) 11 

or pj = pj(1 - 0) / P (1 - Ok) (4) 
k 

which can be verified from (1). The vectors p and i are 
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the left and right eigenvectors associated with the eigen- 
value 1. In Sampson (1987) it is shown that the remaining 
eigenvalues are the roots of the function f(A) = p*(O - 
AI)-11, where A is a scaler, with only one eigenvalue lying 
between 0i and Oi+I when 01 ' 02 C *0 O,. The left and 
right eigenvectors corresponding to the eigenvalue A are 
then given by p*(AI - 0)-1 and (AI - 0)-1(I - 0)i, 
respectively. 

In the remainder of this article I deal with the problem 
of maximum likelihood (ML) estimation of p* and 0. Sec- 
tion 2 addresses ML estimation for the Markov chain model, 
and Section 3 covers ML estimation for the mover-stayer 
model. An empirical example is considered in Section 4. 

2. MAXIMUM LIKELIHOOD ESTIMATION FOR THE 
MARKOV CHAIN MODEL 

I now consider ML estimation for the Markov chain 
model, given N independent realizations of length T + 1 
periods for t = 0, 1, . . ., T. The log-likelihood is given 
by 

1 = nij ln(pij), (5) 
.j 

where nij is the number of transitions in the sample from 
state i to state j. The unrestricted ML estimates are then 
Pi, = ni/ln,, where ni is the number of occurrences of i for 
the periods t = 0, 1, . .. , T - 1. Let nii be the number 
of occurrences of i for t = 1, 2 .. ., T, and let n = N 
x T. Note that ni = Sk nik, ii = k nki,1 and n = Ek nk 

= Ek fk, so the 1 x s probability vectors p- = [niln] and 
p = [filn] satisfy 

Qu= pQu (6) 
where Qu = [PiJ] is the unrestricted ML transition matrix. 

Substituting (1) into (5) gives the restricted likelihood 

1 = > {nii ln(0i + (1 - 0i)p*) + (fii - nii)ln(p*) 

+ (ni - nii)ln(1 - Oi)}. (7) 

Maximizing 1 subject to p*1 = 1 with Lagrange multiplier 
A results in the first-order conditions 

Pt- i*) (ni - nii) -0= 
aoj Oj + (1 - 0i)P3* (1 - 0i) 

i= 1, 2 ... s, (8) 

and 

aL nAl( -0i) (nii-nii) -0 + 
dp* ,Oj + (1 -i) 

i = 1, 2, ... ,s. (9) 

From (8), it follows that 
0, + (1 - 0tPi* = n/ilni = P (10) 

50 Qr = 0J + (I - i)ip*, the restricted ML transition 
matrix, has the same diagonal elements as Qu the unre- 
stricted ML transition matrix. Combining (8) and (10) and 

using 5*1 = 1 yields Aln = p(I 0)i, so 

p=p(d + (I - 0)115) p Qr; (11) 
hence both Qr and Qu share the property of transforming 
p into p [compare (6) and (11)]. 

The ML estimates are easy to compute. From (10) and 
(11), it follows that 0 will be a root of Fi(0), where 

Fi(0) = Oi + (1 - 0)(Pi - ji0i) _ n_ 
j-(I -0)i i 

i= 1, 2,.. , s, (12) 

which must be solved iteratively for 0. Newton's method 
is easy to implement and takes the form 

ai Ek PkFkakbk 
oit = 0it-I - Fiai + 1 + (13) 

1 + Ek pkakbk' 

where ai(0) and bi(0) are 

ai(0) = (1 + (20i Pi - Pi - 5)Ij5(I - )) 

bi(0) = (1 - 0i)(pi - -0ii)l(i(I - 0)1)2, (14) 

and where all functions are evaluated at Ot-l Once 0i is 
calculated, Pi* is given by Pi* = 1 - (1 - niini)I(1 - 
Of). The ML estimate of p, the equilibrium distribution, 
can be calculated from (4). 

3. MAXIMUM LIKELIHOOD ESTIMATION FOR THE 
MOVER-STAYER MODEL 

The mover-stayer model was first introduced by Blu- 
men, Kogan, and McCarthy (1955) as a generalization of 
the Markov chain model. The basic idea is that there are 
two populations in the sample: stayers, who always remain 
in their initial state, and movers, whose state transitions 
are governed by a Markov chain process. Thus if si is the 
proportion of stayers in state i, then the probability of 
moving from state i to j in m periods is si5i, + (1 - 
si)pij(m), where p,,(m) is the i, j element of Qm. Frydman 
(1984) treats ML estimation when Q is unrestricted. 

I consider restricted ML estimation when Q = 0 + (I 
- O)lp*. This makes for an appealing hypothesis, since 
with occupational mobility, for example, it is not unrea- 
sonable to suppose that workers are stayers because they 
have job-specific skills, whereas workers who are movers 
would not have these skills, and their transition probabil- 
ities would have the form 0 + (I - O)lp*. 

Frydman (1984) showed that the log-likelihood is given 
by 

l = > [ri ln(s, + (1 - si)p7T) + (ni(O) - ri)ln(l - si) 

+ (n, - Tri)ln(pii) + E nikln(pik)], (15) 
k$i 

where r. is the number of individuals who remain in state 
ifor t = 0, 1, . . . , T, and ni(0) is the number of individuals 
in state i at t = 0. Frydman (1984) shows that the ML 
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estimate of si is 

i - 1, = (1 - ri/ni(O))/(1 - ,T), (16) 

where Pii is the ML estimate of pii. Using (1) and (16) in 
(15), we obtain, apart from some constants, the concen- 
trated likelihood: 

1 = E [-(ni(O) - ri)ln(l - piT) + (nii - Tri)ln(pii) 

+ (fi - nii)ln(p*) + (ni - nii)ln(1 - Oi)I, (17) 

where I write pii for 0i + (1 - Oi)p*. Maximizing 1 subject 
to p*1 = 1 with Lagrange multiplier A then yields 

a L (ni(O) - ri) TpT-1(1 - P* 
a0i (1 p , T) 

(nii - Tri)(1 - p*) (ni - nii) 
Pii (1 -i) 

i= 1, 2, . . ,s, (18) 

and 

aL (ni(O) -0r)T1571(1 - ) 
(1 - p,T) 

+ (ni - Tr1)(1 - (9i) + ni) 
Pii pj*-i 

i = 1, 2, . .,s. (19) 
From (18), using (1 - p5*)(1 - Oi) = 1 - Jii and some 
algebra gives 

(ni - Tn,(O)) T+ I + (Tni(O) - nii) T + (Tr, -ni) 

+ (ni - Tri) = 0. (20) 
This is identical to the polynomial that determines Pii for 
the unrestricted mover-stayer model, however. [See Fryd- 
man (1984), eq. (4), where it is shown that (20) has a 
unique solution in the (0, 1) interval.] Thus, just as with 
the Markov chain model, the diagonal elements of the ML 
restricted and unrestricted transition matrices are identi- 
cal. In addition, from (16) the ML estimates of si are 
identical for the restricted and unrestricted models. 

Now, from (18) and (19) it follows that 

(ni- n11) (ii- nii)_, + ~~,=; i = 1 2.. 21 ( 1 pVj) pij *..,S 

which must be solved iteratively for p*. Newton's method 
is easy to implement and takes the form 

Pt= Pt-1 + a1 akbk ak) aibi 

i = 1, ..., 1, 2, ... ., s , (22) 
where ai(p*) and b1(p*) are evaluated at 5* L and are given 
by 

a1(p*) = [(tz - ns,)I(1 - p*)2 - (fi - nI1)I(p*)fl 

b,(p*) = (ns - n11)I(1 - ps*) + (fit - flii)lpJ*. (23) 

Once Pii is calculated from (20) and once p * is calculated 
from (22), then 0 is given by 

1 - S = (1 - p)(1 - pi), = 1,2 .. s. 

(24) 

4. AN EMPIRICAL EXAMPLE 

The data I use in this section come from the National 
Longitudinal Survey of Young Men and consist of the 
industry of employment of 1,344 men between the ages 
of 14 and 24 for a six-year period (1966-1971). Since the 
data set consists of young men, it is reasonable to hy- 
pothesize that the men in the sample are unskilled, so the 
transition matrix would take the form 0 + (I - O)ip. The 
state definitions are the following: 

1. Agriculture, forestry, fishing, and mining 
2. Construction 
3. Manufacturing 
4. Transportation, communications, and public utilities 
5. Wholesale and retail trade 
6. Finance, insurance, real estate, business and repair 

services, and entertainment and recreation services 
7. Professional and related services, and public admin- 

istration 

I first consider estimating the Markov chain model using 
the data for 1966 and 1967. The transition counts are 

110 10 12 3 13 5 3 
2 69 17 6 7 2 6 

11 14 369 9 29 13 11 
[n]j 0 5 7 50 5 1 1 

2 8 33 10 198 23 17 
1 6 14 4 21 59 12 
1 4 9 2 6 5 119 

so the unrestricted ML estimate of the transition matrix is 

.705 .064 .077 .019 .083 .032 .019 

.018 .633 .156 .055 .064 .018 .055 

.024 .031 .809 .020 .064 .029 .024 
QU .000 .073 .101 .725 .073 .015 .015 

.007 .028 .113 .034 .680 .079 .058 

.009 .051 .120 .034 .180 .504 .103 

.007 .027 .062 .014 .041 .034 .815 

where the log-likelihood is - 1,350.31. 
The restricted ML estimates are given by 

p* = [.042 .115 .275 .078 .245 .126 .1181 

and 

0 = diag[.692 .585 .737 .701 .577 .433 .790], 

where the log-likelihood is - 1,371.59. Thus a worker in 
construction, for example, has an estimated 1 - .585 = 
.415 probability of being laid off (or quitting), whereas a 
laid-off worker has a .245 probability of getting a job in 
wholesale and retail trade. 

The likelihood ratio test statistic for H0): Q = 0 + (I - 
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Q)lp* is 42.54, which compares with a critical value (at the 
5% level) of X205(29) = 42.56, so the null hypothesis is 
(just barely) accepted. Given the large number of obser- 
vations and the fact that 29 restrictions are being tested, 
this suggests that the model fits the data reasonably well. 

Now, consider estimating the mover-stayer model using 
the entire sample from 1966-1971 (so that T = 5). The 
transition counts, ri and ni(0), are 

435 33 53 10 33 12 10 
26 456 59 19 24 14 22 
41 73 1,989 37 127 50 45 

[nij]= 9 23 28 343 17 7 9 
16 33 139 40 979 79 59 
8 15 52 12 79 344 37 
7 15 45 11 30 31 685 

[ri] = [50 44 250 34 91 26 77], 

and 

[ni(0)] = [156 109 456 69 291 117 146], 
from which the unrestricted ML estimates of the mover's 
transition matrix and the proportions of stayers si are 

.606 .086 .138 .026 .086 .031 .026 

.060 .621 .136 .044 .055 .032 .051 

.030 .053 .730 .027 .092 .036 .033 
u= .030 .077 .094 .688 .057 .024 .030 

.016 .033 .138 .040 .636 .079 .059 

.018 .034 .119 .027 .180 .537 .084 

.013 .028 .083 .020 .056 .058 .742 
and 

[5] = [.260 .343 .430 .401 .233 .186 .390], 
where the log-likelihood is -5,748.14. Thus an estimated 
34.3% of construction workers in the sample are stayers 
and 65.7% are movers for example. 

The restricted ML estimates of p* and 0 are 

p* = [.064 .117 .287 .075 .228 .121 .109] 

and 

0 = diag[.579 .571 .621 .663 .529 .473 .711], 
where the log-likelihood is - 5,817.12. Thus a worker (who 
is a mover) in construction, for example, has a 1 - .571 
= .429 estimated probability of being laid off (or quitting), 
whereas a worker who is laid off has a .287 probability of 
ending up in manufacturing. 

The likelihood ratio test statistic of Ho: si = 0 (i = 1, 
2, .. , s), that is, of the null hypothesis that the Markov 
chain model is the true model, is 267.39, which is greater 
than the critical value X05(7) = 14.07, and hence the Mar- 
kov chain model is rejected in favor of the mover-stayer 
model. 

The likelihood ratio test statistic for Ho: Q = 0 + (I = 
O)lp* is 137.97, which is greater than the critical value 
X.05(29) = 42.56, so the null hypothesis is rejected for this 
data set. 

[Received July 1986. Revised August 1989.] 
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