$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 $|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

- (1) Show that $|+\rangle$, $|-\rangle$ is an orthonormal basis of \mathbb{H}_2 .
- (2) Express $|0\rangle$ and $|1\rangle$ in terms of $|+\rangle$ and $|-\rangle$.

Pauli matrices are defined by

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and the Hadamard matrix by

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \,.$$

- (3) Find inverses of X, Y, Z and H.
- (4) Verify whether Pauli matrices commute.
- (5) Find eigen-values, eigen-vectors, diagonal form, and spectral decomposition of X, Y, Z and H.
- (6) Compute the inner product of the real vectors (0,1,0,1) and (0,1,1,1)
- (7) Compute the inner product of the quantum states $|0101\rangle$ and $|0111\rangle$

Let

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \qquad \qquad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

- (1) Show that $|+\rangle$, $|-\rangle$ is an orthonormal basis of \mathbb{H}_2 .
- (2) Express $|0\rangle$ and $|1\rangle$ in terms of $|+\rangle$ and $|-\rangle$.

Pauli matrices are defined by

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and the Hadamard matrix by

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \,.$$

- (3) Find inverses of X, Y, Z and H.
- (4) Verify whether Pauli matrices commute.
- (5) Find eigen-values, eigen-vectors, diagonal form, and spectral decomposition of X, Y, Z and H.
- (6) Compute the inner product of the real vectors (0,1,0,1) and (0,1,1,1)
- (7) Compute the inner product of the quantum states $|0101\rangle$ and $|0111\rangle$

Let