Let
(1) Show that $|+\rangle,|-\rangle$ is an orthonormal basis of \mathbb{H}_{2}.
(2) Express $|0\rangle$ and $|1\rangle$ in terms of $|+\rangle$ and $|-\rangle$.

Pauli matrices are defined by

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and the Hadamard matrix by

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

(3) Find inverses of X, Y, Z and H.
(4) Verify whether Pauli matrices commute.
(5) Find eigen-values, eigen-vectors, diagonal form, and spectral decomposition of X, Y, Z and H.
(6) Compute the inner product of the real vectors $(0,1,0,1)$ and $(0,1,1,1)$
(7) Compute the inner product of the quantum states $|0101\rangle$ and $|0111\rangle$

Let
(1) Show that $|+\rangle,|-\rangle$ is an orthonormal basis of \mathbb{H}_{2}.
(2) Express $|0\rangle$ and $|1\rangle$ in terms of $|+\rangle$ and $|-\rangle$.

Pauli matrices are defined by

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and the Hadamard matrix by

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

(3) Find inverses of X, Y, Z and H.
(4) Verify whether Pauli matrices commute.
(5) Find eigen-values, eigen-vectors, diagonal form, and spectral decomposition of X, Y, Z and H.
(6) Compute the inner product of the real vectors $(0,1,0,1)$ and $(0,1,1,1)$
(7) Compute the inner product of the quantum states $|0101\rangle$ and $|0111\rangle$

