SELF-ADJOINT UNITARY OPERATORS AND THE AXBXC DECOMPOSITION

In the previous chapter, we introduced without explanation the extended Euler
formula

e "2 87 = cos %E + (2l + yj + zk) sin % .

Let us now show that this formula corresponds to the definition of an operator
function as defined on normal operators, i.e. as a function applied to eigenvalues.
The operators in the domain of our function are of the form

Eo=xX+yY + 27,

where £ = (z,y, z) is a unit real vector. The following lemma shows that these ma-
trices, together with identity, form an intersection of two popular classes of normal
matrices, namely unitary and Hermitian (that isself-adjoint) matrices. These are
matrices for which A = Af (Hermitian) and A=' = At or A = A=! = A" . Such is,
for example, the ubiquitous Hadamard matrix. In particular, A2 = F also holds,
which, obviously, is true for a diagonalizable matrix just when it has a diagonal

form
+1 0
0 =£1/)°
Note, however, that A?> = F also holds for some non-diagonalizable matrices, such

. 1 1
as the matrix (O _1>.

Theorem. The matrix A is a Hermitian unitary, just when it is equal to +F, or is
of the form X + yY + 27, where (z,y, z) € S2.

Proof. Since all three Pauli matrices are Hermitian, (z X +yY +22)" = e X+yY +22
holds, so the matrix 2X +yY +2Z is Hermitian. The relation (zX +yY +22)? = F
results by a direct calculation from the fact that Pauli matrices are involutive and
anticommutative, i.e. that they satisfy

X2=Y%2=2°=FE XY =-YX YZ =-2Y,

)

) ) ZX =-XZ.

Conversely, if A is a Hermitian unitary, it has a diagonal form

+1 0

0 41/
that is, +F or £Z. If the diagonal form is £F, then A = £F (the identity has the
same form for all bases). If the diagonal form is +7, then the determinant is —1.
From the characterization of unitary matrices (see chapter Geometry of projective

unitary operators) it is now easy to see that a unitary matrix with determinant —1,
which is also Hermitian, is of the form

z T—y\
(x—i—iy _. >—xX+yY+zZ,

where 22 + 3% 4+ 22 = 1. O

For the operator A with real eigenvalues 71 nda 75 the expression e 24 denotes
the operator that has a diagonal form

e 2 0 _ [(cos§ry —isin $ry 0
0 etz 0 cos §ry —isin§ry )
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In addition, if r; 1 ro are equal to +1, we indeed get (in the base of eigenvectors)
due to cosine evenness and sinus oddity

i34 _oos? (1O Lign @ (™ O eos U idsin®
e 'z —0052<0 1) 251112(0 r —c052E 1A51n2.

The formula is therefore correct for Hermitian unitary matrices.
For rotations around the main axes we get, according to the previous formula,

cos ¥ —isin £
Rx(w) = Ry ,0,0)(w) = ECOS% —iX sin% _ < 2 2) ’

—1sin ¥ w
ZSIH2 COS2

cos% —sin¥
Ry (w) := R,1,0)(w) = Ecosg —iVsine = ( ’ 2) ;

2 in @ w
sing  cos ¥

exp(—ig) 0
Rz(w) := Ro0.1)(w) = Ecos = — iZsin = = ? .
2 2 0 exp(iy)

The explicit form of the representative of the projective class of unitary matrices
corresponding to the rotation by the angle w around the axis & = (z,v, 2) is

cos§ —izsing —i(x —iy)sing
Rew)={ -

—i(z +iy)sing cos§ +izsing
Since XY X = —-Y and XZX = —Z, we get a useful relationship

W L w
XRy(w)X = XEX cos 5~ iXY X sin 5= Ry (—w)
and similarly
XRz(w)X = Rz(—w).

Now we can prove the theorem we need to construct a controlled operator for
the general U.

Theorem. Fach unitary operator U is projectively equivalent to the operator AX BXC,
where ABC = E.

Proof. We know that the U operator is projectively equivalent to a form operator

cosy  —eil¥=?gin g 1 0 cosy —sin%) /1 0
. . = . . )
e'? sin g e cos g 0 ew¥ sin?  cos g 0 W9
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which is projectively equivalent to an operator

Rz(p)Ry (V)Rz(V)Rz(—p).



Using the above derived properties of conjugation by the operator X we get

Rz(p)Ry (0)Rz(¢V)Rz(—p) =
({3

o (o ()
natams (2) (o (-2) 1) XRZ(«;)X)RZ@)RZ<;>

- (Rz(@Ry (g)) X (RYQ(;?) Rz (—‘5)) X (Ry %

and now it is enough to put

)
A= Rz(¢)Ry (g) , B=Ry <—129> Rz <—7’2Z}> , C=Ry (15) Rz(—y).
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