
Self-adjoint unitary operators and the AXBXC decomposition

In the previous chapter, we introduced without explanation the extended Euler
formula

e−i
ω
2 ξ·σ = cos

ω

2
E + (x`+ yj + zk) sin

ω

2
.

Let us now show that this formula corresponds to the definition of an operator
function as defined on normal operators, i.e. as a function applied to eigenvalues.

The operators in the domain of our function are of the form

ξ · σ = xX + yY + zZ,

where ξ = (x, y, z) is a unit real vector. The following lemma shows that these ma-
trices, together with identity, form an intersection of two popular classes of normal
matrices, namely unitary and Hermitian (that is,self-adjoint) matrices. These are
matrices for which A = A† (Hermitian) and A−1 = A†, or A = A−1 = A† . Such is,
for example, the ubiquitous Hadamard matrix. In particular, A2 = E also holds,
which, obviously, is true for a diagonalizable matrix just when it has a diagonal
form (

±1 0
0 ±1

)
.

Note, however, that A2 = E also holds for some non-diagonalizable matrices, such

as the matrix
(
1 1
0 −1

)
.

Theorem. The matrix A is a Hermitian unitary, just when it is equal to ±E, or is
of the form xX + yY + zZ, where (x, y, z) ∈ S2.

Proof. Since all three Pauli matrices are Hermitian, (xX+yY+zZ)† = xX+yY+zZ
holds, so the matrix xX+yY +zZ is Hermitian. The relation (xX+yY +zZ)2 = E
results by a direct calculation from the fact that Pauli matrices are involutive and
anticommutative, i.e. that they satisfy

X2 = Y 2 = Z2 = E, XY = −Y X, Y Z = −ZY, ZX = −XZ.

Conversely, if A is a Hermitian unitary, it has a diagonal form(
±1 0
0 ±1

)
,

that is, ±E or ±Z. If the diagonal form is ±E, then A = ±E (the identity has the
same form for all bases). If the diagonal form is ±Z, then the determinant is −1.
From the characterization of unitary matrices (see chapter Geometry of projective
unitary operators) it is now easy to see that a unitary matrix with determinant −1,
which is also Hermitian, is of the form(

z x− iy
x+ iy −z

)
= xX + yY + zZ,

where x2 + y2 + z2 = 1. �

For the operator A with real eigenvalues r1 nda r2 the expression e−i
ω
2A denotes

the operator that has a diagonal form(
e−i

ω
2 r1 0
0 e−i

ω
2 r2

)
=

(
cos ω2 r1 − i sin

ω
2 r1 0

0 cos ω2 r2 − i sin
ω
2 r2

)
.
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In addition, if r1 i r2 are equal to ±1, we indeed get (in the base of eigenvectors)
due to cosine evenness and sinus oddity

e−i
ω
2A = cos

ω

2

(
1 0
0 1

)
− i sin ω

2

(
r1 0
0 r2

)
= cos

ω

2
E − iA sin

ω

2
.

The formula is therefore correct for Hermitian unitary matrices.
For rotations around the main axes we get, according to the previous formula,

RX(ω) := R(1,0,0)(ω) = E cos
ω

2
− iX sin

ω

2
=

(
cos ω2 −i sin ω

2

−i sin ω
2 cos ω2

)
,

RY (ω) := R(0,1,0)(ω) = E cos
ω

2
− iY sin

ω

2
=

(
cos ω2 − sin ω

2

sin ω
2 cos ω2

)
,

RZ(ω) := R(0,0,1)(ω) = E cos
ω

2
− iZ sin

ω

2
=

(
exp(−iω2 ) 0

0 exp(iω2 )

)
.

The explicit form of the representative of the projective class of unitary matrices
corresponding to the rotation by the angle ω around the axis ξ = (x, y, z) is

Rξ(ω) =

(
cos ω2 − iz sin

ω
2 −i(x− iy) sin ω

2

−i(x+ iy) sin ω
2 cos ω2 + iz sin ω

2

)
.

Since XYX = −Y and XZX = −Z, we get a useful relationship

XRY (ω)X = XEX cos
ω

2
− iXY X sin

ω

2
= RY (−ω)

and similarly

XRZ(ω)X = RZ(−ω).

Now we can prove the theorem we need to construct a controlled operator for
the general U .

Theorem. Each unitary operator U is projectively equivalent to the operatorAXBXC,
where ABC = E.

Proof. We know that the U operator is projectively equivalent to a form operator cos ϑ2 −ei(ψ−ϕ) sin ϑ
2

eiϕ sin ϑ
2 eiψ cos ϑ2

 =

(
1 0

0 eiϕ

)cos ϑ2 − sin ϑ
2

sin ϑ
2 cos ϑ2

(1 0

0 ei(ψ−ϕ)

)
,

which is projectively equivalent to an operator

RZ(ϕ)RY (ϑ)RZ(ψ)RZ(−ϕ) .
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Using the above derived properties of conjugation by the operator X we get

RZ(ϕ)RY (ϑ)RZ(ψ)RZ(−ϕ) =

= RZ(ϕ)RY

(
ϑ

2

)
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2

)
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(
ψ

2

)
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(
ψ

2

)
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(
ϑ

2
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(
−ϑ
2

)
X

)(
XRZ

(
−ψ
2

)
X

)
RZ

(
ψ

2

)
RZ(−ϕ) =

=

(
RZ(ϕ)RY

(
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2
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X

(
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)
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(
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(
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(
ψ

2

)
RZ(−ϕ)

)
and now it is enough to put

A = RZ(ϕ)RY

(
ϑ

2

)
, B = RY

(
−ϑ
2

)
RZ

(
−ψ
2

)
, C = RZ

(
ψ

2

)
RZ(−ϕ) .
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