Self-Adjoint unitary operators and the AXBXC decomposition

In the previous chapter, we introduced without explanation the extended Euler formula

$$
e^{-i \frac{\omega}{2} \xi \cdot \sigma}=\cos \frac{\omega}{2} E+(x \ell+y j+z k) \sin \frac{\omega}{2} .
$$

Let us now show that this formula corresponds to the definition of an operator function as defined on normal operators, i.e. as a function applied to eigenvalues.

The operators in the domain of our function are of the form

$$
\xi \cdot \sigma=x X+y Y+z Z
$$

where $\xi=(x, y, z)$ is a unit real vector. The following lemma shows that these matrices, together with identity, form an intersection of two popular classes of normal matrices, namely unitary and Hermitian (that is,self-adjoint) matrices. These are matrices for which $A=A^{\dagger}$ (Hermitian) and $A^{-1}=A^{\dagger}$, or $A=A^{-1}=A^{\dagger}$. Such is, for example, the ubiquitous Hadamard matrix. In particular, $A^{2}=E$ also holds, which, obviously, is true for a diagonalizable matrix just when it has a diagonal form

$$
\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right)
$$

Note, however, that $A^{2}=E$ also holds for some non-diagonalizable matrices, such as the matrix $\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$.

Theorem. The matrix A is a Hermitian unitary, just when it is equal to $\pm E$, or is of the form $x X+y Y+z Z$, where $(x, y, z) \in \mathbb{S}^{2}$.

Proof. Since all three Pauli matrices are Hermitian, $(x X+y Y+z Z)^{\dagger}=x X+y Y+z Z$ holds, so the matrix $x X+y Y+z Z$ is Hermitian. The relation $(x X+y Y+z Z)^{2}=E$ results by a direct calculation from the fact that Pauli matrices are involutive and anticommutative, i.e. that they satisfy

$$
X^{2}=Y^{2}=Z^{2}=E, \quad X Y=-Y X, \quad Y Z=-Z Y, \quad Z X=-X Z
$$

Conversely, if A is a Hermitian unitary, it has a diagonal form

$$
\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right)
$$

that is, $\pm E$ or $\pm Z$. If the diagonal form is $\pm E$, then $A= \pm E$ (the identity has the same form for all bases). If the diagonal form is $\pm Z$, then the determinant is -1 . From the characterization of unitary matrices (see chapter Geometry of projective unitary operators) it is now easy to see that a unitary matrix with determinant -1 , which is also Hermitian, is of the form

$$
\left(\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right)=x X+y Y+z Z
$$

where $x^{2}+y^{2}+z^{2}=1$.
For the operator A with real eigenvalues r_{1} nda r_{2} the expression $e^{-i \frac{\omega}{2} A}$ denotes the operator that has a diagonal form

$$
\left(\begin{array}{cc}
e^{-i \frac{\omega}{2} r_{1}} & 0 \\
0 & e^{-i \frac{\omega}{2} r_{2}}
\end{array}\right)=\left(\begin{array}{cc}
\cos \frac{\omega}{2} r_{1}-i \sin \frac{\omega}{2} r_{1} & 0 \\
0 & \cos \frac{\omega}{2} r_{2}-i \sin \frac{\omega}{2} r_{2}
\end{array}\right)
$$

In addition, if r_{1} i r_{2} are equal to ± 1, we indeed get (in the base of eigenvectors) due to cosine evenness and sinus oddity

$$
e^{-i \frac{\omega}{2} A}=\cos \frac{\omega}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-i \sin \frac{\omega}{2}\left(\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right)=\cos \frac{\omega}{2} E-i A \sin \frac{\omega}{2}
$$

The formula is therefore correct for Hermitian unitary matrices.
For rotations around the main axes we get, according to the previous formula,

$$
\begin{aligned}
& R_{X}(\omega):=R_{(1,0,0)}(\omega)=E \cos \frac{\omega}{2}-i X \sin \frac{\omega}{2}=\left(\begin{array}{cc}
\cos \frac{\omega}{2} & -i \sin \frac{\omega}{2} \\
-i \sin \frac{\omega}{2} & \cos \frac{\omega}{2}
\end{array}\right) \\
& R_{Y}(\omega):=R_{(0,1,0)}(\omega)=E \cos \frac{\omega}{2}-i Y \sin \frac{\omega}{2}=\left(\begin{array}{cc}
\cos \frac{\omega}{2} & -\sin \frac{\omega}{2} \\
\sin \frac{\omega}{2} & \cos \frac{\omega}{2}
\end{array}\right) \\
& R_{Z}(\omega):=R_{(0,0,1)}(\omega)=E \cos \frac{\omega}{2}-i Z \sin \frac{\omega}{2}=\left(\begin{array}{cc}
\exp \left(-i \frac{\omega}{2}\right) & 0 \\
0 & \exp \left(i \frac{\omega}{2}\right)
\end{array}\right) .
\end{aligned}
$$

The explicit form of the representative of the projective class of unitary matrices corresponding to the rotation by the angle ω around the axis $\xi=(x, y, z)$ is

$$
R_{\xi}(\omega)=\left(\begin{array}{lr}
\cos \frac{\omega}{2}-i z \sin \frac{\omega}{2} & -i(x-i y) \sin \frac{\omega}{2} \\
-i(x+i y) \sin \frac{\omega}{2} & \cos \frac{\omega}{2}+i z \sin \frac{\omega}{2}
\end{array}\right) .
$$

Since $X Y X=-Y$ and $X Z X=-Z$, we get a useful relationship

$$
X R_{Y}(\omega) X=X E X \cos \frac{\omega}{2}-i X Y X \sin \frac{\omega}{2}=R_{Y}(-\omega)
$$

and similarly

$$
X R_{Z}(\omega) X=R_{Z}(-\omega)
$$

Now we can prove the theorem we need to construct a controlled operator for the general U.

Theorem. Each unitary operator U is projectively equivalent to the operator $A X B X C$, where $A B C=E$.

Proof. We know that the U operator is projectively equivalent to a form operator

$$
\left(\begin{array}{cc}
\cos \frac{\vartheta}{2} & -e^{i(\psi-\varphi)} \sin \frac{\vartheta}{2} \\
e^{i \varphi} \sin \frac{\vartheta}{2} & e^{i \psi} \cos \frac{\vartheta}{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right)\left(\begin{array}{cc}
\cos \frac{\vartheta}{2} & -\sin \frac{\vartheta}{2} \\
\sin \frac{\vartheta}{2} & \cos \frac{\vartheta}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i(\psi-\varphi)}
\end{array}\right),
$$

which is projectively equivalent to an operator

$$
R_{Z}(\varphi) R_{Y}(\vartheta) R_{Z}(\psi) R_{Z}(-\varphi)
$$

Using the above derived properties of conjugation by the operator X we get

$$
\begin{aligned}
& R_{Z}(\varphi) R_{Y}(\vartheta) R_{Z}(\psi) R_{Z}(-\varphi)= \\
& \quad=R_{Z}(\varphi) R_{Y}\left(\frac{\vartheta}{2}\right) R_{Y}\left(\frac{\vartheta}{2}\right) R_{Z}\left(\frac{\psi}{2}\right) R_{Z}\left(\frac{\psi}{2}\right) R_{Z}(-\varphi)= \\
& \quad=R_{Z}(\varphi) R_{Y}\left(\frac{\vartheta}{2}\right)\left(X R_{Y}\left(-\frac{\vartheta}{2}\right) X\right)\left(X R_{Z}\left(-\frac{\psi}{2}\right) X\right) R_{Z}\left(\frac{\psi}{2}\right) R_{Z}(-\varphi)= \\
& \quad=\left(R_{Z}(\varphi) R_{Y}\left(\frac{\vartheta}{2}\right)\right) X\left(R_{Y}\left(-\frac{\vartheta}{2}\right) R_{Z}\left(-\frac{\psi}{2}\right)\right) X\left(R_{Z}\left(\frac{\psi}{2}\right) R_{Z}(-\varphi)\right)
\end{aligned}
$$

and now it is enough to put

$$
A=R_{Z}(\varphi) R_{Y}\left(\frac{\vartheta}{2}\right), \quad B=R_{Y}\left(-\frac{\vartheta}{2}\right) R_{Z}\left(-\frac{\psi}{2}\right), \quad C=R_{Z}\left(\frac{\psi}{2}\right) R_{Z}(-\varphi)
$$

