QUATERNIONS

Recall that quaternions are a four-dimensional algebra (that is a vector space with a distributive vector multiplication) \mathbb{K} over real numbers generated by the elements $\{1, \ell, j, k\}$, which satisfy

$$\ell^2 = j^2 = k^2 = \ell j k = -1.$$

First of the imaginary generators is usually denoted as i, but to avoid the confusion caused by identifying with a complex unit, we will use ℓ . Multiplying the equality $\ell jk = -1$ from both sides by k we get $k\ell j = -1$. Similarly, $jk\ell = -1$. Imaginary generators are therefore cyclically interchangeable. Multiplying by only one k we also get $\ell j = k$, and symmetrically $jk = \ell$ and $k\ell = j$. Further, multiplying $\ell j = k$ by ℓ from the left, we get $j = -\ell k$ and similarly $k = -j\ell$ a $kj = -\ell$. The generators are therefore anti-commutative. However, each quaternion obviously commutes with a real number (which is itself a quaternion).

For $q = a + b\ell + cj + dk$ we define the *adjoint element* $q^* = a - b\ell - cj - dk$.

Norm of q is defined as $N(q) := qq^* = a^2 + b^2 + c^2 + d^2 = |q|^2$, where |q| is the Euclidean norm in \mathbb{R}^4 . The sphere \mathbb{S}^3 is therefore naturally identified with unit quaternions \mathbb{K}_1 (that is, quaternions of norm one).

We have $(pq)^* = q^*p^*$. This implies N(pq) = N(p)N(q), and unit quaternions form a multiplicative group. Thus, the inverse element of the quaternion q has the form $q^{-1} = q^*/N(q)$, or $q^{-1} = q^*$ for unit quaternions.

Quaternions of the form $b\ell + cj + dk$ are called *imaginary*. Unit imaginary quaternions can be identified with the sphere \mathbb{S}^2 and they satisfy $p^2 = -1$ (similarly as the generators), because $p^{-1} = -p$.

We will now show the most important property of quaternions. Conjugation of an imaginary quaternion by any quaternion corresponds to the rotation of threedimensional space.

Theorem. For $0 \neq q = (r + x\ell + yj + zk) \in \mathbb{K}$, the mapping $\rho_q : \mathbb{R}^3 \to \mathbb{R}^3$

$$(b,c,d)\mapsto (b',c',d')$$

defined by

$$b'\ell + c'j + d'k = q(b\ell + cj + dk)q^{-1}$$

is the rotation around the axis passing through the point (x, y, z) by the angle

$$\omega = 2 \arccos \frac{r}{\sqrt{N(q)}}.$$

Proof. Since $qpq^{-1} = (tq)p(tq)^{-1}$ for any real t, we can w.l.o.g. assume that q is a unit quaternion and $qpq^{-1} = qpq^*$.

Conjugation is an automorphism of \mathbb{K} . In addition, it is an identity on real numbers, because a real number commutes with any quaternion. Moreover,

$$N(qpq^{-1}) = N(q)N(p)N(q^{-1}) = N(p).$$

Thus, conjugation can be understood as an orthonormal transformation of \mathbb{R}^4 , preserving the first coordinate. Therefore it is also orthonormal on the orthogonal complement of the first component. Let q = r + v, that is, v is the imaginary part of q. Then

$$qvq^* = (r+v)v(r-v) = (r+v)(rv-vv) = (r+v)(r-v)v = N(q)v = v.$$

We can see that ρ_q is an isometry with a fixpoint (x, y, z).

Let us write q as

$$q = \cos\frac{\omega}{2} + \sin\frac{\omega}{2} (\ell\sin\vartheta\cos\varphi + j\sin\vartheta\sin\varphi + k\cos\vartheta),$$

where

$$v' = \ell \sin \vartheta \cos \varphi + j \sin \vartheta \sin \varphi + k \cos \vartheta$$

is a unitary imaginary quaternion expressing the axis of rotation using its polar coordinates. Denote

$$\kappa = \cos\frac{\omega}{2} + \sin\frac{\omega}{2}k,$$

which is the case with v' = k. Direct calculation of images $\rho_{\kappa}(\ell)$, $\rho_{\kappa}(j)$ and $\rho_{\kappa}(k)$ yields

$$[\rho_{\kappa}]_{\ell,j,k} = \begin{pmatrix} \cos\omega & -\sin\omega & 0\\ \sin\omega & \cos\omega & 0\\ 0 & 0 & 1 \end{pmatrix}$$

and the theorem holds for this particular case.

Similarly (or from symmetry) we get validity for the cases $v' = \ell$ and v' = j, i.e. for rotations around the second and third axes of \mathbb{R}^3 .

Consider now quaternions

$$\begin{split} q_{\varphi} &= \cos\frac{\varphi}{2} + k\sin\frac{\varphi}{2} \,, \\ q_{\vartheta} &= \cos\frac{\vartheta}{2} + j\sin\frac{\vartheta}{2} \,. \end{split}$$

Their action corresponds to the respective rotations, so

$$q_{\varphi}q_{\vartheta}kq_{\vartheta}^{*}q_{\varphi}^{*}=v'\,$$

and thus

$$q_{\varphi}q_{\vartheta}\kappa q_{\vartheta}^*q_{\varphi}^* = q\,.$$

From here we deduce

$$qpq^* = q_{\varphi}(q_{\vartheta}(\kappa(q_{\vartheta}^*(q_{\varphi}^*pq_{\varphi})q_{\vartheta})\kappa^*)q_{\vartheta}^*)q_{\varphi}^*$$

that is

$$\rho_q = \rho_{\varphi} \circ \rho_{\vartheta} \circ \rho_{\kappa} \circ \rho_{\vartheta}^{-1} \circ \rho_{\varphi}^{-1}$$

and ρ_q is the mapping similar to ρ_{κ} , in other words, it is a rotation by the angle ω with respect to different othonormal basis. In particular

$$[\rho_q]_{\rho^*_{\varphi} \circ \rho^*_{\vartheta}(\ell,j,k)} = [\rho_{\kappa}]_{\ell,j,k}$$

Since we already know the fixpoint of ρ_q the proof is complete.

Remark: A direct calculation of images $\varphi_q(\ell)$, $\varphi_q(j)$ and $\varphi_q(k)$ yields (for unit q) the matrix

$$[\varphi_q]_{\ell,j,k} = \begin{pmatrix} 1 - 2(y^2 + z^2) & 2(xy - rz) & 2(ry + xz) \\ 2(xy + rz) & 1 - 2(x^2 + z^2) & 2(yz - rx) \\ 2(xz - ry) & 2(rx + yz) & 1 - 2(x^2 + y^2) \end{pmatrix}.$$

We can verify that it is orthogonal with determinant 1.