QUATERNIONS

Recall that quaternions are a four-dimensional algebra (that is a vector space
with a distributive vector multiplication) K over real numbers generated by the
elements {1,, j, k}, which satisfy

2 =342 =k =ljk =—1.

First of the imaginary generators is usually denoted as ¢, but to avoid the confusion
caused by identifying with a complex unit, we will use £. Multiplying the equality
ljk = —1 from both sides by k we get kfj = —1. Similarly, jk¢ = —1. Imaginary
generators are therefore cyclically interchangeable. Multiplying by only one k we
also get £j = k, and symmetrically jk = ¢ and k¢ = j. Further, multiplying ¢j = k
by ¢ from the left, we get j = —fk and similarly k = —j¢ a kj = —{.The generators
are therefore anti-commutative. However, each quaternion obviously commutes with
a real number (which is itself a quaternion).

For ¢ = a + bl + ¢j + dk we define the adjoint element ¢* = a — bl — cj — dk.

Norm of q is defined as N(q) := qq¢* = a® + b? + ¢ + d*> = |q|?, where |q| is
the Euclidean norm in R%. The sphere S? is therefore naturally identified with unit
quaternions K; (that is, quaternions of norm one).

We have (pg)* = ¢*p*. This implies N(pg) = N(p)N(q), and unit quaternions
form a multiplicative group. Thus, the inverse element of the quaternion ¢ has the
form ¢! = ¢*/N(q), or ¢~! = ¢* for unit quaternions.

Quaternions of the form bf 4 ¢j + dk are called imaginary. Unit imaginary qua-
ternions can be identified with the sphere S? and they satisfy p? = —1 (similarly as
the generators), because p~! = —p.

We will now show the most important property of quaternions. Conjugation of
an imaginary quaternion by any quaternion corresponds to the rotation of three-
dimensional space.

Theorem. For 0 # q = (r + zf + yj + zk) € K, the mapping
pg: R = R3
(b,c,d) — (b',c,d")
defined by
Ve+cj+dk=qbl+cj+dk)g"
is the rotation around the axis passing through the point (z,y, z) by the angle

w = 2arccos 4 .
N(q)
Proof. Since qpg—* = (tq)p(tq)~! for any real t, we can w.l.o.g. assume that ¢ is a
unit quaternion and ¢pg—! = gpq*.

Conjugation is an automorphism of K. In addition, it is an identity on real
numbers, because a real number commutes with any quaternion. Moreover,

N(gpq~) = N(g)N(p)N(¢~') = N(p).
Thus, conjugation can be understood as an orthonormal transformation of R?,
preserving the first coordinate. Therefore it is also orthonormal on the orthogonal

complement of the first component. Let ¢ = r + v, that is, v is the imaginary part
of ¢g. Then

qug* = (r+v)v(r—ov)=(r+v)(rv—w)=(r+ov)(r—v)v=N(qv=r.
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We can see that p, is an isometry with a fixpoint (x,y, 2).
Let us write ¢ as
w oW, . .
q=cos + sin 5((51111900590 + jsind¥sing + kcos9)

where

v’ = £sind cos ¢ + jsinvsin ¢ + k cos
is a unitary imaginary quaternion expressing the axis of rotation using its polar
coordinates. Denote

Y 4 sin Yk
K = cos — + sin —
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which is the case with v/ = k. Direct calculation of images p,(¢), px(j) and py (k)
yields

cosw —sinw 0
[ocleje = | sinw cosw O
0 0 1

and the theorem holds for this particular case.

Similarly (or from symmetry) we get validity for the cases v/ = £ and v' = j, i.e.
for rotations around the second and third axes of R3.

Consider now quaternions

q@:congrksing,
9

v
= cos — + jsin .
Qv 5 Tising

Their action corresponds to the respective rotations, so

Qeqokayq, =0,
and thus

Qe q9Kq9q, = q -
From here we deduce

apq” = q4(q9 k(a5 (a5Pa0)a9)E")a5)a,
that is
Pa=Pe O Py O PsO Py 0P,
and p, is the mapping similar to p,;, in other words, it is a rotation by the angle w
with respect to different othonormal basis. In particular
[0alpz 003 (0,5.k) = [Prlejok -

Since we already know the fixpoint of p, the proof is complete. O

Remark: A direct calculation of images ¢4 (£), ¢q(7) and ¢4 (k)
yields (for unit ¢) the matrix

1—2(y%+2?) 2(xy —rz) 2(ry + zz)
[Pglek = 2(xy +rz) 1—2(2? + 22) 2(yz —rx)
2(zz —ry) 20re +yz)  1-2(2%+9?)

We can verify that it is orthogonal with determinant 1.
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