## Quaternions

Recall that quaternions are a four-dimensional algebra (that is a vector space with a distributive vector multiplication) $\mathbb{K}$ over real numbers generated by the elements $\{1, \ell, j, k\}$, which satisfy

$$
\ell^{2}=j^{2}=k^{2}=\ell j k=-1
$$

First of the imaginary generators is usually denoted as $i$, but to avoid the confusion caused by identifying with a complex unit, we will use $\ell$. Multiplying the equality $\ell j k=-1$ from both sides by $k$ we get $k \ell j=-1$. Similarly, $j k \ell=-1$. Imaginary generators are therefore cyclically interchangeable. Multiplying by only one $k$ we also get $\ell j=k$, and symmetrically $j k=\ell$ and $k \ell=j$. Further, multiplying $\ell j=k$ by $\ell$ from the left, we get $j=-\ell k$ and similarly $k=-j \ell$ a $k j=-\ell$.The generators are therefore anti-commutative. However, each quaternion obviously commutes with a real number (which is itself a quaternion).

For $q=a+b \ell+c j+d k$ we define the adjoint element $q^{*}=a-b \ell-c j-d k$.
Norm of $q$ is defined as $N(q):=q q^{*}=a^{2}+b^{2}+c^{2}+d^{2}=|q|^{2}$, where $|q|$ is the Euclidean norm in $\mathbb{R}^{4}$. The sphere $\mathbb{S}^{3}$ is therefore naturally identified with unit quaternions $\mathbb{K}_{1}$ (that is, quaternions of norm one).

We have $(p q)^{*}=q^{*} p^{*}$. This implies $N(p q)=N(p) N(q)$, and unit quaternions form a multiplicative group. Thus, the inverse element of the quaternion $q$ has the form $q^{-1}=q^{*} / N(q)$, or $q^{-1}=q^{*}$ for unit quaternions.

Quaternions of the form $b \ell+c j+d k$ are called imaginary. Unit imaginary quaternions can be identified with the sphere $\mathbb{S}^{2}$ and they satisfy $p^{2}=-1$ (similarly as the generators), because $p^{-1}=-p$.

We will now show the most important property of quaternions. Conjugation of an imaginary quaternion by any quaternion corresponds to the rotation of threedimensional space.

Theorem. For $0 \neq q=(r+x \ell+y j+z k) \in \mathbb{K}$, the mapping

$$
\begin{aligned}
& \rho_{q}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
& \quad(b, c, d) \mapsto\left(b^{\prime}, c^{\prime}, d^{\prime}\right)
\end{aligned}
$$

defined by

$$
b^{\prime} \ell+c^{\prime} j+d^{\prime} k=q(b \ell+c j+d k) q^{-1}
$$

is the rotation around the axis passing through the point $(x, y, z)$ by the angle

$$
\omega=2 \arccos \frac{r}{\sqrt{N(q)}}
$$

Proof. Since $q p q^{-1}=(t q) p(t q)^{-1}$ for any real $t$, we can w.l.o.g. assume that $q$ is a unit quaternion and $q p q^{-1}=q p q^{*}$.

Conjugation is an automorphism of $\mathbb{K}$. In addition, it is an identity on real numbers, because a real number commutes with any quaternion. Moreover,

$$
N\left(q p q^{-1}\right)=N(q) N(p) N\left(q^{-1}\right)=N(p)
$$

Thus, conjugation can be understood as an orthonormal transformation of $\mathbb{R}^{4}$, preserving the first coordinate. Therefore it is also orthonormal on the orthogonal complement of the first component. Let $q=r+v$, that is, $v$ is the imaginary part of $q$. Then

$$
q v q^{*}=(r+v) v(r-v)=(r+v)(r v-v v)=(r+v)(r-v) v=N(q) v=v
$$

We can see that $\rho_{q}$ is an isometry with a fixpoint $(x, y, z)$.
Let us write $q$ as

$$
q=\cos \frac{\omega}{2}+\sin \frac{\omega}{2}(\ell \sin \vartheta \cos \varphi+j \sin \vartheta \sin \varphi+k \cos \vartheta),
$$

where

$$
v^{\prime}=\ell \sin \vartheta \cos \varphi+j \sin \vartheta \sin \varphi+k \cos \vartheta
$$

is a unitary imaginary quaternion expressing the axis of rotation using its polar coordinates. Denote

$$
\kappa=\cos \frac{\omega}{2}+\sin \frac{\omega}{2} k,
$$

which is the case with $v^{\prime}=k$. Direct calculation of images $\rho_{\kappa}(\ell), \rho_{\kappa}(j)$ and $\rho_{\kappa}(k)$ yields

$$
\left[\rho_{\kappa}\right]_{\ell, j, k}=\left(\begin{array}{ccc}
\cos \omega & -\sin \omega & 0 \\
\sin \omega & \cos \omega & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and the theorem holds for this particular case.
Similarly (or from symmetry) we get validity for the cases $v^{\prime}=\ell$ and $v^{\prime}=j$, i.e. for rotations around the second and third axes of $\mathbb{R}^{3}$.

Consider now quaternions

$$
\begin{aligned}
& q_{\varphi}=\cos \frac{\varphi}{2}+k \sin \frac{\varphi}{2} \\
& q_{\vartheta}=\cos \frac{\vartheta}{2}+j \sin \frac{\vartheta}{2}
\end{aligned}
$$

Their action corresponds to the respective rotations, so

$$
q_{\varphi} q_{\vartheta} k q_{\vartheta}^{*} q_{\varphi}^{*}=v^{\prime}
$$

and thus

$$
q_{\varphi} q_{\vartheta} \kappa q_{\vartheta}^{*} q_{\varphi}^{*}=q
$$

From here we deduce

$$
q p q^{*}=q_{\varphi}\left(q_{\vartheta}\left(\kappa\left(q_{\vartheta}^{*}\left(q_{\varphi}^{*} p q_{\varphi}\right) q_{\vartheta}\right) \kappa^{*}\right) q_{\vartheta}^{*}\right) q_{\varphi}^{*}
$$

that is

$$
\rho_{q}=\rho_{\varphi} \circ \rho_{\vartheta} \circ \rho_{\kappa} \circ \rho_{\vartheta}^{-1} \circ \rho_{\varphi}^{-1},
$$

and $\rho_{q}$ is the mapping similar to $\rho_{\kappa}$, in other words, it is a rotation by the angle $\omega$ with respect to different othonormal basis. In particular

$$
\left[\rho_{q}\right]_{\rho_{\varphi}^{*} \circ \rho_{\vartheta}^{*}(\ell, j, k)}=\left[\rho_{\kappa}\right]_{\ell, j, k} .
$$

Since we already know the fixpoint of $\rho_{q}$ the proof is complete.
Remark: A direct calculation of images $\varphi_{q}(\ell), \varphi_{q}(j)$ and $\varphi_{q}(k)$ yields (for unit $q$ ) the matrix

$$
\left[\varphi_{q}\right]_{\ell, j, k}=\left(\begin{array}{ccc}
1-2\left(y^{2}+z^{2}\right) & 2(x y-r z) & 2(r y+x z) \\
2(x y+r z) & 1-2\left(x^{2}+z^{2}\right) & 2(y z-r x) \\
2(x z-r y) & 2(r x+y z) & 1-2\left(x^{2}+y^{2}\right)
\end{array}\right) .
$$

We can verify that it is orthogonal with determinant 1.

