Geometry of projective unitary operators

If we identify unitary operators that have the same action on classes given by the projective equivalence, we get the Projective Unitary Group, which we denote by $\mathrm{PU}(2)$ (two denotes the dimension). We thereby identify the operator U with the operator $e^{i \varphi} U$. (Recall that $e^{i \varphi}$ here represents the so-called scalar matrix, i.e. a diagonal matrix with all indices on the diagonal equal to $e^{i \varphi}$, thus having the determinant $e^{i 2 \varphi}$.)

First, let us explore what the general unitary operator U looks like. Its first column is some unit vector $\binom{a}{b}$. The second column is then perpendicular to it, so it is the vector $\binom{-b^{*}}{a^{*}}$ up to multiplication by a complex unit. The general form of a unitary matrix is therefore

$$
U=\left(\begin{array}{cc}
a & -e^{i \psi} b^{*} \\
b & e^{i \psi} a^{*}
\end{array}\right)
$$

with determinant $e^{i \psi}$. In the basis of eigenvectors, the U is of the form

$$
\left(\begin{array}{cc}
e^{i \varphi_{1}} & 0 \\
0 & e^{i \varphi_{2}}
\end{array}\right)
$$

where $\psi=\varphi_{1}+\varphi_{2}$. The matrix U is projectively equivalent to the matrix

$$
e^{-i \frac{\psi}{2}} U=\left(\begin{array}{cc}
e^{-i \psi / 2} a & -e^{i \psi / 2} b^{*} \\
e^{-i \psi / 2} b & e^{i \psi / 2} a^{*}
\end{array}\right)=\left(\begin{array}{cc}
c & -d^{*} \\
d & c^{*}
\end{array}\right)
$$

where $c=e^{-i \psi / 2} a$ and $d=e^{-i \psi / 2} b$, with determinant one and the diagonal form

$$
\left(\begin{array}{cc}
e^{-i \omega / 2} & 0 \\
0 & e^{i \omega / 2}
\end{array}\right)
$$

where $\omega=\varphi_{2}-\varphi_{1}$. It is therefore natural to choose this simple representative of unitary operators projectively equivalent with U. It is an element of the Special Unitary group denoted $\mathrm{SU}(2)$. However, there are two such representatives! Namely $\pm e^{-i \psi / 2} U$.

Remark: Another natural choice is the matrix $e^{-i \varphi_{1}} U$, with the diagonal form

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \omega}
\end{array}\right) .
$$

Note an interesting difference. While the mapping

$$
R(\omega)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \omega}
\end{array}\right)
$$

has the period 2π, the mapping

$$
T(\omega)=\left(\begin{array}{cc}
e^{-i \frac{\omega}{2}} & 0 \\
0 & e^{i \frac{\omega}{2}}
\end{array}\right)
$$

has the period 4π, and the matrices $T(\omega)$ and $T(\omega+2 \pi)$ differ by the sign, being two representatives of $\mathrm{PU}(2)$ in $\mathrm{SU}(2)$.

Writing $c=p-t i$ and $d=s-r i$, where $p, r, s, t \in \mathbb{R},(p, r, s, t) \in \mathbb{S}^{3}$, we have

$$
\left(\begin{array}{cc}
p-t i & -s-r i \\
s-r i & p+t i
\end{array}\right)
$$

The sign in $\mathrm{SU}(2)$ can now be chosen in order to make p non-negative. (If $p=0$ we will decide according to t or even s.) The advantage of this expression is the equality

$$
\left(\begin{array}{cc}
p-t i & -s-r i \\
s-r i & p+t i
\end{array}\right)=p E+r(-i X)+s(-i Y)+t(-i Z)
$$

which provides a decomposition into matrices $E,-i X, i Y,-i Z$ which satisfy the defining relations of quaternion units $1, \ell, j, k$. We can therefore identify $\ell=-i X$, $j=-i Y, k=-i Z$ and we obtain a one-to-one correspondence between unit quaternions with non-negative real part and $\mathrm{PU}(2)$. Every element $U \in \mathrm{PU}(2)$ can be uniquely expressed as

$$
U=\cos \frac{\omega}{2} E+(x \ell+y j+z k) \sin \frac{\omega}{2}
$$

where $(x, y, z) \in \mathbb{S}^{2}$ and $\omega \in[0, \pi]$. In quantum mechanics, this is often written using so called extended Euler's formula

$$
U=e^{-i \frac{\omega}{2} \xi \cdot \sigma}=E \cos \frac{\omega}{2}-i \xi \cdot \sigma \sin \frac{\omega}{2}=\cos \frac{\omega}{2} E+(x \ell+y j+z k) \sin \frac{\omega}{2},
$$

where $\xi=(x, y, z)$ a $\sigma=(X, Y, Z)$. Each pair ξ, ω defines the rotation $R(\xi, \omega)$ of \mathbb{R}^{3} around the axis ξ by the angle ω. These rotations make the Special Orthonormal group $\mathrm{SO}(3)$, that is, the group of matrices whose columns (and rows) form an orthonormal basis, and their determinant is one. Each non-identity rotation is thereby defined by two pairs due to the equality $R(\xi, \omega)=R(-\xi,-\omega)$.

Remark: Identity matrix E brings about some technical difficulties, since its "axis" can be chosen arbitrarily (and $\omega=0$). It is natural to adopt the convention for E that $x=y=z=0$, that is, $\xi=\overrightarrow{0}$.
Therefore we have a bijection between $\mathbb{S}^{2} \times(0,2 \pi)$ and $\mathrm{SU}(2) \backslash\{E\}$, where always two elements correspond to a single rotation in $\mathrm{SO}(3)$, or in $\mathrm{PU}(2)$. The above considerations can be summarized as follows:

$$
\mathrm{PU}(2) \cong \mathrm{SU}(2) / \mathbb{Z}_{2} \cong \mathbb{S}^{3} / \mathbb{Z}_{2} \cong \mathbb{K}_{1} / \mathbb{Z}_{2} \cong \mathbb{S}^{2} \times(0,2 \pi) / \mathbb{Z}_{2} \cup(\overrightarrow{0}, 0) \cong \mathrm{SO}(3)
$$

By \cong we loosely mean the above described identifications.
The first and the last elements of the are nevertheless related in a much more precise way, which is given by the relation between rotations and quaternion conjugations formulated in the following theorem.

Věta. The mapping

$$
\begin{aligned}
& \Phi: \mathrm{SO}(3) \rightarrow \mathrm{PU}(2) \\
& R(\xi, \omega) \mapsto e^{-i \frac{\omega}{2} \xi \cdot \sigma}
\end{aligned}
$$

is a group isomorphism. Moreover, for each rotation $\rho \in \mathrm{SO}(3)$ we have

$$
\rho=\mathcal{S}^{-1} \circ \Phi(\rho) \circ \mathcal{S}
$$

where $\mathcal{S}: \mathbb{S}^{2} \rightarrow \mathbb{C} \mathbf{P}^{1}$ is the stereographic projection.

Důkaz. For $U=e^{-i \frac{\omega}{2} \xi \cdot \sigma}$ we have

$$
R(\xi, \omega)=\rho_{U} \stackrel{\Phi}{\longmapsto} U .
$$

The mapping is therefore injective and surjective, and the composition of rotations corresponds to the matrix multiplication. It remains to show that $R(\xi, \omega)$ acts on $\mathcal{S}^{-1}(|\psi\rangle)$ in the same way as U on $|\psi\rangle$. Here we exploit the density operator. Operator of the image $U|\psi\rangle$ is of the form

$$
U|\psi\rangle\langle\psi| U^{\dagger}=\frac{1}{2} E+\frac{i}{2} U(b \ell+c j+d k) U^{\dagger} .
$$

From the theorem about the action of quaternion conjugation we deduce that $\mathcal{S}^{-1}(U|\psi\rangle)$ is indeed equal to $\rho_{U}(b, c, d)$. Hence the following diagram commutes.

