
Geometry of projective unitary operators

If we identify unitary operators that have the same action on classes given by
the projective equivalence, we get the Projective Unitary Group, which we denote
by PU(2) (two denotes the dimension). We thereby identify the operator U with
the operator eiφU . (Recall that eiφ here represents the so-called scalar matrix, i.e.
a diagonal matrix with all indices on the diagonal equal to eiφ, thus having the
determinant ei2φ.)

First, let us explore what the general unitary operator U looks like. Its first

column is some unit vector
(
a
b

)
. The second column is then perpendicular to it, so

it is the vector
(
−b∗
a∗

)
up to multiplication by a complex unit. The general form of

a unitary matrix is therefore

U =

(
a −eiψb∗
b eiψa∗

)
,

with determinant eiψ. In the basis of eigenvectors, the U is of the form(
eiφ1 0
0 eiφ2

)
,

where ψ = φ1 + φ2. The matrix U is projectively equivalent to the matrix

e−i
ψ
2 U =

(
e−iψ/2a −eiψ/2b∗
e−iψ/2b eiψ/2a∗

)
=

(
c −d∗
d c∗

)
,

where c = e−iψ/2a and d = e−iψ/2b, with determinant one and the diagonal form(
e−iω/2 0

0 eiω/2

)
,

where ω = φ2 − φ1. It is therefore natural to choose this simple representative
of unitary operators projectively equivalent with U . It is an element of the Special
Unitary group denoted SU(2). However, there are two such representatives! Namely
±e−iψ/2U .

Remark: Another natural choice is the matrix e−iφ1U , with the
diagonal form (

1 0
0 eiω

)
.

Note an interesting difference. While the mapping

R(ω) =

(
1 0
0 eiω

)
has the period 2π, the mapping

T (ω) =

(
e−i

ω
2 0

0 ei
ω
2

)
has the period 4π, and the matrices T (ω) and T (ω + 2π) differ by
the sign, being two representatives of PU(2) in SU(2).
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Writing c = p− ti and d = s− ri, where p, r, s, t ∈ R, (p, r, s, t) ∈ S3, we have(
p− ti −s− ri
s− ri p+ ti

)
.

The sign in SU(2) can now be chosen in order to make p non-negative. (If p = 0
we will decide according to t or even s.) The advantage of this expression is the
equality (

p− ti −s− ri
s− ri p+ ti

)
= pE + r(−iX) + s(−iY ) + t(−iZ),

which provides a decomposition into matrices E, −iX, iY , −iZ which satisfy the
defining relations of quaternion units 1, ℓ, j, k. We can therefore identify ℓ = −iX,
j = −iY , k = −iZ and we obtain a one-to-one correspondence between unit qua-
ternions with non-negative real part and PU(2). Every element U ∈ PU(2) can be
uniquely expressed as

U = cos
ω

2
E + (xℓ+ yj + zk) sin

ω

2
,

where (x, y, z) ∈ S2 and ω ∈ [0, π]. In quantum mechanics, this is often written
using so called extended Euler’s formula

U = e−i
ω
2 ξ·σ = E cos

ω

2
− i ξ · σ sin ω

2
= cos

ω

2
E + (xℓ+ yj + zk) sin

ω

2
,

where ξ = (x, y, z) a σ = (X,Y, Z). Each pair ξ, ω defines the rotation R(ξ, ω) of
R3 around the axis ξ by the angle ω. These rotations make the Special Orthonor-
mal group SO(3), that is, the group of matrices whose columns (and rows) form
an orthonormal basis, and their determinant is one. Each non-identity rotation is
thereby defined by two pairs due to the equality R(ξ, ω) = R(−ξ,−ω).

Remark: Identity matrix E brings about some technical difficul-
ties, since its “axis” can be chosen arbitrarily (and ω = 0). It is
natural to adopt the convention for E that x = y = z = 0, that is,
ξ = 0⃗.

Therefore we have a bijection between S2 × (0, 2π) and SU(2) \ {E}, where always
two elements correspond to a single rotation in SO(3), or in PU(2). The above
considerations can be summarized as follows:

PU(2) ∼= SU(2)/Z2
∼= S3/Z2

∼= K1/Z2
∼= S2 × (0, 2π)/Z2 ∪ (⃗0, 0) ∼= SO(3) .

By ∼= we loosely mean the above described identifications.
The first and the last elements of the are nevertheless related in a much more

precise way, which is given by the relation between rotations and quaternion con-
jugations formulated in the following theorem.

Věta. The mapping

Φ : SO(3) → PU(2)

R(ξ, ω) 7→ e−i
ω
2 ξ·σ

is a group isomorphism. Moreover, for each rotation ρ ∈ SO(3) we have

ρ = S−1 ◦ Φ(ρ) ◦ S,

where S : S2 → CP1 is the stereographic projection.
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Důkaz. For U = e−i
ω
2 ξ·σ we have

R(ξ, ω) = ρU
Φ7−→ U.

The mapping is therefore injective and surjective, and the composition of rotations
corresponds to the matrix multiplication. It remains to show that R(ξ, ω) acts
on S−1(|ψ⟩) in the same way as U on |ψ⟩. Here we exploit the density operator.
Operator of the image U |ψ⟩ is of the form

U |ψ⟩⟨ψ|U† =
1

2
E +

i

2
U(bℓ+ cj + dk)U† .

From the theorem about the action of quaternion conjugation we deduce that
S−1 (U |ψ⟩) is indeed equal to ρU (b, c, d). Hence the following diagram commutes.

S2CP1

CP1 S2

e−i
ω
2 ξ·σ

S

R(ξ, ω)

S

□
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