GEOMETRY OF PROJECTIVE UNITARY OPERATORS

If we identify unitary operators that have the same action on classes given by the projective equivalence, we get the *Projective Unitary Group*, which we denote by PU(2) (two denotes the dimension). We thereby identify the operator U with the operator $e^{i\varphi}U$. (Recall that $e^{i\varphi}$ here represents the so-called *scalar matrix*, i.e. a diagonal matrix with all indices on the diagonal equal to $e^{i\varphi}$, thus having the determinant $e^{i2\varphi}$.)

First, let us explore what the general unitary operator U looks like. Its first column is some unit vector $\begin{pmatrix} a \\ b \end{pmatrix}$. The second column is then perpendicular to it, so it is the vector $\begin{pmatrix} -b^* \\ a^* \end{pmatrix}$ up to multiplication by a complex unit. The general form of a unitary matrix is therefore

$$U = \begin{pmatrix} a & -e^{i\psi}b^* \\ b & e^{i\psi}a^* \end{pmatrix},$$

with determinant $e^{i\psi}$. In the basis of eigenvectors, the U is of the form

$$\begin{pmatrix} e^{i\varphi_1} & 0\\ 0 & e^{i\varphi_2} \end{pmatrix},$$

where $\psi = \varphi_1 + \varphi_2$. The matrix U is projectively equivalent to the matrix

$$e^{-i\frac{\psi}{2}}U = \begin{pmatrix} e^{-i\psi/2}a & -e^{i\psi/2}b^* \\ e^{-i\psi/2}b & e^{i\psi/2}a^* \end{pmatrix} = \begin{pmatrix} c & -d^* \\ d & c^* \end{pmatrix},$$

where $c = e^{-i\psi/2}a$ and $d = e^{-i\psi/2}b$, with determinant one and the diagonal form

$$\begin{pmatrix} e^{-i\omega/2} & 0\\ 0 & e^{i\omega/2} \end{pmatrix},$$

where $\omega = \varphi_2 - \varphi_1$. It is therefore natural to choose this simple representative of unitary operators projectively equivalent with U. It is an element of the *Special Unitary group* denoted SU(2). However, there are two such representatives! Namely $\pm e^{-i\psi/2}U$.

Remark: Another natural choice is the matrix $e^{-i\varphi_1}U$, with the diagonal form

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\omega} \end{pmatrix}.$$

Note an interesting difference. While the mapping

$$R(\omega) = \begin{pmatrix} 1 & 0\\ 0 & e^{i\omega} \end{pmatrix}$$

has the period 2π , the mapping

$$T(\omega) = \begin{pmatrix} e^{-i\frac{\omega}{2}} & 0\\ 0 & e^{i\frac{\omega}{2}} \end{pmatrix}$$

has the period 4π , and the matrices $T(\omega)$ and $T(\omega + 2\pi)$ differ by the sign, being two representatives of PU(2) in SU(2).

Writing c = p - ti and d = s - ri, where $p, r, s, t \in \mathbb{R}$, $(p, r, s, t) \in \mathbb{S}^3$, we have

$$\begin{pmatrix} p-ti & -s-ri \\ s-ri & p+ti \end{pmatrix}.$$

The sign in SU(2) can now be chosen in order to make p non-negative. (If p = 0 we will decide according to t or even s.) The advantage of this expression is the equality

$$\begin{pmatrix} p-ti & -s-ri \\ s-ri & p+ti \end{pmatrix} = pE + r(-iX) + s(-iY) + t(-iZ),$$

which provides a decomposition into matrices E, -iX, iY, -iZ which satisfy the defining relations of quaternion units $1, \ell, j, k$. We can therefore identify $\ell = -iX$, j = -iY, k = -iZ and we obtain a one-to-one correspondence between unit quaternions with non-negative real part and PU(2). Every element $U \in PU(2)$ can be uniquely expressed as

$$U = \cos\frac{\omega}{2}E + (x\ell + yj + zk)\sin\frac{\omega}{2},$$

where $(x, y, z) \in \mathbb{S}^2$ and $\omega \in [0, \pi]$. In quantum mechanics, this is often written using so called *extended Euler's formula*

$$U = e^{-i\frac{\omega}{2}\xi\cdot\sigma} = E\cos\frac{\omega}{2} - i\xi\cdot\sigma\sin\frac{\omega}{2} = \cos\frac{\omega}{2}E + (x\ell + yj + zk)\sin\frac{\omega}{2}$$

where $\xi = (x, y, z)$ a $\sigma = (X, Y, Z)$. Each pair ξ, ω defines the rotation $R(\xi, \omega)$ of \mathbb{R}^3 around the axis ξ by the angle ω . These rotations make the *Special Orthonor-mal group* SO(3), that is, the group of matrices whose columns (and rows) form an orthonormal basis, and their determinant is one. Each non-identity rotation is thereby defined by two pairs due to the equality $R(\xi, \omega) = R(-\xi, -\omega)$.

Remark: Identity matrix E brings about some technical difficulties, since its "axis" can be chosen arbitrarily (and $\omega = 0$). It is natural to adopt the convention for E that x = y = z = 0, that is, $\xi = \vec{0}$.

Therefore we have a bijection between $\mathbb{S}^2 \times (0, 2\pi)$ and $\mathrm{SU}(2) \setminus \{E\}$, where always two elements correspond to a single rotation in SO(3), or in PU(2). The above considerations can be summarized as follows:

$$PU(2) \cong SU(2)/\mathbb{Z}_2 \cong \mathbb{S}^3/\mathbb{Z}_2 \cong \mathbb{K}_1/\mathbb{Z}_2 \cong \mathbb{S}^2 \times (0, 2\pi)/\mathbb{Z}_2 \cup (\vec{0}, 0) \cong SO(3)$$

By \cong we loosely mean the above described identifications.

The first and the last elements of the are nevertheless related in a much more precise way, which is given by the relation between rotations and quaternion conjugations formulated in the following theorem.

Věta. The mapping

$$\Phi : \mathrm{SO}(3) \to \mathrm{PU}(2)$$
$$R(\xi, \omega) \mapsto e^{-i\frac{\omega}{2}\xi \cdot \sigma}$$

is a group isomorphism. Moreover, for each rotation $\rho \in SO(3)$ we have

$$\rho = \mathcal{S}^{-1} \circ \Phi(\rho) \circ \mathcal{S}_{\rho}$$

where $\mathcal{S}: \mathbb{S}^2 \to \mathbb{C}\mathbf{P}^1$ is the stereographic projection.

Důkaz. For $U = e^{-i\frac{\omega}{2}\xi \cdot \sigma}$ we have

$$R(\xi,\omega) = \rho_U \stackrel{\Phi}{\longmapsto} U.$$

The mapping is therefore injective and surjective, and the composition of rotations corresponds to the matrix multiplication. It remains to show that $R(\xi, \omega)$ acts on $\mathcal{S}^{-1}(|\psi\rangle)$ in the same way as U on $|\psi\rangle$. Here we exploit the density operator. Operator of the image $U|\psi\rangle$ is of the form

$$U|\psi\rangle\langle\psi|U^{\dagger} = \frac{1}{2}E + \frac{i}{2}U(b\ell + cj + dk)U^{\dagger}.$$

From the theorem about the action of quaternion conjugation we deduce that $\mathcal{S}^{-1}(U|\psi\rangle)$ is indeed equal to $\rho_U(b, c, d)$. Hence the following diagram commutes.

1			
I			
		_	