## The Hopf fibration (an optional additional material)

If

$$
\alpha=a+b i, \quad \beta=c+d i
$$

then the unit vector $(\alpha, \beta)$ corresponds to

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \in \mathbb{R}^{4}
$$

which is an element of $\mathbb{S}^{3}$, (three-dimensional) sphere in $\mathbb{R}^{4}$. This representation is not unique, we identify vectors that differ by a global phase. One can easily verify that $\left(e^{i \varphi} \alpha, e^{i \varphi} \beta\right)$ correspond to points

$$
\left(\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos \varphi & -\sin \varphi \\
0 & 0 & \sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

which form in $\mathbb{R}^{4}$ a circle $\mathbb{S}^{1}$ around the origin. This circle corresponds to a single point on the Bloch sphere. We thus get the mapping

$$
\mathbb{S}^{1} \hookrightarrow \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}
$$

called the Hopf fibration. In words, the three-dimensional sphere decomposes into (disjoint) circles, which correspond to points on two-dimensional sphere.

