Examples of the Discrete Fourier Transform

Consider the mapping $k \mapsto 2^{k} \bmod 15$ over the group \mathbb{Z}_{16}. This mapping in the canonical basis (the list of values) is

$$
(1,2,4,8,1,2,4,8,1,2,4,8,1,2,4,8)
$$

It is a periodic vector whose period divides its length. So it's actually just a vector of length four, repeated several times. Its Fourier decomposition therefore contains only those Fourier base vectors which themselves have a period four. The expression in the Fourier base is:

$$
(15,0,0,0,-3-6 i, 0,0,0,-5,0,0,0,-3-6 i, 0,0,0) .
$$

The aperiodic vector

$$
(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
$$

has an ugly Fourier transform

$$
\begin{array}{lllll}
(30, & -2-10.05 i, & -2-4.83 i, & -2-2.99 i, & -2-2 i \\
-2-1.34 i, & -2-0.83 i, & -2-0.40 i, & -2,-2+0.40 i, & -2+0.83 i \\
-2+1.34 i, & -2+2 i, & -2+2.99 i, & -2+4.83 i, & -2+10.05 i)
\end{array}
$$

A "partly periodic" vector is obtained in Shor's algorithm by factoring the number 21 from the mapping $k \mapsto 5^{k} \bmod 21$ over the group \mathbb{Z}_{32} :
$(1,5,4,20,16,17,1,5,4,20,16,17,1,5,4,20,16,17,1,5,4,20,16,17,1,5,4,20,16,17,1,5)$
It has a period six, which, however, does not divide the length of the vector. The Fourier coefficients are

$$
\begin{array}{crrr}
(56.75, & -2.75+0.11 i, & -3.08+0.24 i, & -3.87+0.44 i, \\
-6.03+0.91 i, & -21.74+3.97 i, & 9.91-2.09 i, & 3.65-0.85 i, \\
2.12-0.53 i, & 1.45-0.37 i, & 1.09-0.28 i, & 0.87-0.21 i, \\
0.72-0.16 i, & 0.63-0.11 i, & 0.57-0.07 i, & 0.54-0.03 i, \\
-19.27, & 0.54+0.03 i, & 0.57+0.07 i, & 0.63+0.11 i, \\
0.72+0.16 i, & 0.87+0.21 i, & 1.09+0.28 i, & 1.45+0.37 i, \\
2.12+0.53 i, & 3.65+0.85 i, & 9.91+2.09 i, & -21.74-3.97 i, \\
-6.03-0.91 i, & -3.87-0.44 i, & -3.08-0.24 i, & -2.75-0.11 i) .
\end{array}
$$

